1
|
Schroeder ML, Sherafati A, Ulbrich RL, Wheelock MD, Svoboda AM, Klein ED, George TG, Tripathy K, Culver JP, Eggebrecht AT. Mapping cortical activations underlying covert and overt language production using high-density diffuse optical tomography. Neuroimage 2023; 276:120190. [PMID: 37245559 PMCID: PMC10760405 DOI: 10.1016/j.neuroimage.2023.120190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023] Open
Abstract
Gold standard neuroimaging modalities such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET), and more recently electrocorticography (ECoG) have provided profound insights regarding the neural mechanisms underlying the processing of language, but they are limited in applications involving naturalistic language production especially in developing brains, during face-to-face dialogues, or as a brain-computer interface. High-density diffuse optical tomography (HD-DOT) provides high-fidelity mapping of human brain function with comparable spatial resolution to that of fMRI but in a silent and open scanning environment similar to real-life social scenarios. Therefore, HD-DOT has potential to be used in naturalistic settings where other neuroimaging modalities are limited. While HD-DOT has been previously validated against fMRI for mapping the neural correlates underlying language comprehension and covert (i.e., "silent") language production, HD-DOT has not yet been established for mapping the cortical responses to overt (i.e., "out loud") language production. In this study, we assessed the brain regions supporting a simple hierarchy of language tasks: silent reading of single words, covert production of verbs, and overt production of verbs in normal hearing right-handed native English speakers (n = 33). First, we found that HD-DOT brain mapping is resilient to movement associated with overt speaking. Second, we observed that HD-DOT is sensitive to key activations and deactivations in brain function underlying the perception and naturalistic production of language. Specifically, statistically significant results were observed that show recruitment of regions in occipital, temporal, motor, and prefrontal cortices across all three tasks after performing stringent cluster-extent based thresholding. Our findings lay the foundation for future HD-DOT studies of imaging naturalistic language comprehension and production during real-life social interactions and for broader applications such as presurgical language assessment and brain-machine interfaces.
Collapse
Affiliation(s)
- Mariel L Schroeder
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA; Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA
| | - Arefeh Sherafati
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel L Ulbrich
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA; University of Missouri School of Medicine, Columbia, MO, USA
| | - Muriah D Wheelock
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Alexandra M Svoboda
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA; University of Cincinnati Medical Center, Cincinnati, Oh, USA
| | - Emma D Klein
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tessa G George
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Kalyan Tripathy
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA; Washington University School of Medicine, St Louis, MO, USA
| | - Joseph P Culver
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA; Division of Biology & Biomedical Sciences, Washington University School of Medicine, St Louis, MO, USA; Department of Physics, Washington University in St. Louis, St Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, USA
| | - Adam T Eggebrecht
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA; Division of Biology & Biomedical Sciences, Washington University School of Medicine, St Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, USA.
| |
Collapse
|
2
|
Huang H, Yan J, Lin Y, Lin J, Hu H, Wei L, Zhang X, Zhang Q, Liang S. Brain functional activity of swallowing: A meta-analysis of functional magnetic resonance imaging. J Oral Rehabil 2023; 50:165-175. [PMID: 36437597 DOI: 10.1111/joor.13397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/01/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Swallowing is one of the most important activities in our life and serves the dual roles of nutritional intake and eating enjoyment. OBJECTIVE The study aimed to conduct a meta-analysis to investigate the brain activity of swallowing. METHODS Studies of swallowing using functional magnetic resonance imaging were reviewed in PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), Chinese Science and Technology Periodical Database (VIP) and Wan Fang before 30 November 2021. Two authors analysed the studies for eligibility criteria. The final inclusion of studies was decided by consensus. An activation likelihood estimation (ALE) meta-analysis of these studies was performed with GingerALE, including 16 studies. RESULTS For swallowing, clusters with high activation likelihood were found in the bilateral insula, bilateral pre-central gyrus, bilateral post-central gyrus, left transverse temporal gyrus, right medial front gyrus, bilateral inferior frontal gyrus and bilateral cingulate gyrus. For water swallowing, clusters with high activation likelihood were found in the bilateral inferior frontal gyrus and the left pre-central gyrus. For saliva swallowing, clusters with high activation likelihood were found in the bilateral cingulate gyrus, bilateral pre-central gyrus, left post-central gyrus and left transverse gyrus. CONCLUSION This meta-analysis reflects that swallowing is regulated by both sensory and motor cortex, and saliva swallowing activates more brain areas than water swallowing, which would promote our knowledge of swallowing and provide some direction for clinical and other research.
Collapse
Affiliation(s)
- Haiyue Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jin Yan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yinghong Lin
- College of Integrated Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jiaxin Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Huimin Hu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Linxuan Wei
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiwen Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Qingqing Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shengxiang Liang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
3
|
Weichenberger M, Bug MU, Brühl R, Ittermann B, Koch C, Kühn S. Air-conducted ultrasound below the hearing threshold elicits functional changes in the cognitive control network. PLoS One 2022; 17:e0277727. [PMID: 36512612 PMCID: PMC9747049 DOI: 10.1371/journal.pone.0277727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/02/2022] [Indexed: 12/15/2022] Open
Abstract
Air-conducted ultrasound (> 17.8 kHz; US) is produced by an increasing number of technical devices in our daily environment. While several studies indicate that exposure to US in public spaces can lead to subjective symptoms such as 'annoyance' or 'difficulties in concentration', the effects of US on brain activity are poorly understood. In the present study, individual hearing thresholds (HT) for sounds in the US frequency spectrum were assessed in 21 normal-hearing participants. The effects of US were then investigated by means of functional magnetic resonance imaging (fMRI). 15 of these participants underwent three resting-state acquisitions, two with a 21.5 kHz tone presented monaurally at 5 dB above (ATC) and 10 dB below (BTC) the HT and one without auditory stimulation (NTC), as well as three runs of an n-back working memory task involving similar stimulus conditions (n-ATC, n-BTC, n-NTC). Comparing data gathered during n-NTC vs. fixation, we found that task performance was associated with the recruitment of regions within the cognitive control network, including prefrontal and parietal areas as well as the cerebellum. Direct contrasts of the two stimulus conditions (n-ATC & n-BTC) vs. n-NTC showed no significant differences in brain activity, irrespective of whether a whole-brain or a region of interest approach with primary auditory cortex as the seed was used. Likewise, no differences were found when the resting-state runs were compared. However, contrast analysis (n-BTC vs. n-ATC) revealed a strong activation in bilateral inferior frontal gyrus (IFG, triangular part) only when US was presented below the HT (p < 0.001, cluster > 30). In addition, IFG activation was also associated with faster reaction times during n-BTC (p = 0.033) as well as with verbal reports obtained after resting-state, i.e., the more unpleasant sound was perceived during BTC vs. ATC, the higher activation in bilateral IFG was and vice versa (p = 0.003). While this study provides no evidence for activation of primary auditory cortex in response to audible US (even though participants heard the sounds), it indicates that US can lead to changes in the cognitive control network and affect cognitive performance only when presented below the HT. Activation of bilateral IFG could reflect an increase in cognitive demand when focusing on task performance in the presence of slightly unpleasant and/or distracting US that may not be fully controllable by attentional mechanisms.
Collapse
Affiliation(s)
- Markus Weichenberger
- Max Planck Institute for Human Development, Lise Meitner Group for Environmental Neuroscience, Berlin, Germany
- * E-mail:
| | - Marion U. Bug
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Christian Koch
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Simone Kühn
- Max Planck Institute for Human Development, Lise Meitner Group for Environmental Neuroscience, Berlin, Germany
- University Clinic Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Hamburg, Germany
| |
Collapse
|
4
|
Sereno MI, Sood MR, Huang RS. Topological Maps and Brain Computations From Low to High. Front Syst Neurosci 2022; 16:787737. [PMID: 35747394 PMCID: PMC9210993 DOI: 10.3389/fnsys.2022.787737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/29/2022] [Indexed: 01/02/2023] Open
Abstract
We first briefly summarize data from microelectrode studies on visual maps in non-human primates and other mammals, and characterize differences among the features of the approximately topological maps in the three main sensory modalities. We then explore the almost 50% of human neocortex that contains straightforward topological visual, auditory, and somatomotor maps by presenting a new parcellation as well as a movie atlas of cortical area maps on the FreeSurfer average surface, fsaverage. Third, we review data on moveable map phenomena as well as a recent study showing that cortical activity during sensorimotor actions may involve spatially locally coherent traveling wave and bump activity. Finally, by analogy with remapping phenomena and sensorimotor activity, we speculate briefly on the testable possibility that coherent localized spatial activity patterns might be able to ‘escape’ from topologically mapped cortex during ‘serial assembly of content’ operations such as scene and language comprehension, to form composite ‘molecular’ patterns that can move across some cortical areas and possibly return to topologically mapped cortex to generate motor output there.
Collapse
Affiliation(s)
- Martin I. Sereno
- Department of Psychology, San Diego State University, San Diego, CA, United States
- Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
- *Correspondence: Martin I. Sereno,
| | - Mariam Reeny Sood
- Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Ruey-Song Huang
- Centre for Cognitive and Brain Sciences, University of Macau, Macau, Macao SAR, China
| |
Collapse
|
5
|
Koppelmans V, Mulavara AP, Seidler RD, De Dios YE, Bloomberg JJ, Wood SJ. Cortical thickness of primary motor and vestibular brain regions predicts recovery from fall and balance directly after spaceflight. Brain Struct Funct 2022; 227:2073-2086. [PMID: 35469104 DOI: 10.1007/s00429-022-02492-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/30/2022] [Indexed: 01/02/2023]
Abstract
Motor adaptations to the microgravity environment during spaceflight allow astronauts to perform adequately in this unique environment. Upon return to Earth, this adaptation is no longer appropriate and can be disruptive for mission critical tasks. Here, we measured if metrics derived from MRI scans collected from astronauts can predict motor performance post-flight. Structural and diffusion MRI scans from 14 astronauts collected before launch, and motor measures (balance performance, speed of recovery from fall, and tandem walk step accuracy) collected pre-flight and post-flight were analyzed. Regional measures of gray matter volume (motor cortex, paracentral lobule, cerebellum), myelin density (motor cortex, paracentral lobule, corticospinal tract), and white matter microstructure (corticospinal tract) were derived as a-priori predictors. Additional whole-brain analyses of cortical thickness, cerebellar gray matter, and cortical myelin were also tested for associations with post-flight and pre-to-post-flight motor performance. The pre-selected regional measures were not significantly associated with motor behavior. However, whole-brain analyses showed that paracentral and precentral gyri thickness significantly predicted recovery from fall post-spaceflight. Thickness of vestibular and sensorimotor regions, including the posterior insula and the superior temporal gyrus, predicted balance performance post-flight and pre-to-post-flight decrements. Greater cortical thickness pre-flight predicted better performance post-flight. Regional thickness of somatosensory, motor, and vestibular brain regions has some predictive value for post-flight motor performance in astronauts, which may be used for the identification of training and countermeasure strategies targeted for maintaining operational task performance.
Collapse
Affiliation(s)
| | | | - Rachael D Seidler
- Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | | | - Jacob J Bloomberg
- National Aeronautics and Space Administration Johnson Space Center, Houston, TX, USA
| | - Scott J Wood
- National Aeronautics and Space Administration Johnson Space Center, Houston, TX, USA
| |
Collapse
|
6
|
Jaroszynski C, Job A, Jedynak M, David O, Delon-Martin C. Tinnitus Perception in Light of a Parietal Operculo-Insular Involvement: A Review. Brain Sci 2022; 12:334. [PMID: 35326290 PMCID: PMC8946618 DOI: 10.3390/brainsci12030334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/07/2022] Open
Abstract
In tinnitus literature, researchers have increasingly been advocating for a clearer distinction between tinnitus perception and tinnitus-related distress. In non-bothersome tinnitus, the perception itself can be more specifically investigated: this has provided a body of evidence, based on resting-state and activation fMRI protocols, highlighting the involvement of regions outside the conventional auditory areas, such as the right parietal operculum. Here, we aim to conduct a review of available investigations of the human parietal operculo-insular subregions conducted at the microscopic, mesoscopic, and macroscopic scales arguing in favor of an auditory-somatosensory cross-talk. Both the previous literature and new results on functional connectivity derived from cortico-cortical evoked potentials show that these subregions present a dense tissue of interconnections and a strong connectivity with auditory and somatosensory areas in the healthy brain. Disrupted integration processes between these modalities may thus result in erroneous perceptions, such as tinnitus. More precisely, we highlight the role of a subregion of the right parietal operculum, known as OP3 according to the Jülich atlas, in the integration of auditory and somatosensory representation of the orofacial muscles in the healthy population. We further discuss how a dysfunction of these muscles could induce hyperactivity in the OP3. The evidence of direct electrical stimulation of this area eliciting auditory hallucinations further suggests its involvement in tinnitus perception. Finally, a small number of neuroimaging studies of therapeutic interventions for tinnitus provide additional evidence of right parietal operculum involvement.
Collapse
Affiliation(s)
- Chloé Jaroszynski
- University Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; (C.J.); (M.J.); (O.D.)
| | - Agnès Job
- Institut de Recherche Biomédicale des Armées, IRBA, 91220 Brétigny-sur-Orge, France;
| | - Maciej Jedynak
- University Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; (C.J.); (M.J.); (O.D.)
- Aix Marseille University, Inserm, INS, Inst Neurosci Syst, 13005 Marseille, France
| | - Olivier David
- University Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; (C.J.); (M.J.); (O.D.)
- Aix Marseille University, Inserm, INS, Inst Neurosci Syst, 13005 Marseille, France
| | - Chantal Delon-Martin
- University Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; (C.J.); (M.J.); (O.D.)
| |
Collapse
|
7
|
Huber J, Ruehl M, Flanagin V, Zu Eulenburg P. Delineating neural responses and functional connectivity changes during vestibular and nociceptive stimulation reveal the uniqueness of cortical vestibular processing. Brain Struct Funct 2021; 227:779-791. [PMID: 34611776 PMCID: PMC8930960 DOI: 10.1007/s00429-021-02394-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/20/2021] [Indexed: 01/21/2023]
Abstract
Vestibular information is ubiquitous and often processed jointly with visual, somatosensory and proprioceptive information. Among the cortical brain regions associated with human vestibular processing, area OP2 in the parietal operculum has been proposed as vestibular core region. However, delineating responses uniquely to vestibular stimulation in this region using neuroimaging is challenging for several reasons: First, the parietal operculum is a cytoarchitectonically heterogeneous region responding to multisensory stimulation. Second, artificial vestibular stimulation evokes confounding somatosensory and nociceptive responses blurring responses contributing to vestibular perception. Furthermore, immediate effects of vestibular stimulation on the organization of functional networks have not been investigated in detail yet. Using high resolution neuroimaging in a task-based and functional connectivity approach, we compared two equally salient stimuli—unilateral galvanic vestibular (GVS) and galvanic nociceptive stimulation (GNS)—to disentangle the processing of both modalities in the parietal operculum and characterize their effects on functional network architecture. GNS and GVS gave joint responses in area OP1, 3, 4, and the anterior and middle insula, but not in area OP2. GVS gave stronger responses in the parietal operculum just adjacent to OP3 and OP4, whereas GNS evoked stronger responses in area OP1, 3 and 4. Our results underline the importance of considering this common pathway when interpreting vestibular neuroimaging experiments and underpin the role of area OP2 in central vestibular processing. Global network changes were found during GNS, but not during GVS. This lack of network reconfiguration despite the saliency of GVS may reflect the continuous processing of vestibular information in the awake human.
Collapse
Affiliation(s)
- Judita Huber
- Graduate School of Systemic Neurosciences, Department of Biology II and Neurobiology, Ludwig-Maximilians-University, Munich, Germany
| | - Maxine Ruehl
- Department of Neurology, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.
| | - Virginia Flanagin
- Graduate School of Systemic Neurosciences, Department of Biology II and Neurobiology, Ludwig-Maximilians-University, Munich, Germany
- Department of Neurology, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Peter Zu Eulenburg
- Graduate School of Systemic Neurosciences, Department of Biology II and Neurobiology, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
- Institute for Neuroradiology, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
8
|
Eichert N, Papp D, Mars RB, Watkins KE. Mapping Human Laryngeal Motor Cortex during Vocalization. Cereb Cortex 2020; 30:6254-6269. [PMID: 32728706 PMCID: PMC7610685 DOI: 10.1093/cercor/bhaa182] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/01/2020] [Accepted: 06/06/2020] [Indexed: 01/17/2023] Open
Abstract
The representations of the articulators involved in human speech production are organized somatotopically in primary motor cortex. The neural representation of the larynx, however, remains debated. Both a dorsal and a ventral larynx representation have been previously described. It is unknown, however, whether both representations are located in primary motor cortex. Here, we mapped the motor representations of the human larynx using functional magnetic resonance imaging and characterized the cortical microstructure underlying the activated regions. We isolated brain activity related to laryngeal activity during vocalization while controlling for breathing. We also mapped the articulators (the lips and tongue) and the hand area. We found two separate activations during vocalization-a dorsal and a ventral larynx representation. Structural and quantitative neuroimaging revealed that myelin content and cortical thickness underlying the dorsal, but not the ventral larynx representation, are similar to those of other primary motor representations. This finding confirms that the dorsal larynx representation is located in primary motor cortex and that the ventral one is not. We further speculate that the location of the ventral larynx representation is in premotor cortex, as seen in other primates. It remains unclear, however, whether and how these two representations differentially contribute to laryngeal motor control.
Collapse
Affiliation(s)
- Nicole Eichert
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Daniel Papp
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Rogier B. Mars
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Kate E. Watkins
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Job A, Jaroszynski C, Kavounoudias A, Jaillard A, Delon-Martin C. Functional Connectivity in Chronic Nonbothersome Tinnitus Following Acoustic Trauma: A Seed-Based Resting-State Functional Magnetic Resonance Imaging Study. Brain Connect 2020; 10:279-291. [DOI: 10.1089/brain.2019.0712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Agnès Job
- Institut de Recherche Biomédicale des Armées (IRBA), Brétigny s/Orge, France
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Chloé Jaroszynski
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | | | | | - Chantal Delon-Martin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| |
Collapse
|
10
|
Boedts MJO. Tympanic Resonance Hypothesis. Front Neurol 2020; 11:14. [PMID: 32117001 PMCID: PMC7008469 DOI: 10.3389/fneur.2020.00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/07/2020] [Indexed: 11/13/2022] Open
Abstract
Seemingly unrelated symptoms in the head and neck region are eliminated when a patch is applied on specific locations on the Tympanic Membrane. Clinically, two distinct patient populations can be distinguished; cervical and masticatory muscle tensions are involved, and mental moods of anxiety or need. Clinical observations lead to the hypothesis of a “Tympanic Resonance Regulating System.” Its controller, the Trigeminocervical complex, integrates external auditory, somatosensory, and central impulses. It modulates auditory attention, and directs it toward unpredictable external or expected domestic and internal sounds: peripherally by shifting the resonance frequencies of the Tympanic Membrane; centrally by influencing the throughput of auditory information to the neural attention networks that toggle between scanning and focusing; and thus altering the perception of auditory information. The hypothesis leads to the assumption that the Trigeminocervical complex is composed of a dorsal component, and a ventral one which may overlap with the concept of “Trigeminovagal complex.” “Tympanic Dissonance” results in a host of local and distant symptoms, most of which can be attributed to activation of the Trigeminocervical complex. Diagnostic and therapeutic measures for this “Tympanic Dissonance Syndrome” are suggested.
Collapse
Affiliation(s)
- Michael J O Boedts
- Brai3n, Ghent, Belgium.,ENT Department, AZ Maria Middelares, Ghent, Belgium
| |
Collapse
|
11
|
Rosemann S, Thiel CM. Audio-visual speech processing in age-related hearing loss: Stronger integration and increased frontal lobe recruitment. Neuroimage 2018; 175:425-437. [PMID: 29655940 DOI: 10.1016/j.neuroimage.2018.04.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/09/2018] [Accepted: 04/09/2018] [Indexed: 11/19/2022] Open
Abstract
Hearing loss is associated with difficulties in understanding speech, especially under adverse listening conditions. In these situations, seeing the speaker improves speech intelligibility in hearing-impaired participants. On the neuronal level, previous research has shown cross-modal plastic reorganization in the auditory cortex following hearing loss leading to altered processing of auditory, visual and audio-visual information. However, how reduced auditory input effects audio-visual speech perception in hearing-impaired subjects is largely unknown. We here investigated the impact of mild to moderate age-related hearing loss on processing audio-visual speech using functional magnetic resonance imaging. Normal-hearing and hearing-impaired participants performed two audio-visual speech integration tasks: a sentence detection task inside the scanner and the McGurk illusion outside the scanner. Both tasks consisted of congruent and incongruent audio-visual conditions, as well as auditory-only and visual-only conditions. We found a significantly stronger McGurk illusion in the hearing-impaired participants, which indicates stronger audio-visual integration. Neurally, hearing loss was associated with an increased recruitment of frontal brain areas when processing incongruent audio-visual, auditory and also visual speech stimuli, which may reflect the increased effort to perform the task. Hearing loss modulated both the audio-visual integration strength measured with the McGurk illusion and brain activation in frontal areas in the sentence task, showing stronger integration and higher brain activation with increasing hearing loss. Incongruent compared to congruent audio-visual speech revealed an opposite brain activation pattern in left ventral postcentral gyrus in both groups, with higher activation in hearing-impaired participants in the incongruent condition. Our results indicate that already mild to moderate hearing loss impacts audio-visual speech processing accompanied by changes in brain activation particularly involving frontal areas. These changes are modulated by the extent of hearing loss.
Collapse
Affiliation(s)
- Stephanie Rosemann
- Biological Psychology, Department of Psychology, Department for Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany; Cluster of Excellence "Hearing4all", Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
| | - Christiane M Thiel
- Biological Psychology, Department of Psychology, Department for Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany; Cluster of Excellence "Hearing4all", Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
12
|
Abstract
The Eustachian (auditory) tube and tympanomastoid cavities form an anatomic and functional whole that cannot easily be divided, and is therefore known as the "tubotympanic system". The system has been the focus of several studies, with complex and sometimes contradictory results, making an overview of its functioning difficult to obtain. The objective of the present article is to review the current state of knowledge, as an indispensable preliminary to understanding tubotympanic system dysfunction, and notably the development of chronic otitis. The system as a whole is covered by mucosa, which provides continuity, although with certain particularities from one area to another, and plays a primordial role. Thus, under physiological conditions, gas diffusion across the tympanomastoid mucosa largely ensures the equilibrium of pressure between the middle ear and outside environment, the tube orifice being very little involved. Under large rapid change in atmospheric pressure, the aeration function of the Eustachian tube comes into play, governed by a reflex mechanism. The system also has other functions that are essential to good middle-ear functioning: protection against nasopharyngeal secretions and pathogens and against certain physiological noises; middle-ear cavity clearance by mucociliary transport of pathogens, partly related to submucosal gland secretion; and immune defense.
Collapse
Affiliation(s)
- C Martin
- Service ORL et de Chirurgie Cervico-Faciale, Hôpital Nord, CHU de Saint-Étienne, 42055 Saint-Étienne Cedex 2, France.
| | - A Karkas
- Service ORL et de Chirurgie Cervico-Faciale, Hôpital Nord, CHU de Saint-Étienne, 42055 Saint-Étienne Cedex 2, France
| | - J-M Prades
- Service ORL et de Chirurgie Cervico-Faciale, Hôpital Nord, CHU de Saint-Étienne, 42055 Saint-Étienne Cedex 2, France
| |
Collapse
|
13
|
Leighton TG. Are some people suffering as a result of increasing mass exposure of the public to ultrasound in air? Proc Math Phys Eng Sci 2016; 472:20150624. [PMID: 26997897 PMCID: PMC4786042 DOI: 10.1098/rspa.2015.0624] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/03/2015] [Indexed: 11/12/2022] Open
Abstract
New measurements indicate that the public are being exposed, without their knowledge, to airborne ultrasound. Existing guidelines are insufficient for such exposures; the vast majority refers to occupational exposure only (where workers are aware of the exposure, can be monitored and can wear protection). Existing guidelines are based on an insufficient evidence base, most of which was collected over 40 years ago by researchers who themselves considered it insufficient to finalize guidelines, but which produced preliminary guidelines. This warning of inadequacy was lost as nations and organizations issued 'new' guidelines based on these early guidelines, and through such repetition generated a false impression of consensus. The evidence base is so slim that few reports have progressed far along the sequence from anecdote to case study, to formal scientific controlled trials and epidemiological studies. Early studies reported hearing threshold shifts, nausea, headache, fatigue, migraine and tinnitus, but there is insufficient research on human subjects, and insufficient measurement of fields, to assess what health risk current occupational and public exposures might produce. Furthermore, the assumptions underpinning audiology and physical measurements at high frequencies must be questioned: simple extrapolation of approaches used at lower frequencies does not address current unknowns. Recommendations are provided.
Collapse
Affiliation(s)
- T. G. Leighton
- Institute of Sound and Vibration Research, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| |
Collapse
|
14
|
Job A, Jacob R, Pons Y, Raynal M, Kossowski M, Gauthier J, Lombard B, Delon-Martin C. Specific activation of operculum 3 (OP3) brain region during provoked tinnitus-related phantom auditory perceptions in humans. Brain Struct Funct 2014; 221:913-22. [DOI: 10.1007/s00429-014-0944-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 11/12/2014] [Indexed: 10/24/2022]
|
15
|
Frank SM, Baumann O, Mattingley JB, Greenlee MW. Vestibular and visual responses in human posterior insular cortex. J Neurophysiol 2014; 112:2481-91. [PMID: 25185806 DOI: 10.1152/jn.00078.2014] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The central hub of the cortical vestibular network in humans is likely localized in the region of posterior lateral sulcus. An area characterized by responsiveness to visual motion has previously been described at a similar location and named posterior insular cortex (PIC). Currently it is not known whether PIC processes vestibular information as well. We localized PIC using visual motion stimulation in functional magnetic resonance imaging (fMRI) and investigated whether PIC also responds to vestibular stimuli. To this end, we designed an MRI-compatible caloric stimulation device that allowed us to stimulate bithermally with hot temperature in one ear and simultaneously cold temperature in the other or with warm temperatures in both ears for baseline. During each trial, participants indicated the presence or absence of self-motion sensations. We found activation in PIC during periods of self motion when vestibular stimulation was carried out with minimal visual input. In combined visual-vestibular stimulation area PIC was activated in a similar fashion during congruent and incongruent stimulation conditions. Our results show that PIC not only responds to visual motion but also to vestibular stimuli related to the sensation of self motion. We suggest that PIC is part of the cortical vestibular network and plays a role in the integration of visual and vestibular stimuli for the perception of self motion.
Collapse
Affiliation(s)
- Sebastian M Frank
- Institute for Experimental Psychology, University of Regensburg, Regensburg, Germany; Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire; and
| | - Oliver Baumann
- Queensland Brain Institute and School of Psychology, The University of Queensland, St. Lucia, Australia
| | - Jason B Mattingley
- Queensland Brain Institute and School of Psychology, The University of Queensland, St. Lucia, Australia
| | - Mark W Greenlee
- Institute for Experimental Psychology, University of Regensburg, Regensburg, Germany;
| |
Collapse
|
16
|
Abstract
Objective This report reviews the literature to identify the advances in our understanding of the middle ear (ME)–Eustachian tube (ET) system during the past 4 years and, on that basis, to determine whether the short-term goals elaborated in the last report were achieved and propose updated goals to guide future otitis media (OM) research. Data Sources Databases searched included PubMed, Web of Science (1945-present), Medline (1950 to present), Biosis Previews (1969-present), and the Zoological Record (1978 to present). The initial literature search covered the time interval from January 2007 to June 2011, with a supplementary search completed in February 2012. Review Methods The panel topic was subdivided; each contributor performed a literature search and provided a preliminary report. Those reports were consolidated and discussed when the panel met on June 9, 2011. At that meeting, the progress was evaluated and new short-term goals proposed. Conclusions Progress was made on 16 of the 19 short-term goals proposed in 2007. Significant advances were made in the characterization of ME gas exchange pathways, modeling ET function, and preliminary testing of treatments for ET dysfunction. Implications for Practice In the future, imaging technologies should be developed to noninvasively assess ME/ET structure and physiology with respect to their role in OM pathogenesis. The new data derived from form/function experiments should be integrated into the finite element models and used to develop specific hypotheses concerning OM pathogenesis and persistence. Finally, rigorous studies of treatments, medical or surgical, of ET dysfunction should be undertaken.
Collapse
|
17
|
Hattingh CJ, Ipser J, Tromp SA, Syal S, Lochner C, Brooks SJ, Stein DJ. Functional magnetic resonance imaging during emotion recognition in social anxiety disorder: an activation likelihood meta-analysis. Front Hum Neurosci 2013; 6:347. [PMID: 23335892 PMCID: PMC3547329 DOI: 10.3389/fnhum.2012.00347] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 12/16/2012] [Indexed: 11/28/2022] Open
Abstract
Background: Social anxiety disorder (SAD) is characterized by abnormal fear and anxiety in social situations. Functional magnetic resonance imaging (fMRI) is a brain imaging technique that can be used to demonstrate neural activation to emotionally salient stimuli. However, no attempt has yet been made to statistically collate fMRI studies of brain activation, using the activation likelihood-estimate (ALE) technique, in response to emotion recognition tasks in individuals with SAD. Methods: A systematic search of fMRI studies of neural responses to socially emotive cues in SAD was undertaken. ALE meta-analysis, a voxel-based meta-analytic technique, was used to estimate the most significant activations during emotional recognition. Results: Seven studies were eligible for inclusion in the meta-analysis, constituting a total of 91 subjects with SAD, and 93 healthy controls. The most significant areas of activation during emotional vs. neutral stimuli in individuals with SAD compared to controls were: bilateral amygdala, left medial temporal lobe encompassing the entorhinal cortex, left medial aspect of the inferior temporal lobe encompassing perirhinal cortex and parahippocampus, right anterior cingulate, right globus pallidus, and distal tip of right postcentral gyrus. Conclusion: The results are consistent with neuroanatomic models of the role of the amygdala in fear conditioning, and the importance of the limbic circuitry in mediating anxiety symptoms.
Collapse
Affiliation(s)
- Coenraad J Hattingh
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town Western Cape, South Africa
| | | | | | | | | | | | | |
Collapse
|
18
|
Perspective of functional magnetic resonance imaging in middle ear research. Hear Res 2013; 301:183-92. [PMID: 23291496 DOI: 10.1016/j.heares.2012.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/26/2012] [Accepted: 12/19/2012] [Indexed: 11/20/2022]
Abstract
Functional magnetic resonance imaging (MRI) studies have frequently been applied to study sensory system such as vision, language, and cognition, but have proceeded at a considerably slower speed in investigating middle ear and central auditory processing. This is due to several factors, including the intrinsic anatomy of the middle ear system and inherent acoustic noise during acquisition of MRI data. However, accumulating evidences have demonstrated that clarification of some fundamental neural underpinnings of audition associated with middle ear mechanics can be achieved using functional MRI methods. This mini review attempted to take a narrow snapshot of the currently available functional MRI procedures and gave examples of what may be learned about hearing from their application. It is hoped that with these technical advancements, many new high impact applications in audition would follow. In particular, because the fMRI can be used in humans and in animals, fMRI may represent a unique tool that should promote translational research by enabling parallel analyses of physiological and pathological processes in the human and animal auditory system. This article is part of a special issue entitled "MEMRO 2012".
Collapse
|
19
|
Job A, Pons Y, Lamalle L, Jaillard A, Buck K, Segebarth C, Delon‐Martin C. Abnormal cortical sensorimotor activity during "Target" sound detection in subjects with acute acoustic trauma sequelae: an fMRI study. Brain Behav 2012; 2:187-99. [PMID: 22574285 PMCID: PMC3345361 DOI: 10.1002/brb3.21] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/18/2011] [Accepted: 08/31/2011] [Indexed: 11/26/2022] Open
Abstract
The most common consequences of acute acoustic trauma (AAT) are hearing loss at frequencies above 3 kHz and tinnitus. In this study, we have used functional Magnetic Resonance Imaging (fMRI) to visualize neuronal activation patterns in military adults with AAT and various tinnitus sequelae during an auditory "oddball" attention task. AAT subjects displayed overactivities principally during reflex of target sound detection, in sensorimotor areas and in emotion-related areas such as the insula, anterior cingulate and prefrontal cortex, in premotor area, in cross-modal sensory associative areas, and, interestingly, in a region of the Rolandic operculum that has recently been shown to be involved in tympanic movements due to air pressure. We propose further investigations of this brain area and fine middle ear investigations, because our results might suggest a model in which AAT tinnitus may arise as a proprioceptive illusion caused by abnormal excitability of middle-ear muscle spindles possibly link with the acoustic reflex and associated with emotional and sensorimotor disturbances.
Collapse
Affiliation(s)
- Agnès Job
- Institut de Recherche Biomédicale des Armées, antenne CRSSA, La Tronche, France
| | - Yoann Pons
- Hôpital d’instruction des Armées du Val‐de‐Grâce, 75 bld de Port‐Royal, Paris, France
| | | | | | - Karl Buck
- Institut franco‐allemand de recherche de Saint‐Louis, Saint Louis, France
| | - Christoph Segebarth
- INSERM U836, Grenoble Institut des Neurosciences, Grenoble, France
- Université Joseph Fourier, 38702 La Tronche, France
| | - Chantal Delon‐Martin
- INSERM U836, Grenoble Institut des Neurosciences, Grenoble, France
- Université Joseph Fourier, 38702 La Tronche, France
| |
Collapse
|