1
|
Knijnenburg ACS, Steinbusch CVM, Janssen-Potten YJM, Defesche A, Vermeulen RJ. Neuro-imaging characteristics of sensory impairment in cerebral palsy; a systematic review. FRONTIERS IN REHABILITATION SCIENCES 2023; 4:1084746. [PMID: 37009398 PMCID: PMC10065191 DOI: 10.3389/fresc.2023.1084746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023]
Abstract
BackgroundObjective: To identify and examine neural reorganization of the sensory network in terms of lesion type, somatotopic organization of the primary somatosensory area, and functional connectivity in relation to sensory function in children and young adults with cerebral palsy (CP).MethodsDesign: systematic review, Prospero registration ID 342570. Data sources: PubMed; Cochrane; Web of Science; Embase; CINAHL and PEDro from inception to March 13, 2021. Eligibility criteria: All types of original studies, concerning sensory connectivity in relation to sensory outcome in patients with spastic CP, <30 years of age. No publication status or date restrictions were applied. Data extraction and synthesis: Two authors independently determined the eligibility of studies. Quality assessment was performed by a third author. Neuro-imaging/neurophysiological techniques, sensory outcomes and patient characteristics were extracted.ResultsChildren and young adults with periventricular leucomalacia (PVL) lesions have significantly better hand function and sensation scores than patients with cortical-subcortical/middle cerebral artery (MCA) lesions. Ipsilesional reorganization of the S1 (primary somatosensory cortex) area appears to be the primary compensation mechanism after a unilateral early brain lesion, regardless of the timing of the lesion. Interhemispheric reorganization of the sensory system after early brain lesions is rare and, when it occurs, poorly effective. Diffusion tractography shows a positive correlation between the ascending sensory tract (AST) diffusivity metrics of the more affected hemisphere and sensory test outcomes.Discussion and conclusionsBecause of the large variability in study design, patient characteristics, neuroimaging/neurophysiological techniques and parameters as well as sensory assessment methods used, it is difficult to draw definite inferences on the relationship between the reorganization of the sensory network following early brain damage and sensory function in children and young adults with CP. In general, sensory function seems to be worse in cortical as opposed to white matter tract (PVL) lesions. International consensus on a clinically relevant sensory test battery is needed to enhance understanding of the intriguing compensatory mechanisms of sensory network following early brain damage and potential consequences for rehabilitation strategies.Systematic Review Registrationhttps://www.crd.york.ac.uk/prospero/.
Collapse
Affiliation(s)
- A. C. S. Knijnenburg
- Department of Neurology, Maastricht University Medical Centre+, Maastricht, Netherlands
- Research School MHeNS, Maastricht University, Maastricht, Netherlands
- Correspondence: A. C. S. Knijnenburg
| | - C. V. M. Steinbusch
- Research School MHeNS, Maastricht University, Maastricht, Netherlands
- Department of Rehabilitation Medicine, Adelante Rehabilitation Centre, Valkenburg, Netherlands
- Department of Rehabilitation Medicine, Maastricht University, Maastricht, Netherlands
| | - Y. J. M. Janssen-Potten
- Department of Rehabilitation Medicine, Adelante Rehabilitation Centre, Valkenburg, Netherlands
- Department of Rehabilitation Medicine, Maastricht University, Maastricht, Netherlands
- Research School CAPHRI, Maastricht University, Maastricht, Netherlands
- Department of Rehabilitation Medicine, Adelante Centre of Expertise in Rehabilitation and Audiology, Hoensbroek, Netherlands
| | - A. Defesche
- Department of Rehabilitation Medicine, Adelante Rehabilitation Centre, Valkenburg, Netherlands
| | - R. J. Vermeulen
- Department of Neurology, Maastricht University Medical Centre+, Maastricht, Netherlands
- Research School MHeNS, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
2
|
Wahyuni LK. Multisystem compensations and consequences in spastic quadriplegic cerebral palsy children. Front Neurol 2023; 13:1076316. [PMID: 36698899 PMCID: PMC9868261 DOI: 10.3389/fneur.2022.1076316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Spastic quadriplegic cerebral palsy (CP) is a permanent neuromuscular disorder causing limitation on all four limbs following a lesion on the developing brain. Most children with spastic quadriplegic CP are identified to be Gross Motor Function Classification System (GMFCS) level V, thus they have more comorbidities compared to other types at lower levels. Spastic quadriplegic CP is characterized by weak and inactive postural muscles of the neck and trunk, hence, they will undergo a total body extension as a compensatory mechanism leading to an atypical movement pattern, that give rise to multisystem consequences that reduce their quality of life. The relationship between atypical movement patterns, compensatory strategies, and multisystem consequences have not yet been explored. In fact, these multisystem consequences aggravate their condition and make movement much more atypical, forming a vicious cycle. This review aimed to provide a summary and highlight the mechanism of atypical movement pattern, multisystem compensations, and consequences in spastic quadriplegic CP children. It is true that central nervous system (CNS) lesion in CP is non-progressive, however the multisystem consequences may impair overall function over time. An understanding of how compensatory strategy and multisystem consequences in spastic quadriplegic CP offers the opportunity to intervene as early as possible to improve their quality of life.
Collapse
Affiliation(s)
- Luh Karunia Wahyuni
- Physical Medicine and Rehabilitation Department, Dr. Cipto Mangunkusumo Hospital - Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
3
|
From Hemispheric Asymmetry through Sensorimotor Experiences to Cognitive Outcomes in Children with Cerebral Palsy. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recent neuroimaging studies allowed us to explore abnormal brain structures and interhemispheric connectivity in children with cerebral palsy (CP). Behavioral researchers have long reported that children with CP exhibit suboptimal performance in different cognitive domains (e.g., receptive and expressive language skills, reading, mental imagery, spatial processing, subitizing, math, and executive functions). However, there has been very limited cross-domain research involving these two areas of scientific inquiry. To stimulate such research, this perspective paper proposes some possible neurological mechanisms involved in the cognitive delays and impairments in children with CP. Additionally, the paper examines the ways motor and sensorimotor experience during the development of these neural substrates could enable more optimal development for children with CP. Understanding these developmental mechanisms could guide more effective interventions to promote the development of both sensorimotor and cognitive skills in children with CP.
Collapse
|
4
|
Stronger proprioceptive BOLD-responses in the somatosensory cortices reflect worse sensorimotor function in adolescents with and without cerebral palsy. Neuroimage Clin 2022; 32:102795. [PMID: 34474316 PMCID: PMC8411230 DOI: 10.1016/j.nicl.2021.102795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/18/2022]
Abstract
Cerebral palsy (CP) is a motor disorder where the motor defects are partly due to impaired proprioception. We studied cortical proprioceptive responses and sensorimotor performance in adolescents with CP and their typically-developed (TD) peers. Passive joint movements were used to stimulate proprioceptors during functional magnetic resonance imaging (fMRI) session to quantify the proprioceptive responses whose associations to behavioral sensorimotor performance were also examined. Twenty-three TD (15 females, age: mean ± standard deviation 14.2 ± 2.4 years) and 18 CP (12 females, age: mean ± standard deviation, 13.8 ± 2.3 years; 12 hemiplegic, 6 diplegic) participants were included in this study. Participants' index fingers and ankles were separately stimulated at 3 Hz and 1 Hz respectively with pneumatic movement actuators. Regions-of-interest were used to quantify BOLD-responses from the primary sensorimotor (SM1) and secondary (SII) somatosensory cortices and were compared across the groups. Associations between responses strengths and sensorimotor performance measures were also examined. Proprioceptive responses were stronger for the individuals with CP compared to their TD peers in SM1 (p < 0.001) and SII (p < 0.05) cortices contralateral to their more affected index finger. The ankle responses yielded no significant differences between the groups. The CP group had worse sensorimotor performance for hands and feet (p < 0.001). Stronger responses to finger stimulation in the dominant SM1 (p < 0.001) and both dominant and non-dominant SII (p < 0.01, p < 0.001) cortices were associated with the worse hand sensorimotor performance across all participants. Worse hand function was associated with stronger cortical activation to the proprioceptive stimulation. This association was evident both in adolescents with CP and their typically-developed controls, thus it likely reflects both clinical factors and normal variation in the sensorimotor function. The specific mechanisms need to be clarified in future studies.
Collapse
|
5
|
Brun C, Traverse É, Granger É, Mercier C. Somatosensory deficits and neural correlates in cerebral palsy: a scoping review. Dev Med Child Neurol 2021; 63:1382-1393. [PMID: 34145582 PMCID: PMC9290873 DOI: 10.1111/dmcn.14963] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 12/15/2022]
Abstract
AIM To synthetize studies assessing somatosensory deficits and alterations in cerebral responses evoked by somatosensory stimulation in individuals with cerebral palsy (CP) compared to typically developing individuals. METHOD A scoping review of the literature was performed in the MEDLINE, Embase, PsycInfo, CINAHL, Evidence-Based Medicine Reviews, and Web of Science databases (last search carried out on 6th and 7th August 2020) with a combination of keywords related to CP and somatosensory functions. Somatosensory deficits were measured with clinical tests and alterations in cerebral responses were measured with functional magnetic resonance imaging, electroencephalography, and magnetoencephalography. RESULTS Forty-eight articles were included. Overall, 1463 participants with CP (mean [SD] age 13y 1mo [4y 11mo], range 1-55y; 416 males, 319 females, sex not identified for the remaining participants) and 1478 controls (mean [SD] age 13y 1mo [5y 8mo], range 1-42y; 362 males, 334 females, sex not identified for the remaining participants) were included in the scoping review. For tactile function, most studies reported registration (8 out of 13) or perception (21 out of 21) deficits in participants with CP. For proprioception, most studies also reported registration (6 out of 8) or perception (10 out of 15) deficits. Pain function has not been studied as much, but most studies reported registration (2 out of 3) or perception (3 out of 3) alterations. Neuroimaging findings (18 studies) showed alterations in the somatotopy, morphology, latency, or amplitude of cortical responses evoked by somatosensory stimuli. INTERPRETATION Despite the heterogeneity in the methods employed, most studies reported somatosensory deficits. The focus has been mainly on tactile and proprioceptive function, whereas pain has received little attention. Future research should rigorously define the methods employed and include a sample that is more representative of the population with CP. What this paper adds Most of the papers reviewed found tactile registration and perception deficits in the upper limbs. Proprioceptive deficits were generally observed in cerebral palsy but results were heterogeneous. Pain has received little attention compared to tactile and proprioceptive functions. Neuroimaging studies supported behavioral observations. Alterations were observed for both the most and least affected limb.
Collapse
Affiliation(s)
- Clémentine Brun
- Center for Interdisciplinary Research in Rehabilitation and Social IntegrationQuebec CityQuebecCanada
| | - Élodie Traverse
- Center for Interdisciplinary Research in Rehabilitation and Social IntegrationQuebec CityQuebecCanada,Department of RehabilitationLaval UniversityQuebec CityQuebecCanada
| | - Élyse Granger
- Centre IntégréUniversitaire de Santé et de Services Sociaux de la Capitale‐NationaleQuebec CityQuebecCanada
| | - Catherine Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social IntegrationQuebec CityQuebecCanada,Department of RehabilitationLaval UniversityQuebec CityQuebecCanada
| |
Collapse
|
6
|
Specific Behavioral Responses Rather Than Autonomic Responses Can Indicate and Quantify Acute Pain among Individuals with Intellectual and Developmental Disabilities. Brain Sci 2021; 11:brainsci11020253. [PMID: 33670517 PMCID: PMC7922141 DOI: 10.3390/brainsci11020253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/23/2022] Open
Abstract
Individuals with intellectual and developmental disabilities (IDD) are at a high risk of experiencing pain. Pain management requires assessment, a challenging mission considering the impaired communication skills in IDD. We analyzed subjective and objective responses following calibrated experimental stimuli to determine whether they can differentiate between painful and non-painful states, and adequately quantify pain among individuals with IDD. Eighteen adults with IDD and 21 healthy controls (HC) received experimental pressure stimuli (innocuous, mildly noxious, and moderately noxious). Facial expressions (analyzed with the Facial Action Coding System (FACS)) and autonomic function (heart rate, heart rate variability (HRV), pulse, and galvanic skin response (GSR)) were continuously monitored, and self-reports using a pyramid and a numeric scale were obtained. Significant stimulus-response relationships were observed for the FACS and pyramid scores (but not for the numeric scores), and specific action units could differentiate between the noxious levels among the IDD group. FACS scores of the IDD group were higher and steeper than those of HC. HRV was overall lower among the IDD group, and GSR increased during noxious stimulation in both groups. In conclusion, the facial expressions and self-reports seem to reliably detect and quantify pain among individuals with mild-moderate IDD; their enhanced responses may indicate increased pain sensitivity that requires careful clinical consideration.
Collapse
|
7
|
Chen T, Su H, Zhong N, Tan H, Li X, Meng Y, Duan C, Zhang C, Bao J, Xu D, Song W, Zou J, Liu T, Zhan Q, Jiang H, Zhao M. Disrupted brain network dynamics and cognitive functions in methamphetamine use disorder: insights from EEG microstates. BMC Psychiatry 2020; 20:334. [PMID: 32580716 PMCID: PMC7315471 DOI: 10.1186/s12888-020-02743-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Dysfunction in brain network dynamics has been found to correlate with many psychiatric disorders. However, there is limited research regarding resting electroencephalogram (EEG) brain network and its association with cognitive process for patients with methamphetamine use disorder (MUD). This study aimed at using EEG microstate analysis to determine whether brain network dynamics in patients with MUD differ from those of healthy controls (HC). METHODS A total of 55 MUD patients and 27 matched healthy controls were included for analysis. The resting brain activity was recorded by 64-channel electroencephalography. EEG microstate parameters and intracerebral current sources of each EEG microstate were compared between the two groups. Generalized linear regression model was used to explore the correlation between significant microstates with drug history and cognitive functions. RESULTS MUD patients showed lower mean durations of the microstate classes A and B, and a higher global explained variance of the microstate class C. Besides, MUD patients presented with different current density power in microstates A, B, and C relative to the HC. The generalized linear model showed that MA use frequency is negatively correlated with the MMD of class A. Further, the generalized linear model showed that MA use frequency, scores of Two-back task, and the error rate of MA word are correlated with the MMD and GEV of class B, respectively. CONCLUSIONS Intracranial current source densities of resting EEG microstates are disrupted in MUD patients, hence causing temporal changes in microstate topographies, which are correlated with attention bias and history of drug use.
Collapse
Affiliation(s)
- Tianzhen Chen
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030 China
| | - Hang Su
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030 China
| | - Na Zhong
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030 China
| | - Haoye Tan
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030 China
| | - Xiaotong Li
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030 China
| | - Yiran Meng
- Yunnan Institute on Drug Dependence, Kunming, Yunnan China
| | - Chunmei Duan
- Yunnan Institute on Drug Dependence, Kunming, Yunnan China
| | - Congbin Zhang
- Yunnan Institute on Drug Dependence, Kunming, Yunnan China
| | - Juwang Bao
- grid.28703.3e0000 0000 9040 3743Institute of Higher Education, Beijing University of Technology, Beijing, China
| | - Ding Xu
- Shanghai Bureau of Drug Rehabilitation Administration, Shanghai, China
| | - Weidong Song
- Shanghai Bureau of Drug Rehabilitation Administration, Shanghai, China
| | - Jixue Zou
- Department of Health, Yunnan Bureau of Drug Rehabilitation Administration, Kunming, Yunnan China
| | - Tao Liu
- Yunnan Third Compulsory Drug Dependence Rehablitation Center Hospital, Kunming, Yunnan China
| | - Qingqing Zhan
- Yunnan Third Compulsory Drug Dependence Rehablitation Center Hospital, Kunming, Yunnan China
| | - Haifeng Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030, China. .,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China.
| | - Min Zhao
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030 China ,grid.415630.50000 0004 1782 6212Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China ,grid.9227.e0000000119573309CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
8
|
Zarkou A, Lee SCK, Prosser LA, Jeka JJ. Foot and Ankle Somatosensory Deficits Affect Balance and Motor Function in Children With Cerebral Palsy. Front Hum Neurosci 2020; 14:45. [PMID: 32161527 PMCID: PMC7054234 DOI: 10.3389/fnhum.2020.00045] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/31/2020] [Indexed: 01/03/2023] Open
Abstract
Sensory dysfunction is prevalent in cerebral palsy (CP). Evidence suggests that sensory deficits can contribute to manual ability impairments in children with CP, yet it is still unclear how they contribute to balance and motor performance. Therefore, the objective of this study was to investigate the relationship between lower extremity (LE) somatosensation and functional performance in children with CP. Ten participants with spastic diplegia (Gross Motor Function Classification Scale: I-III) and who were able to stand independently completed the study. Threshold of light touch pressure, two-point discriminatory ability of the plantar side of the foot, duration of cutaneous vibration sensation, and error in the joint position sense of the ankle were assessed to quantify somatosensory function. The balance was tested by the Balance Evaluation System Test (BESTest) and postural sway measures during a standing task. Motor performance was evaluated by using a battery of clinical assessments: (1) Gross Motor Function Measure (GMFM-66-IS) to test gross motor ability; (2) spatiotemporal gait characteristics (velocity, step length) to evaluate walking ability; (3) Timed Up and Go (TUG) and 6 Min Walk (6MWT) tests to assess functional mobility; and (4) an isokinetic dynamometer was used to test the Maximum Volitional Isometric Contraction (MVIC) of the plantar flexor muscles. The results showed that the light touch pressure measure was strongly associated only with the 6MWT. Vibration and two-point discrimination were strongly related to balance performance. Further, the vibration sensation of the first metatarsal head demonstrated a significantly strong relationship with motor performance as measured by GMFM-66-IS, spatiotemporal gait parameters, TUG, and ankle plantar flexors strength test. The joint position sense of the ankle was only related to one subdomain of the BESTest (Postural Responses). This study provides preliminary evidence that LE sensory deficits can possibly contribute to the pronounced balance and motor impairments in CP. The findings emphasize the importance of developing a thorough LE sensory test battery that can guide traditional treatment protocols toward a more holistic therapeutic approach by combining both motor and sensory rehabilitative strategies to improve motor function in CP.
Collapse
Affiliation(s)
- Anastasia Zarkou
- Spinal Cord Injury Research Laboratory, Crawford Research Institute, Shepherd Center, Atlanta, GA, United States
| | - Samuel C K Lee
- Department of Physical Therapy and Interdisciplinary Graduate Program in Biomechanics and Movement Science, University of Delaware, Newark, DE, United States.,Research Department, Shriners Hospital for Children, Philadelphia, PA, United States
| | - Laura A Prosser
- Department of Pediatrics, University of Pennsylvania & The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - John J Jeka
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| |
Collapse
|
9
|
Kurz MJ, Wiesman AI, Coolidge NM, Wilson TW. Children with Cerebral Palsy Hyper-Gate Somatosensory Stimulations of the Foot. Cereb Cortex 2019; 28:2431-2438. [PMID: 28591842 DOI: 10.1093/cercor/bhx144] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Indexed: 12/15/2022] Open
Abstract
We currently have a substantial knowledge gap in our understanding of the neurophysiological underpinnings of the sensory perception deficits often reported in the clinic for children with cerebral palsy (CP). In this investigation, we have begun to address this knowledge gap by using magnetoencephalography (MEG) brain imaging to evaluate the sensory gating of neural oscillations in the somatosensory cortices. A cohort of children with CP (Gross Motor Function Classification System II-III) and typically developing children underwent paired-pulse electrical stimulation of the tibial nerve during MEG. Advanced beamforming methods were used to image significant oscillatory responses, and subsequently the time series of neural activity was extracted from peak voxels. Our experimental results showed that somatosensory cortical oscillations (10-75 Hz) were weaker in the children with CP for both stimulations. Despite this reduction, the children with CP actually exhibited a hyper-gating response to the second, redundant peripheral stimulation applied to the foot. These results have further established the nexus of the cortical somatosensory processing deficits that are likely responsible for the degraded sensory perceptions reported in the clinic for children with CP.
Collapse
Affiliation(s)
- Max J Kurz
- Department of Physical Therapy, Munroe Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA.,Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alex I Wiesman
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nathan M Coolidge
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tony W Wilson
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
10
|
Smyser CD, Wheelock MD, Limbrick DD, Neil JJ. Neonatal brain injury and aberrant connectivity. Neuroimage 2019; 185:609-623. [PMID: 30059733 PMCID: PMC6289815 DOI: 10.1016/j.neuroimage.2018.07.057] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 06/21/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
Brain injury sustained during the neonatal period may disrupt development of critical structural and functional connectivity networks leading to subsequent neurodevelopmental impairment in affected children. These networks can be characterized using structural (via diffusion MRI) and functional (via resting state-functional MRI) neuroimaging techniques. Advances in neuroimaging have led to expanded application of these approaches to study term- and prematurely-born infants, providing improved understanding of cerebral development and the deleterious effects of early brain injury. Across both modalities, neuroimaging data are conducive to analyses ranging from characterization of individual white matter tracts and/or resting state networks through advanced 'connectome-style' approaches capable of identifying highly connected network hubs and investigating metrics of network topology such as modularity and small-worldness. We begin this review by summarizing the literature detailing structural and functional connectivity findings in healthy term and preterm infants without brain injury during the postnatal period, including discussion of early connectome development. We then detail common forms of brain injury in term- and prematurely-born infants. In this context, we next review the emerging body of literature detailing studies employing diffusion MRI, resting state-functional MRI and other complementary neuroimaging modalities to characterize structural and functional connectivity development in infants with brain injury. We conclude by reviewing technical challenges associated with neonatal neuroimaging, highlighting those most relevant to studying infants with brain injury and emphasizing the need for further targeted study in this high-risk population.
Collapse
Affiliation(s)
- Christopher D Smyser
- Departments of Neurology, Pediatrics and Radiology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, St. Louis, MO, 63110, USA.
| | - Muriah D Wheelock
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8134, St. Louis, MO, 63110, USA.
| | - David D Limbrick
- Departments of Neurosurgery and Pediatrics, Washington University School of Medicine, One Children's Place, Suite S20, St. Louis, MO, 63110, USA.
| | - Jeffrey J Neil
- Department of Pediatric Neurology, Boston Children's Hospital, 300 Longwood Avenue, BCH3443, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Rogers CE, Lean RE, Wheelock MD, Smyser CD. Aberrant structural and functional connectivity and neurodevelopmental impairment in preterm children. J Neurodev Disord 2018; 10:38. [PMID: 30541449 PMCID: PMC6291944 DOI: 10.1186/s11689-018-9253-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 11/14/2018] [Indexed: 12/15/2022] Open
Abstract
Background Despite advances in antenatal and neonatal care, preterm birth remains a leading cause of neurological disabilities in children. Infants born prematurely, particularly those delivered at the earliest gestational ages, commonly demonstrate increased rates of impairment across multiple neurodevelopmental domains. Indeed, the current literature establishes that preterm birth is a leading risk factor for cerebral palsy, is associated with executive function deficits, increases risk for impaired receptive and expressive language skills, and is linked with higher rates of co-occurring attention deficit hyperactivity disorder, anxiety, and autism spectrum disorders. These same infants also demonstrate elevated rates of aberrant cerebral structural and functional connectivity, with persistent changes evident across advanced magnetic resonance imaging modalities as early as the neonatal period. Emerging findings from cross-sectional and longitudinal investigations increasingly suggest that aberrant connectivity within key functional networks and white matter tracts may underlie the neurodevelopmental impairments common in this population. Main body This review begins by highlighting the elevated rates of neurodevelopmental disorders across domains in this clinical population, describes the patterns of aberrant structural and functional connectivity common in prematurely-born infants and children, and then reviews the increasingly established body of literature delineating the relationship between these brain abnormalities and adverse neurodevelopmental outcomes. We also detail important, typically understudied, clinical, and social variables that may influence these relationships among preterm children, including heritability and psychosocial risks. Conclusion Future work in this domain should continue to leverage longitudinal evaluations of preterm infants which include both neuroimaging and detailed serial neurodevelopmental assessments to further characterize relationships between imaging measures and impairment, information necessary for advancing our understanding of modifiable risk factors underlying these disorders and best practices for improving neurodevelopmental trajectories in this high-risk clinical population.
Collapse
Affiliation(s)
- Cynthia E Rogers
- Departments of Psychiatry and Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8504, St. Louis, MO, 63110, USA.
| | - Rachel E Lean
- Departments of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8504, St. Louis, MO, 63110, USA
| | - Muriah D Wheelock
- Departments of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8504, St. Louis, MO, 63110, USA
| | - Christopher D Smyser
- Departments of Neurology, Pediatrics and Mallinckrodt Institute of Radiology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, St. Louis, MO, 63110, USA
| |
Collapse
|
12
|
Yu Y, Lauer RT, Tucker CA, Thompson ED, Keshner EA. Visual dependence affects postural sway responses to continuous visual field motion in individuals with cerebral palsy. Dev Neurorehabil 2018; 21:531-541. [PMID: 29341797 PMCID: PMC6237184 DOI: 10.1080/17518423.2018.1424265] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
UNLABELLED The current study aimed to explore the impact of visual dependence on sensorimotor coupling of postural sway and visual motion in adults and teens with spastic cerebral palsy (CP). We hypothesized that individuals with CP would exhibit greater magnitudes of sway than healthy individuals, and the presence of visual dependence (VD) would produce instability in the direction of visual motion. Participants stood in a virtual environment in which the visual scene remained static or continuously rotated 30 degree/second in pitch-up or pitch-down. Increased center of pressure and center of mass responses were observed in the direction of visual scene motion in those with CP. Those with VD exhibited reduced frequency responses in anterior-posterior direction than those who were visually independent. VD suggests deficient sensorimotor integration that could contribute to postural instability and reduced motor function. Individuals with CP who are visually dependent may benefit from more sensory focused rehabilitation strategies. ABBREVIATIONS AP, anterior-posterior; CP, cerebral palsy; COM, center of mass; COP, center of pressure; MDF, median frequency; ML, mediolateral; PD, pitch down (nose down) rotation; PU, pitch up (nose up) rotation; RFT, rod and frame test; RMS, root mean square; SLP, slope of the fitted line; TD, typical development; VD, visual dependence; VI, visual independence; VOR, vestibulo-ocular reflex; VPI, visual perceptual impairment.
Collapse
Affiliation(s)
- Yawen Yu
- Department of Physical Therapy, Temple University, Philadelphia, PA,Shriners Hospitals for Children – Philadelphia, Philadelphia, PA
| | - Richard T. Lauer
- Department of Physical Therapy, Temple University, Philadelphia, PA
| | - Carole A. Tucker
- Department of Physical Therapy, Temple University, Philadelphia, PA,Shriners Hospitals for Children – Philadelphia, Philadelphia, PA,Department of Electrical and Computer Engineering, Temple University, Philadelphia, PA
| | - Elizabeth D. Thompson
- Department of Physical Therapy, Temple University, Philadelphia, PA,Department of Kinesiology, Temple University, Philadelphia, PA
| | - Emily A. Keshner
- Department of Physical Therapy, Temple University, Philadelphia, PA
| |
Collapse
|
13
|
Functional Connectivity Alterations in Children with Spastic and Dyskinetic Cerebral Palsy. Neural Plast 2018; 2018:7058953. [PMID: 30186320 PMCID: PMC6114065 DOI: 10.1155/2018/7058953] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 01/28/2023] Open
Abstract
Cerebral palsy (CP) has long been investigated to be associated with a range of motor and cognitive dysfunction. As the two most common CP subtypes, spastic cerebral palsy (SCP) and dyskinetic cerebral palsy (DCP) may share common and distinct elements in their pathophysiology. However, the common and distinct dysfunctional characteristics between SCP and DCP on the brain network level are less known. This study aims to detect the alteration of brain functional connectivity in children with SCP and DCP based on resting-state functional MRI (fMRI). Resting-state networks (RSNs) were established based on the independent component analysis (ICA), and the functional network connectivity (FNC) was performed on the fMRI data from 16 DCP, 18 bilateral SCP, and 18 healthy children. Compared with healthy controls, altered functional connectivity within the cerebellum network, sensorimotor network (SMN), left frontoparietal network (LFPN), and salience network (SN) were found in DCP and SCP groups. Furthermore, the disconnections of the FNC consistently focused on the visual pathway; covariance of the default mode network (DMN) with other networks was observed both in DCP and SCP groups, while the DCP group had a distinct connectivity abnormality in motor pathway and self-referential processing-related connections. Correlations between the functional disconnection and the motor-related clinical measurement in children with CP were also found. These findings indicate functional connectivity impairment and altered integration widely exist in children with CP, suggesting that the abnormal functional connectivity is a pathophysiological mechanism of motor and cognitive dysfunction of CP.
Collapse
|
14
|
Relationship between sensorimotor cortical activation as assessed by functional near infrared spectroscopy and lower extremity motor coordination in bilateral cerebral palsy. NEUROIMAGE-CLINICAL 2018; 20:275-285. [PMID: 30101059 PMCID: PMC6083901 DOI: 10.1016/j.nicl.2018.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/28/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022]
Abstract
Background Evaluation of task-evoked cortical responses during movement has been limited in individuals with bilateral cerebral palsy (CP), despite documented alterations in brain structure/function and deficits in motor control. Objective To systematically evaluate cortical activity associated with lower extremity tasks, and relate activation parameters to clinical measures in CP. Methods 28 ambulatory participants (14 with bilateral CP and 14 with typical development) completed five motor tasks (non-dominant ankle dorsiflexion, hip flexion and leg cycling as well as bilateral dorsiflexion and cycling) in a block design while their sensorimotor cortex was monitored using functional near infrared spectroscopy (fNIRS), in addition to laboratory and clinical measures of performance. Results Main effects for group and task were found for extent of fNIRS activation (number of active channels; p < 0.001 and p = 0.010, respectively), magnitude of activation (sum of beta values; p < 0.001 for both), and number of active muscles (p = 0.001 and p < 0.001, respectively), but no group by task interactions. Collectively, subgroups with CP and especially those with greater impairments, showed higher extent and magnitude of cortical sensorimotor activation as well as higher amounts of concurrent activity in muscles not required for task performance. Magnitude of fNIRS activation during non-dominant dorsiflexion correlated with validated measures of selective control (r = −0.60, p = 0.03), as well as mobility and daily activity (r = −0.55, p = 0.04 and r = −0.52, p = 0.05, respectively) and self-reported gait function (r = −0.68, p = 0.01) in those with CP. Conclusions The association between higher activity in the sensorimotor cortex and decreased selectivity in cortical organization suggests a potential neural mechanism of motor deficits and target for intervention. First fNIRS comparison of a range of lower extremity tasks in children with and without bilateral CP. FNIRS showed a greater amount and extent of activation of sensorimotor cortices in CP. Greater activation correlated with a greater number of muscles involved in the task. fNIRS results correlated to clinical measures of motor control and function.
Collapse
|
15
|
Chambers C, Sokhey T, Gaebler-Spira D, Kording KP. The integration of probabilistic information during sensorimotor estimation is unimpaired in children with Cerebral Palsy. PLoS One 2017; 12:e0188741. [PMID: 29186196 PMCID: PMC5706703 DOI: 10.1371/journal.pone.0188741] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/13/2017] [Indexed: 11/23/2022] Open
Abstract
Background It is important to understand the motor deficits of children with Cerebral Palsy (CP). Our understanding of this motor disorder can be enriched by computational models of motor control. One crucial stage in generating movement involves combining uncertain information from different sources, and deficits in this process could contribute to reduced motor function in children with CP. Healthy adults can integrate previously-learned information (prior) with incoming sensory information (likelihood) in a close-to-optimal way when estimating object location, consistent with the use of Bayesian statistics. However, there are few studies investigating how children with CP perform sensorimotor integration. We compare sensorimotor estimation in children with CP and age-matched controls using a model-based analysis to understand the process. Methods and findings We examined Bayesian sensorimotor integration in children with CP, aged between 5 and 12 years old, with Gross Motor Function Classification System (GMFCS) levels 1–3 and compared their estimation behavior with age-matched typically-developing (TD) children. We used a simple sensorimotor estimation task which requires participants to combine probabilistic information from different sources: a likelihood distribution (current sensory information) with a prior distribution (learned target information). In order to examine sensorimotor integration, we quantified how participants weighed statistical information from the two sources (prior and likelihood) and compared this to the statistical optimal weighting. We found that the weighing of statistical information in children with CP was as statistically efficient as that of TD children. Conclusions We conclude that Bayesian sensorimotor integration is not impaired in children with CP and therefore, does not contribute to their motor deficits. Future research has the potential to enrich our understanding of motor disorders by investigating the stages of motor processing set out by computational models. Therapeutic interventions should exploit the ability of children with CP to use statistical information.
Collapse
Affiliation(s)
- Claire Chambers
- Sensory Motor Performance Program, Shirley Ryan Abilitylab, Chicago, Illinois, United States of America
- Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Sciences, Northwestern University, Chicago, Illinois, United States of America
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| | - Taegh Sokhey
- Sensory Motor Performance Program, Shirley Ryan Abilitylab, Chicago, Illinois, United States of America
- Department of Biological Sciences, Northwestern University, Evanston, Illinois, United States of America
| | - Deborah Gaebler-Spira
- Sensory Motor Performance Program, Shirley Ryan Abilitylab, Chicago, Illinois, United States of America
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Konrad P. Kording
- Sensory Motor Performance Program, Shirley Ryan Abilitylab, Chicago, Illinois, United States of America
- Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Sciences, Northwestern University, Chicago, Illinois, United States of America
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
16
|
Papadelis C, Butler EE, Rubenstein M, Sun L, Zollei L, Nimec D, Snyder B, Grant PE. Reorganization of the somatosensory cortex in hemiplegic cerebral palsy associated with impaired sensory tracts. Neuroimage Clin 2017; 17:198-212. [PMID: 29159037 PMCID: PMC5683344 DOI: 10.1016/j.nicl.2017.10.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/27/2017] [Accepted: 10/18/2017] [Indexed: 02/08/2023]
Abstract
Functional neuroimaging studies argue that sensory deficits in hemiplegic cerebral palsy (HCP) are related to deviant somatosensory processing in the ipsilesional primary somatosensory cortex (S1). A separate body of structural neuroimaging literature argues that these deficits are due to structural damage of the ascending sensory tracts (AST). The relationship between the functional and structural integrity of the somatosensory system and the sensory performance is largely unknown in HCP. To address this relationship, we combined findings from magnetoencephalography (MEG) and probabilistic diffusion tractography (PDT) in 10 children with HCP and 13 typically developing (TD) children. With MEG, we mapped the functionally active regions in the contralateral S1 during tactile stimulation of the thumb, middle, and little fingers of both hands. Using these MEG-defined functional active regions as regions of interest for PDT, we estimated the diffusion parameters of the AST. Somatosensory function was assessed via two-point discrimination tests. Our MEG data showed: (i) an abnormal somatotopic organization in all children with HCP in either one or both of their hemispheres; (ii) longer Euclidean distances between the digit maps in the S1 of children with HCP compared to TD children; (iii) suppressed gamma responses at early latencies for both hemispheres of children with HCP; and (iv) a positive correlation between the Euclidean distances and the sensory tests for the more affected hemisphere of children with HCP. Our MEG-guided PDT data showed: (i) higher mean and radian diffusivity of the AST in children with HCP; (ii) a positive correlation between the axial diffusivity of the AST with the sensory tests for the more affected hemisphere; and (iii) a negative correlation between the gamma power change and the AD of the AST for the MA hemisphere. Our findings associate for the first time bilateral cortical functional reorganization in the S1 of HCP children with abnormalities in the structural integrity of the AST, and correlate these abnormalities with behaviorally-assessed sensory deficits.
Collapse
Affiliation(s)
- Christos Papadelis
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Erin E Butler
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA; William H. Neukom Institute for Computational Science, Dartmouth College, Hanover, NH, USA
| | - Madelyn Rubenstein
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Limin Sun
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lilla Zollei
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Donna Nimec
- Department of Orthopedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian Snyder
- Department of Orthopedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Patricia Ellen Grant
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Ballester-Plané J, Schmidt R, Laporta-Hoyos O, Junqué C, Vázquez É, Delgado I, Zubiaurre-Elorza L, Macaya A, Póo P, Toro E, de Reus MA, van den Heuvel MP, Pueyo R. Whole-brain structural connectivity in dyskinetic cerebral palsy and its association with motor and cognitive function. Hum Brain Mapp 2017; 38:4594-4612. [PMID: 28608616 DOI: 10.1002/hbm.23686] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/01/2017] [Indexed: 12/31/2022] Open
Abstract
Dyskinetic cerebral palsy (CP) has long been associated with basal ganglia and thalamus lesions. Recent evidence further points at white matter (WM) damage. This study aims to identify altered WM pathways in dyskinetic CP from a standardized, connectome-based approach, and to assess structure-function relationship in WM pathways for clinical outcomes. Individual connectome maps of 25 subjects with dyskinetic CP and 24 healthy controls were obtained combining a structural parcellation scheme with whole-brain deterministic tractography. Graph theoretical metrics and the network-based statistic were applied to compare groups and to correlate WM state with motor and cognitive performance. Results showed a widespread reduction of WM volume in CP subjects compared to controls and a more localized decrease in degree (number of links per node) and fractional anisotropy (FA), comprising parieto-occipital regions and the hippocampus. However, supramarginal gyrus showed a significantly higher degree. At the network level, CP subjects showed a bilateral pathway with reduced FA, comprising sensorimotor, intraparietal and fronto-parietal connections. Gross and fine motor functions correlated with FA in a pathway comprising the sensorimotor system, but gross motor also correlated with prefrontal, temporal and occipital connections. Intelligence correlated with FA in a network with fronto-striatal and parieto-frontal connections, and visuoperception was related to right occipital connections. These findings demonstrate a disruption in structural brain connectivity in dyskinetic CP, revealing general involvement of posterior brain regions with relative preservation of prefrontal areas. We identified pathways in which WM integrity is related to clinical features, including but not limited to the sensorimotor system. Hum Brain Mapp 38:4594-4612, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Júlia Ballester-Plané
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain
| | - Ruben Schmidt
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Olga Laporta-Hoyos
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain
| | - Carme Junqué
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Departament de Medicina, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Élida Vázquez
- Servei de Radiologia Pediàtrica, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Ignacio Delgado
- Servei de Radiologia Pediàtrica, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Leire Zubiaurre-Elorza
- Departamento de Fundamentos y Métodos de la Psicología, Facultad de Psicología y Educación, Universidad de Deusto, Bilbo-Bizkaia, Spain
| | - Alfons Macaya
- Grup de Recerca en Neurologia Pediàtrica, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pilar Póo
- Servei de Neurologia, Hospital Universitari Sant Joan de Déu, Barcelona, Spain
| | - Esther Toro
- Servei de Rehabilitació i Medicina Física, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Marcel A de Reus
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martijn P van den Heuvel
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roser Pueyo
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain
| |
Collapse
|
18
|
Drobyshevsky A, Quinlan KA. Spinal cord injury in hypertonic newborns after antenatal hypoxia-ischemia in a rabbit model of cerebral palsy. Exp Neurol 2017; 293:13-26. [PMID: 28347765 DOI: 10.1016/j.expneurol.2017.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 03/16/2017] [Accepted: 03/23/2017] [Indexed: 12/25/2022]
Abstract
While antenatal hypoxia-ischemia (H-I) is a well-established cause of brain injury, the effects of H-I on the spinal cord remain undefined. This study examined whether hypertonia in rabbits was accompanied by changes in spinal architecture. Rabbit dams underwent global fetal H-I at embryonic day 25 for 40min. High resolution diffusion tensor imaging was performed on fixed neonatal CNS. Fractional anisotropy (FA) and regional volumetric measurements were compared between kits with and without hypertonia after H-I and sham controls using Tract Based Spatial Statistics. Hypertonic kits showed evidence of damage from hypoxia not only in the brain, but in spinal cord as well. Hypertonic kits showed reduced FA and thickness in corticospinal tracts, external capsule, fimbria, and in white and gray matter of both cervical and lumbar spinal cord. Dorsal white matter of the spinal cord was the exception, where there was thickening and increased FA in hypertonic kits. Direct damage to the spinal cord was demonstrated in a subset of dams imaged during H-I with a 3T magnetic resonance scanner, where apparent diffusion coefficient in fetal spinal cords acutely decreased during hypoxia. Hypertonic kits showed subsequent decreases in lumbar motoneuron counts and extensive TUNEL- and Fluoro-Jade C-positive labeling was present in the spinal cord 48h after H-I, demonstrating spinal neurodegeneration. We speculate that global H-I causes significant loss of both spinal white and gray matter in hypertonic newborns due to direct H-I injury to the spinal cord as well as due to upstream brain injury and consequent loss of descending projections.
Collapse
Affiliation(s)
- Alexander Drobyshevsky
- Department of Pediatric, NorthShore University HealthSystem Research Institute, Evanston, IL, United States.
| | - Katharina A Quinlan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
19
|
The Case for Musical Instrument Training in Cerebral Palsy for Neurorehabilitation. Neural Plast 2016; 2016:1072301. [PMID: 27867664 PMCID: PMC5102741 DOI: 10.1155/2016/1072301] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/29/2016] [Indexed: 01/31/2023] Open
Abstract
Recent imaging studies in cerebral palsy (CP) have described several brain structural changes, functional alterations, and neuroplastic processes that take place after brain injury during early development. These changes affect motor pathways as well as sensorimotor networks. Several of these changes correlate with behavioral measures of motor and sensory disability. It is now widely acknowledged that management of sensory deficits is relevant for rehabilitation in CP. Playing a musical instrument demands the coordination of hand movements with integrated auditory, visual, and tactile feedback, in a process that recruits multiple brain regions. These multiple demands during instrument playing, together with the entertaining character of music, have led to the development and investigation of music-supported therapies, especially for rehabilitation with motor disorders resulting from brain damage. We review scientific evidence that supports the use of musical instrument playing for rehabilitation in CP. We propose that active musical instrument playing may be an efficient means for triggering neuroplastic processes necessary for the development of sensorimotor skills in patients with early brain damage. We encourage experimental research on neuroplasticity and on its impact on the physical and personal development of individuals with CP.
Collapse
|
20
|
Coq JO, Delcour M, Massicotte VS, Baud O, Barbe MF. Prenatal ischemia deteriorates white matter, brain organization, and function: implications for prematurity and cerebral palsy. Dev Med Child Neurol 2016; 58 Suppl 4:7-11. [PMID: 27027601 PMCID: PMC4817365 DOI: 10.1111/dmcn.13040] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2015] [Indexed: 12/16/2022]
Abstract
Cerebral palsy (CP) describes a group of neurodevelopmental disorders of posture and movement that are frequently associated with sensory, behavioral, and cognitive impairments. The clinical picture of CP has changed with improved neonatal care over the past few decades, resulting in higher survival rates of infants born very preterm. Children born preterm seem particularly vulnerable to perinatal hypoxia-ischemia insults at birth. Animal models of CP are crucial for elucidating underlying mechanisms and for development of strategies of neuroprotection and remediation. Most animal models of CP are based on hypoxia-ischemia around the time of birth. In this review, we focus on alterations of brain organization and functions, especially sensorimotor changes, induced by prenatal ischemia in rodents and rabbits, and relate these alterations to neurodevelopmental disorders found in preterm children. We also discuss recent literature that addresses the relationship between neural and myelin plasticity, as well as possible contributions of white matter injury to the emergence of brain dysfunctions induced by prenatal ischemia.
Collapse
Affiliation(s)
- Jacques-Olivier Coq
- CNRS-Aix-Marseille Université, Neurosciences Intégratives et Adaptatives, Marseille,CNRS-Aix-Marseille Université, Institut de Neurosciences de la Timone (INT), Marseille, France
| | - Maxime Delcour
- CNRS-Aix-Marseille Université, Neurosciences Intégratives et Adaptatives, Marseille
| | - Vicky S Massicotte
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Olivier Baud
- Université Paris, Faculté de Médecine Denis Diderot, Paris,Hôpital Robert-Debré, Paris, France
| | - Mary F Barbe
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
21
|
Basilious A, Yager J, Fehlings MG. Neurological outcomes of animal models of uterine artery ligation and relevance to human intrauterine growth restriction: a systematic review. Dev Med Child Neurol 2015; 57:420-30. [PMID: 25330710 PMCID: PMC4406147 DOI: 10.1111/dmcn.12599] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/18/2014] [Indexed: 01/07/2023]
Abstract
AIM This review explores the molecular, neurological, and behavioural outcomes in animal models of uterine artery ligation. We analyse the relevance of this type of model to the pathological and functional phenotypes that are consistent with cerebral palsy and its developmental comorbidities in humans. METHOD A literature search of the PubMed database was conducted for research using the uterine artery ligation model published between 1990 and 2013. From the studies included, any relevant neuroanatomical and behavioural deficits were then summarized from each document and used for further analysis. RESULTS There were 25 papers that met the criteria included for review, and several outcomes were summarized from the results of these papers. Fetuses with growth restriction demonstrated a gradient of reduced body weight with a relative sparing of brain mass. There was a significant reduction in the size of the somatosensory cortex, hippocampus, and corpus callosum. The motor cortex appeared to be spared of identifiable deficits. Apoptotic proteins were upregulated, while those important to neuronal survival, growth, and differentiation were downregulated. Neuronal apoptosis and astrogliosis occurred diffusely throughout the brain regions. White matter injury involved oligodendrocyte precursor maturation arrest, hypomyelination, and an aberrant organization of existing myelin. Animals with growth restriction demonstrated deficits in gait, memory, object recognition, and spatial processing. INTERPRETATION This review concludes that neuronal death, white matter injury, motor abnormalities, and cognitive deficits are important outcomes of uterine artery ligation in animal models. Therefore, this is a clinically relevant type of model, as these findings resemble deficits in human cerebral palsy.
Collapse
Affiliation(s)
| | - Jerome Yager
- Department of Pediatrics, University of AlbertaEdmonton, AB, Canada
| | - Michael G Fehlings
- Faculty of Medicine, University of TorontoToronto, ON, Canada,Toronto Western Research Institute and Krembil Neuroscience Centre, University Health NetworkToronto, ON, Canada,Department of Surgery, University of TorontoToronto, ON, Canada,
Correspondence to Michael Fehlings, Toronto Western Hospital 4WW449, 399 Bathurst St, Toronto, ON, Canada M5T 2S8. E-mail:
| |
Collapse
|
22
|
KURZ MAXJ, BECKER KATHERINEM, HEINRICHS-GRAHAM ELIZABETH, WILSON TONYW. Neurophysiological abnormalities in the sensorimotor cortices during the motor planning and movement execution stages of children with cerebral palsy. Dev Med Child Neurol 2014; 56:1072-7. [PMID: 24931008 PMCID: PMC4194152 DOI: 10.1111/dmcn.12513] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/11/2014] [Indexed: 11/30/2022]
Abstract
AIM This investigation used magnetoencephalography (MEG) to examine the neural oscillatory responses of the sensorimotor cortices during the motor planning and movement execution stages of children with typical development and children with cerebral palsy (CP). METHOD The study involved 13 children with CP (nine males, four females; mean [SD] age 14y 3mo [9mo], range 10-18y; height 1.61m [0.08m]; weight 52.65kg [13kg]), and 13 age- and sex-matched typically developing children (height 1.64m [0.06m]; weight 56.88kg [10kg]). The experiment required the children to extend their knee joint as whole-head MEG recordings were acquired. Beamformer imaging methods were employed to quantify the source activity of the beta-frequency (14-28Hz) event-related desynchronization (ERD) that occurs during the motor planning period, and the gamma-frequency (~50Hz) event-related synchronization (ERS) that occurs at the motor execution stage. RESULTS The children with CP had a stronger mean beta ERD during the motor planning phase and reduced mean gamma ERS at the onset of movement. INTERPRETATION The uncharacteristic beta ERD in the children with CP suggests that they may have greater difficulty planning knee joint movements. We suggest that these aberrant beta ERD oscillations may have a cascading effect on the gamma ERS, which ultimately affects the execution of the motor command.
Collapse
Affiliation(s)
- MAX J KURZ
- Department of Physical Therapy, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE,Center for Magnetoencephalography, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - KATHERINE M BECKER
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE,Center for Magnetoencephalography, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - ELIZABETH HEINRICHS-GRAHAM
- Center for Magnetoencephalography, College of Medicine, University of Nebraska Medical Center, Omaha, NE,Department of Psychology, University of Nebraska - Omaha, Omaha, NE, USA
| | - TONY W WILSON
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE,Center for Magnetoencephalography, College of Medicine, University of Nebraska Medical Center, Omaha, NE,Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
23
|
Papadelis C, Ahtam B, Nazarova M, Nimec D, Snyder B, Grant PE, Okada Y. Cortical somatosensory reorganization in children with spastic cerebral palsy: a multimodal neuroimaging study. Front Hum Neurosci 2014; 8:725. [PMID: 25309398 PMCID: PMC4162364 DOI: 10.3389/fnhum.2014.00725] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/28/2014] [Indexed: 12/17/2022] Open
Abstract
Although cerebral palsy (CP) is among the most common causes of physical disability in early childhood, we know little about the functional and structural changes of this disorder in the developing brain. Here, we investigated with three different neuroimaging modalities [magnetoencephalography (MEG), diffusion tensor imaging (DTI), and resting-state fMRI] whether spastic CP is associated with functional and anatomical abnormalities in the sensorimotor network. Ten children participated in the study: four with diplegic CP (DCP), three with hemiplegic CP (HCP), and three typically developing (TD) children. Somatosensory (SS)-evoked fields (SEFs) were recorded in response to pneumatic stimuli applied to digits D1, D3, and D5 of both hands. Several parameters of water diffusion were calculated from DTI between the thalamus and the pre-central and post-central gyri in both hemispheres. The sensorimotor resting-state networks (RSNs) were examined by using an independent component analysis method. Tactile stimulation of the fingers elicited the first prominent cortical response at ~50 ms, in all except one child, localized over the primary SS cortex (S1). In five CP children, abnormal somatotopic organization was observed in the affected (or more affected) hemisphere. Euclidean distances were markedly different between the two hemispheres in the HCP children, and between DCP and TD children for both hemispheres. DTI analysis revealed decreased fractional anisotropy and increased apparent diffusion coefficient for the thalamocortical pathways in the more affected compared to less affected hemisphere in CP children. Resting-state functional MRI results indicated absent and/or abnormal sensorimotor RSNs for children with HCP and DCP consistent with the severity and location of their lesions. Our findings suggest an abnormal SS processing mechanism in the sensorimotor network of children with CP possibly as a result of diminished thalamocortical projections.
Collapse
Affiliation(s)
- Christos Papadelis
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School , Boston, MA , USA ; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School , Boston, MA , USA
| | - Banu Ahtam
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School , Boston, MA , USA ; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School , Boston, MA , USA
| | - Maria Nazarova
- Department of Neurorehabilitation and Physiotherapy, Research Center of Neurology , Moscow , Russia ; Centre for Cognition and Decision Making, Faculty of Psychology, Higher School of Economics , Moscow , Russia
| | - Donna Nimec
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School , Boston, MA , USA
| | - Brian Snyder
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School , Boston, MA , USA
| | - Patricia Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School , Boston, MA , USA ; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School , Boston, MA , USA ; Department of Radiology, Boston Children's Hospital, Harvard Medical School , Boston, MA , USA
| | - Yoshio Okada
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School , Boston, MA , USA ; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
24
|
Arnould C, Bleyenheuft Y, Thonnard JL. Hand functioning in children with cerebral palsy. Front Neurol 2014; 5:48. [PMID: 24782821 PMCID: PMC3988367 DOI: 10.3389/fneur.2014.00048] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/26/2014] [Indexed: 02/04/2023] Open
Abstract
Brain lesions may disturb hand functioning in children with cerebral palsy (CP), making it difficult or even impossible for them to perform several manual activities. Most conventional treatments for hand dysfunction in CP assume that reducing the hand dysfunctions will improve the capacity to manage activities (i.e., manual ability, MA). The aim of this study was to investigate the directional relationships (direct and indirect pathways) through which hand skills influence MA in children with CP. A total of 136 children with CP (mean age: 10 years; range: 6–16 years; 35 quadriplegics, 24 diplegics, 77 hemiplegics) were assessed. Six hand skills were measured on both hands: touch-pressure detection (Semmes–Weinstein esthesiometer), stereognosis (Manual Form Perception Test), proprioception (passive mobilization of the metacarpophalangeal joints), grip strength (GS) (Jamar dynamometer), gross manual dexterity (GMD) (Box and Block Test), and fine finger dexterity (Purdue Pegboard Test). MA was measured with the ABILHAND-Kids questionnaire. Correlation coefficients were used to determine the linear associations between observed variables. A path analysis of structural equation modeling was applied to test different models of causal relationships among the observed variables. Purely sensory impairments did seem not to play a significant role in the capacity to perform manual activities. According to path analysis, GMD in both hands and stereognosis in the dominant hand were directly related to MA, whereas GS was indirectly related to MA through its relationship with GMD. However, one-third of the variance in MA measures could not be explained by hand skills. It can be concluded that MA is not simply the integration of hand skills in daily activities and should be treated per se, supporting activity-based interventions.
Collapse
Affiliation(s)
- Carlyne Arnould
- Physical and Occupational Therapy Departments, Paramedical Category, Haute Ecole Louvain en Hainaut , Charleroi , Belgium
| | - Yannick Bleyenheuft
- Institute of Neuroscience, Université catholique de Louvain , Brussels , Belgium
| | - Jean-Louis Thonnard
- Institute of Neuroscience, Université catholique de Louvain , Brussels , Belgium ; Department of Physical and Rehabilitation Medicine, Cliniques universitaires Saint-Luc , Brussels , Belgium
| |
Collapse
|
25
|
Kurz MJ, Heinrichs-Graham E, Arpin DJ, Becker KM, Wilson TW. Aberrant synchrony in the somatosensory cortices predicts motor performance errors in children with cerebral palsy. J Neurophysiol 2013; 111:573-9. [PMID: 24225536 DOI: 10.1152/jn.00553.2013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cerebral palsy (CP) results from a perinatal brain injury that often results in sensory impairments and greater errors in motor performance. Although these impairments have been well catalogued, the relationship between sensory processing networks and errors in motor performance has not been well explored. Children with CP and typically developing age-matched controls participated in this investigation. We used high-density magnetoencephalography to measure event-related oscillatory changes in the somatosensory cortices following tactile stimulation to the bottom of the foot. In addition, we quantified the amount of variability or errors in the isometric ankle joint torques as these children attempted to match a target. Our results showed that neural populations in the somatosensory cortices of children with CP were desynchronized by the tactile stimulus, whereas those of typically developing children were clearly synchronized. Such desynchronization suggests that children with CP were unable to fully integrate the external stimulus into ongoing sensorimotor computations. Our results also indicated that children with CP had a greater amount of errors in their motor output when they attempted to match the target force, and this amount of error was negatively correlated with the degree of synchronization present in the somatosensory cortices. These results are the first to show that the motor performance errors of children with CP are linked with neural synchronization within the somatosensory cortices.
Collapse
Affiliation(s)
- Max J Kurz
- Department of Physical Therapy, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | | | | | | | | |
Collapse
|
26
|
Slaboda JC, Lauer RT, Keshner EA. Postural responses of adults with cerebral palsy to combined base of support and visual field rotation. IEEE Trans Neural Syst Rehabil Eng 2013; 21:218-24. [PMID: 23476004 DOI: 10.1109/tnsre.2013.2246583] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We employed a virtual environment to examine the postural behaviors of adults with cerebral palsy (CP). Four adults with CP (22-32 years) and nine healthy adults (21-27 years) were tested with a Rod and Frame protocol. They then stood quietly on a platform within a three-wall virtual environment. The platform was either kept stationary or tilted 3(°) into dorsiflexion in the dark or with pitch up and down visual field rotations at 30(°)/s and 45(°)/s. While the visual field rotated, the platform was held tilted for 30 s and then slowly returned to a neutral position over 30 s. Center of pressure (CoP) was recorded and center of mass (CoM) as well as trunk and ankle angles were calculated. Electromyography (EMG) responses of the ankle and the hip muscles were recorded and analyzed using wavelets. Larger angular deviations from vertical and horizontal in the Rod and Frame test indicated that adults with CP were more visually dependent than healthy adults. Adults with CP had difficulty maintaining balance when standing on a stationary platform during pitch upward rotation of the visual scene. When the platform was tilted during visual field rotations, adults with CP took longer to stabilize their posture and had larger CoM oscillations than when in the dark. The inability to compensate for busy visual environments could impede maintenance of functional locomotion in adults with CP. Employing a visual field stimulus for assessment and training of postural behaviors would be more meaningful than testing in the dark.
Collapse
Affiliation(s)
- Jill C Slaboda
- Department of Physical Therapy, Temple University, Philadelphia, PA 19140, USA.
| | | | | |
Collapse
|
27
|
Smyser CD, Snyder AZ, Shimony JS, Blazey TM, Inder TE, Neil JJ. Effects of white matter injury on resting state fMRI measures in prematurely born infants. PLoS One 2013; 8:e68098. [PMID: 23874510 PMCID: PMC3706620 DOI: 10.1371/journal.pone.0068098] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/24/2013] [Indexed: 01/16/2023] Open
Abstract
The cerebral white matter is vulnerable to injury in very preterm infants (born prior to 30 weeks gestation), resulting in a spectrum of lesions. These range from severe forms, including cystic periventricular leukomalacia and periventricular hemorrhagic infarction, to minor focal punctate lesions. Moderate to severe white matter injury in preterm infants has been shown to predict later neurodevelopmental disability, although outcomes can vary widely in infants with qualitatively comparable lesions. Resting state functional connectivity magnetic resonance imaging has been increasingly utilized in neurodevelopmental investigations and may provide complementary information regarding the impact of white matter injury on the developing brain. We performed resting state functional connectivity magnetic resonance imaging at term equivalent postmenstrual age in fourteen preterm infants with moderate to severe white matter injury secondary to periventricular hemorrhagic infarction. In these subjects, resting state networks were identifiable throughout the brain. Patterns of aberrant functional connectivity were observed and depended upon injury severity. Comparisons were performed against data obtained from prematurely-born infants with mild white matter injury and healthy, term-born infants and demonstrated group differences. These results reveal structural-functional correlates of preterm white matter injury and carry implications for future investigations of neurodevelopmental disability.
Collapse
Affiliation(s)
- Christopher D Smyser
- Department of Neurology, Washington University, Saint Louis, Missouri, United States of America.
| | | | | | | | | | | |
Collapse
|
28
|
Damiano DL, Wingert JR, Stanley CJ, Curatalo L. Contribution of hip joint proprioception to static and dynamic balance in cerebral palsy: a case control study. J Neuroeng Rehabil 2013; 10:57. [PMID: 23767869 PMCID: PMC3691826 DOI: 10.1186/1743-0003-10-57] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 06/06/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Balance problems are common in cerebral palsy (CP) but etiology is often uncertain. The classic Romberg test compares ability to maintain standing with eyes open versus closed. Marked instability without vision is a positive test and generally indicates proprioceptive loss. From previous work showing diminished hip joint proprioception in CP, we hypothesized that static and dynamic balance without vision (positive Romberg) would be compromised in CP. METHODS Force plate sway and gait velocity data were collected using 3D motion capture on 52 participants, 19 with diplegic CP, 13 with hemiplegic CP, and 20 without disability. Center of mass (COM) and center or pressure (COP) velocity, excursion, and differences between COM and COP in AP and ML directions were computed from static standing trials with eyes open and closed. Mean gait velocity with and without dribble glasses was compared. Hip joint proprioception was quantified as the root mean square of magnitude of limb positioning errors during a hip rotation task with and without view of the limb. Mixed model repeated measures analysis of variance (ANOVA) was performed with condition as within-subject (EO, EC) and group as between-subject factors (hemiplegia, diplegia, controls). Sway characteristics and gait speed were correlated with proprioception values. RESULTS Groups with CP had greater sway in standing with eyes open indicating that they had poorer balance than controls, with the deficit relatively greater in the ML compared to AP direction. Contrary to our hypothesis, the decrement with eyes closed did not differ from controls (negative Romberg); however, proprioception error was related to sway parameters particularly for the non-dominant leg. Gait speed was related to proprioception values such that those with worse proprioception tended to walk more slowly. CONCLUSIONS Postural instability is present even in those with mild CP and is yet another manifestation of their motor control disorder, the specific etiology of which may vary across individuals in this heterogeneous diagnostic category.
Collapse
Affiliation(s)
- Diane L Damiano
- Functional & Applied Biomechanics Section Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
29
|
Delcour M, Olivier P, Chambon C, Pansiot J, Russier M, Liberge M, Xin D, Gestreau C, Alescio-Lautier B, Gressens P, Verney C, Barbe MF, Baud O, Coq JO. Neuroanatomical, sensorimotor and cognitive deficits in adult rats with white matter injury following prenatal ischemia. Brain Pathol 2011; 22:1-16. [PMID: 21615591 DOI: 10.1111/j.1750-3639.2011.00504.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Perinatal brain injury including white matter damage (WMD) is highly related to sensory, motor or cognitive impairments in humans born prematurely. Our aim was to examine the neuroanatomical, functional and behavioral changes in adult rats that experienced prenatal ischemia (PI), thereby inducing WMD. PI was induced by unilateral uterine artery ligation at E17 in pregnant rats. We assessed performances in gait, cognitive abilities and topographical organization of maps, and neuronal and glial density in primary motor and somatosensory cortices, the hippocampus and prefrontal cortex, as well as axonal degeneration and astrogliosis in white matter tracts. We found WMD in corpus callosum and brainstem, and associated with the hippocampus and somatosensory cortex, but not the motor cortex after PI. PI rats exhibited mild locomotor impairments associated with minor signs of spasticity. Motor map organization and neuronal density were normal in PI rats, contrasting with major somatosensory map disorganization, reduced neuronal density, and a marked reduction of inhibitory interneurons. PI rats exhibited spontaneous hyperactivity in open-field test and short-term memory deficits associated with abnormal neuronal density in related brain areas. Thus, this model reproduces in adult PI rats the main deficits observed in infants with a perinatal history of hypoxia-ischemia and WMD.
Collapse
Affiliation(s)
- Maxime Delcour
- UMR 6149 Neurobiologie Intégrative et Adaptative, CNRS-Aix-Marseille Université, Marseille
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dinomais M, Groeschel S, Staudt M, Krägeloh-Mann I, Wilke M. Relationship between functional connectivity and sensory impairment: red flag or red herring? Hum Brain Mapp 2011; 33:628-38. [PMID: 21391277 DOI: 10.1002/hbm.21227] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 10/25/2010] [Accepted: 11/22/2010] [Indexed: 12/12/2022] Open
Abstract
Resting-state functional magnetic resonance imaging (fMRI) can be used to study the functional connectivity in the somatosensory system. However, the relationship between sensory network connectivity, sensory deficits, and structural abnormality remains poorly understood. Previously, we investigated the motor network in children with congenital hemiparesis due to middle cerebral artery strokes (MCA, n = 6) or periventricular lesions (PL, n = 8). In the present study, we validate the use of interleaved resting-state data from blocked fMRI designs to investigate the somatosensory network in these patients. The approach was validated by assessing the predicted "crossed-over" connectivity between the cerebral cortex and the cerebellum. Furthermore, the impact on the volume of gray-matter (GM) in primary (S1) and secondary (S2) somatosensory cortex on functional connectivity measures was investigated. We were able to replicate the well-known "crossed-over" pattern of functional connectivity between cerebral and cerebellar cortex. The MCA group displayed more sensory deficit and significantly reduced functional connectivity in the lesioned S2 (but not in lesioned S1) when compared with the PL group. However, when accounting for GM volume loss, this difference disappeared. This study demonstrates the applicability of analyzing resting-state connectivity in patients with brain lesions. Reductions of functional connectivity within the somatosensory network were associated with sensory deficits, but were fully explained by the underlying GM damage.
Collapse
Affiliation(s)
- Mickaël Dinomais
- Department of Pediatric Neurology and Developmental Medicine and Experimental Pediatric Neuroimaging, University Children's Hospital, Tübingen D-72076, Germany.
| | | | | | | | | |
Collapse
|
31
|
Delcour M, Russier M, Xin DL, Massicotte VS, Barbe MF, Coq J. Mild musculoskeletal and locomotor alterations in adult rats with white matter injury following prenatal ischemia. Int J Dev Neurosci 2011; 29:593-607. [DOI: 10.1016/j.ijdevneu.2011.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/25/2011] [Accepted: 02/27/2011] [Indexed: 11/25/2022] Open
Affiliation(s)
- Maxime Delcour
- UMR 6149 Neurosciences Intégratives et Adaptatives, CNRS, Aix‐Marseille Université, Centre Saint Charlescase B, 3 place Victor Hugo13331Marseille Cedex 03France
| | - Michael Russier
- UMR 6149 Neurosciences Intégratives et Adaptatives, CNRS, Aix‐Marseille Université, Centre Saint Charlescase B, 3 place Victor Hugo13331Marseille Cedex 03France
| | - Dong L. Xin
- Department of Physical TherapyTemple UniversityPhiladelphiaPA19140USA
| | - Vicky S. Massicotte
- Department of Anatomy and Cell BiologyTemple University School of MedicinePhiladelphiaPA19140USA
| | - Mary F. Barbe
- Department of Anatomy and Cell BiologyTemple University School of MedicinePhiladelphiaPA19140USA
| | - Jacques‐Olivier Coq
- UMR 6149 Neurosciences Intégratives et Adaptatives, CNRS, Aix‐Marseille Université, Centre Saint Charlescase B, 3 place Victor Hugo13331Marseille Cedex 03France
| |
Collapse
|
32
|
Kurz MJ, Wilson TW. Neuromagnetic activity in the somatosensory cortices of children with cerebral palsy. Neurosci Lett 2011; 490:1-5. [DOI: 10.1016/j.neulet.2010.11.053] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/18/2010] [Accepted: 11/19/2010] [Indexed: 02/06/2023]
|
33
|
Burton H, Dixit S, Litkowski P, Wingert JR. Functional connectivity for somatosensory and motor cortex in spastic diplegia. Somatosens Mot Res 2010; 26:90-104. [PMID: 20047510 DOI: 10.3109/08990220903335742] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Functional connectivity (fcMRI) was analyzed in individuals with spastic diplegia and age-matched controls. Pearson correlations (r-values) were computed between resting state spontaneous activity in selected seed regions (sROI) and each voxel throughout the brain. Seed ROI were centered on foci activated by tactile stimulation of the second fingertip in somatosensory and parietal dorsal attention regions. The group with diplegia showed significantly expanded networks for the somatomotor but not dorsal attention areas. These expanded networks overran nearly all topological representations in somatosensory and motor areas despite a sROI in a fingertip focus. A possible underlying cause for altered fcMRI in the group with dipegia, and generally sensorimotor deficits in spastic diplegia, is that prenatal third trimester white-matter injury leads to localized damage to subplate neurons. We hypothesize that intracortical connections become dominant in spastic diplegia through successful competition with diminished or absent thalamocortical inputs. Similar to the effects of subplate ablations on ocular dominance columns (Kanold and Shatz, Neuron 2006;51:627-638), a spike timing-dependent plasticity model is proposed to explain a shift towards intracortical inputs.
Collapse
Affiliation(s)
- Harold Burton
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|