1
|
Chateaux M, Rossel O, Vérité F, Nicol C, Touillet A, Paysant J, Jarrassé N, De Graaf JB. New insights into muscle activity associated with phantom hand movements in transhumeral amputees. Front Hum Neurosci 2024; 18:1443833. [PMID: 39281369 PMCID: PMC11392834 DOI: 10.3389/fnhum.2024.1443833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction Muscle activity patterns in the residual arm are systematically present during phantom hand movements (PHM) in transhumeral amputees. However, their characteristics have not been directly investigated yet, leaving their neurophysiological origin poorly understood. This study pioneers a neurophysiological perspective in examining PHM-related muscle activity patterns by characterizing and comparing them with those in the arm, forearm, and hand muscles of control participants executing intact hand movements (IHM) of similar types. Methods To enable rigorous comparison, we developed meta-variables independent of electrode placement, quantifying the phasic profile of recorded surface EMG signals and the specificity of their patterns across electrode sites and movement types. Results Similar to the forearm and hand muscles during IHM, each signal recorded from the residual upper arm during PHM displays a phasic profile, synchronized with the onset and offset of each movement repetition. Furthermore, the PHM-related patterns of phasic muscle activity are specific not only to the type of movement but also to the electrode site, even within the same upper arm muscle, while these muscles exhibit homogeneous activities in intact arms. Discussion Our results suggest the existence of peripheral reorganization, eventually leading to the emergence of independently controlled muscular sub-volumes. This reorganization potentially occurs through the sprouting of severed axons and the recapture of muscle fibers in the residual limb. Further research is imperative to comprehend this mechanism and its relationship with PHM, holding significant implications for the rehabilitation process and myoelectric prosthesis control.
Collapse
Affiliation(s)
| | | | - Fabien Vérité
- ISM, Aix Marseille University, CNRS, Marseille, France
| | | | | | | | - Nathanaël Jarrassé
- U1150 Agathe-ISIR, CNRS, UMR 7222, ISIR/INSERM, Sorbonne University, Paris, France
| | | |
Collapse
|
2
|
Lo YL, Hwang R, Teng PPC, Tan YE. Corpus Callosum-Mediated Interhemispheric Interactions in Cervical Spondylotic Myelopathy. J Clin Neurophysiol 2024; 41:473-477. [PMID: 38922289 DOI: 10.1097/wnp.0000000000000979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
PURPOSE The corpus callosum is crucial for interhemispheric interactions in the motor control of limb functions. Human and animal studies suggested spinal cord pathologies may induce cortical reorganization in sensorimotor areas. We investigate participation of the corpus callosum in executions of a simple motor task in patients with cervical spondylotic myelopathy (CSM) using transcranial magnetic stimulation. METHODS Twenty patients with CSM with various MRI grades of severity of cord compression were compared with 19 normal controls. Ipsilateral silent period, contralateral silent period, central motor conduction time, and transcallosal conduction time (TCT) were determined. RESULTS In both upper and lower limbs, TCTs were significantly increased for patients with CSM than normal controls ( p < 0.001 for all), without side-to-side differences. Ipsilateral silent period and contralateral silent period durations were significantly increased bilaterally for upper limbs in comparison to controls ( p < 0.01 for all), without side-to-side differences. There were no significant correlations of TCT with central motor conduction time nor severity of CSM for both upper and lower limbs ( p > 0.05 for all) bilaterally. CONCLUSIONS Previous transcranial magnetic stimulation studies show increased motor cortex excitability in CSM; hence, increased TCTs observed bilaterally may be a compensatory mechanism for effective unidirectional and uniplanar execution of muscle activation in the distal limb muscles. Lack of correlation of TCTs with severity of CSM or central motor conduction time may be in keeping with a preexistent role of the corpus callosum as a predominantly inhibitory pathway for counteracting redundant movements resulting from increased motor cortex excitability occurring after spinal cord lesions.
Collapse
Affiliation(s)
- Yew Long Lo
- National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore; and
- Singapore General Hospital, Singapore, Singapore
| | - Ruby Hwang
- Singapore General Hospital, Singapore, Singapore
| | | | - Yam Eng Tan
- Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
3
|
Amoruso E, Terhune DB, Kromm M, Kirker S, Muret D, Makin TR. Reassessing referral of touch following peripheral deafferentation: The role of contextual bias. Cortex 2023; 167:167-177. [PMID: 37567052 PMCID: PMC11139647 DOI: 10.1016/j.cortex.2023.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/28/2023] [Accepted: 04/21/2023] [Indexed: 08/13/2023]
Abstract
Some amputees have been famously reported to perceive facial touch as arising from their phantom hand. These referred sensations have since been replicated across multiple neurological disorders and were classically interpreted as a perceptual correlate of cortical plasticity. Common to all these and related studies is that participants might have been influenced in their self-reports by the experimental design or related contextual biases. Here, we investigated whether referred sensations reports might be confounded by demand characteristics (e.g., compliance, expectation, suggestion). Unilateral upper-limb amputees (N = 18), congenital one-handers (N = 19), and two-handers (N = 22) were repeatedly stimulated with computer-controlled vibrations on 10 body-parts and asked to report the occurrence of any concurrent sensations on their hand(s). To further manipulate expectations, we gave participants the suggestion that some of these vibrations had a higher probability to evoke referred sensations. We also assessed similarity between (phantom) hand and face representation in primary somatosensory cortex (S1), using functional Magnetic Resonance Imaging (fMRI) multivariate representational similarity analysis. We replicated robust reports of referred sensations in amputees towards their phantom hand; however, the frequency and distribution of reported referred sensations were similar across groups. Moreover, referred sensations were evoked by stimulation of multiple body-parts and similarly reported on both the intact and phantom hand in amputees. Face-to-phantom-hand representational similarity was not different in amputees' missing hand region, compared with controls. These findings weaken the interpretation of referred sensations as a perceptual correlate of S1 plasticity and reveal the need to account for contextual biases when evaluating anomalous perceptual phenomena.
Collapse
Affiliation(s)
- Elena Amoruso
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| | - Devin B Terhune
- Department of Psychology, Goldsmiths, University of London, London SE14 6NW, UK
| | - Maria Kromm
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| | - Stephen Kirker
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Dollyane Muret
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK.
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK; Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3AR, UK
| |
Collapse
|
4
|
Kahl CK, Giuffre A, Wrightson JG, Zewdie E, Condliffe EG, MacMaster FP, Kirton A. Reliability of active robotic neuro-navigated transcranial magnetic stimulation motor maps. Exp Brain Res 2023; 241:355-364. [PMID: 36525072 DOI: 10.1007/s00221-022-06523-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
Transcranial magnetic stimulation (TMS) motor mapping is a safe, non-invasive method used to study corticomotor organization and intervention-induced plasticity. Reliability of resting maps is well established, but understudied for active maps and unestablished for active maps obtained using robotic TMS techniques. The objective of this study was to determine the reliability of robotic neuro-navigated TMS motor map measures during active muscle contraction. We hypothesized that map area and volume would show excellent short- and medium-term reliability. Twenty healthy adults were tested on 3 days. Active maps of the first dorsal interosseous muscle were created using a 12 × 12 grid (7 mm spacing). Short- (24 h) and medium-term (3-5 weeks) relative (intra-class correlation coefficient) and absolute (minimal detectable change (MDC); standard error of measure) reliabilities were evaluated for map area, volume, center of gravity (CoG), and hotspot magnitude (peak-to-peak MEP amplitude at the hotspot), along with active motor threshold (AMT) and maximum voluntary contraction (MVC). This study found that AMT and MVC had good-to-excellent short- and medium-term reliability. Map CoG (x and y) were the most reliable map measures across sessions with excellent short- and medium-term reliability (p < 0.001). Map area, hotspot magnitude, and map volume followed with better reliability medium-term than short-term, with a change of 28%, 62%, and 78% needed to detect a true medium-term change, respectively. Therefore, robot-guided neuro-navigated TMS active mapping is relatively reliable but varies across measures. This, and MDC, should be considered in interventional study designs.
Collapse
Affiliation(s)
- Cynthia K Kahl
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Calgary, AB, Canada
| | - Adrianna Giuffre
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Calgary, AB, Canada
| | - James G Wrightson
- Hotchkiss Brain Institute, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Ephrem Zewdie
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Elizabeth G Condliffe
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Frank P MacMaster
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada.,Department of Psychiatry, University of Calgary, Calgary, AB, Canada.,Addictions and Mental Health Strategic Clinical Network, Calgary, AB, Canada
| | - Adam Kirton
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Hotchkiss Brain Institute, Calgary, AB, Canada. .,Department of Pediatrics, University of Calgary, Calgary, AB, Canada. .,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada. .,Alberta Children's Hospital, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada.
| |
Collapse
|
5
|
Kahl CK, Giuffre A, Wrightson JG, Kirton A, Condliffe EG, MacMaster FP, Zewdie E. Active versus resting neuro-navigated robotic transcranial magnetic stimulation motor mapping. Physiol Rep 2022; 10:e15346. [PMID: 35748041 PMCID: PMC9226845 DOI: 10.14814/phy2.15346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) motor mapping is a safe, non-invasive method that can be used to study corticomotor organization. Motor maps are typically acquired at rest, and comparisons to maps obtained during muscle activation have been both limited and contradictory. Understanding the relationship between functional activation of the corticomotor system as recorded by motor mapping is crucial for their use clinically and in research. The present study utilized robotic TMS paired with personalized neuro-navigation to examine the relationship between resting and active motor map measures and their relationship with motor performance. Twenty healthy right-handed participants underwent resting and active robotic TMS motor mapping of the first dorsal interosseous to 10% maximum voluntary contraction. Motor map parameters including map area, volume, and measures of map centrality were compared between techniques using paired sample tests of difference and Bland-Altman plots and analysis. Map area, volume, and hotspot magnitude were larger in the active motor maps, while map center of gravity and hotspot locations remained consistent between both maps. No associations were observed between motor maps and motor performance as measured by the Purdue Pegboard Test. Our findings support previous suggestions that maps scale with muscle contraction. Differences in mapping outcomes suggest rest and active motor maps may reflect functionally different corticomotor representations. Advanced analysis methods may better characterize the underlying neurophysiology of both types of motor mapping.
Collapse
Affiliation(s)
- Cynthia K. Kahl
- Department of Psychiatry, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Pediatrics, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Adrianna Giuffre
- Department of Pediatrics, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Clinical Neurosciences, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - James G. Wrightson
- Department of Pediatrics, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Clinical Neurosciences, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Adam Kirton
- Department of Pediatrics, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Clinical Neurosciences, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Elizabeth G. Condliffe
- Department of Pediatrics, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Clinical Neurosciences, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Frank P. MacMaster
- Department of Psychiatry, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Pediatrics, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Strategic Clinical Network for Neuroscience, Vision, and RehabilitationCalgaryAlbertaCanada
- Strategic Clinical Network for Addictions and Mental HealthCalgaryAlbertaCanada
| | - Ephrem Zewdie
- Department of Pediatrics, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Clinical Neurosciences, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
6
|
Jaroszynski C, Job A, Jedynak M, David O, Delon-Martin C. Tinnitus Perception in Light of a Parietal Operculo-Insular Involvement: A Review. Brain Sci 2022; 12:334. [PMID: 35326290 PMCID: PMC8946618 DOI: 10.3390/brainsci12030334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/07/2022] Open
Abstract
In tinnitus literature, researchers have increasingly been advocating for a clearer distinction between tinnitus perception and tinnitus-related distress. In non-bothersome tinnitus, the perception itself can be more specifically investigated: this has provided a body of evidence, based on resting-state and activation fMRI protocols, highlighting the involvement of regions outside the conventional auditory areas, such as the right parietal operculum. Here, we aim to conduct a review of available investigations of the human parietal operculo-insular subregions conducted at the microscopic, mesoscopic, and macroscopic scales arguing in favor of an auditory-somatosensory cross-talk. Both the previous literature and new results on functional connectivity derived from cortico-cortical evoked potentials show that these subregions present a dense tissue of interconnections and a strong connectivity with auditory and somatosensory areas in the healthy brain. Disrupted integration processes between these modalities may thus result in erroneous perceptions, such as tinnitus. More precisely, we highlight the role of a subregion of the right parietal operculum, known as OP3 according to the Jülich atlas, in the integration of auditory and somatosensory representation of the orofacial muscles in the healthy population. We further discuss how a dysfunction of these muscles could induce hyperactivity in the OP3. The evidence of direct electrical stimulation of this area eliciting auditory hallucinations further suggests its involvement in tinnitus perception. Finally, a small number of neuroimaging studies of therapeutic interventions for tinnitus provide additional evidence of right parietal operculum involvement.
Collapse
Affiliation(s)
- Chloé Jaroszynski
- University Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; (C.J.); (M.J.); (O.D.)
| | - Agnès Job
- Institut de Recherche Biomédicale des Armées, IRBA, 91220 Brétigny-sur-Orge, France;
| | - Maciej Jedynak
- University Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; (C.J.); (M.J.); (O.D.)
- Aix Marseille University, Inserm, INS, Inst Neurosci Syst, 13005 Marseille, France
| | - Olivier David
- University Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; (C.J.); (M.J.); (O.D.)
- Aix Marseille University, Inserm, INS, Inst Neurosci Syst, 13005 Marseille, France
| | - Chantal Delon-Martin
- University Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; (C.J.); (M.J.); (O.D.)
| |
Collapse
|
7
|
Pacheco-Barrios K, Pinto CB, Saleh Velez FG, Duarte D, Gunduz ME, Simis M, Lepesteur Gianlorenco AC, Barouh JL, Crandell D, Guidetti M, Battistella L, Fregni F. Structural and functional motor cortex asymmetry in unilateral lower limb amputation with phantom limb pain. Clin Neurophysiol 2020; 131:2375-2382. [PMID: 32828040 DOI: 10.1016/j.clinph.2020.06.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/27/2020] [Accepted: 06/01/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The role of motor cortex reorganization in the development and maintenance of phantom limb pain (PLP) is still unclear. This study aims to evaluate neurophysiological and structural motor cortex asymmetry in patients with PLP and its relationship with pain intensity. METHODS Cross-sectional analysis of an ongoing randomized-controlled trial. We evaluated the motor cortex asymmetry through two techniques: i) changes in cortical excitability indexed by transcranial magnetic stimulation (motor evoked potential, paired-pulse paradigms and cortical mapping), and ii) voxel-wise grey matter asymmetry analysis by brain magnetic resonance imaging. RESULTS We included 62 unilateral traumatic lower limb amputees with a mean PLP of 5.9 (SD = 1.79). We found, in the affected hemisphere, an anterior shift of the hand area center of gravity (23 mm, 95% CI 6 to 38, p = 0.005) and a disorganized and widespread representation. Regarding voxel-wise grey matter asymmetry analysis, data from 21 participants show a loss of grey matter volume in the motor area of the affected hemisphere. This asymmetry seems negatively associated with time since amputation. For TMS data, only the ICF ratio is negatively correlated with PLP intensity (r = -0.25, p = 0.04). CONCLUSION There is an asymmetrical reorganization of the motor cortex in patients with PLP, characterized by a disorganized, widespread, and shifted hand cortical representation and a loss in grey matter volume in the affected hemisphere. This reorganization seems to reduce across time since amputation. However, it is not associated with pain intensity. SIGNIFICANCE These findings are significant to understand the role of the motor cortex reorganization in patients with PLP, showing that the pain intensity may be related with other neurophysiological factors, not just cortical reorganization.
Collapse
Affiliation(s)
- K Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - C B Pinto
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - F G Saleh Velez
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; University of Chicago Medical Center, Department of Neurology, University of Chicago, Chicago, IL, USA
| | - D Duarte
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Canada
| | - M E Gunduz
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - M Simis
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - A C Lepesteur Gianlorenco
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - J L Barouh
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - D Crandell
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - M Guidetti
- Università degli Studi di Milano, Dipartimento di scienze della Salute, "Aldo Ravelli" Center for Neurotechnolgy and Experimental Brain Therapeutics, Milano, Italy
| | - L Battistella
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - F Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Gunduz ME, Pinto CB, Saleh Velez FG, Duarte D, Pacheco-Barrios K, Lopes F, Fregni F. Motor Cortex Reorganization in Limb Amputation: A Systematic Review of TMS Motor Mapping Studies. Front Neurosci 2020; 14:314. [PMID: 32372907 PMCID: PMC7187753 DOI: 10.3389/fnins.2020.00314] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/17/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose: The purpose of this systematic review is to evaluate motor cortex reorganization in amputees as indexed by transcranial magnetic stimulation (TMS) cortical mapping and its relationship with phantom limb pain (PLP). Methods: Pubmed database were systematically searched. Three independent researchers screened the relevant articles, and the data of motor output maps, including the number of effective stimulation sites, center of gravity (CoG) shift, and their clinical correlations were extracted. We calculated a pooled CoG shift for motor cortex TMS mapping. Results: The search yielded 468 articles, 11 were included. Three studies performed correlation between the cortical changes and PLP intensity, and only one study compared cortical mapping changes between amputees with pain and without pain. Results showed (i) enlarged excitable area and a shift of CoG of neighboring areas toward the deafferented limb area; (ii) no correlation between motor cortex reorganization and level of pain and (iii) greater cortical reorganization in patients with PLP compared to amputation without pain. Conclusion: Our review supports the evidence for cortical reorganization in the affected hemisphere following an amputation. The motor cortex reorganization could be a potential clinical target for prevention and treatment response of PLP.
Collapse
Affiliation(s)
- Muhammed Enes Gunduz
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Camila Bonin Pinto
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Faddi Ghassan Saleh Velez
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Dante Duarte
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Kevin Pacheco-Barrios
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States.,Unidad de Investigación Para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima, Peru
| | - Fernanda Lopes
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Felipe Fregni
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| |
Collapse
|
9
|
Remapping in Cerebral and Cerebellar Cortices Is Not Restricted by Somatotopy. J Neurosci 2019; 39:9328-9342. [PMID: 31611305 PMCID: PMC6867820 DOI: 10.1523/jneurosci.2599-18.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 07/16/2019] [Accepted: 08/05/2019] [Indexed: 12/27/2022] Open
Abstract
A fundamental organizing principle in the somatosensory and motor systems is somatotopy, where specific body parts are represented separately and adjacently to other body parts, resulting in a body map. Different terminals of the sensorimotor network show varied somatotopic layouts, in which the relative position, distance, and overlap between body-part representations differ. Since somatotopy is best characterized in the primary somatosensory (S1) and motor (M1) cortices, these terminals have been the main focus of research on somatotopic remapping following loss of sensory input (e.g., arm amputation). Cortical remapping is generally considered to be driven by the layout of the underlying somatotopy, such that neighboring body-part representations tend to activate the deprived brain region. Here, we challenge the assumption that somatotopic layout restricts remapping, by comparing patterns of remapping in humans born without one hand (hereafter, one-handers, n = 26) across multiple terminals of the sensorimotor pathway. We first report that, in the cerebellum of one-handers, the deprived hand region represents multiple body parts. Importantly, the native representations of some of these body parts do not neighbor the deprived hand region. We further replicate our previous findings, showing a similar pattern of remapping in the deprived hand region of the cerebral cortex in one-handers. Finally, we report preliminary results of a similar remapping pattern in the putamen of one-handers. Since these three sensorimotor terminals (cerebellum, cerebrum, putamen) contain different somatotopic layouts, the parallel remapping they undergo demonstrates that the mere spatial layout of body-part representations may not exclusively dictate remapping in the sensorimotor systems. SIGNIFICANCE STATEMENT When a hand is missing, the brain region that typically processes information from that hand may instead process information from other body parts, a phenomenon termed remapping. It is commonly thought that only body parts whose information is processed in regions neighboring the hand region could “take up” the resources of this now deprived region. Here we demonstrate that information from multiple body parts is processed in the hand regions of both the cerebral cortex and cerebellum. The native brain regions of these body parts have varying levels of overlap with the hand regions of the cerebral cortex and cerebellum, and do not necessarily neighbor the hand regions. We therefore propose that proximity between brain regions does not limit brain remapping.
Collapse
|
10
|
Jarrassé N, de Montalivet E, Richer F, Nicol C, Touillet A, Martinet N, Paysant J, de Graaf JB. Phantom-Mobility-Based Prosthesis Control in Transhumeral Amputees Without Surgical Reinnervation: A Preliminary Study. Front Bioeng Biotechnol 2018; 6:164. [PMID: 30555823 PMCID: PMC6282038 DOI: 10.3389/fbioe.2018.00164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/19/2018] [Indexed: 12/02/2022] Open
Abstract
Transhumeral amputees face substantial difficulties in efficiently controlling their prosthetic limb, leading to a high rate of rejection of these devices. Actual myoelectric control approaches make their use slow, sequential and unnatural, especially for these patients with a high level of amputation who need a prosthesis with numerous active degrees of freedom (powered elbow, wrist, and hand). While surgical muscle-reinnervation is becoming a generic solution for amputees to increase their control capabilities over a prosthesis, research is still being conducted on the possibility of using the surface myoelectric patterns specifically associated to voluntary Phantom Limb Mobilization (PLM), appearing naturally in most upper-limb amputees without requiring specific surgery. The objective of this study was to evaluate the possibility for transhumeral amputees to use a PLM-based control approach to perform more realistic functional grasping tasks. Two transhumeral amputated participants were asked to repetitively grasp one out of three different objects with an unworn eight-active-DoF prosthetic arm and release it in a dedicated drawer. The prosthesis control was based on phantom limb mobilization and myoelectric pattern recognition techniques, using only two repetitions of each PLM to train the classification architecture. The results show that the task could be successfully achieved with rather optimal strategies and joint trajectories, even if the completion time was increased in comparison with the performances obtained by a control group using a simple GUI control, and the control strategies required numerous corrections. While numerous limitations related to robustness of pattern recognition techniques and to the perturbations generated by actual wearing of the prosthesis remain to be solved, these preliminary results encourage further exploration and deeper understanding of the phenomenon of natural residual myoelectric activity related to PLM, since it could possibly be a viable option in some transhumeral amputees to extend their control abilities of functional upper limb prosthetics with multiple active joints without undergoing muscular reinnervation surgery.
Collapse
Affiliation(s)
- Nathanaël Jarrassé
- CNRS, INSERM, Institut des Systèmes Intelligents et de Robotique, ISIR, Sorbonne Université, Paris, France
| | - Etienne de Montalivet
- CNRS, INSERM, Institut des Systèmes Intelligents et de Robotique, ISIR, Sorbonne Université, Paris, France
| | - Florian Richer
- CNRS, INSERM, Institut des Systèmes Intelligents et de Robotique, ISIR, Sorbonne Université, Paris, France
| | | | - Amélie Touillet
- Centre Louis Pierquin, Institut Régional de Médecine Physique et de Réadaptation, UGECAM Nord-Est, Nancy, France
| | - Noël Martinet
- Centre Louis Pierquin, Institut Régional de Médecine Physique et de Réadaptation, UGECAM Nord-Est, Nancy, France
| | - Jean Paysant
- Centre Louis Pierquin, Institut Régional de Médecine Physique et de Réadaptation, UGECAM Nord-Est, Nancy, France
| | | |
Collapse
|
11
|
Dubois JD, Poitras I, Voisin JIA, Mercier C. Effect of pain on deafferentation-induced modulation of somatosensory evoked potentials. PLoS One 2018; 13:e0206141. [PMID: 30346981 PMCID: PMC6197665 DOI: 10.1371/journal.pone.0206141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/08/2018] [Indexed: 11/18/2022] Open
Abstract
There is a large body of evidence showing substantial sensorimotor reorganizations after an amputation. These reorganizations are believed to contribute to the development of phantom limb pain, but alternatively, pain might influence the plasticity triggered by the deafferentation. The aim of this study was to test whether pain impacts on deafferentation-induced plasticity in the somatosensory pathways. Fifteen healthy subjects participated in 2 experimental sessions (Pain, No Pain) in which somatosensory evoked potentials (SSEPs) associated with electrical stimulation of the ulnar nerve were assessed before and after temporary ischemic deafferentation induced by inflation of a cuff around the wrist. In the Pain session capsaicin cream was applied on the dorsum of the hand 30 minutes prior to cuff inflation. Results show that pain decreased the amplitude of the N20 (main effect of condition, p = 0.033), with a similar trend for the P25. Temporary ischemic deafferentation had a significant effect on SSEPs (main effect of time), with an increase in the P25 (p = 0.013) and the P45 amplitude (p = 0.005), together with a reduction of the P90 amplitude (p = 0.002). Finally, a significant time x condition interaction, reflecting state-dependent plasticity, was found for the P90 only, the presence of pain decreasing the reduction of amplitude observed in response to deafferentation. In conclusion, these results show that nociceptive input can influence the plasticity induced by a deafferentation, which could be a contributing factor in the cortical somatosensory reorganization observed in chronic pain populations.
Collapse
Affiliation(s)
- Jean-Daniel Dubois
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, Québec, Canada
- Department of Rehabilitation, Laval University, Pavillon Ferdinand-Vandry, Quebec City, Québec, Canada
| | - Isabelle Poitras
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, Québec, Canada
- Department of Rehabilitation, Laval University, Pavillon Ferdinand-Vandry, Quebec City, Québec, Canada
| | - Julien I. A. Voisin
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, Québec, Canada
- Department of Rehabilitation, Laval University, Pavillon Ferdinand-Vandry, Quebec City, Québec, Canada
| | - Catherine Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, Québec, Canada
- Department of Rehabilitation, Laval University, Pavillon Ferdinand-Vandry, Quebec City, Québec, Canada
- * E-mail:
| |
Collapse
|
12
|
Hernandez-Castillo CR, Diedrichsen J, Aguilar-Castañeda E, Iglesias M. Decoupling between the hand territory and the default mode network after bilateral arm transplantation: four-year follow-up case study. Brain Imaging Behav 2018; 12:296-302. [PMID: 28185062 DOI: 10.1007/s11682-017-9683-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several studies have suggested both a local and network reorganization of the sensorimotor system following amputation. Transplantation of a new limb results in a new shifting of cortical activity in the local territory of the transplanted limb. However, there is a lack of information about the reversibility of the abnormalities at the network level. The objective of this study was to characterize the functional connectivity changes between the cortical territory of the new hand and two intrinsic network of interest: the sensorimotor network (SMN) and the default mode network (DMN) of one patient whom received bilateral forearm transplants. Using resting-state fMRI these two networks were identified across four different time points, starting four months after the transplantation surgery and during three consecutive years while the patient underwent physical rehabilitation. The topology of the SMN was disrupted at the first acquisition and over the years returned to its canonical pattern. Analysis of the DMN showed the normal topology with no significant changes across acquisitions. Functional connectivity between the missing hand's cortical territory and the SMN increased over time. Accordingly, functional connectivity between the missing hand's cortical territory and the DMN became anticorrelated over time. Our results suggest that after transplantation a new reorganization occurs at the network level, supporting the idea that extreme behavioral changes can affect not only the local rewiring but also the intrinsic network organization in neurologically healthy subjects. Overall this study provides new insight on the complex dynamics of brain organization.
Collapse
Affiliation(s)
- Carlos R Hernandez-Castillo
- CONACYT - Instituto de Neuroetologia, Universidad Veracruzana, Av. Luis Cartelazo Ayala s/n, Col. Industrial Ánimas, Xalapa, Veracruz, Mexico. .,The Brain and Mind Institute, Western University, London, Canada.
| | - Jörn Diedrichsen
- The Brain and Mind Institute, Western University, London, Canada
| | - Erika Aguilar-Castañeda
- Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suarez", Ciudad de México, Mexico
| | - Martin Iglesias
- Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, Mexico
| |
Collapse
|
13
|
The reliability and validity of rapid transcranial magnetic stimulation mapping. Brain Stimul 2018; 11:1291-1295. [PMID: 30025980 DOI: 10.1016/j.brs.2018.07.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Traditional transcranial magnetic stimulation mapping involves systematically delivering stimuli over a predefined grid. The pseudorandom walk method seeks to improve map acquisition times by abandoning the grid in favour of delivering stimuli randomly over a given area. OBJECTIVES To i) determine the minimum interstimulus interval (ISI) required for reliable mapping outcomes within and between sessions using the pseudorandom walk method and ii) assess the validity of the pseudorandom walk method by testing its equivalence with traditional mapping. METHODS Maps collected using the pseudorandom walk method at four ISIs (4, 3, 2, and 1s) were compared to maps collected using traditional mapping in twenty healthy individuals. Outcomes included map area, volume, centre of gravity, mean MEP amplitude, and number of discrete peaks. RESULTS AND CONCLUSIONS The pseudorandom walk method was valid and reliable with a 2-second ISI for all outcomes except number of discrete peaks, which was less reliable than other measures.
Collapse
|
14
|
Anodal Transcranial Direct-Current Stimulation to Enhance Rehabilitation in Individuals With Rotator Cuff Tendinopathy: A Triple-Blind Randomized Controlled Trial. J Orthop Sports Phys Ther 2018; 48:541-551. [PMID: 29747540 DOI: 10.2519/jospt.2018.7871] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Anodal transcranial direct-current stimulation (a-tDCS) has been shown to enhance the effects of sensorimotor training in neurological populations. Sensorimotor training leads to reduced pain and increased function in the treatment of rotator cuff tendinopathy. The addition of a-tDCS during a rehabilitation program centered on sensorimotor training may improve treatment outcomes in individuals with rotator cuff tendinopathy. Objective To compare 2 groups of individuals with rotator cuff tendinopathy, one receiving a rehabilitation program centered on sensorimotor training with a-tDCS and the other receiving the same rehabilitation program with sham a-tDCS. Methods In this triple-blind, parallel-group randomized controlled trial, 40 adults with rotator cuff tendinopathy participated in a 6-week rehabilitation program (8 treatments with home exercises and including sensorimotor training, patient education, and strengthening). They were randomly assigned to 1 of 2 groups to receive either real a-tDCS (stimulation, 1.5 mA for 30 minutes) or sham a-tDCS during the first 5 treatments. Symptoms and functional limitations (Disabilities of the Arm, Shoulder and Hand questionnaire, Western Ontario Rotator Cuff index) of all participants were evaluated at baseline and at 3, 6, and 12 weeks. Acromiohumeral distances (ultrasonographic measurement at 0°, 45°, and 60° of arm elevation) were assessed at baseline and 6 weeks. Two-way or 3-way repeated-measures analyses of variance were used for statistical analyses. Results Both groups showed statistically significant improvement in Disabilities of the Arm, Shoulder and Hand questionnaire and Western Ontario Rotator Cuff index scores at 3, 6, and 12 weeks, and in acromiohumeral distance at 45° and 60° at 6 weeks (P<.05). No significant group-by-time interaction was observed for all outcomes (P>.43). Conclusion Results do not demonstrate any improved treatment outcomes from the addition of a-tDCS during a rehabilitation program for individuals with rotator cuff tendinopathy. Level of Evidence Therapy, level 1b. J Orthop Sports Phys Ther 2018;48(7):541-551. Epub 10 May 2018. doi:10.2519/jospt.2018.7871.
Collapse
|
15
|
Huchon L, Badet L, Roy AC, Finos L, Gazarian A, Revol P, Bernardon L, Rossetti Y, Morelon E, Rode G, Farnè A. Grasping objects by former amputees: The visuo-motor control of allografted hands. Restor Neurol Neurosci 2018; 34:615-33. [PMID: 26890093 DOI: 10.3233/rnn-150502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Hand allograft has recently emerged as a therapeutic option for upper limb amputees. Functional neuroimaging studies have progressively revealed sensorimotor cortices plasticity following both amputation and transplantation. The purpose of our study was to assess and characterize the functional recovery of the visuo-motor control of prehension in bilateral hand transplanted patients. METHODS Using kinematics recordings, we characterized the performance of prehension with or without visual feed-back for object of different position and size, in five bilateral hand allograft recipients and age-matched control subjects. Both hands were assessed, separately. RESULTS Despite an overall slower execution, allografted patients succeeded in grasping for more than 90% of the trials. They exhibited a preserved hand grip scaling according to object size, and preserved prehension performances when tested without visual feedback. These findings highlight the allograft recipients' abilities to produce an effective motor program, and a good proprioceptive-dependent online control. Nevertheless, the maximum grip aperture was reduced and delayed, the coupling between Transport and Grasp components was altered, and the final phase of the movement was lengthened. CONCLUSION Hand allotransplantation can offer recipients a good recovery of the visuo-motor control of prehension, with slight impairments likely attributable to peripheral neuro-orthopedic limitations.
Collapse
Affiliation(s)
- Laure Huchon
- ImpAct Team, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Lyon, France.,Physical and Rehabilitation Medicine Department, Mouvement Handicap, Henry Gabrielle Hospital, Hospices Civils de Lyon, Lyon, France.,Claude Bernard Lyon 1 University, Lyon, France
| | - Lionel Badet
- Claude Bernard Lyon 1 University, Lyon, France.,Transplantation Surgery Department, Edouart Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | | | - Livio Finos
- Department of Statistical Sciences, University of Padova, Padova, Italy
| | - Aram Gazarian
- Orthopaedic Surgery Department, Clinique du Parc Lyon, Lyon, France
| | - Patrice Revol
- ImpAct Team, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Lyon, France.,Physical and Rehabilitation Medicine Department, Mouvement Handicap, Henry Gabrielle Hospital, Hospices Civils de Lyon, Lyon, France.,Claude Bernard Lyon 1 University, Lyon, France
| | | | - Yves Rossetti
- ImpAct Team, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Lyon, France.,Physical and Rehabilitation Medicine Department, Mouvement Handicap, Henry Gabrielle Hospital, Hospices Civils de Lyon, Lyon, France.,Claude Bernard Lyon 1 University, Lyon, France
| | - Emmanuel Morelon
- Claude Bernard Lyon 1 University, Lyon, France.,Nephrology and Immunology Department, Edouart Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Gilles Rode
- ImpAct Team, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Lyon, France.,Physical and Rehabilitation Medicine Department, Mouvement Handicap, Henry Gabrielle Hospital, Hospices Civils de Lyon, Lyon, France.,Claude Bernard Lyon 1 University, Lyon, France
| | - Alessandro Farnè
- ImpAct Team, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Lyon, France.,Claude Bernard Lyon 1 University, Lyon, France
| |
Collapse
|
16
|
Altered microstructure rather than morphology in the corpus callosum after lower limb amputation. Sci Rep 2017; 7:44780. [PMID: 28303959 PMCID: PMC5355997 DOI: 10.1038/srep44780] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/13/2017] [Indexed: 02/07/2023] Open
Abstract
The corpus callosum (CC) has been implicated in the reorganization of the brain following amputation. However, it is unclear which regions of the CC are involved in this process. In this study, we explored the morphometric and microstructural changes in CC subregions in patients with unilateral lower limb amputation. Thirty-eight patients and 38 age- and gender-matched normal controls were included. The CC was divided into five regions, and the area, thickness and diffusion parameters of each region were investigated. While morphometric analysis showed no significant differences between the two groups, amputees showed significant higher values in axial diffusivity, radial diffusivity and mean diffusivity in region II of the CC, which connects the bilateral premotor and supplementary motor areas. In contrast, the mean fractional anisotropy value of the fibers generated by these cortical areas, as measured by tractography, was significantly smaller in amputees. These results demonstrate that the interhemispheric pathways contributing to motor coordination and imagery are reorganized in lower limb amputees.
Collapse
|
17
|
Jarrasse N, Nicol C, Touillet A, Richer F, Martinet N, Paysant J, de Graaf JB. Classification of Phantom Finger, Hand, Wrist, and Elbow Voluntary Gestures in Transhumeral Amputees With sEMG. IEEE Trans Neural Syst Rehabil Eng 2017; 25:68-77. [DOI: 10.1109/tnsre.2016.2563222] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Williams L, Pirouz N, Mizelle JC, Cusack W, Kistenberg R, Wheaton LA. Remodeling of cortical activity for motor control following upper limb loss. Clin Neurophysiol 2016; 127:3128-3134. [PMID: 27472549 DOI: 10.1016/j.clinph.2016.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/05/2016] [Accepted: 07/10/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Upper extremity loss presents immediate and lasting challenges for motor control. While sensory and motor representations of the amputated limb undergo plasticity to adjacent areas of the sensorimotor homunculus, it remains unclear whether laterality of motor-related activity is affected by neural reorganization following amputation. METHODS Using electroencephalography, we evaluated neural activation patterns of formerly right hand dominant persons with upper limb loss (amputees) performing a motor task with their residual right limb, then their sound left limb. We compared activation patterns with left- and right-handed persons performing the same task. RESULTS Amputees have involvement of contralateral motor areas when using their sound limb and atypically increased activation of posterior parietal regions when using the affected limb. When using the non-amputated left arm, patterns of activation remains similar to right handed persons using their left arm. CONCLUSIONS A remodeling of activations from traditional contralateral motor areas into posterior parietal areas occurs for motor planning and execution when using the amputated limb. This may reflect an amputation-specific adaptation of heightened visuospatial feedback for motor control involving the amputated limb. SIGNIFICANCE These results identify a neuroplastic mechanism for motor control in amputees, which may have great relevance to development of motor rehabilitation paradigms and prosthesis adaptation.
Collapse
Affiliation(s)
| | | | - J C Mizelle
- School of Applied Physiology, Georgia Tech, USA; Department of Kinesiology, East Carolina University, USA
| | - William Cusack
- School of Applied Physiology, Georgia Tech, USA; St. Jude Medical, Sunnyvale, CA, USA
| | | | | |
Collapse
|
19
|
Mavromatis N, Gagné M, Voisin JIAV, Reilly KT, Mercier C. Experimental tonic hand pain modulates the corticospinal plasticity induced by a subsequent hand deafferentation. Neuroscience 2016; 330:403-9. [PMID: 27291642 DOI: 10.1016/j.neuroscience.2016.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 05/30/2016] [Accepted: 06/04/2016] [Indexed: 02/06/2023]
Abstract
Sensorimotor reorganization is believed to play an important role in the development and maintenance of phantom limb pain, but pain itself might modulate sensorimotor plasticity induced by deafferentation. Clinical and basic research support this idea, as pain prior to amputation increases the risk of developing post-amputation pain. The aim of this study was to examine the influence of experimental tonic cutaneous hand pain on the plasticity induced by temporary ischemic hand deafferentation. Sixteen healthy subjects participated in two experimental sessions (Pain, No Pain) in which transcranial magnetic stimulation was used to assess corticospinal excitability in two forearm muscles (flexor carpi radialis and flexor digitorum superficialis) before (T0, T10, T20, and T40) and after (T60 and T75) inflation of a cuff around the wrist. The cuff was inflated at T45 in both sessions and in the Pain session capsaicin cream was applied on the dorsum of the hand at T5. Corticospinal excitability was significantly greater during the Post-inflation phase (p=0.002) and increased similarly in both muscles (p=0.861). Importantly, the excitability increase in the Post-inflation phase was greater for the Pain than the No-Pain condition (p=0.006). Post-hoc analyses revealed a significant difference between the two conditions during the Post-inflation phase (p=0.030) but no difference during the Pre-inflation phase (p=0.601). In other words, the corticospinal facilitation was greater when pain was present prior to cuff inflation. These results indicate that pain can modulate the plasticity induced by another event, and could partially explain the sensorimotor reorganization often reported in chronic pain populations.
Collapse
Affiliation(s)
- N Mavromatis
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, Canada; Department of Rehabilitation, Laval University, Québec, Canada
| | - M Gagné
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, Canada
| | - J I A V Voisin
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, Canada; Department of Rehabilitation, Laval University, Québec, Canada
| | - K T Reilly
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct Team, Lyon, France; University Claude Bernard Lyon I, Lyon, France
| | - C Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, Canada; Department of Rehabilitation, Laval University, Québec, Canada.
| |
Collapse
|
20
|
Muret D, Daligault S, Dinse HR, Delpuech C, Mattout J, Reilly KT, Farnè A. Neuromagnetic correlates of adaptive plasticity across the hand-face border in human primary somatosensory cortex. J Neurophysiol 2016; 115:2095-104. [PMID: 26888099 DOI: 10.1152/jn.00628.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 02/16/2016] [Indexed: 11/22/2022] Open
Abstract
It is well established that permanent or transient reduction of somatosensory inputs, following hand deafferentation or anesthesia, induces plastic changes across the hand-face border, supposedly responsible for some altered perceptual phenomena such as tactile sensations being referred from the face to the phantom hand. It is also known that transient increase of hand somatosensory inputs, via repetitive somatosensory stimulation (RSS) at a fingertip, induces local somatosensory discriminative improvement accompanied by cortical representational changes in the primary somatosensory cortex (SI). We recently demonstrated that RSS at the tip of the right index finger induces similar training-independent perceptual learning across the hand-face border, improving somatosensory perception at the lips (Muret D, Dinse HR, Macchione S, Urquizar C, Farnè A, Reilly KT.Curr Biol24: R736-R737, 2014). Whether neural plastic changes across the hand-face border accompany such remote and adaptive perceptual plasticity remains unknown. Here we used magnetoencephalography to investigate the electrophysiological correlates underlying RSS-induced behavioral changes across the hand-face border. The results highlight significant changes in dipole location after RSS both for the stimulated finger and for the lips. These findings reveal plastic changes that cross the hand-face border after an increase, instead of a decrease, in somatosensory inputs.
Collapse
Affiliation(s)
- Dollyane Muret
- ImpAct Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France; University Claude Bernard Lyon I, Lyon, France;
| | | | - Hubert R Dinse
- Neural Plasticity Laboratory, Institute of Neuroinformatics, Ruhr University, Bochum, Germany; Clinic of Neurology, BG University Hospital Bergmannsheil, Bochum, Germany; and
| | | | - Jérémie Mattout
- University Claude Bernard Lyon I, Lyon, France; Dycog Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France
| | - Karen T Reilly
- ImpAct Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France; University Claude Bernard Lyon I, Lyon, France
| | - Alessandro Farnè
- ImpAct Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France; University Claude Bernard Lyon I, Lyon, France
| |
Collapse
|
21
|
De Graaf JB, Jarrassé N, Nicol C, Touillet A, Coyle T, Maynard L, Martinet N, Paysant J. Phantom hand and wrist movements in upper limb amputees are slow but naturally controlled movements. Neuroscience 2015; 312:48-57. [PMID: 26556065 DOI: 10.1016/j.neuroscience.2015.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022]
Abstract
After limb amputation, patients often wake up with a vivid perception of the presence of the missing limb, called "phantom limb". Phantom limbs have mostly been studied with respect to pain sensation. But patients can experience many other phantom sensations, including voluntary movements. The goal of the present study was to quantify phantom movement kinematics and relate these to intact limb kinematics and to the time elapsed since amputation. Six upper arm and two forearm amputees with various delays since amputation (6months to 32years) performed phantom finger, hand and wrist movements at self-chosen comfortable velocities. The kinematics of the phantom movements was indirectly obtained via the intact limb that synchronously mimicked the phantom limb movements, using a Cyberglove® for measuring finger movements and an inertial measurement unit for wrist movements. Results show that the execution of phantom movements is perceived as "natural" but effortful. The types of phantom movements that can be performed are variable between the patients but they could all perform thumb flexion/extension and global hand opening/closure. Finger extension movements appeared to be 24% faster than finger flexion movements. Neither the number of types of phantom movements that can be executed nor the kinematic characteristics were related to the elapsed time since amputation, highlighting the persistence of post-amputation neural adaptation. We hypothesize that the perceived slowness of phantom movements is related to altered proprioceptive feedback that cannot be recalibrated by lack of visual feedback during phantom movement execution.
Collapse
Affiliation(s)
- J B De Graaf
- Institute of Movement Sciences (ISM), UMR 7287 - CNRS & Aix-Marseille University, Marseille, France.
| | - N Jarrassé
- Institute of Intelligent Systems and Robotics (ISIR), UMR 7222, CNRS/INSERM, U1150 Agathe-ISIR, Sorbonne University, UPMC Univ Paris 06, Paris, France
| | - C Nicol
- Institute of Movement Sciences (ISM), UMR 7287 - CNRS & Aix-Marseille University, Marseille, France
| | - A Touillet
- Louis Pierquin Centre of the Regional Institute of Rehabilitation, Nancy, France
| | - T Coyle
- Institute of Movement Sciences (ISM), UMR 7287 - CNRS & Aix-Marseille University, Marseille, France
| | - L Maynard
- Centre for Functional Readaptation of Valmante, Marseille, France
| | - N Martinet
- Louis Pierquin Centre of the Regional Institute of Rehabilitation, Nancy, France
| | - J Paysant
- Louis Pierquin Centre of the Regional Institute of Rehabilitation, Nancy, France
| |
Collapse
|
22
|
Batista e Sá VW, Gomes MK, Rangel MLS, Sanchez TA, Moreira FA, Hoefle S, Souto IB, da Cunha AJLA, Fontana AP, Vargas CD. Primary Motor Cortex Representation of Handgrip Muscles in Patients with Leprosy. PLoS Negl Trop Dis 2015. [PMID: 26203653 PMCID: PMC4512691 DOI: 10.1371/journal.pntd.0003944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Leprosy is an endemic infectious disease caused by Mycobacterium leprae that predominantly attacks the skin and peripheral nerves, leading to progressive impairment of motor, sensory and autonomic function. Little is known about how this peripheral neuropathy affects corticospinal excitability of handgrip muscles. Our purpose was to explore the motor cortex organization after progressive peripheral nerve injury and upper-limb dysfunction induced by leprosy using noninvasive transcranial magnetic stimulation (TMS). METHODS In a cross-sectional study design, we mapped bilaterally in the primary motor cortex (M1) the representations of the hand flexor digitorum superficialis (FDS), as well as of the intrinsic hand muscles abductor pollicis brevis (APB), first dorsal interosseous (FDI) and abductor digiti minimi (ADM). All participants underwent clinical assessment, handgrip dynamometry and motor and sensory nerve conduction exams 30 days before mapping. Wilcoxon signed rank and Mann-Whitney tests were performed with an alpha-value of p<0.05. FINDINGS Dynamometry performance of the patients' most affected hand (MAH), was worse than that of the less affected hand (LAH) and of healthy controls participants (p = 0.031), confirming handgrip impairment. Motor threshold (MT) of the FDS muscle was higher in both hemispheres in patients as compared to controls, and lower in the hemisphere contralateral to the MAH when compared to that of the LAH. Moreover, motor evoked potential (MEP) amplitudes collected in the FDS of the MAH were higher in comparison to those of controls. Strikingly, MEPs in the intrinsic hand muscle FDI had lower amplitudes in the hemisphere contralateral to MAH as compared to those of the LAH and the control group. Taken together, these results are suggestive of a more robust representation of an extrinsic hand flexor and impaired intrinsic hand muscle function in the hemisphere contralateral to the MAH due to leprosy. CONCLUSION Decreased sensory-motor function induced by leprosy affects handgrip muscle representation in M1.
Collapse
Affiliation(s)
- Vagner Wilian Batista e Sá
- Núcleo de Pesquisas em Fisioterapia, Universidade Castelo Branco, Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Clínica Médica, Hospital Universitário Clementino Fraga Filho e Departamento de Medicina de Família e Comunidade/Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Neurobiologia II, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (VWBeS); (CDV)
| | - Maria Katia Gomes
- Programa de Pós-Graduação em Clínica Médica, Hospital Universitário Clementino Fraga Filho e Departamento de Medicina de Família e Comunidade/Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Luíza Sales Rangel
- Laboratório de Neurobiologia II, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tiago Arruda Sanchez
- Programa de Pós-Graduação em Clínica Médica, Hospital Universitário Clementino Fraga Filho e Departamento de Medicina de Família e Comunidade/Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Filipe Azaline Moreira
- Programa de Pós-Graduação em Clínica Médica, Hospital Universitário Clementino Fraga Filho e Departamento de Medicina de Família e Comunidade/Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sebastian Hoefle
- Laboratório de Neurobiologia II, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Cognitive and Behavioral Neuroscience Unit and Neuroinformatics Workgroup, D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Inaiacy Bittencourt Souto
- Programa de Pós-Graduação em Clínica Médica, Hospital Universitário Clementino Fraga Filho e Departamento de Medicina de Família e Comunidade/Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antônio José Ledo Alves da Cunha
- Programa de Pós-Graduação em Clínica Médica, Hospital Universitário Clementino Fraga Filho e Departamento de Medicina de Família e Comunidade/Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Fontana
- Programa de Pós-Graduação em Clínica Médica, Hospital Universitário Clementino Fraga Filho e Departamento de Medicina de Família e Comunidade/Faculdade de Medicina da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Domingues Vargas
- Laboratório de Neurobiologia II, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Neurologia Deolindo Couto da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (VWBeS); (CDV)
| |
Collapse
|
23
|
Philip BA, Buckon C, Sienko S, Aiona M, Ross S, Frey SH. Maturation and experience in action representation: Bilateral deficits in unilateral congenital amelia. Neuropsychologia 2015; 75:420-30. [PMID: 26092768 DOI: 10.1016/j.neuropsychologia.2015.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/17/2015] [Accepted: 05/20/2015] [Indexed: 01/12/2023]
Abstract
Congenital unilateral absence of the hand (amelia) completely deprives individuals of sensorimotor experiences with their absent effector. The consequences of such deprivation on motor planning abilities are poorly understood. Fourteen patients and matched controls performed two grip selection tasks: 1) overt grip selection (OGS), in which they used their intact hand to grasp a three-dimensional object that appeared in different orientations using the most natural (under-or over-hand) precision grip, and 2) prospective grip selection (PGS), in which they selected the most natural grip for either the intact or absent hand without moving. For the intact hand, we evaluated planning accuracy by comparing concordance between grip preferences expressed in PGS vs. OGS. For the absent hand, we compared PGS responses with OGS responses for the intact hand that had been phase shifted by 180°, thereby accounting for mirror symmetrical biomechanical constraints of the two limbs. Like controls, amelic individuals displayed a consistent preference for less awkward grips in both OGS and PGS. Unexpectedly, however, they were slower and less accurate for PGS based on either the intact or the absent hand. We conclude that direct sensorimotor experience with both hands may be important for the typical development or refinement of effector-specific internal representations of either limb.
Collapse
Affiliation(s)
- B A Philip
- Psychological Sciences, University of Missouri, Columbia, MO, United States
| | - C Buckon
- Shriners Hospital for Children Portland, Portland, OR, United States
| | - S Sienko
- Shriners Hospital for Children Portland, Portland, OR, United States
| | - M Aiona
- Shriners Hospital for Children Portland, Portland, OR, United States
| | - S Ross
- Exercise and Sport Science, Oregon State University, Corvallis, OR, United States
| | - S H Frey
- Psychological Sciences, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
24
|
Hashim E, Rowley CD, Grad S, Bock NA. Patterns of myeloarchitecture in lower limb amputees: an MRI study. Front Neurosci 2015; 9:15. [PMID: 25698916 PMCID: PMC4318335 DOI: 10.3389/fnins.2015.00015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 01/12/2015] [Indexed: 11/13/2022] Open
Abstract
Functional studies of cortical plasticity in humans suggest that the motor cortex reorganizes when the descending motor output pathway is disrupted as a result of limb amputation. The question thus arises if the underlying anatomical organization of the motor cortex is also altered in limb amputation. Owing to challenges involved in imaging the thin cerebral cortex in vivo, there is limited data available on the anatomical or morphological plasticity of the motor cortex in amputation. In this paper, we study the morphology of the primary motor cortex in four lower limb amputees with 37 or more years of amputation and four age and gender-matched controls using 0.7 mm isotropic, T1-weighted MRI optimized to produce enhanced intracortical contrast based on myelin content. We segment the cortex into myelinated and unmyelinated gray matter. We determine the myelinated thickness which is the thickness of the well-myelinated tissue in the deeper layers of the cortex. We compare the bilateral differences in the myelinated thickness between amputees and controls. We also compare bilateral differences in cortical thickness between the two groups. Our measurements show no statistically significant difference between the amputees and controls in the myelinated thickness and in cortical thickness, in the region of the primary motor cortex representing the lower leg.
Collapse
Affiliation(s)
- Eyesha Hashim
- Medical Physics and Applied Radiation Sciences, McMaster University Hamilton, ON, Canada
| | - Christopher D Rowley
- Medical Physics and Applied Radiation Sciences, McMaster University Hamilton, ON, Canada
| | - Sharon Grad
- Physical Medicine and Rehabilitation, McMaster University Hamilton, ON, Canada
| | - Nicholas A Bock
- Medical Physics and Applied Radiation Sciences, McMaster University Hamilton, ON, Canada
| |
Collapse
|
25
|
van de Ruit M, Perenboom MJL, Grey MJ. TMS brain mapping in less than two minutes. Brain Stimul 2014; 8:231-9. [PMID: 25556004 DOI: 10.1016/j.brs.2014.10.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) corticospinal excitability maps are a valuable tool to study plasticity in the corticospinal tract. Traditionally, data acquisition for a single map is time consuming, limiting the method's applicability when excitability changes quickly, such as during motor learning, and in clinical investigations where assessment time is a limiting factor. OBJECTIVE To reduce the time needed to create a reliable map by 1) investigating the minimum interstimulus interval (ISI) at which stimuli may be delivered, and 2) investigating the minimum number of stimuli required to create a map. METHOD Frameless stereotaxy was used to monitor coil position as the coil was moved pseudorandomly within a 6 × 6 cm square. Maps were acquired using 1-4 s ISIs in 12 participants. The minimum number of stimuli was determined by randomly extracting data and comparing the resulting map to the original data set. To confirm validity, the pseudorandom walk method was compared against a traditional mapping method. RESULTS Reliable maps could be created with 63 stimuli recorded with a 1 s ISI. Maps created acquiring data using the pseudorandom walk method were not significantly different from maps acquired following the traditional method. CONCLUSIONS To account for inter-participant variability, outliers, coil positioning errors and, most importantly, participant comfort during data acquisition, we recommend creating a map with 80 stimuli and a 1.5 s ISI. This makes it possible to acquire TMS maps in 2 min, making mapping a more feasible tool to study short- and long-term changes in cortical organization.
Collapse
Affiliation(s)
- Mark van de Ruit
- NIHR Surgical Reconstruction and Microbiology Research Centre, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston B15 2TT, UK; MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Matthijs J L Perenboom
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
| | - Michael J Grey
- NIHR Surgical Reconstruction and Microbiology Research Centre, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston B15 2TT, UK; MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston B15 2TT, UK; Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
26
|
Lum PS, Black I, Holley RJ, Barth J, Dromerick AW. Internal models of upper limb prosthesis users when grasping and lifting a fragile object with their prosthetic limb. Exp Brain Res 2014; 232:3785-95. [PMID: 25142151 DOI: 10.1007/s00221-014-4071-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
Abstract
Internal models allow unimpaired individuals to appropriately scale grip force when grasping and lifting familiar objects. In prosthesis users, the internal model must adapt to the characteristics of the prosthetic devices and reduced sensory feedback. We studied the internal models of 11 amputees and eight unimpaired controls when grasping and lifting a fragile object. When the object was modified from a rigid to fragile state, both subject groups adapted appropriately by significantly reducing grasp force on the first trial with the fragile object compared to the rigid object (p < 0.020). There was a wide range of performance skill illustrated by amputee subjects when lifting the fragile object in 10 repeated trials. One subject, using a voluntary close device, never broke the object, four subjects broke the fragile device on every attempt and seven others failed on their initial attempts, but improved over the repeated trials. Amputees decreased their grip forces 51 ± 7 % from the first to the last trial (p < 0.001), indicating a practice effect. However, amputees used much higher levels of force than controls throughout the testing (p < 0.015). Amputees with better performance on the Box and Blocks test used lower grip force levels (p = 0.006) and had more successful lifts of the fragile object (p = 0.002). In summary, amputees do employ internal models when picking up objects; however, the accuracy of these models is poor and grip force modulation is significantly impaired. Further studies could examine the alternative sensory modalities and training parameters that best promote internal model formation.
Collapse
Affiliation(s)
- Peter S Lum
- Biomedical Engineering, The Catholic University of America, Pangborn Hall, room 131, 620 Michigan Ave NE, Washington, DC, 20064, USA,
| | | | | | | | | |
Collapse
|
27
|
Methods for estimating cortical motor representation size and location in navigated transcranial magnetic stimulation. J Neurosci Methods 2014; 232:125-33. [DOI: 10.1016/j.jneumeth.2014.05.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 11/20/2022]
|
28
|
Alterations in central motor representation increase over time in individuals with rotator cuff tendinopathy. Clin Neurophysiol 2014; 126:365-71. [PMID: 25043198 DOI: 10.1016/j.clinph.2014.05.035] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/22/2014] [Accepted: 05/26/2014] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To investigate whether rotator cuff tendinopathy leads to changes in central motor representation of a rotator cuff muscle, and to assess whether such changes are related to pain intensity, pain duration, and physical disability. METHODS Using transcranial magnetic stimulation, motor representation of infraspinatus muscle was assessed bilaterally in patients with unilateral rotator cuff tendinopathy. RESULTS Active motor threshold is significantly larger for the affected shoulder comparatively to the unaffected shoulder (n=39, p=0.01), indicating decreased corticospinal excitability on the affected side compared to unaffected side. Further, results suggest that this asymmetry in corticospinal excitability is associated with duration of pain (n=39; r=0.45; p=0.005), but not with pain intensity (n=39; r<0.03; p>0.43). In contrast with findings in other populations with musculoskeletal pain, no significant inter-hemispheric asymmetry was observed in map location (n=16; p-values ⩾ 0.91), or in the amplitude of motor responses obtained at various stimulation intensities (n=16; p=0.83). CONCLUSION Chronicity of pain, but not its intensity, appears to be a factor related to lower excitability of infraspinatus representation. SIGNIFICANCE These results support the view that while cortical reorganization correlates with magnitude of pain in neuropathic pain syndromes, it could be more related to chronicity in the case of musculoskeletal disorders.
Collapse
|
29
|
Age-related weakness of proximal muscle studied with motor cortical mapping: a TMS study. PLoS One 2014; 9:e89371. [PMID: 24586726 PMCID: PMC3931763 DOI: 10.1371/journal.pone.0089371] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/17/2014] [Indexed: 11/30/2022] Open
Abstract
Aging-related weakness is due in part to degeneration within the central nervous system. However, it is unknown how changes to the representation of corticospinal output in the primary motor cortex (M1) relate to such weakness. Transcranial magnetic stimulation (TMS) is a noninvasive method of cortical stimulation that can map representation of corticospinal output devoted to a muscle. Using TMS, we examined age-related alterations in maps devoted to biceps brachii muscle to determine whether they predicted its age-induced weakness. Forty-seven right-handed subjects participated: 20 young (22.6±0.90 years) and 27 old (74.96±1.35 years). We measured strength as force of elbow flexion and electromyographic activation of biceps brachii during maximum voluntary contraction. Mapping variables included: 1) center of gravity or weighted mean location of corticospinal output, 2) size of map, 3) volume or excitation of corticospinal output, and 4) response density or corticospinal excitation per unit area. Center of gravity was more anterior in old than in young (p<0.001), though there was no significant difference in strength between the age groups. Map size, volume, and response density showed no significant difference between groups. Regardless of age, center of gravity significantly predicted strength (β = −0.34, p = 0.005), while volume adjacent to the core of map predicted voluntary activation of biceps (β = 0.32, p = 0.008). Overall, the anterior shift of the map in older adults may reflect an adaptive change that allowed for the maintenance of strength. Laterally located center of gravity and higher excitation in the region adjacent to the core in weaker individuals could reflect compensatory recruitment of synergistic muscles. Thus, our study substantiates the role of M1 in adapting to aging-related weakness and subtending strength and muscle activation across age groups. Mapping from M1 may offer foundation for an examination of mechanisms that preserve strength in elderly.
Collapse
|
30
|
Ngomo S, Mercier C, Roy JS. Cortical mapping of the infraspinatus muscle in healthy individuals. BMC Neurosci 2013; 14:52. [PMID: 23617624 PMCID: PMC3652754 DOI: 10.1186/1471-2202-14-52] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 04/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While cortical representations of intrinsic hand muscles have been extensively studied in healthy individuals, little is known about the representation of proximal upper limb muscles. Improving our understanding of normal shoulder function is important, given that shoulder musculoskeletal disorders affect approximately 20% of the population and are suspected to involve changes in central motor representations. The purpose of the study is to describe the motor representation (motor evoked potentials (MEP) amplitude at the hotspot, map area, normalized map volume and center of gravity) of the infraspinatus muscle in healthy individuals, and to explore the potential influence of hand dominance on this representation (i.e. symmetry of the excitability and of the location of motor map between sides), as well as the effect of age and gender on motor excitability. RESULTS Fifteen healthy participants took part in this study. No significant asymmetry between sides was observed for motor excitability (p = 0.14), map area (p = 0.73) and normalized map volume (p = 0.34). Moreover, no side x intensity interaction was found (p = 0.54), indicating similar stimulus response properties. No difference between sides was found in the location of infraspinatus motor representation, either in the mediolateral or anteroposterior axis (p > 0.10). Neither age nor gender influenced aMT (p > 0.58) or MEP size (p > 0.61). CONCLUSIONS As the cortical representation of infraspinatus muscles was found to be symmetric between sides, both in terms of excitability and location, comparisons between the intact and affected side could be performed in clinical studies, regardless of whether the dominant or non-dominant side is affected. The next step will be to characterize corticospinal excitability and map parameters in populations with shoulder disorders.
Collapse
Affiliation(s)
- Suzy Ngomo
- Department of Rehabilitation, Faculty of Medicine, Laval University, Quebec City, QC, G1R 1P5, Canada
| | | | | |
Collapse
|
31
|
Littmann AE, McHenry CL, Shields RK. Variability of motor cortical excitability using a novel mapping procedure. J Neurosci Methods 2013; 214:137-43. [PMID: 23357026 DOI: 10.1016/j.jneumeth.2013.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 01/14/2013] [Accepted: 01/16/2013] [Indexed: 11/19/2022]
Abstract
The purpose of this study was to assess the reliability of a novel TMS motor cortex mapping procedure. The procedure was designed to take less time and be more clinically useful by delivering fewer MEPS over fewer skull locations. Resting motor evoked potentials (MEPs) were recorded from the first dorsal interosseus muscle of 6 individuals over a fixed 15-point grid. Mean MEP amplitudes, map center of gravity (CoG), and stimulus-response characteristics were assessed before and after a 30-min rest session. As a novel feature, subregions of the map were analyzed for regions of highest test-retest reliability for use as a global measure of cortical excitability. Mean MEP amplitudes between sessions were highly reliable (ICC=0.90-0.92). Reproducibility of MEPs was highest along an axis approximately 45° to the nasion-inion. Stimulus-response MEP amplitudes showed moderate to high reliability (ICC 0.54-0.95). Mean CoG shift between sessions was 2.79±1.2mm. This mapping procedure is reliable and allows efficient assessment of motor cortex excitability.
Collapse
Affiliation(s)
- Andrew E Littmann
- Department of Physical Therapy, Rueckert-Hartman College for Health Professions, Regis University, Denver, CO 80221, United States
| | | | | |
Collapse
|
32
|
|
33
|
Comparison of transcranial magnetic stimulation measures obtained at rest and under active conditions and their reliability. J Neurosci Methods 2012; 205:65-71. [DOI: 10.1016/j.jneumeth.2011.12.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/14/2011] [Accepted: 12/20/2011] [Indexed: 11/18/2022]
|
34
|
Bogdanov S, Smith J, Frey SH. Former hand territory activity increases after amputation during intact hand movements, but is unaffected by illusory visual feedback. Neurorehabil Neural Repair 2012; 26:604-15. [PMID: 22258157 DOI: 10.1177/1545968311429687] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND In healthy adults, hand movements are controlled largely by the contralateral primary motor cortex. Following amputation, however, movements of the intact hand are accompanied by increased activity in the sensorimotor cortices of both cerebral hemispheres. OBJECTIVE The authors tested whether use of the intact hand reactivates the cortical territory formerly devoted to the now missing hand and whether these effects can be augmented by motor imagery (MI) and/or exposure to illusory visual "feedback" (VF) of the absent hand created with a mirror. METHODS Functional magnetic resonance imaging (fMRI) was used to delineate the boundaries of normative sensorimotor hand representations in healthy controls. Brain activity from 11 unilateral hand amputees was recorded while they performed aurally paced thumb-finger sequencing movements with their intact hands under 4 conditions: (1) motor execution of the intact hand alone (ME), (2) ME with corresponding MI of the amputated hand, (3) ME with VF of the amputated hand, and (4) ME with MI and VF. RESULTS Intact hand movements increased activity specifically within the former sensorimotor hand territory during all conditions, an effect that may be attributable to decreased levels of interhemispheric inhibition and/or use-dependent functional reorganization following amputation. This effect was not significantly increased by the addition of VF and/or MI of the amputated hand. However, in amputees, MI was associated with an expansion of this ipsilateral response into parietal, premotor, and presupplementary motor areas. CONCLUSION Active engagement of the intact hand may be critical for therapies seeking to stimulate the former hand territory.
Collapse
|
35
|
Bibliography Current World Literature. CURRENT ORTHOPAEDIC PRACTICE 2012. [DOI: 10.1097/bco.0b013e3182434f58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Mercier C, Léonard G. Interactions between Pain and the Motor Cortex: Insights from Research on Phantom Limb Pain and Complex Regional Pain Syndrome. Physiother Can 2011; 63:305-14. [PMID: 22654236 DOI: 10.3138/ptc.2010-08p] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE Pain is a significantly disabling problem that often interacts with other deficits during the rehabilitation process. The aim of this paper is to review evidence of interactions between pain and the motor cortex in order to attempt to answer the following questions: (1) Does acute pain interfere with motor-cortex activity? (2) Does chronic pain interfere with motor-cortex activity, and, conversely, does motor-cortex plasticity contribute to chronic pain? (3) Can the induction of motor plasticity by means of motor-cortex stimulation decrease pain? (4) Can motor training result in both motor-cortex reorganization and pain relief? SUMMARY OF KEY POINTS Acute experimental pain has been clearly shown to exert an inhibitory influence over the motor cortex, which can interfere with motor learning capacities. Current evidence also suggests a relationship between chronic pain and motor-cortex reorganization, but it is still unclear whether one causes the other. However, there is growing evidence that interventions aimed at normalizing motor-cortex organization can lead to pain relief. CONCLUSIONS Interactions between pain and the motor cortex are complex, and more studies are needed to understand these interactions in our patients, as well as to develop optimal rehabilitative strategies.
Collapse
Affiliation(s)
- Catherine Mercier
- Catherine Mercier, OT, PhD: Centre interdisciplinaire de recherche en réadaptation et en intégration sociale (CIRRIS) and Département de réadaptation, Université Laval, Quebec
| | | |
Collapse
|
37
|
Hétu S, Gagné M, Reilly KT, Mercier C. Short-term reliability of transcranial magnetic stimulation motor maps in upper limb amputees. J Clin Neurosci 2011; 18:728-30. [PMID: 21393001 DOI: 10.1016/j.jocn.2010.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/09/2010] [Accepted: 09/10/2010] [Indexed: 10/18/2022]
Abstract
The aim of this study was to verify the short-term reliability of transcranial magnetic stimulation (TMS) parameters for a damaged stump muscle in upper-limb amputees (n=6). The motor threshold, response latency and map center of gravity in the mediolateral plane showed good reliability, whereas the map volume measure was less stable. The stability of most TMS measures across time supports the use of TMS in studying cortical plasticity in amputees.
Collapse
Affiliation(s)
- S Hétu
- Centre Interdisciplinaire de Recherche en Réadaptation et en Intégration Sociale (CIRRIS), Université Laval, 525 Boulevard Hamel, Québec, Canada
| | | | | | | |
Collapse
|
38
|
Reilly KT, Sirigu A. Motor cortex representation of the upper-limb in individuals born without a hand. PLoS One 2011; 6:e18100. [PMID: 21494663 PMCID: PMC3072970 DOI: 10.1371/journal.pone.0018100] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 02/25/2011] [Indexed: 11/19/2022] Open
Abstract
The body schema is an action-related representation of the body that arises from activity in a network of multiple brain areas. While it was initially thought that the body schema developed with experience, the existence of phantom limbs in individuals born without a limb (amelics) led to the suggestion that it was innate. The problem with this idea, however, is that the vast majority of amelics do not report the presence of a phantom limb. Transcranial magnetic stimulation (TMS) applied over the primary motor cortex (M1) of traumatic amputees can evoke movement sensations in the phantom, suggesting that traumatic amputation does not delete movement representations of the missing hand. Given this, we asked whether the absence of a phantom limb in the majority of amelics means that the motor cortex does not contain a cortical representation of the missing limb, or whether it is present but has been deactivated by the lack of sensorimotor experience. In four upper-limb amelic subjects we directly stimulated the arm/hand region of M1 to see 1) whether we could evoke phantom sensations, and 2) whether muscle representations in the two cortices were organised asymmetrically. TMS applied over the motor cortex contralateral to the missing limb evoked contractions in stump muscles but did not evoke phantom movement sensations. The location and extent of muscle maps varied between hemispheres but did not reveal any systematic asymmetries. In contrast, forearm muscle thresholds were always higher for the missing limb side. We suggest that phantom movement sensations reported by some upper limb amelics are mostly driven by vision and not by the persistence of motor commands to the missing limb within the sensorimotor cortex. We propose that prewired movement representations of a limb need the experience of movement to be expressed within the primary motor cortex.
Collapse
Affiliation(s)
- Karen T. Reilly
- CNRS, Cognitive Neuroscience Center, UMR 5229, Bron, France
- University Lyon 1, Villeurbanne, France
| | - Angela Sirigu
- CNRS, Cognitive Neuroscience Center, UMR 5229, Bron, France
- University Lyon 1, Villeurbanne, France
| |
Collapse
|