1
|
Khamaysa M, El Mendili M, Marchand V, Querin G, Pradat PF. Quantitative spinal cord imaging: Early ALS diagnosis and monitoring of disease progression. Rev Neurol (Paris) 2024:S0035-3787(24)00657-X. [PMID: 39547910 DOI: 10.1016/j.neurol.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/23/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the progressive degeneration of motor neurons in the cortex, brainstem, and spinal cord. This degeneration leads to muscular weakness, progressively impairing motor functions and ultimately resulting in respiratory failure. The clinical, genetic, and pathological heterogeneity of ALS, combined with the absence of reliable biomarkers, significantly challenge the efficacy of therapeutic trials. Despite these hurdles, neuroimaging, and particularly spinal cord imaging, has emerged as a promising tool. It provides insights into the involvement of both upper and lower motor neurons. Quantitative spinal imaging has the potential to facilitate early diagnosis, enable accurate monitoring of disease progression, and refine the design of clinical trials. In this review, we explore the utility of spinal cord imaging within the broader context of developing spinal imaging biomarkers in ALS. We focus on a both diagnostic and prognostic biomarker in ALS, highlighting its pivotal role in elucidating the disease's underlying pathology. We also discuss the existing limitations and future avenues for research, aiming to bridge the translational gap between academic research and its application in clinical practice and therapeutic trials.
Collapse
Affiliation(s)
- M Khamaysa
- Laboratoire d'Imagerie Biomédicale, Inserm, Sorbonne Université, CNRS, Paris, France
| | - M El Mendili
- Laboratoire d'Imagerie Biomédicale, Inserm, Sorbonne Université, CNRS, Paris, France
| | - V Marchand
- Laboratoire d'Imagerie Biomédicale, Inserm, Sorbonne Université, CNRS, Paris, France
| | - G Querin
- Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, AP-HP, Paris, France
| | - P-F Pradat
- Laboratoire d'Imagerie Biomédicale, Inserm, Sorbonne Université, CNRS, Paris, France; Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, AP-HP, Paris, France.
| |
Collapse
|
2
|
Sultana OF, Bandaru M, Islam MA, Reddy PH. Unraveling the complexity of human brain: Structure, function in healthy and disease states. Ageing Res Rev 2024; 100:102414. [PMID: 39002647 PMCID: PMC11384519 DOI: 10.1016/j.arr.2024.102414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
The human brain stands as an intricate organ, embodying a nexus of structure, function, development, and diversity. This review delves into the multifaceted landscape of the brain, spanning its anatomical intricacies, diverse functional capacities, dynamic developmental trajectories, and inherent variability across individuals. The dynamic process of brain development, from early embryonic stages to adulthood, highlights the nuanced changes that occur throughout the lifespan. The brain, a remarkably complex organ, is composed of various anatomical regions, each contributing uniquely to its overall functionality. Through an exploration of neuroanatomy, neurophysiology, and electrophysiology, this review elucidates how different brain structures interact to support a wide array of cognitive processes, sensory perception, motor control, and emotional regulation. Moreover, it addresses the impact of age, sex, and ethnic background on brain structure and function, and gender differences profoundly influence the onset, progression, and manifestation of brain disorders shaped by genetic, hormonal, environmental, and social factors. Delving into the complexities of the human brain, it investigates how variations in anatomical configuration correspond to diverse functional capacities across individuals. Furthermore, it examines the impact of neurodegenerative diseases on the structural and functional integrity of the brain. Specifically, our article explores the pathological processes underlying neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases, shedding light on the structural alterations and functional impairments that accompany these conditions. We will also explore the current research trends in neurodegenerative diseases and identify the existing gaps in the literature. Overall, this article deepens our understanding of the fundamental principles governing brain structure and function and paves the way for a deeper understanding of individual differences and tailored approaches in neuroscience and clinical practice-additionally, a comprehensive understanding of structural and functional changes that manifest in neurodegenerative diseases.
Collapse
Affiliation(s)
- Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Madhuri Bandaru
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
3
|
Shao R, Wang T, Hang C, An L, Wang X, Zhang L, Yu J, Shan Z, Yang Q, Tang Z. Alteration in early resting‑state functional MRI activity in comatose survivors of cardiac arrest: a prospective cohort study. Crit Care 2024; 28:260. [PMID: 39095884 PMCID: PMC11295486 DOI: 10.1186/s13054-024-05045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND This study aimed to explore the characteristics of abnormal regional resting-state functional magnetic resonance imaging (rs-fMRI) activity in comatose patients in the early period after cardiac arrest (CA), and to investigate their relationships with neurological outcomes. We also explored the correlations between jugular venous oxygen saturation (SjvO2) and rs-fMRI activity in resuscitated comatose patients. We also examined the relationship between the amplitude of the N20-baseline and the rs-fMRI activity within the intracranial conduction pathway of somatosensory evoked potentials (SSEPs). METHODS Between January 2021 and January 2024, eligible post-resuscitated patients were screened to undergo fMRI examination. The amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo) of rs-fMRI blood oxygenation level-dependent (BOLD) signals were used to characterize regional neural activity. Neurological outcomes were evaluated using the Glasgow-Pittsburgh cerebral performance category (CPC) scale at 3 months after CA. RESULTS In total, 20 healthy controls and 31 post-resuscitated patients were enrolled in this study. The rs-fMRI activity of resuscitated patients revealed complex changes, characterized by increased activity in some local brain regions and reduced activity in others compared to healthy controls (P < 0.05). However, the mean ALFF values of the whole brain were significantly greater in CA patients (P = 0.011). Among the clusters of abnormal rs-fMRI activity, the cluster values of ALFF in the left middle temporal gyrus and inferior temporal gyrus and the cluster values of ReHo in the right precentral gyrus, superior frontal gyrus and middle frontal gyrus were strongly correlated with the CPC score (P < 0.001). There was a strong correlation between the mean ALFF and SjvO2 in CA patients (r = 0.910, P < 0.001). The SSEP N20-baseline amplitudes in CA patients were negatively correlated with thalamic rs-fMRI activity (all P < 0.001). CONCLUSIONS This study revealed that abnormal rs-fMRI BOLD signals in resuscitated patients showed complex changes, characterized by increased activity in some local brain regions and reduced activity in others. Abnormal BOLD signals were associated with neurological outcomes in resuscitated patients. The mean ALFF values of the whole brain were closely related to SjvO2 levels, and changes in the thalamic BOLD signals correlated with the N20-baseline amplitudes of SSEP responses. TRIAL REGISTRATION NCT05966389 (Registered July 27, 2023).
Collapse
Affiliation(s)
- Rui Shao
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, 8# Worker's Stadium South Road, Chao-yang District, Beijing, 100020, China
| | - Tao Wang
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, 8# Worker's Stadium South Road, Chao-yang District, Beijing, 100020, China
| | - Chenchen Hang
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, 8# Worker's Stadium South Road, Chao-yang District, Beijing, 100020, China
| | - Le An
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, 8# Worker's Stadium South Road, Chao-yang District, Beijing, 100020, China
| | - Xingsheng Wang
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, 8# Worker's Stadium South Road, Chao-yang District, Beijing, 100020, China
| | - Luying Zhang
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, 8# Worker's Stadium South Road, Chao-yang District, Beijing, 100020, China
| | - Jingfei Yu
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, 8# Worker's Stadium South Road, Chao-yang District, Beijing, 100020, China
| | - Zhenyu Shan
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, 8# Worker's Stadium South Road, Chao-yang District, Beijing, 100020, China
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, 8# Worker's Stadium South Road, Chao-yang District, Beijing, 100020, China.
| | - Ziren Tang
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, 8# Worker's Stadium South Road, Chao-yang District, Beijing, 100020, China.
| |
Collapse
|
4
|
Gulino R. Synaptic Dysfunction and Plasticity in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:ijms24054613. [PMID: 36902042 PMCID: PMC10003601 DOI: 10.3390/ijms24054613] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Recent evidence has supported the hypothesis that amyotrophic lateral sclerosis (ALS) is a multi-step disease, as the onset of symptoms occurs after sequential exposure to a defined number of risk factors. Despite the lack of precise identification of these disease determinants, it is known that genetic mutations may contribute to one or more of the steps leading to ALS onset, the remaining being linked to environmental factors and lifestyle. It also appears evident that compensatory plastic changes taking place at all levels of the nervous system during ALS etiopathogenesis may likely counteract the functional effects of neurodegeneration and affect the timing of disease onset and progression. Functional and structural events of synaptic plasticity probably represent the main mechanisms underlying this adaptive capability, causing a significant, although partial and transient, resiliency of the nervous system affected by a neurodegenerative disease. On the other hand, the failure of synaptic functions and plasticity may be part of the pathological process. The aim of this review was to summarize what it is known today about the controversial involvement of synapses in ALS etiopathogenesis, and an analysis of the literature, although not exhaustive, confirmed that synaptic dysfunction is an early pathogenetic process in ALS. Moreover, it appears that adequate modulation of structural and functional synaptic plasticity may likely support function sparing and delay disease progression.
Collapse
Affiliation(s)
- Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, 95123 Catania, Italy
| |
Collapse
|
5
|
Chipika RH, Mulkerrin G, Pradat PF, Murad A, Ango F, Raoul C, Bede P. Cerebellar pathology in motor neuron disease: neuroplasticity and neurodegeneration. Neural Regen Res 2022; 17:2335-2341. [PMID: 35535867 PMCID: PMC9120698 DOI: 10.4103/1673-5374.336139] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Amyotrophic lateral sclerosis is a relentlessly progressive multi-system condition. The clinical picture is dominated by upper and lower motor neuron degeneration, but extra-motor pathology is increasingly recognized, including cerebellar pathology. Post-mortem and neuroimaging studies primarily focus on the characterization of supratentorial disease, despite emerging evidence of cerebellar degeneration in amyotrophic lateral sclerosis. Cardinal clinical features of amyotrophic lateral sclerosis, such as dysarthria, dysphagia, cognitive and behavioral deficits, saccade abnormalities, gait impairment, respiratory weakness and pseudobulbar affect are likely to be exacerbated by co-existing cerebellar pathology. This review summarizes in vivo and post mortem evidence for cerebellar degeneration in amyotrophic lateral sclerosis. Structural imaging studies consistently capture cerebellar grey matter volume reductions, diffusivity studies readily detect both intra-cerebellar and cerebellar peduncle white matter alterations and functional imaging studies commonly report increased functional connectivity with supratentorial regions. Increased functional connectivity is commonly interpreted as evidence of neuroplasticity representing compensatory processes despite the lack of post-mortem validation. There is a scarcity of post-mortem studies focusing on cerebellar alterations, but these detect pTDP-43 in cerebellar nuclei. Cerebellar pathology is an overlooked facet of neurodegeneration in amyotrophic lateral sclerosis despite its contribution to a multitude of clinical symptoms, widespread connectivity to spinal and supratentorial regions and putative role in compensating for the degeneration of primary motor regions.
Collapse
Affiliation(s)
- Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Grainne Mulkerrin
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Aizuri Murad
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Fabrice Ango
- The Neuroscience Institute of Montpellier (INM), INSERM, CNRS, Montpellier, France
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier (INM), INSERM, CNRS, Montpellier, France
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France
| |
Collapse
|
6
|
Brain Connectivity and Network Analysis in Amyotrophic Lateral Sclerosis. Neurol Res Int 2022; 2022:1838682. [PMID: 35178253 PMCID: PMC8844436 DOI: 10.1155/2022/1838682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no effective treatment or cure. ALS is characterized by the death of lower motor neurons (LMNs) in the spinal cord and upper motor neurons (UMNs) in the brain and their networks. Since the lower motor neurons are under the control of UMN and the networks, cortical degeneration may play a vital role in the pathophysiology of ALS. These changes that are not apparent on routine imaging with CT scans or MRI brain can be identified using modalities such as diffusion tensor imaging, functional MRI, arterial spin labelling (ASL), electroencephalogram (EEG), magnetoencephalogram (MEG), functional near-infrared spectroscopy (fNIRS), and positron emission tomography (PET) scan. They can help us generate a representation of brain networks and connectivity that can be visualized and parsed out to characterize and quantify the underlying pathophysiology in ALS. In addition, network analysis using graph measures provides a novel way of understanding the complex network changes occurring in the brain. These have the potential to become biomarker for the diagnosis and treatment of ALS. This article is a systematic review and overview of the various connectivity and network-based studies in ALS.
Collapse
|
7
|
Eisen A, Bede P. The strength of corticomotoneuronal drive underlies ALS split phenotypes and reflects early upper motor neuron dysfunction. Brain Behav 2021; 11:e2403. [PMID: 34710283 PMCID: PMC8671797 DOI: 10.1002/brb3.2403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/02/2021] [Accepted: 10/05/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Split phenotypes, (split hand, elbow, leg, and foot), are probably unique to ALS, and are characterized by having a shared peripheral input of both affected and unaffected muscles. This implies an anatomical origin rostral to the spinal cord, primarily within the cerebral cortex. Therefore, split phenotypes are a potential marker of ALS upper motor neuron pathology. However, to date, reports documenting upper motor neuron dysfunction in split phenotypes have been limited to using transcranial magnetic stimulation and cortical threshold tracking techniques. Here, we consider several other potential methodologies that could confirm a primary upper motor neuron pathology in split phenotypes. METHODS We review the potential of: 1. measuring the compound excitatory post-synaptic potential recorded from a single activated motor unit, 2. cortical-muscular coherence, and 3. new advanced modalities of neuroimaging (high-resolution imaging protocols, ultra-high field MRI platforms [7T], and novel Non-Gaussian diffusion models). CONCLUSIONS We propose that muscles involved in split phenotypes are those functionally involved in the human motor repertoire used particularly in complex activities. Their anterior horn cells receive the strongest corticomotoneuronal input. This is also true of the weakest muscles that are the earliest to be affected in ALS. Descriptions of split hand in non-ALS cases and proposals that peripheral nerve or muscle dysfunction may be causative are contentious. Only a few carefully controlled cases of each form of split phenotype, using upper motor neuron directed methodologies, are necessary to prove our postulate.
Collapse
Affiliation(s)
- Andrew Eisen
- Division of Neurology, Department of Medicine, University of British Columbia, British Columbia, Canada
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France
| |
Collapse
|
8
|
Barry RL, Babu S, Anteraper SA, Triantafyllou C, Keil B, Rowe OE, Rangaprakash D, Paganoni S, Lawson R, Dheel C, Cernasov PM, Rosen BR, Ratai EM, Atassi N. Ultra-high field (7T) functional magnetic resonance imaging in amyotrophic lateral sclerosis: a pilot study. NEUROIMAGE-CLINICAL 2021; 30:102648. [PMID: 33872993 PMCID: PMC8060594 DOI: 10.1016/j.nicl.2021.102648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022]
Abstract
Participants with ALS exhibited impaired function between the cortex and cerebellum. The cerebellum is associated with complex motor and cognitive processing tasks. These findings add to the growing number of ALS reports implicating the cerebellum.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of the central nervous system that results in a progressive loss of motor function and ultimately death. It is critical, yet also challenging, to develop non-invasive biomarkers to identify, localize, measure and/or track biological mechanisms implicated in ALS. Such biomarkers may also provide clues to identify potential molecular targets for future therapeutic trials. Herein we report on a pilot study involving twelve participants with ALS and nine age-matched healthy controls who underwent high-resolution resting state functional magnetic resonance imaging at an ultra-high field of 7 Tesla. A group-level whole-brain analysis revealed a disruption in long-range functional connectivity between the superior sensorimotor cortex (in the precentral gyrus) and bilateral cerebellar lobule VI. Post hoc analyses using atlas-derived left and right cerebellar lobule VI revealed decreased functional connectivity in ALS participants that predominantly mapped to bilateral postcentral and precentral gyri. Cerebellar lobule VI is a transition zone between anterior motor networks and posterior non-motor networks in the cerebellum, and is associated with a wide range of key functions including complex motor and cognitive processing tasks. Our observation of the involvement of cerebellar lobule VI adds to the growing number of studies implicating the cerebellum in ALS. Future avenues of scientific investigation should consider how high-resolution imaging at 7T may be leveraged to visualize differences in functional connectivity disturbances in various genotypes and phenotypes of ALS along the ALS-frontotemporal dementia spectrum.
Collapse
Affiliation(s)
- Robert L Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, MA, USA.
| | - Suma Babu
- Sean M. Healey & AMG Center for ALS at Massachusetts General Hospital, Department of Neurology, Neurological Clinical Research Institute, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA.
| | - Sheeba Arnold Anteraper
- Department of Psychology, Northeastern University, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina Triantafyllou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Siemens Healthineers, Erlangen, Germany
| | - Boris Keil
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Mittelhessen University of Applied Sciences, Department of Life Science Engineering, Institute of Medical Physics and Radiation Protection, Giessen, Germany
| | - Olivia E Rowe
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - D Rangaprakash
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Sabrina Paganoni
- Sean M. Healey & AMG Center for ALS at Massachusetts General Hospital, Department of Neurology, Neurological Clinical Research Institute, Boston, MA, USA; Spaulding Rehabilitation Hospital, Charlestown, MA, USA; Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Robert Lawson
- Sean M. Healey & AMG Center for ALS at Massachusetts General Hospital, Department of Neurology, Neurological Clinical Research Institute, Boston, MA, USA
| | - Christina Dheel
- Sean M. Healey & AMG Center for ALS at Massachusetts General Hospital, Department of Neurology, Neurological Clinical Research Institute, Boston, MA, USA
| | - Paul M Cernasov
- Sean M. Healey & AMG Center for ALS at Massachusetts General Hospital, Department of Neurology, Neurological Clinical Research Institute, Boston, MA, USA
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, MA, USA
| | - Eva-Maria Ratai
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Division of Neuroradiology, Massachusetts General Hospital, Boston, MA, USA
| | - Nazem Atassi
- Sean M. Healey & AMG Center for ALS at Massachusetts General Hospital, Department of Neurology, Neurological Clinical Research Institute, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Sanofi Genzyme, Cambridge, MA, USA
| |
Collapse
|
9
|
Waugh RE, Danielian LE, Shoukry RFS, Floeter MK. Longitudinal changes in network homogeneity in presymptomatic C9orf72 mutation carriers. Neurobiol Aging 2021; 99:1-10. [PMID: 33421737 PMCID: PMC11428095 DOI: 10.1016/j.neurobiolaging.2020.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/04/2020] [Accepted: 11/22/2020] [Indexed: 12/11/2022]
Abstract
The risk for carriers of repeat expansion mutations in C9orf72 to develop amyotrophic lateral sclerosis and frontotemporal dementia increases with age. Functional magnetic resonance imaging studies have shown reduced connectivity in symptomatic carriers, but it is not known whether connectivity declines throughout life as an acceleration of the normal aging pattern. In this study, we examined intra-network homogeneity (NeHo) in 5 functional networks in 15 presymptomatic C9+ carriers over an 18-month period and compared to repeated scans in 34 healthy controls and 27 symptomatic C9+ carriers. The longitudinal trajectory of NeHo in the somatomotor, dorsal attention, and default mode networks in presymptomatic carriers differed from aging controls and symptomatic carriers. In somatomotor networks, NeHo increased over time in regions adjacent to regions where symptomatic carriers had reduced NeHo. In the default network, the posterior cingulate exhibited age-dependent increases in NeHo. These findings are evidence against the proposal that the decline in functional connectivity seen in symptomatic carriers represents a lifelong acceleration of the healthy aging process.
Collapse
Affiliation(s)
- Rebecca E Waugh
- Motor Neuron Disorders Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Laura E Danielian
- Motor Neuron Disorders Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Rachel F Smallwood Shoukry
- Motor Neuron Disorders Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mary Kay Floeter
- Motor Neuron Disorders Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Leinders S, Vansteensel MJ, Branco MP, Freudenburg ZV, Pels EGM, Van der Vijgh B, Van Zandvoort MJE, Ramsey NF, Aarnoutse EJ. Dorsolateral prefrontal cortex-based control with an implanted brain-computer interface. Sci Rep 2020; 10:15448. [PMID: 32963279 PMCID: PMC7508852 DOI: 10.1038/s41598-020-71774-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/13/2020] [Indexed: 11/30/2022] Open
Abstract
The objective of this study was to test the feasibility of using the dorsolateral prefrontal cortex as a signal source for brain-computer interface control in people with severe motor impairment. We implanted two individuals with locked-in syndrome with a chronic brain-computer interface designed to restore independent communication. The implanted system (Utrecht NeuroProsthesis) included electrode strips placed subdurally over the dorsolateral prefrontal cortex. In both participants, counting backwards activated the dorsolateral prefrontal cortex consistently over the course of 47 and 22 months, respectively. Moreover, both participants were able to use this signal to control a cursor in one dimension, with average accuracy scores of 78 ± 9% (standard deviation) and 71 ± 11% (chance level: 50%), respectively. Brain-computer interface control based on dorsolateral prefrontal cortex activity is feasible in people with locked-in syndrome and may become of relevance for those unable to use sensorimotor signals for control.
Collapse
Affiliation(s)
- Sacha Leinders
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Mariska J Vansteensel
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Mariana P Branco
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Zac V Freudenburg
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Elmar G M Pels
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Benny Van der Vijgh
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | | | - Nicolas F Ramsey
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands.
| | - Erik J Aarnoutse
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| |
Collapse
|
11
|
Shoukry RS, Waugh R, Bartlett D, Raitcheva D, Floeter MK. Longitudinal changes in resting state networks in early presymptomatic carriers of C9orf72 expansions. NEUROIMAGE-CLINICAL 2020; 28:102354. [PMID: 32769055 PMCID: PMC7406915 DOI: 10.1016/j.nicl.2020.102354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/26/2020] [Accepted: 07/16/2020] [Indexed: 01/10/2023]
Abstract
Previous cross-sectional imaging studies found differences in brain structure and in resting state networks between presymptomatic carriers of mutations in C9orf72 (C9+) and healthy controls. We carried out a prospective longitudinal study of clinical and resting state functional imaging in a cohort of 15 presymptomatic C9+ carriers to determine whether differences in resting state connectivity prior to developing symptoms reflect static developmental differences or ongoing low-grade degenerative changes. Presymptomatic C9+ carriers were scanned at baseline with follow-up scanning at 6- and 18-months and compared to a cohort of 14 healthy controls scanned longitudinally. Resting state networks associated with manifest disease were visualized by comparing 27 symptomatic C9+ carriers to 34 healthy controls. Motor, salience, thalamic, and speech production networks were visualized using a seed-based analysis. Neurofilament light chain was measured in serum obtained at the time of the scans. Neither clinical measures of motor, cognitive, and behavioral function nor neurofilament levels changed over follow-up in presymptomatic C9+ carriers. In thalamic networks, there was a reduction in connectivity in presymptomatic carriers at all timepoints with a constant difference compared to healthy controls. In contrast, precuneus/posterior cingulate regions exhibited declining functional connectivity compared to controls over the 18-month follow-up, particularly in motor networks. These were regions that also exhibited reduced functional connectivity in symptomatic C9+ carriers. Reduced connectivity over time also occurred in small regions of frontal and temporal cortex within salience and thalamic networks in presymptomatic C9+ carriers. A few areas of increased connectivity occurred, including cortex near the motor seed and within the speech production network. Overall, changes in functional connectivity over time favor the explanation of ongoing low-grade alterations in presymptomatic C9+ carriers in most networks, with the exception of thalamic networks where functional connectivity reductions were stable over time. The loss of connectivity to parietal cortex regions in several different networks may be a distinct feature of C9orf72-related degeneration. Longitudinal studies of carriers who phenoconvert will be important to determine the prognostic significance of presymptomatic functional connectivity alterations.
Collapse
Affiliation(s)
- Rachel Smallwood Shoukry
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 10 Center Drive, 20892-1140, USA
| | - Rebecca Waugh
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 10 Center Drive, 20892-1140, USA.
| | - Dan Bartlett
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA.
| | | | - Mary Kay Floeter
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 10 Center Drive, 20892-1140, USA.
| |
Collapse
|
12
|
Civardi C, Collini A, Mazzini L, Monaco F, Geda C. Single-pulse transcranial magnetic stimulation in amyotrophic lateral sclerosis. Muscle Nerve 2019; 61:330-337. [PMID: 31837153 DOI: 10.1002/mus.26780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 12/04/2019] [Accepted: 12/07/2019] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Transcranial magnetic stimulation (TMS) is one of the best methods to identify changes in the corticospinal tract. We used single-pulse TMS at the beginning of the disease and in the follow-up in a group of patients with amyotrophic lateral sclerosis (ALS). METHODS We evaluated the corticospinal tract in the bulbar, upper, and lower regions in 55 patients with ALS, and we monitored them for a period of 24 months. Data were correlated with clinical scales. RESULTS An increase of central motor conduction time (CMCT) was the most sensitive marker of upper motor neuron involvement. The resting motor threshold, CMCT, and the central silent period increased linearly with disease duration and upper/lower motor neuron involvement. DISCUSSION Transcranial magnetic stimulation could be an essential neurophysiological technique in the early phase of ALS because it has been shown to be useful in detecting subclinical upper motor neuron involvement. Multiple evaluations of several regions increase TMS sensitivity.
Collapse
Affiliation(s)
| | | | - Letizia Mazzini
- ALS Centre Department of Neurology Maggiore della Carità University Hospital, Novara, Italy
| | - Francesco Monaco
- Department of Neurology Maggiore della Carità University Hospital, Novara, Italy
| | | |
Collapse
|
13
|
Huang NX, Zou ZY, Xue YJ, Chen HJ. Abnormal cerebral microstructures revealed by diffusion kurtosis imaging in amyotrophic lateral sclerosis. J Magn Reson Imaging 2019; 51:554-562. [PMID: 31206873 DOI: 10.1002/jmri.26843] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which cerebral structural impairment is a consistent feature. PURPOSE To investigate cerebral microstructural changes in ALS using diffusion kurtosis imaging (DKI) for the first time. STUDY TYPE Prospective. SUBJECTS Eighteen ALS patients and 20 healthy controls. FIELD STRENGTH/SEQUENCE DKI images were obtained by a spin-echo echo-planar imaging sequence on a 3T MRI scanner, with three b-values (0, 1000, and 2000 s/mm2 ) and 64 diffusion encoding directions. ASSESSMENT The revised ALS Functional Rating Scale (ALSFRS-R) was administered to assess disease severity, and the symptom duration and disease progression rate were also recorded. Voxel-based analysis was applied to examine the alteration of DKI metrics (ie, mean kurtosis metrics [MK], axial kurtosis [AK], and radial kurtosis [RK]) and the conventional diffusion metrics (ie, fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity). STATISTICAL TESTS Student's t-test, chi-square test, and Pearson correlation analysis. RESULTS ALS patients showed MK reductions in gray matter areas, including the bilateral precentral gyrus, bilateral paracentral lobule, and left anterior cingulate gyrus; they also showed decreased MK values in white matter (WM) in the bilateral precentral gyrus, bilateral corona radiata, bilateral middle corpus callosum, left occipital lobe, and right superior parietal lobule. The spatial distribution of the regions with reduced RK was similar to those with decreased MK. No significant AK difference was found between groups. The correlation analysis revealed significant associations between DKI metrics and clinical assessments such as ALSFRS-R score and disease duration. Additionally, several WM regions showed between-group differences in conventional diffusion metrics; but the spatial extent was smaller than that with reduced DKI metrics. DATA CONCLUSION The reduction in DKI metrics indicates decreased microstructural complexity in ALS, involving both motor-related areas and extramotor regions. DKI metrics can serve as potential biomarkers for assessing disease severity. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2020;51:554-562.
Collapse
Affiliation(s)
- Nao-Xin Huang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhang-Yu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yun-Jing Xue
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hua-Jun Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
14
|
|
15
|
Christidi F, Karavasilis E, Velonakis G, Rentzos M, Zambelis T, Zouvelou V, Xirou S, Ferentinos P, Efstathopoulos E, Kelekis N, Evdokimidis I, Karandreas N. Motor and extra-motor gray matter integrity may underlie neurophysiologic parameters of motor function in amyotrophic lateral sclerosis: a combined voxel-based morphometry and transcranial stimulation study. Brain Imaging Behav 2019; 12:1730-1741. [PMID: 29417490 DOI: 10.1007/s11682-018-9841-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The association between gray matter (GM) density and neurophysiologic changes is still unclear in amyotrophic lateral sclerosis (ALS). We evaluated the relationship between GM density and motor system integrity combining voxel-based morphometry (VBM) and transcranial magnetic stimulation (TMS) in ALS. We included 17 ALS patients and 22 healthy controls (HC) who underwent 3D-T1-weighted imaging. Among the ALS group, we applied left motor cortex single-pulse TMS. We used whole-brain VBM comparing ALS and HC in GM density. We also conducted regression analysis to examine correlations between GM density and the following TMS parameters: motor evoked potential (MEP)/M ratio and central motor conduction time (CMCT). We found significantly decreased GM density in ALS patients in several frontal, temporal, parietal/occipital and cerebellar regions (p < 0.001 uncorrected; cluster-extent threshold k = 100 voxels per cluster). With regards to TMS parameters, ALS patients showed mostly increased MEP/M ratio and modest prolongation of CMCT. MEP/M ratio was associated with GM density in (a) rolandic operculum/inferior frontal gyrus/precentral gyrus; anterior cingulate gyrus; inferior temporal gyrus; superior parietal lobule; cuneus; superior occipital gyrus and cerebellum (positive association) and (b) paracentral lobule/supplementary motor area (negative association). CMCT was associated with GM density in (a) inferior frontal gyrus and middle cingulated gyrus (positive association) and (b) superior parietal lobule; cuneus and cerebellum (negative association). Our findings support a significant interaction between motor and extra-motor structural and functional changes and highlight that motor and extra-motor GM integrity may underlie TMS parameters of motor function in ALS patients.
Collapse
Affiliation(s)
- Foteini Christidi
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University of Athens, 72-74 Vas. Sophias Avenue, Athens, 11528, Greece.
| | - Efstratios Karavasilis
- Radiology and Medical Imaging Research Unit, Second Department of Radiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Georgios Velonakis
- Radiology and Medical Imaging Research Unit, Second Department of Radiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Michail Rentzos
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University of Athens, 72-74 Vas. Sophias Avenue, Athens, 11528, Greece
| | - Thomas Zambelis
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University of Athens, 72-74 Vas. Sophias Avenue, Athens, 11528, Greece
| | - Vasiliki Zouvelou
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University of Athens, 72-74 Vas. Sophias Avenue, Athens, 11528, Greece
| | - Sophia Xirou
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University of Athens, 72-74 Vas. Sophias Avenue, Athens, 11528, Greece
| | - Panagiotis Ferentinos
- Second Department of Psychiatry, Attikon University Hospital, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Efstathopoulos
- Radiology and Medical Imaging Research Unit, Second Department of Radiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kelekis
- Radiology and Medical Imaging Research Unit, Second Department of Radiology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Evdokimidis
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University of Athens, 72-74 Vas. Sophias Avenue, Athens, 11528, Greece
| | - Nikolaos Karandreas
- First Department of Neurology, Aeginition Hospital, Medical School, National & Kapodistrian University of Athens, 72-74 Vas. Sophias Avenue, Athens, 11528, Greece
| |
Collapse
|
16
|
Proudfoot M, Bede P, Turner MR. Imaging Cerebral Activity in Amyotrophic Lateral Sclerosis. Front Neurol 2019; 9:1148. [PMID: 30671016 PMCID: PMC6332509 DOI: 10.3389/fneur.2018.01148] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/11/2018] [Indexed: 01/30/2023] Open
Abstract
Advances in neuroimaging, complementing histopathological insights, have established a multi-system involvement of cerebral networks beyond the traditional neuromuscular pathological view of amyotrophic lateral sclerosis (ALS). The development of effective disease-modifying therapy remains a priority and this will be facilitated by improved biomarkers of motor system integrity against which to assess the efficacy of candidate drugs. Functional MRI (FMRI) is an established measure of both cerebral activity and connectivity, but there is an increasing recognition of neuronal oscillations in facilitating long-distance communication across the cortical surface. Such dynamic synchronization vastly expands the connectivity foundations defined by traditional neuronal architecture. This review considers the unique pathogenic insights afforded by the capture of cerebral disease activity in ALS using FMRI and encephalography.
Collapse
Affiliation(s)
- Malcolm Proudfoot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Peter Bede
- Computational Neuroimaging Group, Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Mazón M, Vázquez Costa JF, Ten-Esteve A, Martí-Bonmatí L. Imaging Biomarkers for the Diagnosis and Prognosis of Neurodegenerative Diseases. The Example of Amyotrophic Lateral Sclerosis. Front Neurosci 2018; 12:784. [PMID: 30410433 PMCID: PMC6209630 DOI: 10.3389/fnins.2018.00784] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022] Open
Abstract
The term amyotrophic lateral sclerosis (ALS) comprises a heterogeneous group of fatal neurodegenerative disorders of largely unknown etiology characterized by the upper motor neurons (UMN) and/or lower motor neurons (LMN) degeneration. The development of brain imaging biomarkers is essential to advance in the diagnosis, stratification and monitoring of ALS, both in the clinical practice and clinical trials. In this review, the characteristics of an optimal imaging biomarker and common pitfalls in biomarkers evaluation will be discussed. Moreover, the development and application of the most promising brain magnetic resonance (MR) imaging biomarkers will be reviewed. Finally, the integration of both qualitative and quantitative multimodal brain MR biomarkers in a structured report will be proposed as a support tool for ALS diagnosis and stratification.
Collapse
Affiliation(s)
- Miguel Mazón
- Radiology and Biomedical Imaging Research Group (GIBI230), La Fe University and Polytechnic Hospital and La Fe Health Research Institute, Valencia, Spain
| | - Juan Francisco Vázquez Costa
- Neuromuscular Research Unit, Instituto de Investigación Sanitaria la Fe (IIS La Fe), Valencia, Spain
- ALS Unit, Department of Neurology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Amadeo Ten-Esteve
- Radiology and Biomedical Imaging Research Group (GIBI230), La Fe University and Polytechnic Hospital and La Fe Health Research Institute, Valencia, Spain
| | - Luis Martí-Bonmatí
- Radiology and Biomedical Imaging Research Group (GIBI230), La Fe University and Polytechnic Hospital and La Fe Health Research Institute, Valencia, Spain
| |
Collapse
|
18
|
Li F, Zhou F, Huang M, Gong H, Xu R. Frequency-Specific Abnormalities of Intrinsic Functional Connectivity Strength among Patients with Amyotrophic Lateral Sclerosis: A Resting-State fMRI Study. Front Aging Neurosci 2017; 9:351. [PMID: 29163133 PMCID: PMC5681965 DOI: 10.3389/fnagi.2017.00351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/17/2017] [Indexed: 01/06/2023] Open
Abstract
The classical concept that amyotrophic lateral sclerosis (ALS) is a degenerative disorder characterized by the loss of upper and lower motor neurons is agreed. However, more and more studies have suggested the involvement of some extra-motor regions. The aim of this study is to investigate the frequency-related alteration pattern of intrinsic functional connectivity strength (FCS) at the voxel-wise level in the relatively early-stage of ALS on a whole brain scale. In this study, 21 patients with ALS and 21 well-matched healthy control subjects were enrolled to examine the intrinsic FCS in the different frequencies (slow-4: 0.027-0.073 Hz; slow-5: 0.01-0.027 Hz, and typical band: 0.01-0.1 Hz). Compared with the control subjects, the ALS patients showed a significantly decreased FCS in the left prefrontal cortex (PFC) and the bilateral superior frontal gyrus. In the slow-5 band, the patients with ALS showed decreased FCS in the left lingual gyrus, as well as increased FCS in the left postcentral gyrus/paracentral lobule (PoCG/PARC). In the slow-4 band, the ALS patients presented decreased FCS in the left and right ventrolateral PFC. Moreover, the increased FCS in the left PoCG/PARC in the slow-5 band was positively correlated with the ALSFRS-r score (P = 0.015). Our results demonstrated that the FCS changes in ALS were wide spread and frequency dependent. These findings may provide some evidences that ALS patients have the consistent impairment in some extra-motor regions at a relatively early-stage.
Collapse
Affiliation(s)
- Fangjun Li
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Muhua Huang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Honghan Gong
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Medical Imaging Research Institute, Nanchang, China
| | - Renshi Xu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Geevasinga N, Korgaonkar MS, Menon P, Van den Bos M, Gomes L, Foster S, Kiernan MC, Vucic S. Brain functional connectome abnormalities in amyotrophic lateral sclerosis are associated with disability and cortical hyperexcitability. Eur J Neurol 2017; 24:1507-1517. [DOI: 10.1111/ene.13461] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/07/2017] [Indexed: 12/12/2022]
Affiliation(s)
- N. Geevasinga
- Westmead Clinical School; University of Sydney; Sydney NSW
| | - M. S. Korgaonkar
- Westmead Clinical School; University of Sydney; Sydney NSW
- The Brain Dynamics Centre Westmead Institute for Medical Research and University of Sydney; Westmead NSW
| | - P. Menon
- Westmead Clinical School; University of Sydney; Sydney NSW
| | - M. Van den Bos
- Westmead Clinical School; University of Sydney; Sydney NSW
| | - L. Gomes
- Department of Radiology Westmead Hospital; Westmead NSW
| | - S. Foster
- Department of Radiology Westmead Hospital; Westmead NSW
| | - M. C. Kiernan
- Brain and Mind Centre University of Sydney; Sydney NSW
- Department of Neurology Royal Prince Alfred Hospital Sydney; Sydney NSW Australia
| | - S. Vucic
- Westmead Clinical School; University of Sydney; Sydney NSW
| |
Collapse
|
20
|
Xu J, Li H, Li C, Yao JC, Hu J, Wang J, Hu Q, Zhang Y, Zhang J. Abnormal cortical-basal ganglia network in amyotrophic lateral sclerosis: A voxel-wise network efficiency analysis. Behav Brain Res 2017; 333:123-128. [DOI: 10.1016/j.bbr.2017.06.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 12/28/2022]
|
21
|
Amirhossein JS, Arya N, Mario G, Amir S. In Reply: Evaluation of Diffusion Tensor Imaging-Based Tractography of the Corticospinal Tract: A Correlative Study With Intraoperative Magnetic Resonance Imaging and Direct Electrical Subcortical Stimulation. Neurosurgery 2017; 81:E9-E10. [DOI: 10.1093/neuros/nyx083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Menke RAL, Agosta F, Grosskreutz J, Filippi M, Turner MR. Neuroimaging Endpoints in Amyotrophic Lateral Sclerosis. Neurotherapeutics 2017; 14:11-23. [PMID: 27752938 PMCID: PMC5233627 DOI: 10.1007/s13311-016-0484-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative, clinically heterogeneous syndrome pathologically overlapping with frontotemporal dementia. To date, therapeutic trials in animal models have not been able to predict treatment response in humans, and the revised ALS Functional Rating Scale, which is based on coarse disability measures, remains the gold-standard measure of disease progression. Advances in neuroimaging have enabled mapping of functional, structural, and molecular aspects of ALS pathology, and these objective measures may be uniquely sensitive to the detection of propagation of pathology in vivo. Abnormalities are detectable before clinical symptoms develop, offering the potential for neuroprotective intervention in familial cases. Although promising neuroimaging biomarker candidates for diagnosis, prognosis, and disease progression have emerged, these have been from the study of necessarily select patient cohorts identified in specialized referral centers. Further multicenter research is now needed to establish their validity as therapeutic outcome measures.
Collapse
Affiliation(s)
- Ricarda A L Menke
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Julian Grosskreutz
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
- Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
23
|
Proudfoot M, Rohenkohl G, Quinn A, Colclough GL, Wuu J, Talbot K, Woolrich MW, Benatar M, Nobre AC, Turner MR. Altered cortical beta-band oscillations reflect motor system degeneration in amyotrophic lateral sclerosis. Hum Brain Mapp 2016; 38:237-254. [PMID: 27623516 PMCID: PMC5215611 DOI: 10.1002/hbm.23357] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/07/2016] [Accepted: 08/11/2016] [Indexed: 12/28/2022] Open
Abstract
Continuous rhythmic neuronal oscillations underpin local and regional cortical communication. The impact of the motor system neurodegenerative syndrome amyotrophic lateral sclerosis (ALS) on the neuronal oscillations subserving movement might therefore serve as a sensitive marker of disease activity. Movement preparation and execution are consistently associated with modulations to neuronal oscillation beta (15–30 Hz) power. Cortical beta‐band oscillations were measured using magnetoencephalography (MEG) during preparation for, execution, and completion of a visually cued, lateralized motor task that included movement inhibition trials. Eleven “classical” ALS patients, 9 with the primary lateral sclerosis (PLS) phenotype, and 12 asymptomatic carriers of ALS‐associated gene mutations were compared with age‐similar healthy control groups. Augmented beta desynchronization was observed in both contra‐ and ipsilateral motor cortices of ALS patients during motor preparation. Movement execution coincided with excess beta desynchronization in asymptomatic mutation carriers. Movement completion was followed by a slowed rebound of beta power in all symptomatic patients, further reflected in delayed hemispheric lateralization for beta rebound in the PLS group. This may correspond to the particular involvement of interhemispheric fibers of the corpus callosum previously demonstrated in diffusion tensor imaging studies. We conclude that the ALS spectrum is characterized by intensified cortical beta desynchronization followed by delayed rebound, concordant with a broader concept of cortical hyperexcitability, possibly through loss of inhibitory interneuronal influences. MEG may potentially detect cortical dysfunction prior to the development of overt symptoms, and thus be able to contribute to the assessment of future neuroprotective strategies. Hum Brain Mapp 38:237–254, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Malcolm Proudfoot
- Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom.,Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, United Kingdom
| | - Gustavo Rohenkohl
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, United Kingdom
| | - Andrew Quinn
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, United Kingdom
| | - Giles L Colclough
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, United Kingdom
| | - Joanne Wuu
- Department of Neurology, Miller School of Medicine, University of Miami, Florida
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Mark W Woolrich
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, United Kingdom
| | - Michael Benatar
- Department of Neurology, Miller School of Medicine, University of Miami, Florida
| | - Anna C Nobre
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, United Kingdom
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| |
Collapse
|
24
|
Grolez G, Moreau C, Danel-Brunaud V, Delmaire C, Lopes R, Pradat PF, El Mendili MM, Defebvre L, Devos D. The value of magnetic resonance imaging as a biomarker for amyotrophic lateral sclerosis: a systematic review. BMC Neurol 2016; 16:155. [PMID: 27567641 PMCID: PMC5002331 DOI: 10.1186/s12883-016-0672-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/10/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal, rapidly progressive neurodegenerative disease that mainly affects the motor system. A number of potentially neuroprotective and neurorestorative disease-modifying drugs are currently in clinical development. At present, the evaluation of a drug's clinical efficacy in ALS is based on the ALS Functional Rating Scale Revised, motor tests and survival. However, these endpoints are general, variable and late-stage measures of the ALS disease process and thus require the long-term assessment of large cohorts. Hence, there is a need for more sensitive radiological biomarkers. Various sequences for magnetic resonance imaging (MRI) of the brain and spinal cord have may have value as surrogate biomarkers for use in future clinical trials. Here, we review the MRI findings in ALS, their clinical correlations, and their limitations and potential role as biomarkers. METHODS The PubMed database was screened to identify studies using MRI in ALS. We included general MRI studies with a control group and an ALS group and longitudinal studies even if a control group was lacking. RESULTS A total of 116 studies were analysed with MRI data and clinical correlations. The most disease-sensitive MRI patterns are in motor regions but the brain is more broadly affected. CONCLUSION Despite the existing MRI biomarkers, there is a need for large cohorts with long term MRI and clinical follow-up. MRI assessment could be improved by standardized MRI protocols with multicentre studies.
Collapse
Affiliation(s)
- G. Grolez
- Department of Movement Disorders and Neurology, Lille University Hospital, Faculty of Medicine, University of Lille, Lille, France
- INSERM U1171, Lille University Hospital, Faculty of Medicine, University of Lille, Lille, France
| | - C. Moreau
- Department of Movement Disorders and Neurology, Lille University Hospital, Faculty of Medicine, University of Lille, Lille, France
- INSERM U1171, Lille University Hospital, Faculty of Medicine, University of Lille, Lille, France
| | - V. Danel-Brunaud
- Department of Movement Disorders and Neurology, Lille University Hospital, Faculty of Medicine, University of Lille, Lille, France
- INSERM U1171, Lille University Hospital, Faculty of Medicine, University of Lille, Lille, France
| | - C. Delmaire
- INSERM U1171, Lille University Hospital, Faculty of Medicine, University of Lille, Lille, France
- Department of Neuroradiology, Lille University Hospital, Faculty of Medicine, University of Lille, Lille, France
| | - R. Lopes
- INSERM U1171, Lille University Hospital, Faculty of Medicine, University of Lille, Lille, France
- Department of Neuroradiology, Lille University Hospital, Faculty of Medicine, University of Lille, Lille, France
| | - P. F. Pradat
- Laboratoire d’Imagerie Biomédicale, Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Paris, France
- Département des Maladies du Système Nerveux, Groupe Hospitalier Pitié-Salpêtrière, APHP, Paris, France
| | - M. M. El Mendili
- Laboratoire d’Imagerie Biomédicale, Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Paris, France
| | - L. Defebvre
- Department of Movement Disorders and Neurology, Lille University Hospital, Faculty of Medicine, University of Lille, Lille, France
- INSERM U1171, Lille University Hospital, Faculty of Medicine, University of Lille, Lille, France
| | - D. Devos
- Department of Movement Disorders and Neurology, Lille University Hospital, Faculty of Medicine, University of Lille, Lille, France
- INSERM U1171, Lille University Hospital, Faculty of Medicine, University of Lille, Lille, France
- Department of Medical Pharmacology, Lille University Hospital, Faculty of Medicine, University of Lille, Lille, France
| |
Collapse
|
25
|
Menke RAL, Proudfoot M, Wuu J, Andersen PM, Talbot K, Benatar M, Turner MR. Increased functional connectivity common to symptomatic amyotrophic lateral sclerosis and those at genetic risk. J Neurol Neurosurg Psychiatry 2016; 87:580-8. [PMID: 26733601 PMCID: PMC4893149 DOI: 10.1136/jnnp-2015-311945] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/18/2015] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To discern presymptomatic changes in brain structure or function using advanced MRI in carriers of mutations predisposing to amyotrophic lateral sclerosis (ALS). METHODS T1-weighted, diffusion weighted and resting state functional MRI data were acquired at 3 T for 12 asymptomatic mutation carriers (psALS), 12 age-matched controls and affected patients with ALS. Cortical thickness analysis, voxel-based morphometry, volumetric and shape analyses of subcortical structures, tract-based spatial statistics of metrics derived from the diffusion tensor, and resting state functional connectivity (FC) analyses were performed. RESULTS Grey matter cortical thickness and shape analysis revealed significant atrophy in patients with ALS (but not psALS) compared with controls in the right primary motor cortex and right caudate. Comparison of diffusion tensor metrics showed widespread fractional anisotropy and radial diffusivity differences in patients with ALS compared to controls and the psALS group, encompassing parts of the corpus callosum, corticospinal tracts and superior longitudinal fasciculus. While FC in the resting-state sensorimotor network was similar in psALS and controls, FC between the cerebellum and a network comprising the precuneus, cingulate & middle frontal lobe was significantly higher in psALS and affected ALS compared to controls. CONCLUSIONS Rather than structural brain changes, increased FC may be among the earliest detectable brain abnormalities in asymptomatic carriers of ALS-causing gene mutations. With replication and significant refinement, this technique has potential in the future assessment of neuroprotective strategies.
Collapse
Affiliation(s)
- Ricarda A L Menke
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK FMRIB Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Malcolm Proudfoot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Joanne Wuu
- Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Peter M Andersen
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Michael Benatar
- Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK FMRIB Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
26
|
Fang X, Zhang Y, Wang Y, Zhang Y, Hu J, Wang J, Zhang J, Jiang T. Disrupted effective connectivity of the sensorimotor network in amyotrophic lateral sclerosis. J Neurol 2016; 263:508-16. [DOI: 10.1007/s00415-015-8013-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 12/25/2015] [Accepted: 12/27/2015] [Indexed: 11/27/2022]
|
27
|
Seer C, Fürkötter S, Vogts MB, Lange F, Abdulla S, Dengler R, Petri S, Kopp B. Executive Dysfunctions and Event-Related Brain Potentials in Patients with Amyotrophic Lateral Sclerosis. Front Aging Neurosci 2015; 7:225. [PMID: 26733861 PMCID: PMC4683183 DOI: 10.3389/fnagi.2015.00225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/20/2015] [Indexed: 01/12/2023] Open
Abstract
A growing body of evidence implies psychological disturbances in amyotrophic lateral sclerosis (ALS). Specifically, executive dysfunctions occur in up to 50% of ALS patients. The recently shown presence of cytoplasmic aggregates (TDP-43) in ALS patients and in patients with behavioral variants of frontotemporal dementia suggests that these two disease entities form the extremes of a spectrum. The present study aimed at investigating behavioral and electrophysiological indices of conflict processing in patients with ALS. A non-verbal variant of the flanker task demanded two-choice responses to target stimuli that were surrounded by flanker stimuli which either primed the correct response or the alternative response (the latter case representing the conflict situation). Behavioral performance, event-related potentials (ERP), and lateralized readiness potentials (LRP) were analyzed in 21 ALS patients and 20 controls. In addition, relations between these measures and executive dysfunctions were examined. ALS patients performed the flanker task normally, indicating preserved conflict processing. In similar vein, ERP and LRP indices of conflict processing did not differ between groups. However, ALS patients showed enhanced posterior negative ERP waveform deflections, possibly indicating increased modulation of visual processing by frontoparietal networks in ALS. We also found that the presence of executive dysfunctions was associated with more error-prone behavior and enhanced LRP amplitudes in ALS patients, pointing to a prefrontal pathogenesis of executive dysfunctions and to a potential link between prefrontal and motor cortical functional dysregulation in ALS, respectively.
Collapse
Affiliation(s)
- Caroline Seer
- Department of Neurology, Hannover Medical School Hannover, Germany
| | | | - Maj-Britt Vogts
- Department of Neurology, Hannover Medical School Hannover, Germany
| | - Florian Lange
- Department of Neurology, Hannover Medical School Hannover, Germany
| | - Susanne Abdulla
- Department of Neurology, Hannover Medical SchoolHannover, Germany; Department of Neurology, Otto-von-Guericke University MagdeburgMagdeburg, Germany; Department of Neurology, German Center for Neurodegenerative DiseasesMagdeburg, Germany
| | - Reinhard Dengler
- Department of Neurology, Hannover Medical School Hannover, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School Hannover, Germany
| | - Bruno Kopp
- Department of Neurology, Hannover Medical School Hannover, Germany
| |
Collapse
|
28
|
Shen D, Cui L, Cui B, Fang J, Li D, Ma J. A Systematic Review and Meta-Analysis of the Functional MRI Investigation of Motor Neuron Disease. Front Neurol 2015; 6:246. [PMID: 26635722 PMCID: PMC4656846 DOI: 10.3389/fneur.2015.00246] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 11/09/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND To assess the use of functional magnetic resonance imaging (fMRI) in motor neuron disease (MND), a systematic review and voxelwise meta-analysis of studies comparing brain activity in patients with MND and in healthy controls was conducted to identify common findings across studies. METHODS A search for related papers published in English and Chinese was performed in Ovid Medline, Pubmed, and Embase database. Voxelwise meta-analysis was performed using signed differential mapping. RESULTS The findings from 55 fMRI studies on MND were tabulated, and some common findings were discussed in further details. CONCLUSION These findings are preliminary, sometimes even contradictory, and do not allow a complete understanding of the functional alterations in MND. However, we documented reliable findings that MND is not confined to the motor system, but is a multisystem disorder involving extra-motor cortex areas, causing cognitive dysfunction and deficits in socioemotional and sensory processing pathways.
Collapse
Affiliation(s)
- Dongchao Shen
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Bo Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jia Fang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Dawei Li
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Junfang Ma
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
29
|
Steinbach R, Loewe K, Kaufmann J, Machts J, Kollewe K, Petri S, Dengler R, Heinze HJ, Vielhaber S, Schoenfeld MA, Stoppel CM. Structural hallmarks of amyotrophic lateral sclerosis progression revealed by probabilistic fiber tractography. J Neurol 2015; 262:2257-70. [PMID: 26159103 DOI: 10.1007/s00415-015-7841-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 12/27/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive limb and/or bulbar muscular weakness and atrophy. Although ALS-related alterations of motor and extra-motor neuronal networks have repeatedly been reported, their temporal dynamics during disease progression are not well understood. Recently, we reported a decline of motor system activity and a concurrent increase of hippocampal novelty-evoked modulations across 3 months of ALS progression. To address whether these functional changes are associated with structural ones, the current study employed probabilistic fiber tractography on diffusion tensor imaging (DTI) data using a longitudinal design. Therein, motor network integrity was assessed by DTI-based tracking of the intracranial corticospinal tract, while connectivity estimates of occipito-temporal tracts (between visual and entorhinal, perirhinal or parahippocampal cortices) served to assess structural changes that could be related to the increased novelty-evoked hippocampal activity across time described previously. Complementing these previous functional observations, the current data revealed an ALS-related decrease in corticospinal tract structural connectivity compared to controls, while in contrast, visuo-perirhinal connectivity was relatively increased in the patient group. Importantly, beyond these between-group differences, a rise in the patients' occipito-temporal tract strengths occurred across a 3-month interval, while at the same time no changes in corticospinal tract connectivity were observed. In line with previously identified functional alterations, the dynamics of these structural changes suggest that the affection of motor- and memory-related networks in ALS emerges at distinct disease stages: while motor network degeneration starts primarily during early (supposedly pre-symptomatic) phases, the hippocampal/medial temporal lobe dysfunctions arise at later stages of the disease.
Collapse
Affiliation(s)
- Robert Steinbach
- Department of Neurology, Otto-von-Guericke-University, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Kristian Loewe
- Department of Neurology, Otto-von-Guericke-University, Leipziger Str. 44, 39120, Magdeburg, Germany.,Department of Knowledge and Language Processing, Otto-von-Guericke-University, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Joern Kaufmann
- Department of Neurology, Otto-von-Guericke-University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Judith Machts
- Department of Neurology, Otto-von-Guericke-University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Katja Kollewe
- Department of Neurology, Medical School Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Susanne Petri
- Department of Neurology, Medical School Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Reinhard Dengler
- Department of Neurology, Medical School Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto-von-Guericke-University, Leipziger Str. 44, 39120, Magdeburg, Germany.,Leibniz-Institute for Neurobiology, Brennecke Str. 6, 39118, Magdeburg, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto-von-Guericke-University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Mircea Ariel Schoenfeld
- Department of Neurology, Otto-von-Guericke-University, Leipziger Str. 44, 39120, Magdeburg, Germany.,Leibniz-Institute for Neurobiology, Brennecke Str. 6, 39118, Magdeburg, Germany.,Kliniken Schmieder, Zum Tafelholz 8, 78476, Allensbach, Germany
| | - Christian Michael Stoppel
- Department of Neurology, Otto-von-Guericke-University, Leipziger Str. 44, 39120, Magdeburg, Germany. .,Leibniz-Institute for Neurobiology, Brennecke Str. 6, 39118, Magdeburg, Germany. .,Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
30
|
Abstract
Amyotrophic lateral sclerosis (ALS) is now recognised to be a heterogeneous neurodegenerative syndrome of the motor system and its frontotemporal cortical connections. The development and application of structural and functional imaging over the last three decades, in particular magnetic resonance imaging (MRI), has allowed traditional post mortem histopathological and emerging molecular findings in ALS to be placed in a clinical context. Cerebral grey and white matter structural MRI changes are increasingly being understood in terms of brain connectivity, providing insights into the advancing degenerative process and producing candidate biomarkers. Such markers may refine the prognostic stratification of patients and the diagnostic pathway, as well as providing an objective assessment of changes in disease activity in response to future therapeutic agents. Studies are being extended to the spinal cord, and the application of neuroimaging to unaffected carriers of highly penetrant genetic mutations linked to the development of ALS offers a unique window to the pre-symptomatic landscape.
Collapse
Affiliation(s)
- Martin R. Turner
- />Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- />John Radcliffe Hospital, West Wing Level 3, Oxford, OX3 9DU UK
| | - Esther Verstraete
- />University of Utrecht, Utrecht, Netherlands
- />University Medical Center, Heidelberglaan 100, Utrecht, Netherlands
| |
Collapse
|
31
|
Mohammadi B, Kollewe K, Cole DM, Fellbrich A, Heldmann M, Samii A, Dengler R, Petri S, Münte TF, Krämer UM. Amyotrophic lateral sclerosis affects cortical and subcortical activity underlying motor inhibition and action monitoring. Hum Brain Mapp 2015; 36:2878-89. [PMID: 25913637 DOI: 10.1002/hbm.22814] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/01/2015] [Accepted: 04/06/2015] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by muscular atrophy, spasticity, and bulbar signs caused by loss of upper and lower motor neurons. Evidence suggests that ALS additionally affects other brain areas including premotor cortex and supplementary motor area. Here, we studied movement execution and inhibition in ALS patients using a stop-signal paradigm and functional magnetic resonance imaging. Seventeen ALS patients and 17 age-matched healthy controls performed a stop-signal task that required responding with a button press to a right- or left-pointing black arrow (go-stimuli). In stop-trials, a red arrow (stop-stimulus) was presented shortly after the black arrow indicating to withhold the prepared movement. Patients had by trend higher reaction times in go-trials but did not differ significantly in their inhibition performance. Patients showed stronger inhibition-related activity in inferior, superior, and middle frontal gyri as well as in putamen and pallidum. Error-related activity, conversely, was found to be stronger in healthy controls, particularly in the insula bilaterally. Patients also showed increased activity in the motor cortex during button presses. The results provide evidence for altered prefrontal and subcortical networks underlying motor execution, motor inhibition, and error monitoring in ALS.
Collapse
Affiliation(s)
- Bahram Mohammadi
- Department of Neurology, University Lübeck, Lübeck, Germany
- CNS-LAB, International Neuroscience Institute, Hannover, Germany
| | - Katja Kollewe
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - David M Cole
- Institute for Biomedical Engineering, University of Zurich, Zurich, Switzerland
| | - Anja Fellbrich
- Department of Neurology, University Lübeck, Lübeck, Germany
| | | | - Amir Samii
- CNS-LAB, International Neuroscience Institute, Hannover, Germany
| | - Reinhard Dengler
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Thomas F Münte
- Department of Neurology, University Lübeck, Lübeck, Germany
- Institute of Psychology II, University Lübeck, Germany
| | - Ulrike M Krämer
- Department of Neurology, University Lübeck, Lübeck, Germany
- Institute of Psychology II, University Lübeck, Germany
| |
Collapse
|
32
|
Jelsone-Swain L, Persad C, Burkard D, Welsh RC. Action processing and mirror neuron function in patients with amyotrophic lateral sclerosis: an fMRI study. PLoS One 2015; 10:e0119862. [PMID: 25885533 PMCID: PMC4401664 DOI: 10.1371/journal.pone.0119862] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/16/2015] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a highly debilitating and rapidly fatal neurodegenerative disease. It has been suggested that social cognition may be affected, such as impairment in theory of mind (ToM) ability. Despite these findings, research in this area is scarce and the investigation of neural mechanisms behind such impairment is absent. Nineteen patients with ALS and eighteen healthy controls participated in this study. Because the mirror neuron system (MNS) is thought to be involved in theory of mind, we first implemented a straightforward action-execution and observation task to assess basic MNS function. Second, we examined the social-cognitive ability to understand actions of others, which is a component of ToM. We used fMRI to assess BOLD activity differences between groups during both experiments. Theory of mind was also measured behaviorally using the Reading the Mind in the Eyes test (RME). ALS patients displayed greater BOLD activity during the action-execution and observation task, especially throughout right anterior cortical regions. These areas included the right inferior operculum, premotor and primary motor regions, and left inferior parietal lobe. A conjunction analysis showed significantly more co-activated voxels during both the observation and action-execution conditions in the patient group throughout MNS regions. These results support a compensatory response in the MNS during action processing. In the action understanding experiment, healthy controls performed better behaviorally and subsequently recruited greater regions of activity throughout the prefrontal cortex and middle temporal gyrus. Lastly, action understanding performance was able to cluster patients with ALS into high and lower performing groups, which then differentiated RME performance. Collectively, these data suggest that social cognition, particularly theory of mind, may be affected in a subset of patients with ALS. This impairment may be related to functioning of the MNS and other regions related to action processing and understanding. Implications for future research are discussed.
Collapse
Affiliation(s)
- Laura Jelsone-Swain
- Department of Psychology, University of South Carolina Aiken, Aiken, SC, United States of America
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States of America
- * E-mail:
| | - Carol Persad
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States of America
| | - David Burkard
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Robert C. Welsh
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States of America
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
33
|
Verstraete E, Foerster BR. Neuroimaging as a New Diagnostic Modality in Amyotrophic Lateral Sclerosis. Neurotherapeutics 2015; 12:403-16. [PMID: 25791072 PMCID: PMC4404464 DOI: 10.1007/s13311-015-0347-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by progressive degeneration of upper and lower motor neurons, with variable involvement of extramotor brain regions. Currently, there are no established objective markers of upper motor neuron and extramotor involvement in ALS. Here, we review the potential diagnostic value of advanced neuroimaging techniques that are increasingly being used to study the brain in ALS. First, we discuss the role of different imaging modalities in our increasing understanding of ALS pathogenesis, and their potential to contribute to objective upper motor neuron biomarkers for the disease. Second, we discuss the challenges to be overcome and the required phases of diagnostic test development to translate imaging technology to clinical care. We also present examples of multidimensional imaging approaches to achieve high levels of diagnostic accuracy. Last, we address the role of neuroimaging in clinical therapeutic trials. Advanced neuroimaging techniques will continue to develop and offer significant opportunities to facilitate the development of new effective treatments for ALS.
Collapse
Affiliation(s)
- Esther Verstraete
- />Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Bradley R. Foerster
- />Department of Radiology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109 USA
- />Ann Arbor VA Healthcare System, Ann Arbor, MI USA
- />Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
34
|
Cognitive deterioration and functional compensation in ALS measured with fMRI using an inhibitory task. J Neurosci 2015; 34:14260-71. [PMID: 25339740 DOI: 10.1523/jneurosci.1111-14.2014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by degeneration of upper and lower motor neurons, resulting in progressive weakness and muscle atrophy. Recent studies suggest that nondemented ALS patients can show selective cognitive impairments, predominantly executive dysfunction, but little is known about the neural basis of these impairments. Oculomotor studies in ALS have described deficits in antisaccade execution, which requires the implementation of a task set that includes inhibition of automatic responses followed by generation of a voluntary action. It has been suggested that the dorsolateral prefrontal cortex (DLPFC) contributes in this process. Thus, we investigated whether deterioration of executive functions in ALS patients, such as the ability to implement flexible behavior during the antisaccade task, is related to DLPFC dysfunction. While undergoing an fMRI scan, 12 ALS patients and 12 age-matched controls performed an antisaccade task with concurrent eye tracking. We hypothesized that DLPFC deficits would appear during the antisaccade preparation stage, when the task set is being established. ALS patients made more antisaccade direction errors and showed significant reductions in DLPFC activation. In contrast, regions, such as supplementary eye fields and frontal eye fields, showed increased activation that was anticorrelated with the number of errors. The ALS group also showed reduced saccadic latencies that correlated with increased activation across the oculomotor saccade system. These findings suggest that ALS results in deficits in the inhibition of automatic responses that are related to impaired DLPFC activation. However, they also suggest that ALS patients undergo functional changes that partially compensate the neurological impairment.
Collapse
|
35
|
Meoded A, Morrissette AE, Katipally R, Schanz O, Gotts SJ, Floeter MK. Cerebro-cerebellar connectivity is increased in primary lateral sclerosis. NEUROIMAGE-CLINICAL 2014; 7:288-96. [PMID: 25610792 PMCID: PMC4300015 DOI: 10.1016/j.nicl.2014.12.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/02/2014] [Accepted: 12/05/2014] [Indexed: 12/12/2022]
Abstract
Increased functional connectivity in resting state networks was found in several studies of patients with motor neuron disorders, although diffusion tensor imaging studies consistently show loss of white matter integrity. To understand the relationship between structural connectivity and functional connectivity, we examined the structural connections between regions with altered functional connectivity in patients with primary lateral sclerosis (PLS), a long-lived motor neuron disease. Connectivity matrices were constructed from resting state fMRI in 16 PLS patients to identify areas of differing connectivity between patients and healthy controls. Probabilistic fiber tracking was used to examine structural connections between regions of differing connectivity. PLS patients had 12 regions with increased functional connectivity compared to controls, with a predominance of cerebro-cerebellar connections. Increased functional connectivity was strongest between the cerebellum and cortical motor areas and between the cerebellum and frontal and temporal cortex. Fiber tracking detected no difference in connections between regions with increased functional connectivity. We conclude that functional connectivity changes are not strongly based in structural connectivity. Increased functional connectivity may be caused by common inputs, or by reduced selectivity of cortical activation, which could result from loss of intracortical inhibition when cortical afferents are intact. Functional connectivity is increased in primary lateral sclerosis. Functional connections with the cerebellum were prominent. Cortico-cerebellar connectivity correlated with clinical measures. No corresponding changes occurred in structural connectivity.
Collapse
Key Words
- AFNI, analysis of functional neuroimages
- ALS, amyotrophic lateral sclerosis
- ALSFRS-R, amyotrophic lateral sclerosis rating scale
- ANCOVA, analysis of covariance
- BOLD, blood oxygen-level dependent
- Cerebellum
- Connectivity
- DTI, diffusion tensor imaging
- Epi, echo planar imaging
- FA, fractional anisotropy
- FSL, FMRIB Software Library
- FWE, family-wise error
- MNI, Montreal Neurological Institute
- Motor neuron disease
- PLS, primary lateral sclerosis
- Primary lateral sclerosis
- ROI, region of interest
- Resting state functional MRI
- TBSS, tract based spatial statistics
- TFCE, threshold-free cluster enhancement
- TORTOISE, tolerably obsessive registration and tensor optimization indolent software ensemble
- fMRI, functional magnetic resonance imaging
Collapse
Affiliation(s)
- Avner Meoded
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Arthur E Morrissette
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Rohan Katipally
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Olivia Schanz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Stephen J Gotts
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Mary Kay Floeter
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
36
|
Chervyakov AV, Bakulin IS, Savitskaya NG, Arkhipov IV, Gavrilov AV, Zakharova MN, Piradov MA. Navigated transcranial magnetic stimulation in amyotrophic lateral sclerosis. Muscle Nerve 2014; 51:125-31. [PMID: 25049055 DOI: 10.1002/mus.24345] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2014] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a set of disorders associated with preferential degeneration of both upper and lower motor neurons. Navigated transcranial magnetic stimulation (nTMS) is a tool used to perform noninvasive functional brain mapping. We aimed to assess function of upper motor neurons in ALS. METHODS nTMS was performed on 30 patients with ALS (mean age 54.4 ± 12.1 years) and 24 healthy volunteers (mean age 32.7 ± 13.3 years). RESULTS The resting motor threshold (MT) was significantly higher in ALS patients compared with controls (P < 0.001). The mean map areas were smaller in patients with ALS than in healthy individuals, although some patients with short disease duration had extended maps. CONCLUSIONS Motor area maps serve as markers of upper motor neuron damage in ALS. Further research may elucidate the pathogenic mechanisms of the neurodegenerative process and aid in development of diagnostic and prognostic markers.
Collapse
|
37
|
Chiò A, Pagani M, Agosta F, Calvo A, Cistaro A, Filippi M. Neuroimaging in amyotrophic lateral sclerosis: insights into structural and functional changes. Lancet Neurol 2014; 13:1228-40. [PMID: 25453462 DOI: 10.1016/s1474-4422(14)70167-x] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the past two decades, structural and functional neuroimaging findings have greatly modified longstanding notions regarding the pathophysiology of amyotrophic lateral sclerosis (ALS). Neuroimaging studies have shown that anatomical and functional lesions spread beyond precentral cortices and corticospinal tracts, to include the corpus callosum; frontal, sensory, and premotor cortices; thalamus; and midbrain. Both MRI and PET studies have shown early and diffuse loss of inhibitory cortical interneurons in the motor cortex (increased levels of functional connectivity and loss of GABAergic neurons, respectively) and diffuse gliosis in white-matter tracts. In ALS endophenotypes, neuroimaging has also shown a diverse spreading of lesions and a dissimilar impairment of functional and structural connections. A possible role of PET in the diagnosis of ALS has recently been proposed. However, most neuroimaging studies have pitfalls, such as a small number and poor clinical characterisation of patients, absence of adequate controls, and scarcity of longitudinal assessments. Studies involving international collaborations, standardised assessments, and large patient cohorts will overcome these shortcomings and provide further insight into the pathogenesis of ALS.
Collapse
Affiliation(s)
- Adriano Chiò
- ALS Center, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy.
| | - Marco Pagani
- Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy; Department of Nuclear Medicine, Karolinska Hospital, Stockholm, Sweden
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Calvo
- ALS Center, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Angelina Cistaro
- Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy; Positron Emission Tomography Center IRMET S.p.A, Euromedic Inc, Torino, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
38
|
Noll KR, Sullaway C, Ziu M, Weinberg JS, Wefel JS. Relationships between tumor grade and neurocognitive functioning in patients with glioma of the left temporal lobe prior to surgical resection. Neuro Oncol 2014; 17:580-7. [PMID: 25227126 DOI: 10.1093/neuonc/nou233] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Various tumor characteristics have been associated with neurocognitive functioning (NCF), though the role of tumor grade has not been adequately examined. METHODS Seventy-two patients with histologically confirmed grade IV glioma (n = 37), grade III glioma (n = 20), and grade II glioma (n = 15) in the left temporal lobe completed preoperative neuropsychological assessment. Rates of impairment and mean test performances were compared by tumor grade with follow-up analysis of the influence of other tumor- and patient-related characteristics on NCF. RESULTS NCF impairment was more frequent in patients with grade IV tumor compared with patients with lower-grade tumors in verbal learning, executive functioning, as well as language abilities. Mean performances significantly differed by tumor grade on measures of verbal learning, processing speed, executive functioning, and language, with the grade IV group exhibiting worse performances than patients with lower-grade tumors. Group differences in mean performances remained significant when controlling for T1-weighted and fluid attenuated inversion recovery MRI-based lesion volume. Performances did not differ by seizure status or antiepileptic and steroid use. CONCLUSIONS Compared with patients with grade II or III left temporal lobe glioma, patients with grade IV tumors exhibit greater difficulty with verbal learning, processing speed, executive functioning, and language. Differences in NCF associated with glioma grade were independent of lesion volume, seizure status, and antiepileptic or steroid use, lending support to the concept of "lesion momentum" as a primary contributor to deficits in NCF of newly diagnosed patients prior to surgery.
Collapse
Affiliation(s)
- Kyle R Noll
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (K.R.N., C.S., J.S. Wefel); Brain and Spine Institute, Seton Hospital, Austin, Texas (M.Z.); Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (J.S. Weinberg)
| | - Catherine Sullaway
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (K.R.N., C.S., J.S. Wefel); Brain and Spine Institute, Seton Hospital, Austin, Texas (M.Z.); Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (J.S. Weinberg)
| | - Mateo Ziu
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (K.R.N., C.S., J.S. Wefel); Brain and Spine Institute, Seton Hospital, Austin, Texas (M.Z.); Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (J.S. Weinberg)
| | - Jeffrey S Weinberg
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (K.R.N., C.S., J.S. Wefel); Brain and Spine Institute, Seton Hospital, Austin, Texas (M.Z.); Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (J.S. Weinberg)
| | - Jeffrey S Wefel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (K.R.N., C.S., J.S. Wefel); Brain and Spine Institute, Seton Hospital, Austin, Texas (M.Z.); Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (J.S. Weinberg)
| |
Collapse
|
39
|
Stoppel CM, Vielhaber S, Eckart C, Machts J, Kaufmann J, Heinze HJ, Kollewe K, Petri S, Dengler R, Hopf JM, Schoenfeld MA. Structural and functional hallmarks of amyotrophic lateral sclerosis progression in motor- and memory-related brain regions. NEUROIMAGE-CLINICAL 2014; 5:277-90. [PMID: 25161894 PMCID: PMC4141983 DOI: 10.1016/j.nicl.2014.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/03/2014] [Accepted: 07/17/2014] [Indexed: 11/19/2022]
Abstract
Previous studies have shown that in amyotrophic lateral sclerosis (ALS) multiple motor and extra-motor regions display structural and functional alterations. However, their temporal dynamics during disease-progression are unknown. To address this question we employed a longitudinal design assessing motor- and novelty-related brain activity in two fMRI sessions separated by a 3-month interval. In each session, patients and controls executed a Go/NoGo-task, in which additional presentation of novel stimuli served to elicit hippocampal activity. We observed a decline in the patients' movement-related activity during the 3-month interval. Importantly, in comparison to controls, the patients' motor activations were higher during the initial measurement. Thus, the relative decrease seems to reflect a breakdown of compensatory mechanisms due to progressive neural loss within the motor-system. In contrast, the patients' novelty-evoked hippocampal activity increased across 3 months, most likely reflecting the build-up of compensatory processes typically observed at the beginning of lesions. Consistent with a stage-dependent emergence of hippocampal and motor-system lesions, we observed a positive correlation between the ALSFRS-R or MRC-Megascores and the decline in motor activity, but a negative one with the hippocampal activation-increase. Finally, to determine whether the observed functional changes co-occur with structural alterations, we performed voxel-based volumetric analyses on magnetization transfer images in a separate patient cohort studied cross-sectionally at another scanning site. Therein, we observed a close overlap between the structural changes in this cohort, and the functional alterations in the other. Thus, our results provide important insights into the temporal dynamics of functional alterations during disease-progression, and provide support for an anatomical relationship between functional and structural cerebral changes in ALS.
Collapse
Affiliation(s)
- Christian Michael Stoppel
- Department of Neurology, Otto-von-Guericke-University, Leipziger Str. 44, Magdeburg 39120, Germany
- Corresponding author.
| | - Stefan Vielhaber
- Department of Neurology, Otto-von-Guericke-University, Leipziger Str. 44, Magdeburg 39120, Germany
- DZNE — German Centre for Neurodegenerative Diseases, Leipziger Str. 44, Magdeburg 39120, Germany
- Corresponding author.
| | - Cindy Eckart
- Department of Neurology, Otto-von-Guericke-University, Leipziger Str. 44, Magdeburg 39120, Germany
- Institute for Systemic Neurosciences, University Clinic, Martinistr. 52, Hamburg 20246, Germany
| | - Judith Machts
- Department of Neurology, Otto-von-Guericke-University, Leipziger Str. 44, Magdeburg 39120, Germany
| | - Jörn Kaufmann
- Department of Neurology, Otto-von-Guericke-University, Leipziger Str. 44, Magdeburg 39120, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto-von-Guericke-University, Leipziger Str. 44, Magdeburg 39120, Germany
- Leibniz-Institute for Neurobiology, Brennecke Str. 6, Magdeburg 39118, Germany
| | - Katja Kollewe
- Department of Neurology, Medical School Hannover, Carl-Neuberg-str. 1, Hannover 30625, Germany
| | - Susanne Petri
- Department of Neurology, Medical School Hannover, Carl-Neuberg-str. 1, Hannover 30625, Germany
| | - Reinhard Dengler
- Department of Neurology, Medical School Hannover, Carl-Neuberg-str. 1, Hannover 30625, Germany
| | - Jens-Max Hopf
- Department of Neurology, Otto-von-Guericke-University, Leipziger Str. 44, Magdeburg 39120, Germany
- Leibniz-Institute for Neurobiology, Brennecke Str. 6, Magdeburg 39118, Germany
| | - Mircea Ariel Schoenfeld
- Department of Neurology, Otto-von-Guericke-University, Leipziger Str. 44, Magdeburg 39120, Germany
- Leibniz-Institute for Neurobiology, Brennecke Str. 6, Magdeburg 39118, Germany
- Kliniken Schmieder, Zum Tafelholz 8, Allensbach 78476, Germany
| |
Collapse
|
40
|
Lessons of ALS imaging: Pitfalls and future directions - A critical review. NEUROIMAGE-CLINICAL 2014; 4:436-43. [PMID: 24624329 PMCID: PMC3950559 DOI: 10.1016/j.nicl.2014.02.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 02/23/2014] [Accepted: 02/23/2014] [Indexed: 12/19/2022]
Abstract
Background While neuroimaging in ALS has gained unprecedented momentum in recent years, little progress has been made in the development of viable diagnostic, prognostic and monitoring markers. Objectives To identify and discuss the common pitfalls in ALS imaging studies and to reflect on optimal study designs based on pioneering studies. Methods A “PubMed”-based literature search on ALS was performed based on neuroimaging-related keywords. Study limitations were systematically reviewed and classified so that stereotypical trends could be identified. Results Common shortcomings, such as relatively small sample sizes, statistically underpowered study designs, lack of disease controls, poorly characterised patient cohorts and a large number of conflicting studies, remain a significant challenge to the field. Imaging data of ALS continue to be interpreted at a group-level, as opposed to meaningful individual-patient inferences. Conclusions A systematic, critical review of ALS imaging has identified stereotypical shortcomings, the lessons of which should be considered in the design of future prospective MRI studies. At a time when large multicentre studies are underway a candid discussion of these factors is particularly timely. Stereotypical shortcomings can be identified in ALS neuroimaging studies. A systematic discussion of ALS study limitations is particularly timely. Individual patient data meta-analyses and multicentre studies are urgently required. The gaps identified in ALS imaging indicate exciting research opportunities.
Collapse
Key Words
- AD, axial diffusivity
- Amyotrophic lateral sclerosis
- Biomarker
- C9orf72, chromosome 9 open reading frame 72
- DTI, diffusion tensor imaging
- FA, fractional anisotropy
- MD, mean diffusivity
- MEG, magnetoencephalography
- MRI
- MRS, magnetic resonance spectroscopy
- MUNE, motor unit number estimation
- PET
- PET, positron emission tomography
- PNS, peripheral nervous system
- RD, radial diffusivity
- ROI, region of interest
- SPECT, single photon emission computed tomography
- Spectroscopy
- TMS, transcranial magnetic stimulation
- VBM, voxel-based morphometry
Collapse
|
41
|
Decreased movement-related beta desynchronization and impaired post-movement beta rebound in amyotrophic lateral sclerosis. Clin Neurophysiol 2014; 125:1689-99. [PMID: 24457137 DOI: 10.1016/j.clinph.2013.12.108] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/21/2013] [Accepted: 12/25/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVE This study explored event-related desynchronization (ERD) and synchronization (ERS) in amyotrophic lateral sclerosis (ALS) to quantify cortical sensorimotor processes during volitional movements. We furthermore compared ERD/ERS measures with clinical scores and movement-related cortical potential (MRCP) amplitudes. METHODS Electroencephalograms were recorded while 21 ALS patients and 19 controls performed two self-paced motor tasks: sniffing and right index finger flexion. Based on Wavelet analysis the alpha and beta frequency bands were selected for subsequent evaluation. RESULTS Patients generated significantly smaller resting alpha spectral power density (SPD) and smaller beta ERD compared to controls. Additionally patients exhibited merely unilateral post-movement ERS (beta rebound) whereas this phenomenon was bilateral in controls. ERD/ERS amplitudes did not correlate with corresponding MRCPs for either patients or controls. CONCLUSIONS The smaller resting alpha SPD and beta ERD and asymmetrical appearance of beta ERS in patients compared to controls could be the result of pyramidal cell degeneration and/or corpus callosum involvement in ALS. SIGNIFICANCE These results support the notion of reduced movement preparation in ALS involving also areas outside the motor cortex. Furthermore post-movement cortical inhibition seems to be impaired in ALS. ERD/ERS and MRCP are found to be independent measures of cortical motor functions in ALS.
Collapse
|
42
|
Alterations in regional functional coherence within the sensory-motor network in amyotrophic lateral sclerosis. Neurosci Lett 2014; 558:192-6. [DOI: 10.1016/j.neulet.2013.11.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/10/2013] [Accepted: 11/14/2013] [Indexed: 11/18/2022]
|
43
|
Ravits J, Appel S, Baloh RH, Barohn R, Brooks BR, Elman L, Floeter MK, Henderson C, Lomen-Hoerth C, Macklis JD, McCluskey L, Mitsumoto H, Przedborski S, Rothstein J, Trojanowski JQ, van den Berg LH, Ringel S. Deciphering amyotrophic lateral sclerosis: what phenotype, neuropathology and genetics are telling us about pathogenesis. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14 Suppl 1:5-18. [PMID: 23678876 DOI: 10.3109/21678421.2013.778548] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized phenotypically by progressive weakness and neuropathologically by loss of motor neurons. Phenotypically, there is marked heterogeneity. Typical ALS has mixed upper motor neuron (UMN) and lower motor neuron (LMN) involvement. Primary lateral sclerosis has predominant UMN involvement. Progressive muscular atrophy has predominant LMN involvement. Bulbar and limb ALS have predominant regional involvement. Frontotemporal dementia has significant cognitive and behavioral involvement. These phenotypes can be so distinctive that they would seem to have differing biology. However, they cannot be distinguished, at least neuropathologically or genetically. In sporadic ALS (SALS), they are mostly characterized by ubiquitinated cytoplasmic inclusions of TDP-43. In familial ALS (FALS), where phenotypes are indistinguishable from SALS and similarly heterogeneous, each mutated gene has its own genetic and molecular signature. Overall, since the same phenotypes can have multiple causes including different gene mutations, there must be multiple molecular mechanisms causing ALS - and ALS is a syndrome. Since, however, multiple phenotypes can be caused by one single gene mutation, a single molecular mechanism can cause heterogeneity. What the mechanisms are remain unknown, but active propagation of the pathology neuroanatomically seems to be a principal component. Leading candidate mechanisms include RNA processing, cell-cell interactions between neurons and non-neuronal neighbors, focal seeding from a misfolded protein that has prion-like propagation, and fatal errors introduced during neurodevelopment of the motor system. If fundamental mechanisms could be identified and understood, ALS therapy could rationally target progression and stop the disease - a goal that seems increasingly achievable.
Collapse
Affiliation(s)
- John Ravits
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
THEME 4 IMAGING, ELECTROPHYSIOLOGY AND MARKERS OF DISEASE PROGRESSION. Amyotroph Lateral Scler Frontotemporal Degener 2013. [DOI: 10.3109/21678421.2013.838418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
|
46
|
Cosottini M, Cecchi P, Piazza S, Pesaresi I, Fabbri S, Diciotti S, Mascalchi M, Siciliano G, Bonuccelli U. Mapping cortical degeneration in ALS with magnetization transfer ratio and voxel-based morphometry. PLoS One 2013; 8:e68279. [PMID: 23874570 PMCID: PMC3706610 DOI: 10.1371/journal.pone.0068279] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 05/27/2013] [Indexed: 12/02/2022] Open
Abstract
Pathological and imaging data indicate that amyotrophic lateral sclerosis (ALS) is a multisystem disease involving several cerebral cortical areas. Advanced quantitative magnetic resonance imaging (MRI) techniques enable to explore in vivo the volume and microstructure of the cerebral cortex in ALS. We studied with a combined voxel-based morphometry (VBM) and magnetization transfer (MT) imaging approach the capability of MRI to identify the cortical areas affected by neurodegeneration in ALS patients. Eighteen ALS patients and 18 age-matched healthy controls were examined on a 1.5T scanner using a high-resolution 3D T1 weighted spoiled gradient recalled sequence with and without MT saturation pulse. A voxel-based analysis (VBA) was adopted in order to automatically compute the regional atrophy and MT ratio (MTr) changes of the entire cerebral cortex. By using a multimodal image analysis MTr was adjusted for local gray matter (GM) atrophy to investigate if MTr changes can be independent of atrophy of the cerebral cortex. VBA revealed several clusters of combined GM atrophy and MTr decrease in motor-related areas and extra-motor frontotemporal cortex. The multimodal image analysis identified areas of isolated MTr decrease in premotor and extra-motor frontotemporal areas. VBM and MTr are capable to detect the distribution of neurodegenerative alterations in the cortical GM of ALS patients, supporting the hypothesis of a multi-systemic involvement in ALS. MT imaging changes exist beyond volume loss in frontotemporal cortices.
Collapse
Affiliation(s)
- Mirco Cosottini
- Department of Neuroscience, University of Pisa, Pisa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Jenkins TM, Burness C, Connolly DJ, Rao DG, Hoggard N, Mawson S, McDermott CJ, Wilkinson ID, Shaw PJ. A prospective pilot study measuring muscle volumetric change in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14:414-23. [PMID: 23705876 DOI: 10.3109/21678421.2013.795597] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Our objective was to investigate the potential of muscle volume, measured with magnetic resonance (MR), as a biomarker to quantify disease progression in patients with amyotrophic lateral sclerosis (ALS). In this longitudinal pilot study, we first sought to determine the stability of volumetric muscle MR measurements in 11 control subjects at two time-points. We assessed feasibility of detecting atrophy in four patients with ALS, followed at three-month intervals for 12 months. Muscle power and MR volume were measured in thenar eminence (TEm), first dorsal interosseous (1DIO), tibialis anterior (TA) and tongue. Changes over time were assessed using linear regression models and t-tests. Results demonstrated that, in controls, no volumetric MR changes were seen (mean volume variation in all muscles < 5%, p > 0.1). In patients, between-subject heterogeneity was identified. Trends for volume loss were found in TEm (mean, - 26.84%, p = 0.056) and TA (- 8.29%, p = 0.077), but not in 1DIO (- 18.47%, p = 0.121) or tongue (< 5%, p = 0.367). In conclusion, volumetric muscle MR appears a stable measure in controls, and progressive volume loss was demonstrable in individuals with ALS in whom clinical weakness progressed. In this small study, subclinical atrophy was not demonstrable using muscle MR. Clinico-radiological discordance between muscle weakness and MR atrophy could reflect a contribution of upper motor neuron pathology.
Collapse
Affiliation(s)
- Thomas M Jenkins
- Sheffield Institute for Translational Neuroscience (SITraN), 385a Glossop Road, Sheffield, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bizovičar N, Koritnik B, Zidar I, Dreo J, Zidar J. Movement-related cortical potentials in ALS increase at lower and decrease at higher upper motor neuron burden scores. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14:380-9. [DOI: 10.3109/21678421.2012.760604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Turner MR, Agosta F, Bede P, Govind V, Lulé D, Verstraete E. Neuroimaging in amyotrophic lateral sclerosis. Biomark Med 2012; 6:319-37. [PMID: 22731907 DOI: 10.2217/bmm.12.26] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The catastrophic system failure in amyotrophic lateral sclerosis is characterized by progressive neurodegeneration within the corticospinal tracts, brainstem nuclei and spinal cord anterior horns, with an extra-motor pathology that has overlap with frontotemporal dementia. The development of computed tomography and, even more so, MRI has brought insights into neurological disease, previously only available through post-mortem study. Although largely research-based, radionuclide imaging has continued to provide mechanistic insights into neurodegenerative disorders. The evolution of MRI to use advanced sequences highly sensitive to cortical and white matter structure, parenchymal metabolites and blood flow, many of which are now applicable to the spinal cord as well as the brain, make it a uniquely valuable tool for the study of a multisystem disorder such as amyotrophic lateral sclerosis. This comprehensive review considers the full range of neuroimaging techniques applied to amyotrophic lateral sclerosis over the last 25 years, the biomarkers they have revealed and future developments.
Collapse
Affiliation(s)
- Martin R Turner
- Nuffield Department of Clinical Neurosciences, Oxford University, UK.
| | | | | | | | | | | |
Collapse
|
50
|
Patterns of spontaneous brain activity in amyotrophic lateral sclerosis: a resting-state FMRI study. PLoS One 2012; 7:e45470. [PMID: 23029031 PMCID: PMC3447931 DOI: 10.1371/journal.pone.0045470] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 08/22/2012] [Indexed: 02/05/2023] Open
Abstract
By detecting spontaneous low-frequency fluctuations (LFF) of blood oxygen level–dependent (BOLD) signals, resting-state functional magnetic resonance imaging (rfMRI) measurements are believed to reflect spontaneous cerebral neural activity. Previous fMRI studies were focused on the examination of motor-related areas and little is known about the functional changes in the extra-motor areas in amyotrophic lateral sclerosis (ALS) patients. The aim of this study is to investigate functional cerebral abnormalities in ALS patients on a whole brain scale. Twenty ALS patients and twenty age- and sex-matched healthy volunteers were enrolled. Voxel-based analysis was used to characterize the alteration of amplitude of low frequency fluctuation (ALFF). Compared with the controls, the ALS patients showed significantly decreased ALFF in the visual cortex, fusiform gyri and right postcentral gyrus; and significantly increased ALFF in the left medial frontal gyrus, and in right inferior frontal areas after grey matter (GM) correction. Taking GM volume as covariates, the ALFF results were approximately consistent with those without GM correction. In addition, ALFF value in left medial frontal gyrus was negatively correlated with the rate of disease progression and duration. Decreased functional activity observed in the present study indicates the underlying deficits of the sensory processing system in ALS. Increased functional activity points to a compensatory mechanism. Our findings suggest that ALS is a multisystem disease other than merely motor dysfunction and provide evidence that alterations of ALFF in the frontal areas may be a special marker of ALS.
Collapse
|