1
|
Wang Y, Oh H, Barlow SM. Dynamic causal modeling of sensorimotor networks elicited by saltatory pneumotactile velocity in the glabrous hand. J Neuroimaging 2022; 32:752-764. [PMID: 35044016 DOI: 10.1111/jon.12968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/12/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The effective connectivity of neuronal networks during passive saltatory pneumotactile velocity stimulation to the glabrous hand with different velocities is still unknown. The present study investigated the effectivity connectivity elicited by saltatory pneumotactile velocity arrays placed on the glabrous hand at three velocities (5, 25, and 65 cm/second). METHODS Dynamic causal modeling (DCM) was used on functional MRI data sampled from 20 neurotypical adults. Five brain regions, including the left primary somatosensory (SI) and motor (M1) cortices, bilateral secondary somatosensory (SII) cortices, and right cerebellar lobule VI, were used to build model space. RESULTS Three velocities (5, 25, and 65 cm/second) of saltatory pneumotactile stimuli were processed in both serial and parallel modes within the sensorimotor networks. The medium velocity of 25 cm/second modulated forward interhemispheric connection from the contralateral SII to the ipsilateral SII. Pneumotactile stimulation at the medium velocity of 25 cm/second also influenced contralateral M1 through contralateral SI. Finally, the right cerebellar lobule VI was involved in the sensorimotor networks. CONCLUSIONS Our DCM results suggest the coexistence of both serial and parallel processing for saltatory pneumotactile velocity stimulation. Significant contralateral M1 modulation promotes the prospect that the passive saltatory pneumotactile velocity arrays can be used to design sensorimotor rehabilitation protocols to activate M1. The effective connectivity from the right cerebellar lobule VI to other cortical regions demonstrates the cerebellum's role in the sensorimotor networks through feedforward and feedback neuronal pathways.
Collapse
Affiliation(s)
- Yingying Wang
- Neuroimaging for Language, Literacy and Learning Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Nebraska Center for Research on Children, Youth, Families and Schools, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Hyuntaek Oh
- Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Communication Neuroscience Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Steven M Barlow
- Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Communication Neuroscience Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
2
|
Wang Y, Sibaii F, Custead R, Oh H, Barlow SM. Functional Connectivity Evoked by Orofacial Tactile Perception of Velocity. Front Neurosci 2020; 14:182. [PMID: 32210753 PMCID: PMC7068713 DOI: 10.3389/fnins.2020.00182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/19/2020] [Indexed: 11/13/2022] Open
Abstract
The cortical representations of orofacial pneumotactile stimulation involve complex neuronal networks, which are still unknown. This study aims to identify the characteristics of functional connectivity (FC) evoked by three different saltatory velocities over the perioral and buccal surface of the lower face using functional magnetic resonance imaging in twenty neurotypical adults. Our results showed a velocity of 25 cm/s evoked stronger connection strength between the right dorsolateral prefrontal cortex and the right thalamus than a velocity of 5 cm/s. The decreased FC between the right secondary somatosensory cortex and right posterior parietal cortex for 5-cm/s velocity versus all three velocities delivered simultaneously (“All ON”) and the increased FC between the right thalamus and bilateral secondary somatosensory cortex for 65 cm/s vs “All ON” indicated that the right secondary somatosensory cortex might play a role in the orofacial tactile perception of velocity. Our results have also shown different patterns of FC for each seed (bilateral primary and secondary somatosensory cortex) at various velocity contrasts (5 vs 25 cm/s, 5 vs 65 cm/s, and 25 vs 65 cm/s). The similarities and differences of FC among three velocities shed light on the neuronal networks encoding the orofacial tactile perception of velocity.
Collapse
Affiliation(s)
- Yingying Wang
- Neuroimaging for Language, Literacy and Learning Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States.,Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, NE, United States.,Nebraska Center for Research on Children, Youth, Families and schools, University of Nebraska-Lincoln, Lincoln, NE, United States.,Biomedical Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Fatima Sibaii
- Neuroimaging for Language, Literacy and Learning Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States.,Biomedical Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Rebecca Custead
- Communication Neuroscience Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Hyuntaek Oh
- Biomedical Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States.,Communication Neuroscience Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Steven M Barlow
- Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, NE, United States.,Biomedical Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States.,Communication Neuroscience Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
3
|
Niu X, Xu H, Guo C, Yang T, Kress D, Gao L, Ma S, Zhang M, Wang Y. Strengthened thalamoparietal functional connectivity in patients with hemifacial spasm: a cross-sectional resting-state fMRI study. Br J Radiol 2020; 93:20190887. [PMID: 31904268 DOI: 10.1259/bjr.20190887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE In spite of the well-known importance of thalamus in hemifacial spasm (HFS), the thalamic resting-state networks in HFS is still rarely mentioned. This study aimed to investigate resting-state functional connectivity (FC) of the thalamus in HFS patients and examine its association with clinical measures. METHODS 25 HFS patients and 28 matched healthy controls underwent functional MRI at rest. Using the left and right thalamus as seed regions respectively, we compared the thalamic resting-state networks between patient and control groups using two independent sample t-test. RESULTS Compared with controls, HFS patients exhibited strengthened bilateral thalamus-seeded FC with the parietal cortex. Enhanced FC between right thalamus and left somatosensory association cortex was linked to worse motor disturbance, and the increased right thalamus-right supramarginal gyrus connection were correlated with improvement of affective symptoms. CONCLUSION Our findings indicate that the right thalamus-left somatosensory association cortex hyperconnectivity may represent the underlying neuroplasticity related to sensorimotor dysfunction. In addition, the upregulated FC between the right thalamus and right supramarginal gyrus in HFS, is part of the thalamo-default mode network pathway involved in emotional adaptation. ADVANCES IN KNOWLEDGE This study provides new insights on the integrative role of thalamo-parietal connectivity, which participates in differential neural circuitry as a mechanism underlying motor and emotional functions in HFS patients.
Collapse
Affiliation(s)
- Xuan Niu
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.,Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China.,Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hui Xu
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.,Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Chenguang Guo
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Tong Yang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.,Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dustin Kress
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lin Gao
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shaohui Ma
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Ming Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Yuan Wang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| |
Collapse
|
4
|
Cheng CH. Effects of observing normal and abnormal goal-directed hand movements on somatosensory cortical activation. Eur J Neurosci 2017; 47:48-57. [PMID: 29178356 DOI: 10.1111/ejn.13783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/01/2017] [Accepted: 11/06/2017] [Indexed: 12/25/2022]
Abstract
Existing evidence indicates the importance of observing correct, normal actions on the motor cortical activities. However, the exact neurophysiological mechanisms, particularly in the somatosensory system, remain unclear. This study aimed to elucidate the effects of observing normal and abnormal hand movements on the contralateral primary somatosensory (cSI), contralateral (cSII) and ipsilateral (iSII) secondary somatosensory activities. Experiment I was designed to investigate the effects of motor outputs on the somatosensory processing, in which subjects were instructed to relax or manipulate a small cube. Experiment II was tailored to examine the somatosensory responses to the observation of normal (Normal) and abnormal (Abnormal) hand movements. The subjects received electrical stimulation to right median nerve and magnetoencephalography (MEG) recordings during the whole experimental period. Regional cortical activation and functional connectivity were analyzed. Compared to the resting condition, a reduction in cSI and an enhancement of SII activation was found when subjects manipulated a cube, suggesting the motor outputs have an influence on the somatosensory responses. Further investigation of the effects of observing different hand movements showed that cSII activity was significantly stronger in the Normal than Abnormal condition. Moreover, compared with Abnormal condition, a higher cortical coherence of cSI-iSII at theta bands and cSII-iSII at beta bands was found in Normal condition. Conclusively, the present results suggest stronger activation and enhanced functional connectivity within the somatosensory system during the observation of normal than abnormal hand movements. These findings also highlight the importance of viewing normal, correct hands movements in the stroke rehabilitation.
Collapse
Affiliation(s)
- Chia-Hsiung Cheng
- Department of Occupational Therapy, Graduate Institute of Behavioral Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Taoyuan, 333, Taiwan.,Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
5
|
Custead R, Oh H, Wang Y, Barlow S. Brain encoding of saltatory velocity through a pulsed pneumotactile array in the lower face. Brain Res 2017; 1677:58-73. [PMID: 28958864 DOI: 10.1016/j.brainres.2017.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/31/2017] [Accepted: 09/20/2017] [Indexed: 12/25/2022]
Abstract
Processing dynamic tactile inputs is a primary function of the somatosensory system. Spatial velocity encoding mechanisms by the nervous system are important for skilled movement production and may play a role in recovery of sensorimotor function following neurological insult. Little is known about tactile velocity encoding in mechanosensory trigeminal networks required for speech, suck, mastication, and facial gesture. High resolution functional magnetic resonance imaging (fMRI) was used to investigate the neural substrates of velocity encoding in the human orofacial somatosensory system during unilateral saltatory pneumotactile stimulation of perioral and buccal hairy skin in 20 neurotypical adults. A custom multichannel, scalable pneumotactile array consisting of 7 TAC-Cells was used to present 5 stimulus conditions: 5cm/s, 25cm/s, 65cm/s, ALL-ON synchronous activation, and ALL-OFF. The spatiotemporal organization of whole-brain blood oxygen level-dependent (BOLD) response was analyzed with general linear modeling (GLM) and fitted response estimates of percent signal change to compare activations associated with each velocity, and the main effect of velocity alone. Sequential saltatory inputs to the right lower face produced localized BOLD responses in 6 key regions of interest (ROI) including; contralateral precentral and postcentral gyri, and ipsilateral precentral, superior temporal (STG), supramarginal gyri (SMG), and cerebellum. The spatiotemporal organization of the evoked BOLD response was highly dependent on velocity, with the greatest amplitude of BOLD signal change recorded during the 5cm/s presentation in the contralateral hemisphere. Temporal analysis of BOLD response by velocity indicated rapid adaptation via a scalability of networks processing changing pneumotactile velocity cues.
Collapse
Affiliation(s)
- Rebecca Custead
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Hyuntaek Oh
- Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Yingying Wang
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Steven Barlow
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|
6
|
Neural Basis of Early Somatosensory Change Detection: A Magnetoencephalography Study. Brain Topogr 2017; 31:242-256. [PMID: 28913778 DOI: 10.1007/s10548-017-0591-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 09/08/2017] [Indexed: 01/05/2023]
Abstract
The mismatch negativity (MMN) reflects the early detection of changes in sensory stimuli at the cortical level. The mechanisms underlying its genesis remain debated. This magnetoencephalography study investigates the spatio-temporal dynamics and the neural mechanisms of the magnetic somatosensory MMN. Somatosensory evoked magnetic fields elicited by tactile stimulation of the right fingertip (Single), tactile stimulation of the right middle phalanx and fingertip (Double) or omissions (Omitted) of tactile stimuli were studied in different paradigms: in oddballs where Double/Omitted followed a sequence of four Single, in sequences of two stimuli where Double occurred after one Single, and in random presentation of Double only. The predictability of Double occurrence in oddballs was also manipulated. Cortical sources of evoked responses were identified using equivalent current dipole modeling. Evoked responses elicited by Double were significantly different from those elicited by Single at the contralateral secondary somatosensory (cSII) cortex. Double elicited higher cSII cortex responses than Single when preceded by a sequence of four Single, compared to when they were preceded by one Single. Double elicited higher cSII cortex response when presented alone compared to when Double were preceded by one or a sequence of Single. Omitted elicited similar cSII cortex response than Single. Double in oddballs led to higher cSII cortex responses when less predictable. These data suggest that early tactile change detection involves mainly cSII cortex. The predictive coding framework probably accounts for the SII cortex response features observed in the different tactile paradigms.
Collapse
|
7
|
Neural encoding of saltatory pneumotactile velocity in human glabrous hand. PLoS One 2017; 12:e0183532. [PMID: 28841675 PMCID: PMC5571944 DOI: 10.1371/journal.pone.0183532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/05/2017] [Indexed: 12/05/2022] Open
Abstract
Neurons in the somatosensory cortex are exquisitely sensitive to mechanical stimulation of the skin surface. The location, velocity, direction, and adaptation of tactile stimuli on the skin’s surface are discriminable features of somatosensory processing, however the representation and processing of dynamic tactile arrays in the human somatosensory cortex are poorly understood. The principal aim of this study was to map the relation between dynamic saltatory pneumatic stimuli at discrete traverse velocities on the glabrous hand and the resultant pattern of evoked BOLD response in the human brain. Moreover, we hypothesized that the hand representation in contralateral Brodmann Area (BA) 3b would show a significant dependence on stimulus velocity. Saltatory pneumatic pulses (60 ms duration, 9.5 ms rise/fall) were repetitively sequenced through a 7-channel TAC-Cell array at traverse velocities of 5, 25, and 65 cm/s on the glabrous hand initiated at the tips of D2 (index finger) and D3 (middle finger) and sequenced towards the D1 (thumb). The resulting hemodynamic response was sampled during 3 functional MRI scans (BOLD) in 20 neurotypical right-handed adults at 3T. Results from each subject were inserted to the one-way ANOVA within-subjects and one sample t-test to evaluate the group main effect of all three velocities stimuli and each of three different velocities, respectively. The stimulus evoked BOLD response revealed a dynamic representation of saltatory pneumotactile stimulus velocity in a network consisting of the contralateral primary hand somatosensory cortex (BA3b), associated primary motor cortex (BA4), posterior insula, and ipsilateral deep cerebellum. The spatial extent of this network was greatest at the 5 and 25 cm/s pneumotactile stimulus velocities.
Collapse
|
8
|
Naeije G, Vaulet T, Wens V, Marty B, Goldman S, De Tiège X. Multilevel Cortical Processing of Somatosensory Novelty: A Magnetoencephalography Study. Front Hum Neurosci 2016; 10:259. [PMID: 27313523 PMCID: PMC4889577 DOI: 10.3389/fnhum.2016.00259] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/17/2016] [Indexed: 11/13/2022] Open
Abstract
Using magnetoencephalography (MEG), this study investigates the spatio-temporal dynamics of the multilevel cortical processing of somatosensory change detection. Neuromagnetic signals of 16 healthy adult subjects (7 females and 9 males, mean age 29 ± 3 years) were recorded using whole-scalp-covering MEG while they underwent an oddball paradigm based on simple standard (right index fingertip tactile stimulation) and deviant (simultaneous right index fingertip and middle phalanx tactile stimulation) stimuli gathered into sequences to create and then deviate from stimulus patterns at multiple (local vs. global) levels of complexity. Five healthy adult subjects (3 females and 2 males, mean age 31, 6 ± 2 years) also underwent a similar oddball paradigm in which standard and deviant stimuli were flipped. Local deviations led to a somatosensory mismatch response peaking at 55-130 ms post-stimulus onset with a cortical generator located at the contralateral secondary somatosensory (cSII) cortex. The mismatch response was independent of the deviant stimuli physical characteristics. Global deviants led to a P300 response with cortical sources located bilaterally at temporo-parietal junction (TPJ) and supplementary motor area (SMA). The posterior parietal cortex (PPC) and the SMA were found to generate a contingent magnetic variation (CMV) attributed to top-down expectations. Amplitude of mismatch responses were modulated by top-down expectations and correlated with both the magnitude of the CMV and the P300 amplitude at the right TPJ. These results provide novel empirical evidence for a unified sensory novelty detection system in the human brain by linking detection of salient sensory stimuli in personal and extra-personal spaces to a common framework of multilevel cortical processing.
Collapse
Affiliation(s)
- Gilles Naeije
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI-ULB Neuroscience Institute, and Magnetoencephalography Unit, ULB-Hôpital Erasme, Université libre de Bruxelles (ULB) Brussels, Belgium
| | - Thibaut Vaulet
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI-ULB Neuroscience Institute, and Magnetoencephalography Unit, ULB-Hôpital Erasme, Université libre de Bruxelles (ULB) Brussels, Belgium
| | - Vincent Wens
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI-ULB Neuroscience Institute, and Magnetoencephalography Unit, ULB-Hôpital Erasme, Université libre de Bruxelles (ULB) Brussels, Belgium
| | - Brice Marty
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI-ULB Neuroscience Institute, and Magnetoencephalography Unit, ULB-Hôpital Erasme, Université libre de Bruxelles (ULB) Brussels, Belgium
| | - Serge Goldman
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI-ULB Neuroscience Institute, and Magnetoencephalography Unit, ULB-Hôpital Erasme, Université libre de Bruxelles (ULB) Brussels, Belgium
| | - Xavier De Tiège
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI-ULB Neuroscience Institute, and Magnetoencephalography Unit, ULB-Hôpital Erasme, Université libre de Bruxelles (ULB) Brussels, Belgium
| |
Collapse
|
9
|
Chung YG, Han SW, Kim HS, Chung SC, Park JY, Wallraven C, Kim SP. Adaptation of cortical activity to sustained pressure stimulation on the fingertip. BMC Neurosci 2015; 16:71. [PMID: 26514637 PMCID: PMC4625848 DOI: 10.1186/s12868-015-0207-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 10/02/2015] [Indexed: 11/24/2022] Open
Abstract
Background Tactile adaptation is a phenomenon of the sensory system that results in temporal desensitization after an exposure to sustained or repetitive tactile stimuli. Previous studies reported psychophysical and physiological adaptation where perceived intensity and mechanoreceptive afferent signals exponentially decreased during tactile adaptation. Along with these studies, we hypothesized that somatosensory cortical activity in the human brain also exponentially decreased during tactile adaptation. The present neuroimaging study specifically investigated temporal changes in the human cortical responses to sustained pressure stimuli mediated by slow-adapting type I afferents. Methods We applied pressure stimulation for up to 15 s to the right index fingertip in 21 healthy participants and acquired functional magnetic resonance imaging (fMRI) data using a 3T MRI system. We analyzed cortical responses in terms of the degrees of cortical activation and inter-regional connectivity during sustained pressure stimulation. Results Our results revealed that the degrees of activation in the contralateral primary and secondary somatosensory cortices exponentially decreased over time and that intra- and inter-hemispheric inter-regional functional connectivity over the regions associated with tactile perception also linearly decreased or increased over time, during pressure stimulation. Conclusion These results indicate that cortical activity dynamically adapts to sustained pressure stimulation mediated by SA-I afferents, involving changes in the degrees of activation on the cortical regions for tactile perception as well as in inter-regional functional connectivity among them. We speculate that these adaptive cortical activity may represent an efficient cortical processing of tactile information.
Collapse
Affiliation(s)
- Yoon Gi Chung
- Department of Brain and Cognitive Engineering, Korea University, Anam-5ga, Seongbuk-gu, Seoul, 136-713, Republic of Korea.
| | - Sang Woo Han
- Department of Brain and Cognitive Engineering, Korea University, Anam-5ga, Seongbuk-gu, Seoul, 136-713, Republic of Korea.
| | - Hyung-Sik Kim
- Department of Biomedical Engineering, BK21+ Research Institute of Biomedical Engineering, College of Biomedical & Health Science, Konkuk University, Chungju, 380-701, Republic of Korea.
| | - Soon-Cheol Chung
- Department of Biomedical Engineering, BK21+ Research Institute of Biomedical Engineering, College of Biomedical & Health Science, Konkuk University, Chungju, 380-701, Republic of Korea.
| | - Jang-Yeon Park
- Center for Neuroscience Imaging Research, Institute of Basic Science (IBS), Sungkyunkwan University, Suwon, 440-746, Republic of Korea. .,Department of Global Biomedical Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea.
| | - Christian Wallraven
- Department of Brain and Cognitive Engineering, Korea University, Anam-5ga, Seongbuk-gu, Seoul, 136-713, Republic of Korea.
| | - Sung-Phil Kim
- Department of Human and Systems Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan, 689-798, Republic of Korea.
| |
Collapse
|
10
|
Custead R, Oh H, Rosner AO, Barlow S. Adaptation of the cortical somatosensory evoked potential following pulsed pneumatic stimulation of the lower face in adults. Brain Res 2015; 1622:81-90. [PMID: 26119917 DOI: 10.1016/j.brainres.2015.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 10/23/2022]
Abstract
Cortical adaptation to sustained sensory input is a pervasive form of short-term plasticity in neurological systems. Its role in sensory perception in health and disease, or predicting long-term plastic changes resulting from sensory training offers insight into the mechanisms of somatosensory and sensorimotor processing. A 4-channel electroencephalography (EEG) recording montage was placed bilaterally (C3-P3, C4-P4, F7-P3, F8-P4) to characterize the short-term effects of pulsed pneumatic orofacial stimulation on the cortical somatosensory evoked potential (cSEP) in twenty neurotypical adults (mean age=21±2.88 years). A servo-controlled pneumatic amplifier was used to deliver a repetitive series of pneumatic pulse trains (six 50-ms pulses, 5-second intertrain interval) through a linked pair of custom acetal homopolymer probes (aka TAC-Cells) adhered to the nonglabrous skin of the lower face proximal to the right oral angle to synchronously activate mechanoreceptive afferents in the trigeminal nerve. Blocks of pulse trains were counterbalanced among participants and delivered at two rates, 2 and 4Hz. TAC-Cell stimulation of the lower face consistently evoked a series of cSEPs at P7, N20, P28, N38, P75, N85, and P115. The spatial organization and adaptation of the evoked cSEP was dependent on stimulus pulse index (1-6 within the pulse train, p=.012), frequency of stimulus presentation (2 vs 4Hz, p<.001), component (P7-P115, p<.001), and recording montage (channels 1-4, p<.001). Early component latencies (P7-N20) were highly stable in polarity (sign) and latency, and consistent with putative far-field generators (e.g., trigeminal brainstem, ventroposteromedial thalamus).
Collapse
Affiliation(s)
- Rebecca Custead
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Hyuntaek Oh
- Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Austin Oder Rosner
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Steven Barlow
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|
11
|
Venkatesan L, Barlow SM, Popescu M, Popescu A. Integrated approach for studying adaptation mechanisms in the human somatosensory cortical network. Exp Brain Res 2014; 232:3545-54. [PMID: 25059913 DOI: 10.1007/s00221-014-4043-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 07/11/2014] [Indexed: 11/25/2022]
Abstract
Magnetoencephalography and independent component analysis (ICA) was utilized to study and characterize neural adaptation in the somatosensory cortical network. Repetitive punctate tactile stimuli were applied unilaterally to the dominant hand and face using a custom-built pneumatic stimulator called the TAC-Cell. ICA-based source estimation from the evoked neuromagnetic responses indicated cortical activity in the contralateral primary somatosensory cortex (SI) for face stimulation, while hand stimulation resulted in robust contralateral SI and posterior parietal cortex (PPC) activation. Activity was also observed in the secondary somatosensory cortical area (SII) with reduced amplitude and higher variability across subjects. There was a significant difference in adaptation rate between SI and higher-order somatosensory cortices for hand stimulation. Adaptation was significantly dependent on stimulus frequency and pulse index within the stimulus train for both hand and face stimulation. The peak latency of the activity was significantly dependent on stimulation site (hand vs. face) and cortical area (SI vs. PPC). The difference in the peak latency of activity in SI and PPC is presumed to reflect a hierarchical serial-processing mechanism in the somatosensory cortex.
Collapse
Affiliation(s)
- Lalit Venkatesan
- Communication Neuroscience Laboratories, University of Nebraska, 141 Barkley Memorial Center, Lincoln, NE, 68583, USA,
| | | | | | | |
Collapse
|
12
|
Hsiao FJ, Cheng CH, Chen WT, Lin YY. Neural correlates of somatosensory paired-pulse suppression: a MEG study using distributed source modeling and dynamic spectral power analysis. Neuroimage 2013; 72:133-42. [PMID: 23370054 DOI: 10.1016/j.neuroimage.2013.01.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/03/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022] Open
Abstract
Paired-pulse stimulation has been used previously to evaluate cortical excitability and sensory gating. To help elucidate the neural network involved in paired-pulse suppression of somatosensory cortical processing, magnetoencephalographic (MEG) responses to paired-pulse electrical stimulation of the left median nerve of the wrists of 13 healthy males were recorded using an intra-pair interstimulus interval (ISI) of 500ms and an inter-pair ISI of 8s. Minimum norm estimates showed the presence of cortical activation in the bilateral primary somatosensory cortex, the post-central sulcus and the supplementary motor areas. Compared with the responses to the first stimulation, the responses to the second stimulation were attenuated in these areas with gating ratios (the amplitude ratios of the second response to the first response) of 0.54-0.69. By spectral power dynamic analysis, beta frequency oscillations were found to be associated with an early-latency (30-36ms) gating process in the contralateral primary somatosensory cortex and post-central sulcus, whereas theta and alpha oscillations were correlated with paired-pulse suppression of activations at 98-136ms in the ipsilateral primary somatosensory cortex, the bilateral post-central sulcus and the supplementary motor areas. In summary, it can be concluded that differential oscillatory activities are involved in the pair-pulse suppression in various somatosensory regions in response to repetitive external stimulations.
Collapse
Affiliation(s)
- Fu-Jung Hsiao
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | |
Collapse
|