1
|
Beber S, Bontempi G, Miceli G, Tettamanti M. The Neurofunctional Correlates of Morphosyntactic and Thematic Impairments in Aphasia: A Systematic Review and Meta-analysis. Neuropsychol Rev 2024:10.1007/s11065-024-09648-0. [PMID: 39214956 DOI: 10.1007/s11065-024-09648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Lesion-symptom studies in persons with aphasia showed that left temporoparietal damage, but surprisingly not prefrontal damage, correlates with impaired ability to process thematic roles in the comprehension of semantically reversible sentences (The child is hugged by the mother). This result has led to challenge the time-honored view that left prefrontal regions are critical for sentence comprehension. However, most studies focused on thematic role assignment and failed to consider morphosyntactic processes that are also critical for sentence processing. We reviewed and meta-analyzed lesion-symptom studies on the neurofunctional correlates of thematic role assignment and morphosyntactic processing in comprehension and production in persons with aphasia. Following the PRISMA checklist, we selected 43 papers for the review and 27 for the meta-analysis, identifying a set of potential bias risks. Both the review and the meta-analysis confirmed the correlation between thematic role processing and temporoparietal regions but also clearly showed the involvement of prefrontal regions in sentence processing. Exploratory meta-analyses suggested that both thematic role and morphosyntactic processing correlate with left prefrontal and temporoparietal regions, that morphosyntactic processing correlates with prefrontal structures more than with temporoparietal regions, and that thematic role assignment displays the opposite trend. We discuss current limitations in the literature and propose a set of recommendations for clarifying unresolved issues.
Collapse
Affiliation(s)
- Sabrina Beber
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, TN, 38122, Italy.
| | - Giorgia Bontempi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, TN, 38122, Italy
| | - Gabriele Miceli
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, TN, 38122, Italy
| | | |
Collapse
|
2
|
Obrig H, Regenbrecht F, Pino D, Krause CD. Verbal short term memory contribution to sentence comprehension decreases with increasing syntactic complexity in people with aphasia. Neuroimage 2024; 297:120730. [PMID: 39009249 DOI: 10.1016/j.neuroimage.2024.120730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024] Open
Abstract
Sentence comprehension requires the integration of linguistic units presented in a temporal sequence based on a non-linear underlying syntactic structure. While it is uncontroversial that storage is mandatory for this process, there are opposing views regarding the relevance of general short-term-/working-memory capacities (STM/WM) versus language specific resources. Here we report results from 43 participants with an acquired brain lesion in the extended left hemispheric language network and resulting language deficits, who performed a sentence-to-picture matching task and an experimental task assessing phonological short-term memory. The sentence task systematically varied syntactic complexity (embedding depth and argument order) while lengths, number of propositions and plausibility were kept constant. Clinical data including digit-/ block-spans and lesion size and site were additionally used in the analyses. Correlational analyses confirm that performance on STM/WM-tasks (experimental task and digit-span) are the only two relevant predictors for correct sentence-picture-matching, while reaction times only depended on age and lesion size. Notably increasing syntactic complexity reduced the correlational strength speaking for the additional recruitment of language specific resources independent of more general verbal STM/WM capacities, when resolving complex syntactic structure. The complementary lesion-behaviour analysis yielded different lesion volumes correlating with either the sentence-task or the STM-task. Factoring out STM measures lesions in the anterior temporal lobe correlated with a larger decrease in accuracy with increasing syntactic complexity. We conclude that overall sentence comprehension depends on STM/WM capacity, while increases in syntactic complexity tax another independent cognitive resource.
Collapse
Affiliation(s)
- Hellmuth Obrig
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology & Department of Neurology, 04103 Leipzig, Germany; Clinic for Cognitive Neurology, University Hospital & Faculty of Medicine, 04103 Leipzig, Germany.
| | - Frank Regenbrecht
- Clinic for Cognitive Neurology, University Hospital & Faculty of Medicine, 04103 Leipzig, Germany
| | - Danièle Pino
- Clinic for Cognitive Neurology, University Hospital & Faculty of Medicine, 04103 Leipzig, Germany
| | - Carina D Krause
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology & Department of Neurology, 04103 Leipzig, Germany; International Max Planck Research School on Neuroscience of Communication, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany(#)
| |
Collapse
|
3
|
Matchin W, Mollasaraei ZK, Bonilha L, Rorden C, Hickok G, den Ouden D, Fridriksson J. Verbal working memory and syntactic comprehension segregate into the dorsal and ventral streams. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.592577. [PMID: 38746328 PMCID: PMC11092776 DOI: 10.1101/2024.05.05.592577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Syntactic processing and verbal working memory are both essential components to sentence comprehension. Nonetheless, the separability of these systems in the brain remains unclear. To address this issue, we performed causal-inference analyses based on lesion and connectome network mapping using MRI and behavioral testing in 103 individuals with chronic post-stroke aphasia. We employed a rhyme judgment task with heavy working memory load without articulatory confounds, controlling for the overall ability to match auditory words to pictures and to perform a metalinguistic rhyme judgment, isolating the effect of working memory load. We assessed noncanonical sentence comprehension, isolating syntactic processing by incorporating residual rhyme judgment performance as a covariate for working memory load. Voxel-based lesion analyses and structural connectome-based lesion symptom mapping controlling for total lesion volume were performed, with permutation testing to correct for multiple comparisons (4,000 permutations). We observed that effects of working memory load localized to dorsal stream damage: posterior temporal-parietal lesions and frontal-parietal white matter disconnections. These effects were differentiated from syntactic comprehension deficits, which were primarily associated with ventral stream damage: lesions to temporal lobe and temporal-parietal white matter disconnections, particularly when incorporating the residual measure of working memory load as a covariate. Our results support the conclusion that working memory and syntactic processing are associated with distinct brain networks, largely loading onto dorsal and ventral streams, respectively.
Collapse
|
4
|
Riccardi N, Nelakuditi S, den Ouden DB, Rorden C, Fridriksson J, Desai RH. Discourse- and lesion-based aphasia quotient estimation using machine learning. Neuroimage Clin 2024; 42:103602. [PMID: 38593534 PMCID: PMC11016805 DOI: 10.1016/j.nicl.2024.103602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Discourse is a fundamentally important aspect of communication, and discourse production provides a wealth of information about linguistic ability. Aphasia commonly affects, in multiple ways, the ability to produce discourse. Comprehensive aphasia assessments such as the Western Aphasia Battery-Revised (WAB-R) are time- and resource-intensive. We examined whether discourse measures can be used to estimate WAB-R Aphasia Quotient (AQ), and whether this can serve as an ecologically valid, less resource-intensive measure. We used features extracted from discourse tasks using three AphasiaBank prompts involving expositional (picture description), story narrative, and procedural discourse. These features were used to train a machine learning model to predict the WAB-R AQ. We also compared and supplemented the model with lesion location information from structural neuroimaging. We found that discourse-based models could estimate AQ well, and that they outperformed models based on lesion features. Addition of lesion features to the discourse features did not improve the performance of the discourse model substantially. Inspection of the most informative discourse features revealed that different prompt types taxed different aspects of language. These findings suggest that discourse can be used to estimate aphasia severity, and provide insight into the linguistic content elicited by different types of discourse prompts.
Collapse
Affiliation(s)
- Nicholas Riccardi
- Department of Communication Sciences and Disorders, University of South Carolina, United States.
| | | | - Dirk B den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, United States
| | - Chris Rorden
- Department of Psychology, University of South Carolina, United States
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, United States
| | - Rutvik H Desai
- Department of Psychology, University of South Carolina, United States
| |
Collapse
|
5
|
Harrington RM, Kristinsson S, Wilmskoetter J, Busby N, den Ouden D, Rorden C, Fridriksson J, Bonilha L. Dissociating reading and auditory comprehension in persons with aphasia. Brain Commun 2024; 6:fcae102. [PMID: 38585671 PMCID: PMC10998352 DOI: 10.1093/braincomms/fcae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/10/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Language comprehension is often affected in individuals with post-stroke aphasia. However, deficits in auditory comprehension are not fully correlated with deficits in reading comprehension and the mechanisms underlying this dissociation remain unclear. This distinction is important for understanding language mechanisms, predicting long-term impairments and future development of treatment interventions. Using comprehensive auditory and reading measures from a large cohort of individuals with aphasia, we evaluated the relationship between aphasia type and reading comprehension impairments, the relationship between auditory versus reading comprehension deficits and the crucial neuroanatomy supporting the dissociation between post-stroke reading and auditory deficits. Scores from the Western Aphasia Battery-Revised from 70 participants with aphasia after a left-hemisphere stroke were utilized to evaluate both reading and auditory comprehension of linguistically equivalent stimuli. Repeated-measures and univariate ANOVA were used to assess the relationship between auditory comprehension and aphasia types and correlations were employed to test the relationship between reading and auditory comprehension deficits. Lesion-symptom mapping was used to determine the dissociation of crucial brain structures supporting reading comprehension deficits controlling for auditory deficits and vice versa. Participants with Broca's or global aphasia had the worst performance on reading comprehension. Auditory comprehension explained 26% of the variance in reading comprehension for sentence completion and 44% for following sequential commands. Controlling for auditory comprehension, worse reading comprehension performance was independently associated with damage to the inferior temporal gyrus, fusiform gyrus, posterior inferior temporal gyrus, inferior occipital gyrus, lingual gyrus and posterior thalamic radiation. Auditory and reading comprehension are only partly correlated in aphasia. Reading is an integral part of daily life and directly associated with quality of life and functional outcomes. This study demonstrated that reading performance is directly related to lesioned areas in the boundaries between visual association regions and ventral stream language areas. This behavioural and neuroanatomical dissociation provides information about the neurobiology of language and mechanisms for potential future treatment interventions.
Collapse
Affiliation(s)
- Rachael M Harrington
- Department of Communication Sciences and Disorders and Center for Research on the Challenges of Acquiring Language and Literacy, Georgia State University, Atlanta, GA 30310, USA
| | - Sigfus Kristinsson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Janina Wilmskoetter
- Department of Health and Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC 29464, USA
| | - Natalie Busby
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Dirk den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Leonardo Bonilha
- School of Medicine Columbia, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
6
|
Jiang Y, Gong G. Common and distinct patterns underlying different linguistic tasks: multivariate disconnectome symptom mapping in poststroke patients. Cereb Cortex 2024; 34:bhae008. [PMID: 38265297 DOI: 10.1093/cercor/bhae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/25/2024] Open
Abstract
Numerous studies have been devoted to neural mechanisms of a variety of linguistic tasks (e.g. speech comprehension and production). To date, however, whether and how the neural patterns underlying different linguistic tasks are similar or differ remains elusive. In this study, we compared the neural patterns underlying 3 linguistic tasks mainly concerning speech comprehension and production. To address this, multivariate regression approaches with lesion/disconnection symptom mapping were applied to data from 216 stroke patients with damage to the left hemisphere. The results showed that lesion/disconnection patterns could predict both poststroke scores of speech comprehension and production tasks; these patterns exhibited shared regions on the temporal pole of the left hemisphere as well as unique regions contributing to the prediction for each domain. Lower scores in speech comprehension tasks were associated with lesions/abnormalities in the superior temporal gyrus and middle temporal gyrus, while lower scores in speech production tasks were associated with lesions/abnormalities in the left inferior parietal lobe and frontal lobe. These results suggested an important role of the ventral and dorsal stream pathways in speech comprehension and production (i.e. supporting the dual stream model) and highlighted the applicability of the novel multivariate disconnectome-based symptom mapping in cognitive neuroscience research.
Collapse
Affiliation(s)
- Yaya Jiang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
7
|
Summaka M, Elias E, Zein H, Naim I, Daoud R, Fares Y, Nasser Z. Computed tomography findings as early predictors of long-term language impairment in patients with traumatic brain injury. APPLIED NEUROPSYCHOLOGY. ADULT 2023; 30:686-695. [PMID: 34487454 DOI: 10.1080/23279095.2021.1971982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study aims to assess the relationship between computed tomography (CT) findings, during the acute phase of hospitalization, and long-term language impairment in people with traumatic brain injury (TBI). Another aim was to assess the receptive and expressive abilities of subjects with TBI based on the location of the injury. This is a retrospective observational study including 49 participants with TBI due to war injuries. The Arabic Diagnostic Aphasia Battery (A-DAB-1) was administered to the participants and the Helsinki CT score was computed to quantify brain damage. The results showed that the Helsinki CT score was negatively correlated with the total score of the A-DAB-1 (r = -0.544, p-value < 0.0001). Simple linear regression supported such findings and reflected an inversely proportional relationship between both variables (p-value < 0.0001). When compared with subjects having right hemisphere damage, subjects with left hemisphere and bilateral brain damage performed more poorly on language tasks respectively as follows: A-DAB-1 overall score (92.08-66.08-70.28, p-value = 0.021), Content of descriptive speech (9.57-6.69-7.22, p-value = 0.034), Verbal fluency (6.57-3.54-3.89, p-value = 0.002), Auditory comprehension (9.71-7.54-7.78, p-value = 0.039), Complex auditory commands (9.71-7.65-7.56, p-value = 0.043), Repetition (9.75-7.08-7.61, p-value = 0.036), Naming (9.93-7.15-8.11, p-value = 0.046). Following TBI, CT findings on admission can significantly predict long-term language abilities, with left side lesions inducing poorer outcomes.
Collapse
Affiliation(s)
- Marwa Summaka
- Faculty of Medical Sciences, Neuroscience Research Center, Lebanese University, Hadath, Lebanon
| | - Elias Elias
- Department of Complex and minimally invasive spine surgery, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Hiba Zein
- Faculty of Medical Sciences, Neuroscience Research Center, Lebanese University, Hadath, Lebanon
| | - Ibrahim Naim
- Health, Rehabilitation, Iintegration and Research Center (HRIR), Beirut, Lebanon
| | - Rama Daoud
- Faculty of Medical Sciences, Lebanese University, Hadath, Lebanon
| | - Youssef Fares
- Faculty of Medical Sciences, Neuroscience Research Center, Lebanese University, Hadath, Lebanon
| | - Zeina Nasser
- Faculty of Medical Sciences, Neuroscience Research Center, Lebanese University, Hadath, Lebanon
| |
Collapse
|
8
|
Matchin W, den Ouden DB, Basilakos A, Stark BC, Fridriksson J, Hickok G. Grammatical Parallelism in Aphasia: A Lesion-Symptom Mapping Study. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2023; 4:550-574. [PMID: 37946730 PMCID: PMC10631800 DOI: 10.1162/nol_a_00117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 07/19/2023] [Indexed: 11/12/2023]
Abstract
Sentence structure, or syntax, is potentially a uniquely creative aspect of the human mind. Neuropsychological experiments in the 1970s suggested parallel syntactic production and comprehension deficits in agrammatic Broca's aphasia, thought to result from damage to syntactic mechanisms in Broca's area in the left frontal lobe. This hypothesis was sometimes termed overarching agrammatism, converging with developments in linguistic theory concerning central syntactic mechanisms supporting language production and comprehension. However, the evidence supporting an association among receptive syntactic deficits, expressive agrammatism, and damage to frontal cortex is equivocal. In addition, the relationship among a distinct grammatical production deficit in aphasia, paragrammatism, and receptive syntax has not been assessed. We used lesion-symptom mapping in three partially overlapping groups of left-hemisphere stroke patients to investigate these issues: grammatical production deficits in a primary group of 53 subjects and syntactic comprehension in larger sample sizes (N = 130, 218) that overlapped with the primary group. Paragrammatic production deficits were significantly associated with multiple analyses of syntactic comprehension, particularly when incorporating lesion volume as a covariate, but agrammatic production deficits were not. The lesion correlates of impaired performance of syntactic comprehension were significantly associated with damage to temporal lobe regions, which were also implicated in paragrammatism, but not with the inferior and middle frontal regions implicated in expressive agrammatism. Our results provide strong evidence against the overarching agrammatism hypothesis. By contrast, our results suggest the possibility of an alternative grammatical parallelism hypothesis rooted in paragrammatism and a central syntactic system in the posterior temporal lobe.
Collapse
Affiliation(s)
- William Matchin
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Dirk-Bart den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Alexandra Basilakos
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Brielle Caserta Stark
- Department of Speech, Language and Hearing Sciences, Program for Neuroscience, Indiana University Bloomington, Bloomington, IN, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, Department of Language Science, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
9
|
Yu Q, Jiang Y, Sun Y, Ju X, Ye T, Liu N, Qian S, Liu K. Effects of Damage to the Integrity of the Left Dual-Stream Frontotemporal Network Mediated by the Arcuate Fasciculus and Uncinate Fasciculus on Acute/Subacute Post-Stroke Aphasia. Brain Sci 2023; 13:1324. [PMID: 37759925 PMCID: PMC10526853 DOI: 10.3390/brainsci13091324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: To investigate the correlation between the integrity of the left dual-stream frontotemporal network mediated by the arcuate fasciculus (AF) and uncinate fasciculus (UF), and acute/subacute post-stroke aphasia (PSA). (2) Methods: Thirty-six patients were recruited and received both a language assessment and a diffusion tensor imaging (DTI) scan. Correlations between diffusion indices in the bilateral LSAF/UF and language performance assessment were analyzed with correlation analyses. Multiple linear regression analysis was also implemented to investigate the effects of the integrity of the left LSAF/UF on language performance. (3) Results: Correlation analyses showed that the diffusion indices, including mean fractional anisotropy (FA) values and the fiber number of the left LSAF rather than the left UF was significantly positively associated with language domain scores (p < 0.05). Multiple linear regression analysis revealed an independent and positive association between the mean FA value of the left LSAF and the percentage score of language subsets. In addition, no interaction effect of the integrity of the left LSAF and UF on language performance was found (p > 0.05). (4) Conclusions: The integrity of the left LSAF, but not the UF, might play important roles in supporting residual language ability in individuals with acute/subacute PSA; simultaneous disruption of the dual-stream frontotemporal network mediated by the left LSAF and UF would not result in more severe aphasia than damage to either pathway alone.
Collapse
Affiliation(s)
- Qiwei Yu
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China; (Q.Y.); (Y.J.); (X.J.); (T.Y.); (N.L.); (S.Q.)
| | - Yuer Jiang
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China; (Q.Y.); (Y.J.); (X.J.); (T.Y.); (N.L.); (S.Q.)
| | - Yan Sun
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China;
| | - Xiaowen Ju
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China; (Q.Y.); (Y.J.); (X.J.); (T.Y.); (N.L.); (S.Q.)
| | - Tianfen Ye
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China; (Q.Y.); (Y.J.); (X.J.); (T.Y.); (N.L.); (S.Q.)
| | - Na Liu
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China; (Q.Y.); (Y.J.); (X.J.); (T.Y.); (N.L.); (S.Q.)
| | - Surong Qian
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China; (Q.Y.); (Y.J.); (X.J.); (T.Y.); (N.L.); (S.Q.)
| | - Kefu Liu
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China;
| |
Collapse
|
10
|
Magnotti JF, Patterson JS, Schnur TT. Using predictive validity to compare associations between brain damage and behavior. Hum Brain Mapp 2023; 44:4738-4753. [PMID: 37417774 PMCID: PMC10400786 DOI: 10.1002/hbm.26413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/15/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023] Open
Abstract
Lesion-behavior mapping (LBM) provides a statistical map of the association between voxel-wise brain damage and individual differences in behavior. To understand whether two behaviors are mediated by damage to distinct regions, researchers often compare LBM weight outputs by either the Overlap method or the Correlation method. However, these methods lack statistical criteria to determine whether two LBM are distinct versus the same and are disconnected from a major goal of LBMs: predicting behavior from brain damage. Without such criteria, researchers may draw conclusions from numeric differences between LBMs that are irrelevant to predicting behavior. We developed and validated a predictive validity comparison method (PVC) that establishes a statistical criterion for comparing two LBMs using predictive accuracy: two LBMs are distinct if and only if they provide unique predictive power for the behaviors being assessed. We applied PVC to two lesion-behavior stroke data sets, demonstrating its utility for determining when behaviors arise from the same versus different lesion patterns. Using region-of-interest-based simulations derived from proportion damage from a large data set (n = 131), PVC accurately detected when behaviors were mediated by different regions (high sensitivity) versus the same region (high specificity). Both the Overlap method and Correlation method performed poorly on the simulated data. By objectively determining whether two behavioral deficits can be explained by single versus distinct patterns of brain damage, PVC provides a critical advance in establishing the brain bases of behavior. We have developed and released a GUI-driven web app to encourage widespread adoption.
Collapse
Affiliation(s)
- John F. Magnotti
- Department of NeurosurgeryBaylor College of MedicineHoustonTexasUSA
- Department of NeurosurgeryPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Tatiana T. Schnur
- Department of NeurosurgeryBaylor College of MedicineHoustonTexasUSA
- Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
11
|
Shekari E, Nozari N. A narrative review of the anatomy and function of the white matter tracts in language production and comprehension. Front Hum Neurosci 2023; 17:1139292. [PMID: 37051488 PMCID: PMC10083342 DOI: 10.3389/fnhum.2023.1139292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/24/2023] [Indexed: 03/28/2023] Open
Abstract
Much is known about the role of cortical areas in language processing. The shift towards network approaches in recent years has highlighted the importance of uncovering the role of white matter in connecting these areas. However, despite a large body of research, many of these tracts' functions are not well-understood. We present a comprehensive review of the empirical evidence on the role of eight major tracts that are hypothesized to be involved in language processing (inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, extreme capsule, middle longitudinal fasciculus, superior longitudinal fasciculus, arcuate fasciculus, and frontal aslant tract). For each tract, we hypothesize its role based on the function of the cortical regions it connects. We then evaluate these hypotheses with data from three sources: studies in neurotypical individuals, neuropsychological data, and intraoperative stimulation studies. Finally, we summarize the conclusions supported by the data and highlight the areas needing further investigation.
Collapse
Affiliation(s)
- Ehsan Shekari
- Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
| | - Nazbanou Nozari
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition (CNBC), Pittsburgh, PA, United States
| |
Collapse
|
12
|
Fukutomi H, Yamamoto T, Sibon I, Christensen S, Raposo N, Marnat G, Albucher JF, Olindo S, Calvière L, Sagnier S, Viguier A, Renou P, Guenego A, Poli M, Darcourt J, Debruxelles S, Drif A, Thalamas C, Sommet A, Rousseau V, Mazighi M, Bonneville F, Albers GW, Cognard C, Dousset V, Olivot JM, Tourdias T. Location-weighted versus Volume-weighted Mismatch at MRI for Response to Mechanical Thrombectomy in Acute Stroke. Radiology 2023; 306:e220080. [PMID: 36194114 PMCID: PMC9885343 DOI: 10.1148/radiol.220080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/06/2022] [Accepted: 08/16/2022] [Indexed: 01/28/2023]
Abstract
Background A target mismatch profile can identify good clinical response to recanalization after acute ischemic stroke, but does not consider region specificities. Purpose To test whether location-weighted infarction core and mismatch, determined from diffusion and perfusion MRI performed in patients with acute stroke, could improve prediction of good clinical response to mechanical thrombectomy compared with a target mismatch profile. Materials and Methods In this secondary analysis, two prospectively collected independent stroke data sets (2012-2015 and 2017-2019) were analyzed. From the brain before stroke (BBS) study data (data set 1), an eloquent map was computed through voxel-wise associations between the infarction core (based on diffusion MRI on days 1-3 following stroke) and National Institutes of Health Stroke Scale (NIHSS) score. The French acute multimodal imaging to select patients for mechanical thrombectomy (FRAME) data (data set 2) consisted of large vessel occlusion-related acute ischemic stroke successfully recanalized. From acute MRI studies (performed on arrival, prior to thrombectomy) in data set 2, target mismatch and eloquent (vs noneloquent) infarction core and mismatch were computed from the intersection of diffusion- and perfusion-detected lesions with the coregistered eloquent map. Associations of these imaging metrics with early neurologic improvement were tested in multivariable regression models, and areas under the receiver operating characteristic curve (AUCs) were compared. Results Data sets 1 and 2 included 321 (median age, 69 years [IQR, 58-80 years]; 207 men) and 173 (median age, 74 years [IQR, 65-82 years]; 90 women) patients, respectively. Eloquent mismatch was positively and independently associated with good clinical response (odds ratio [OR], 1.14; 95% CI: 1.02, 1.27; P = .02) and eloquent infarction core was negatively associated with good response (OR, 0.85; 95% CI: 0.77, 0.95; P = .004), while noneloquent mismatch was not associated with good response (OR, 1.03; 95% CI: 0.98, 1.07; P = .20). Moreover, adding eloquent metrics improved the prediction accuracy (AUC, 0.73; 95% CI: 0.65, 0.81) compared with clinical variables alone (AUC, 0.65; 95% CI: 0.56, 0.73; P = .01) or a target mismatch profile (AUC, 0.67; 95% CI: 0.59, 0.76; P = .03). Conclusion Location-weighted infarction core and mismatch on diffusion and perfusion MRI scans improved the identification of patients with acute stroke who would benefit from mechanical thrombectomy compared with the volume-based target mismatch profile. Clinical trial registration no. NCT03045146 © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Nael in this issue.
Collapse
Affiliation(s)
- Hikaru Fukutomi
- From the Institut de Bio-Imagerie IBIO (H.F., T.Y., V.D., T.T.),
CNRS, UMR-5287 (I.S., S.S.), and INSERM, Neurocentre Magendie, U1215 (V.D.,
T.T.), Université Bordeaux, 146 rue Léo Saignat, F-33000 Bordeaux
Cedex, France; Unité Neurovasculaire (I.S., S.O., S.S., P.R., M.P., S.D.)
and Neuroimagerie Diagnostique et Thérapeutique (G.M., V.D., T.T.), CHU
de Bordeaux, Bordeaux, France; Stanford Stroke Center, Stanford University,
Stanford, Calif (S.C., G.W.A.); Unité Neurovasculaire (N.R., J.F.A.,
L.C., A.V., J.M.O.), Service de Neuroradiologie (A.G., J.D., F.B., C.C.), and
Centre d'Investigation Clinique (A.D., C.T., A.S., V.R.), CHU de
Toulouse, Toulouse, France; and Fondation Ophtalmologique Adolphe de Rothschild,
Paris, France (M.M.)
| | - Takayuki Yamamoto
- From the Institut de Bio-Imagerie IBIO (H.F., T.Y., V.D., T.T.),
CNRS, UMR-5287 (I.S., S.S.), and INSERM, Neurocentre Magendie, U1215 (V.D.,
T.T.), Université Bordeaux, 146 rue Léo Saignat, F-33000 Bordeaux
Cedex, France; Unité Neurovasculaire (I.S., S.O., S.S., P.R., M.P., S.D.)
and Neuroimagerie Diagnostique et Thérapeutique (G.M., V.D., T.T.), CHU
de Bordeaux, Bordeaux, France; Stanford Stroke Center, Stanford University,
Stanford, Calif (S.C., G.W.A.); Unité Neurovasculaire (N.R., J.F.A.,
L.C., A.V., J.M.O.), Service de Neuroradiologie (A.G., J.D., F.B., C.C.), and
Centre d'Investigation Clinique (A.D., C.T., A.S., V.R.), CHU de
Toulouse, Toulouse, France; and Fondation Ophtalmologique Adolphe de Rothschild,
Paris, France (M.M.)
| | - Igor Sibon
- From the Institut de Bio-Imagerie IBIO (H.F., T.Y., V.D., T.T.),
CNRS, UMR-5287 (I.S., S.S.), and INSERM, Neurocentre Magendie, U1215 (V.D.,
T.T.), Université Bordeaux, 146 rue Léo Saignat, F-33000 Bordeaux
Cedex, France; Unité Neurovasculaire (I.S., S.O., S.S., P.R., M.P., S.D.)
and Neuroimagerie Diagnostique et Thérapeutique (G.M., V.D., T.T.), CHU
de Bordeaux, Bordeaux, France; Stanford Stroke Center, Stanford University,
Stanford, Calif (S.C., G.W.A.); Unité Neurovasculaire (N.R., J.F.A.,
L.C., A.V., J.M.O.), Service de Neuroradiologie (A.G., J.D., F.B., C.C.), and
Centre d'Investigation Clinique (A.D., C.T., A.S., V.R.), CHU de
Toulouse, Toulouse, France; and Fondation Ophtalmologique Adolphe de Rothschild,
Paris, France (M.M.)
| | - Soren Christensen
- From the Institut de Bio-Imagerie IBIO (H.F., T.Y., V.D., T.T.),
CNRS, UMR-5287 (I.S., S.S.), and INSERM, Neurocentre Magendie, U1215 (V.D.,
T.T.), Université Bordeaux, 146 rue Léo Saignat, F-33000 Bordeaux
Cedex, France; Unité Neurovasculaire (I.S., S.O., S.S., P.R., M.P., S.D.)
and Neuroimagerie Diagnostique et Thérapeutique (G.M., V.D., T.T.), CHU
de Bordeaux, Bordeaux, France; Stanford Stroke Center, Stanford University,
Stanford, Calif (S.C., G.W.A.); Unité Neurovasculaire (N.R., J.F.A.,
L.C., A.V., J.M.O.), Service de Neuroradiologie (A.G., J.D., F.B., C.C.), and
Centre d'Investigation Clinique (A.D., C.T., A.S., V.R.), CHU de
Toulouse, Toulouse, France; and Fondation Ophtalmologique Adolphe de Rothschild,
Paris, France (M.M.)
| | - Nicolas Raposo
- From the Institut de Bio-Imagerie IBIO (H.F., T.Y., V.D., T.T.),
CNRS, UMR-5287 (I.S., S.S.), and INSERM, Neurocentre Magendie, U1215 (V.D.,
T.T.), Université Bordeaux, 146 rue Léo Saignat, F-33000 Bordeaux
Cedex, France; Unité Neurovasculaire (I.S., S.O., S.S., P.R., M.P., S.D.)
and Neuroimagerie Diagnostique et Thérapeutique (G.M., V.D., T.T.), CHU
de Bordeaux, Bordeaux, France; Stanford Stroke Center, Stanford University,
Stanford, Calif (S.C., G.W.A.); Unité Neurovasculaire (N.R., J.F.A.,
L.C., A.V., J.M.O.), Service de Neuroradiologie (A.G., J.D., F.B., C.C.), and
Centre d'Investigation Clinique (A.D., C.T., A.S., V.R.), CHU de
Toulouse, Toulouse, France; and Fondation Ophtalmologique Adolphe de Rothschild,
Paris, France (M.M.)
| | - Gaultier Marnat
- From the Institut de Bio-Imagerie IBIO (H.F., T.Y., V.D., T.T.),
CNRS, UMR-5287 (I.S., S.S.), and INSERM, Neurocentre Magendie, U1215 (V.D.,
T.T.), Université Bordeaux, 146 rue Léo Saignat, F-33000 Bordeaux
Cedex, France; Unité Neurovasculaire (I.S., S.O., S.S., P.R., M.P., S.D.)
and Neuroimagerie Diagnostique et Thérapeutique (G.M., V.D., T.T.), CHU
de Bordeaux, Bordeaux, France; Stanford Stroke Center, Stanford University,
Stanford, Calif (S.C., G.W.A.); Unité Neurovasculaire (N.R., J.F.A.,
L.C., A.V., J.M.O.), Service de Neuroradiologie (A.G., J.D., F.B., C.C.), and
Centre d'Investigation Clinique (A.D., C.T., A.S., V.R.), CHU de
Toulouse, Toulouse, France; and Fondation Ophtalmologique Adolphe de Rothschild,
Paris, France (M.M.)
| | - Jean-François Albucher
- From the Institut de Bio-Imagerie IBIO (H.F., T.Y., V.D., T.T.),
CNRS, UMR-5287 (I.S., S.S.), and INSERM, Neurocentre Magendie, U1215 (V.D.,
T.T.), Université Bordeaux, 146 rue Léo Saignat, F-33000 Bordeaux
Cedex, France; Unité Neurovasculaire (I.S., S.O., S.S., P.R., M.P., S.D.)
and Neuroimagerie Diagnostique et Thérapeutique (G.M., V.D., T.T.), CHU
de Bordeaux, Bordeaux, France; Stanford Stroke Center, Stanford University,
Stanford, Calif (S.C., G.W.A.); Unité Neurovasculaire (N.R., J.F.A.,
L.C., A.V., J.M.O.), Service de Neuroradiologie (A.G., J.D., F.B., C.C.), and
Centre d'Investigation Clinique (A.D., C.T., A.S., V.R.), CHU de
Toulouse, Toulouse, France; and Fondation Ophtalmologique Adolphe de Rothschild,
Paris, France (M.M.)
| | - Stéphane Olindo
- From the Institut de Bio-Imagerie IBIO (H.F., T.Y., V.D., T.T.),
CNRS, UMR-5287 (I.S., S.S.), and INSERM, Neurocentre Magendie, U1215 (V.D.,
T.T.), Université Bordeaux, 146 rue Léo Saignat, F-33000 Bordeaux
Cedex, France; Unité Neurovasculaire (I.S., S.O., S.S., P.R., M.P., S.D.)
and Neuroimagerie Diagnostique et Thérapeutique (G.M., V.D., T.T.), CHU
de Bordeaux, Bordeaux, France; Stanford Stroke Center, Stanford University,
Stanford, Calif (S.C., G.W.A.); Unité Neurovasculaire (N.R., J.F.A.,
L.C., A.V., J.M.O.), Service de Neuroradiologie (A.G., J.D., F.B., C.C.), and
Centre d'Investigation Clinique (A.D., C.T., A.S., V.R.), CHU de
Toulouse, Toulouse, France; and Fondation Ophtalmologique Adolphe de Rothschild,
Paris, France (M.M.)
| | - Lionel Calvière
- From the Institut de Bio-Imagerie IBIO (H.F., T.Y., V.D., T.T.),
CNRS, UMR-5287 (I.S., S.S.), and INSERM, Neurocentre Magendie, U1215 (V.D.,
T.T.), Université Bordeaux, 146 rue Léo Saignat, F-33000 Bordeaux
Cedex, France; Unité Neurovasculaire (I.S., S.O., S.S., P.R., M.P., S.D.)
and Neuroimagerie Diagnostique et Thérapeutique (G.M., V.D., T.T.), CHU
de Bordeaux, Bordeaux, France; Stanford Stroke Center, Stanford University,
Stanford, Calif (S.C., G.W.A.); Unité Neurovasculaire (N.R., J.F.A.,
L.C., A.V., J.M.O.), Service de Neuroradiologie (A.G., J.D., F.B., C.C.), and
Centre d'Investigation Clinique (A.D., C.T., A.S., V.R.), CHU de
Toulouse, Toulouse, France; and Fondation Ophtalmologique Adolphe de Rothschild,
Paris, France (M.M.)
| | - Sharmila Sagnier
- From the Institut de Bio-Imagerie IBIO (H.F., T.Y., V.D., T.T.),
CNRS, UMR-5287 (I.S., S.S.), and INSERM, Neurocentre Magendie, U1215 (V.D.,
T.T.), Université Bordeaux, 146 rue Léo Saignat, F-33000 Bordeaux
Cedex, France; Unité Neurovasculaire (I.S., S.O., S.S., P.R., M.P., S.D.)
and Neuroimagerie Diagnostique et Thérapeutique (G.M., V.D., T.T.), CHU
de Bordeaux, Bordeaux, France; Stanford Stroke Center, Stanford University,
Stanford, Calif (S.C., G.W.A.); Unité Neurovasculaire (N.R., J.F.A.,
L.C., A.V., J.M.O.), Service de Neuroradiologie (A.G., J.D., F.B., C.C.), and
Centre d'Investigation Clinique (A.D., C.T., A.S., V.R.), CHU de
Toulouse, Toulouse, France; and Fondation Ophtalmologique Adolphe de Rothschild,
Paris, France (M.M.)
| | - Alain Viguier
- From the Institut de Bio-Imagerie IBIO (H.F., T.Y., V.D., T.T.),
CNRS, UMR-5287 (I.S., S.S.), and INSERM, Neurocentre Magendie, U1215 (V.D.,
T.T.), Université Bordeaux, 146 rue Léo Saignat, F-33000 Bordeaux
Cedex, France; Unité Neurovasculaire (I.S., S.O., S.S., P.R., M.P., S.D.)
and Neuroimagerie Diagnostique et Thérapeutique (G.M., V.D., T.T.), CHU
de Bordeaux, Bordeaux, France; Stanford Stroke Center, Stanford University,
Stanford, Calif (S.C., G.W.A.); Unité Neurovasculaire (N.R., J.F.A.,
L.C., A.V., J.M.O.), Service de Neuroradiologie (A.G., J.D., F.B., C.C.), and
Centre d'Investigation Clinique (A.D., C.T., A.S., V.R.), CHU de
Toulouse, Toulouse, France; and Fondation Ophtalmologique Adolphe de Rothschild,
Paris, France (M.M.)
| | - Pauline Renou
- From the Institut de Bio-Imagerie IBIO (H.F., T.Y., V.D., T.T.),
CNRS, UMR-5287 (I.S., S.S.), and INSERM, Neurocentre Magendie, U1215 (V.D.,
T.T.), Université Bordeaux, 146 rue Léo Saignat, F-33000 Bordeaux
Cedex, France; Unité Neurovasculaire (I.S., S.O., S.S., P.R., M.P., S.D.)
and Neuroimagerie Diagnostique et Thérapeutique (G.M., V.D., T.T.), CHU
de Bordeaux, Bordeaux, France; Stanford Stroke Center, Stanford University,
Stanford, Calif (S.C., G.W.A.); Unité Neurovasculaire (N.R., J.F.A.,
L.C., A.V., J.M.O.), Service de Neuroradiologie (A.G., J.D., F.B., C.C.), and
Centre d'Investigation Clinique (A.D., C.T., A.S., V.R.), CHU de
Toulouse, Toulouse, France; and Fondation Ophtalmologique Adolphe de Rothschild,
Paris, France (M.M.)
| | - Adrien Guenego
- From the Institut de Bio-Imagerie IBIO (H.F., T.Y., V.D., T.T.),
CNRS, UMR-5287 (I.S., S.S.), and INSERM, Neurocentre Magendie, U1215 (V.D.,
T.T.), Université Bordeaux, 146 rue Léo Saignat, F-33000 Bordeaux
Cedex, France; Unité Neurovasculaire (I.S., S.O., S.S., P.R., M.P., S.D.)
and Neuroimagerie Diagnostique et Thérapeutique (G.M., V.D., T.T.), CHU
de Bordeaux, Bordeaux, France; Stanford Stroke Center, Stanford University,
Stanford, Calif (S.C., G.W.A.); Unité Neurovasculaire (N.R., J.F.A.,
L.C., A.V., J.M.O.), Service de Neuroradiologie (A.G., J.D., F.B., C.C.), and
Centre d'Investigation Clinique (A.D., C.T., A.S., V.R.), CHU de
Toulouse, Toulouse, France; and Fondation Ophtalmologique Adolphe de Rothschild,
Paris, France (M.M.)
| | - Mathilde Poli
- From the Institut de Bio-Imagerie IBIO (H.F., T.Y., V.D., T.T.),
CNRS, UMR-5287 (I.S., S.S.), and INSERM, Neurocentre Magendie, U1215 (V.D.,
T.T.), Université Bordeaux, 146 rue Léo Saignat, F-33000 Bordeaux
Cedex, France; Unité Neurovasculaire (I.S., S.O., S.S., P.R., M.P., S.D.)
and Neuroimagerie Diagnostique et Thérapeutique (G.M., V.D., T.T.), CHU
de Bordeaux, Bordeaux, France; Stanford Stroke Center, Stanford University,
Stanford, Calif (S.C., G.W.A.); Unité Neurovasculaire (N.R., J.F.A.,
L.C., A.V., J.M.O.), Service de Neuroradiologie (A.G., J.D., F.B., C.C.), and
Centre d'Investigation Clinique (A.D., C.T., A.S., V.R.), CHU de
Toulouse, Toulouse, France; and Fondation Ophtalmologique Adolphe de Rothschild,
Paris, France (M.M.)
| | - Jean Darcourt
- From the Institut de Bio-Imagerie IBIO (H.F., T.Y., V.D., T.T.),
CNRS, UMR-5287 (I.S., S.S.), and INSERM, Neurocentre Magendie, U1215 (V.D.,
T.T.), Université Bordeaux, 146 rue Léo Saignat, F-33000 Bordeaux
Cedex, France; Unité Neurovasculaire (I.S., S.O., S.S., P.R., M.P., S.D.)
and Neuroimagerie Diagnostique et Thérapeutique (G.M., V.D., T.T.), CHU
de Bordeaux, Bordeaux, France; Stanford Stroke Center, Stanford University,
Stanford, Calif (S.C., G.W.A.); Unité Neurovasculaire (N.R., J.F.A.,
L.C., A.V., J.M.O.), Service de Neuroradiologie (A.G., J.D., F.B., C.C.), and
Centre d'Investigation Clinique (A.D., C.T., A.S., V.R.), CHU de
Toulouse, Toulouse, France; and Fondation Ophtalmologique Adolphe de Rothschild,
Paris, France (M.M.)
| | - Sabrina Debruxelles
- From the Institut de Bio-Imagerie IBIO (H.F., T.Y., V.D., T.T.),
CNRS, UMR-5287 (I.S., S.S.), and INSERM, Neurocentre Magendie, U1215 (V.D.,
T.T.), Université Bordeaux, 146 rue Léo Saignat, F-33000 Bordeaux
Cedex, France; Unité Neurovasculaire (I.S., S.O., S.S., P.R., M.P., S.D.)
and Neuroimagerie Diagnostique et Thérapeutique (G.M., V.D., T.T.), CHU
de Bordeaux, Bordeaux, France; Stanford Stroke Center, Stanford University,
Stanford, Calif (S.C., G.W.A.); Unité Neurovasculaire (N.R., J.F.A.,
L.C., A.V., J.M.O.), Service de Neuroradiologie (A.G., J.D., F.B., C.C.), and
Centre d'Investigation Clinique (A.D., C.T., A.S., V.R.), CHU de
Toulouse, Toulouse, France; and Fondation Ophtalmologique Adolphe de Rothschild,
Paris, France (M.M.)
| | - Amel Drif
- From the Institut de Bio-Imagerie IBIO (H.F., T.Y., V.D., T.T.),
CNRS, UMR-5287 (I.S., S.S.), and INSERM, Neurocentre Magendie, U1215 (V.D.,
T.T.), Université Bordeaux, 146 rue Léo Saignat, F-33000 Bordeaux
Cedex, France; Unité Neurovasculaire (I.S., S.O., S.S., P.R., M.P., S.D.)
and Neuroimagerie Diagnostique et Thérapeutique (G.M., V.D., T.T.), CHU
de Bordeaux, Bordeaux, France; Stanford Stroke Center, Stanford University,
Stanford, Calif (S.C., G.W.A.); Unité Neurovasculaire (N.R., J.F.A.,
L.C., A.V., J.M.O.), Service de Neuroradiologie (A.G., J.D., F.B., C.C.), and
Centre d'Investigation Clinique (A.D., C.T., A.S., V.R.), CHU de
Toulouse, Toulouse, France; and Fondation Ophtalmologique Adolphe de Rothschild,
Paris, France (M.M.)
| | - Claire Thalamas
- From the Institut de Bio-Imagerie IBIO (H.F., T.Y., V.D., T.T.),
CNRS, UMR-5287 (I.S., S.S.), and INSERM, Neurocentre Magendie, U1215 (V.D.,
T.T.), Université Bordeaux, 146 rue Léo Saignat, F-33000 Bordeaux
Cedex, France; Unité Neurovasculaire (I.S., S.O., S.S., P.R., M.P., S.D.)
and Neuroimagerie Diagnostique et Thérapeutique (G.M., V.D., T.T.), CHU
de Bordeaux, Bordeaux, France; Stanford Stroke Center, Stanford University,
Stanford, Calif (S.C., G.W.A.); Unité Neurovasculaire (N.R., J.F.A.,
L.C., A.V., J.M.O.), Service de Neuroradiologie (A.G., J.D., F.B., C.C.), and
Centre d'Investigation Clinique (A.D., C.T., A.S., V.R.), CHU de
Toulouse, Toulouse, France; and Fondation Ophtalmologique Adolphe de Rothschild,
Paris, France (M.M.)
| | - Agnès Sommet
- From the Institut de Bio-Imagerie IBIO (H.F., T.Y., V.D., T.T.),
CNRS, UMR-5287 (I.S., S.S.), and INSERM, Neurocentre Magendie, U1215 (V.D.,
T.T.), Université Bordeaux, 146 rue Léo Saignat, F-33000 Bordeaux
Cedex, France; Unité Neurovasculaire (I.S., S.O., S.S., P.R., M.P., S.D.)
and Neuroimagerie Diagnostique et Thérapeutique (G.M., V.D., T.T.), CHU
de Bordeaux, Bordeaux, France; Stanford Stroke Center, Stanford University,
Stanford, Calif (S.C., G.W.A.); Unité Neurovasculaire (N.R., J.F.A.,
L.C., A.V., J.M.O.), Service de Neuroradiologie (A.G., J.D., F.B., C.C.), and
Centre d'Investigation Clinique (A.D., C.T., A.S., V.R.), CHU de
Toulouse, Toulouse, France; and Fondation Ophtalmologique Adolphe de Rothschild,
Paris, France (M.M.)
| | - Vanessa Rousseau
- From the Institut de Bio-Imagerie IBIO (H.F., T.Y., V.D., T.T.),
CNRS, UMR-5287 (I.S., S.S.), and INSERM, Neurocentre Magendie, U1215 (V.D.,
T.T.), Université Bordeaux, 146 rue Léo Saignat, F-33000 Bordeaux
Cedex, France; Unité Neurovasculaire (I.S., S.O., S.S., P.R., M.P., S.D.)
and Neuroimagerie Diagnostique et Thérapeutique (G.M., V.D., T.T.), CHU
de Bordeaux, Bordeaux, France; Stanford Stroke Center, Stanford University,
Stanford, Calif (S.C., G.W.A.); Unité Neurovasculaire (N.R., J.F.A.,
L.C., A.V., J.M.O.), Service de Neuroradiologie (A.G., J.D., F.B., C.C.), and
Centre d'Investigation Clinique (A.D., C.T., A.S., V.R.), CHU de
Toulouse, Toulouse, France; and Fondation Ophtalmologique Adolphe de Rothschild,
Paris, France (M.M.)
| | - Mikael Mazighi
- From the Institut de Bio-Imagerie IBIO (H.F., T.Y., V.D., T.T.),
CNRS, UMR-5287 (I.S., S.S.), and INSERM, Neurocentre Magendie, U1215 (V.D.,
T.T.), Université Bordeaux, 146 rue Léo Saignat, F-33000 Bordeaux
Cedex, France; Unité Neurovasculaire (I.S., S.O., S.S., P.R., M.P., S.D.)
and Neuroimagerie Diagnostique et Thérapeutique (G.M., V.D., T.T.), CHU
de Bordeaux, Bordeaux, France; Stanford Stroke Center, Stanford University,
Stanford, Calif (S.C., G.W.A.); Unité Neurovasculaire (N.R., J.F.A.,
L.C., A.V., J.M.O.), Service de Neuroradiologie (A.G., J.D., F.B., C.C.), and
Centre d'Investigation Clinique (A.D., C.T., A.S., V.R.), CHU de
Toulouse, Toulouse, France; and Fondation Ophtalmologique Adolphe de Rothschild,
Paris, France (M.M.)
| | - Fabrice Bonneville
- From the Institut de Bio-Imagerie IBIO (H.F., T.Y., V.D., T.T.),
CNRS, UMR-5287 (I.S., S.S.), and INSERM, Neurocentre Magendie, U1215 (V.D.,
T.T.), Université Bordeaux, 146 rue Léo Saignat, F-33000 Bordeaux
Cedex, France; Unité Neurovasculaire (I.S., S.O., S.S., P.R., M.P., S.D.)
and Neuroimagerie Diagnostique et Thérapeutique (G.M., V.D., T.T.), CHU
de Bordeaux, Bordeaux, France; Stanford Stroke Center, Stanford University,
Stanford, Calif (S.C., G.W.A.); Unité Neurovasculaire (N.R., J.F.A.,
L.C., A.V., J.M.O.), Service de Neuroradiologie (A.G., J.D., F.B., C.C.), and
Centre d'Investigation Clinique (A.D., C.T., A.S., V.R.), CHU de
Toulouse, Toulouse, France; and Fondation Ophtalmologique Adolphe de Rothschild,
Paris, France (M.M.)
| | - Gregory W. Albers
- From the Institut de Bio-Imagerie IBIO (H.F., T.Y., V.D., T.T.),
CNRS, UMR-5287 (I.S., S.S.), and INSERM, Neurocentre Magendie, U1215 (V.D.,
T.T.), Université Bordeaux, 146 rue Léo Saignat, F-33000 Bordeaux
Cedex, France; Unité Neurovasculaire (I.S., S.O., S.S., P.R., M.P., S.D.)
and Neuroimagerie Diagnostique et Thérapeutique (G.M., V.D., T.T.), CHU
de Bordeaux, Bordeaux, France; Stanford Stroke Center, Stanford University,
Stanford, Calif (S.C., G.W.A.); Unité Neurovasculaire (N.R., J.F.A.,
L.C., A.V., J.M.O.), Service de Neuroradiologie (A.G., J.D., F.B., C.C.), and
Centre d'Investigation Clinique (A.D., C.T., A.S., V.R.), CHU de
Toulouse, Toulouse, France; and Fondation Ophtalmologique Adolphe de Rothschild,
Paris, France (M.M.)
| | - Christophe Cognard
- From the Institut de Bio-Imagerie IBIO (H.F., T.Y., V.D., T.T.),
CNRS, UMR-5287 (I.S., S.S.), and INSERM, Neurocentre Magendie, U1215 (V.D.,
T.T.), Université Bordeaux, 146 rue Léo Saignat, F-33000 Bordeaux
Cedex, France; Unité Neurovasculaire (I.S., S.O., S.S., P.R., M.P., S.D.)
and Neuroimagerie Diagnostique et Thérapeutique (G.M., V.D., T.T.), CHU
de Bordeaux, Bordeaux, France; Stanford Stroke Center, Stanford University,
Stanford, Calif (S.C., G.W.A.); Unité Neurovasculaire (N.R., J.F.A.,
L.C., A.V., J.M.O.), Service de Neuroradiologie (A.G., J.D., F.B., C.C.), and
Centre d'Investigation Clinique (A.D., C.T., A.S., V.R.), CHU de
Toulouse, Toulouse, France; and Fondation Ophtalmologique Adolphe de Rothschild,
Paris, France (M.M.)
| | - Vincent Dousset
- From the Institut de Bio-Imagerie IBIO (H.F., T.Y., V.D., T.T.),
CNRS, UMR-5287 (I.S., S.S.), and INSERM, Neurocentre Magendie, U1215 (V.D.,
T.T.), Université Bordeaux, 146 rue Léo Saignat, F-33000 Bordeaux
Cedex, France; Unité Neurovasculaire (I.S., S.O., S.S., P.R., M.P., S.D.)
and Neuroimagerie Diagnostique et Thérapeutique (G.M., V.D., T.T.), CHU
de Bordeaux, Bordeaux, France; Stanford Stroke Center, Stanford University,
Stanford, Calif (S.C., G.W.A.); Unité Neurovasculaire (N.R., J.F.A.,
L.C., A.V., J.M.O.), Service de Neuroradiologie (A.G., J.D., F.B., C.C.), and
Centre d'Investigation Clinique (A.D., C.T., A.S., V.R.), CHU de
Toulouse, Toulouse, France; and Fondation Ophtalmologique Adolphe de Rothschild,
Paris, France (M.M.)
| | - Jean Marc Olivot
- From the Institut de Bio-Imagerie IBIO (H.F., T.Y., V.D., T.T.),
CNRS, UMR-5287 (I.S., S.S.), and INSERM, Neurocentre Magendie, U1215 (V.D.,
T.T.), Université Bordeaux, 146 rue Léo Saignat, F-33000 Bordeaux
Cedex, France; Unité Neurovasculaire (I.S., S.O., S.S., P.R., M.P., S.D.)
and Neuroimagerie Diagnostique et Thérapeutique (G.M., V.D., T.T.), CHU
de Bordeaux, Bordeaux, France; Stanford Stroke Center, Stanford University,
Stanford, Calif (S.C., G.W.A.); Unité Neurovasculaire (N.R., J.F.A.,
L.C., A.V., J.M.O.), Service de Neuroradiologie (A.G., J.D., F.B., C.C.), and
Centre d'Investigation Clinique (A.D., C.T., A.S., V.R.), CHU de
Toulouse, Toulouse, France; and Fondation Ophtalmologique Adolphe de Rothschild,
Paris, France (M.M.)
| | - Thomas Tourdias
- From the Institut de Bio-Imagerie IBIO (H.F., T.Y., V.D., T.T.),
CNRS, UMR-5287 (I.S., S.S.), and INSERM, Neurocentre Magendie, U1215 (V.D.,
T.T.), Université Bordeaux, 146 rue Léo Saignat, F-33000 Bordeaux
Cedex, France; Unité Neurovasculaire (I.S., S.O., S.S., P.R., M.P., S.D.)
and Neuroimagerie Diagnostique et Thérapeutique (G.M., V.D., T.T.), CHU
de Bordeaux, Bordeaux, France; Stanford Stroke Center, Stanford University,
Stanford, Calif (S.C., G.W.A.); Unité Neurovasculaire (N.R., J.F.A.,
L.C., A.V., J.M.O.), Service de Neuroradiologie (A.G., J.D., F.B., C.C.), and
Centre d'Investigation Clinique (A.D., C.T., A.S., V.R.), CHU de
Toulouse, Toulouse, France; and Fondation Ophtalmologique Adolphe de Rothschild,
Paris, France (M.M.)
| | | |
Collapse
|
13
|
Celebi U, Oztekin MF, Kucuk NO. Which is responsible for aphasia by subcortical lesions? Subcortical lesions or the cortical hypoperfusion? Neurol Res 2022; 44:1066-1073. [PMID: 35984244 DOI: 10.1080/01616412.2022.2112369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cerebral lesions causing aphasia involve morphological and functional changes. In this study, it was aimed to explain the connection between aphasia and subcortical lesions with SPECT. The study included 30 patients diagnosed in the first three days of stroke with a single hemorrhagic or ischemic lesion in the dominant hemisphere subcortical area. Gulhane Aphasia Test and SPECT were performed. Aphasia was detected in 19 cases (63.3%). The relationship between aphasia and perfusion dysfunction in cortical and subcortical regions of the brain was evaluated, aphasia was found to be present in 15 (71.4%) of the 21 patients with cortical hypoperfusion in the dominant hemisphere and 4 (44.4%) of the 9 patients without cortical hypoperfusion; the difference was not statistically significant (p = 0.16). In the ischemia group, aphasia was present in 11 (78.5%) of the 14 cases with cortical hypoperfusion in the dominant hemisphere. Aphasia wasn't detected in any of the 5 cases that did not have cortical hypoperfusion, the difference was statistically significant (p = 0.005). When cerebral regions were evaluated separately, significant difference was reported in the aphasia seen with frontal, anterior parietal, and occipital hypoperfusion compared to cases with normal perfusion in these areas, with p = 0.003, p = 0.021, and p = 0.004, respectively. This study showed that aphasia to be more common in cases with cortical hypoperfusion in the dominant hemisphere than in cases without hypoperfusion. Our results provide evidence that direct effect of the lesion in the basal ganglia on the development of aphasia is doubtful.
Collapse
Affiliation(s)
- Ulufer Celebi
- Department of Neurology, School of Medicine, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Mehmet Fevzi Oztekin
- Department of Neurology, School of Medicine, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Nuriye Ozlem Kucuk
- Nuclear Medicine Department, Ankara University, School of Medicine, Ankara, Turkey
| |
Collapse
|
14
|
Kristinsson S, Busby N, Rorden C, Newman-Norlund R, den Ouden DB, Magnusdottir S, Hjaltason H, Thors H, Hillis AE, Kjartansson O, Bonilha L, Fridriksson J. Brain age predicts long-term recovery in post-stroke aphasia. Brain Commun 2022; 4:fcac252. [PMID: 36267328 PMCID: PMC9576153 DOI: 10.1093/braincomms/fcac252] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/25/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
The association between age and language recovery in stroke remains unclear. Here, we used neuroimaging data to estimate brain age, a measure of structural integrity, and examined the extent to which brain age at stroke onset is associated with (i) cross-sectional language performance, and (ii) longitudinal recovery of language function, beyond chronological age alone. A total of 49 participants (age: 65.2 ± 12.2 years, 25 female) underwent routine clinical neuroimaging (T1) and a bedside evaluation of language performance (Bedside Evaluation Screening Test-2) at onset of left hemisphere stroke. Brain age was estimated from enantiomorphically reconstructed brain scans using a machine learning algorithm trained on a large sample of healthy adults. A subsample of 30 participants returned for follow-up language assessments at least 2 years after stroke onset. To account for variability in age at stroke, we calculated proportional brain age difference, i.e. the proportional difference between brain age and chronological age. Multiple regression models were constructed to test the effects of proportional brain age difference on language outcomes. Lesion volume and chronological age were included as covariates in all models. Accelerated brain age compared with age was associated with worse overall aphasia severity (F(1, 48) = 5.65, P = 0.022), naming (F(1, 48) = 5.13, P = 0.028), and speech repetition (F(1, 48) = 8.49, P = 0.006) at stroke onset. Follow-up assessments were carried out ≥2 years after onset; decelerated brain age relative to age was significantly associated with reduced overall aphasia severity (F(1, 26) = 5.45, P = 0.028) and marginally failed to reach statistical significance for auditory comprehension (F(1, 26) = 2.87, P = 0.103). Proportional brain age difference was not found to be associated with changes in naming (F(1, 26) = 0.23, P = 0.880) and speech repetition (F(1, 26) = 0.00, P = 0.978). Chronological age was only associated with naming performance at stroke onset (F(1, 48) = 4.18, P = 0.047). These results indicate that brain age as estimated based on routine clinical brain scans may be a strong biomarker for language function and recovery after stroke.
Collapse
Affiliation(s)
- Sigfus Kristinsson
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
| | - Natalie Busby
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
| | - Christopher Rorden
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | - Roger Newman-Norlund
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | - Dirk B den Ouden
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
- Department of Communication Sciences and Disorders, Columbia, SC 29208, USA
| | | | - Haukur Hjaltason
- Department of Medicine, University of Iceland, Reykjavik 00107, Iceland
- Department of Neurology, Landspitali University Hospital, Reykjavik 00101, Iceland
| | - Helga Thors
- Department of Medicine, University of Iceland, Reykjavik 00107, Iceland
| | - Argye E Hillis
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MA 21218, USA
| | - Olafur Kjartansson
- Department of Neurology, Landspitali University Hospital, Reykjavik 00101, Iceland
| | - Leonardo Bonilha
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Julius Fridriksson
- Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29208, USA
- Department of Communication Sciences and Disorders, Columbia, SC 29208, USA
| |
Collapse
|
15
|
Liu J, Wang C, Qin W, Ding H, Peng Y, Guo J, Han T, Cheng J, Yu C. Cortical structural changes after subcortical stroke: Patterns and correlates. Hum Brain Mapp 2022; 44:727-743. [PMID: 36189822 PMCID: PMC9842916 DOI: 10.1002/hbm.26095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 01/25/2023] Open
Abstract
Subcortical ischemic stroke can lead to persistent structural changes in the cerebral cortex. The evolution of cortical structural changes after subcortical stroke is largely unknown, as are their relations with motor recovery, lesion location, and early impairment of specific subsets of fibers in the corticospinal tract (CST). In this observational study, cortical structural changes were compared between 181 chronic patients with subcortical stroke involving the motor pathway and 113 healthy controls. The impacts of acute lesion location and early impairments of specific CSTs on cortical structural changes were investigated in the patients by combining voxel-based correlation analysis with an association study that compared CST damage and cortical structural changes. Longitudinal patterns of cortical structural change were explored in a group of 81 patients with subcortical stroke using a linear mixed-effects model. In the cross-sectional analyses, patients with partial recovery showed more significant reductions in cortical thickness, surface area, or gray matter volume in the sensorimotor cortex, cingulate gyrus, and gyrus rectus than did patients with complete recovery; however, patients with complete recovery demonstrated more significant increases in the cortical structural measures in frontal, temporal, and occipital regions than did patients with partial recovery. Voxel-based correlation analysis in these patients showed that acute stroke lesions involving the CST fibers originating from the primary motor cortex were associated with cortical thickness reductions in the ipsilesional motor cortex in the chronic stage. Acute stroke lesions in the putamen were correlated with increased surface area in the temporal pole in the chronic stage. The early impairment of the CST fibers originating from the primary sensory area was associated with increased cortical thickness in the occipital cortex. In the longitudinal analyses, patients with partial recovery showed gradually reduced cortical thickness, surface area, and gray matter volume in brain regions with significant structural damage in the chronic stage. Patients with complete recovery demonstrated gradually increasing cortical thickness, surface area, and gray-matter volume in the frontal, temporal, and occipital regions. The directions of slow structural changes in the frontal, occipital, and cingulate cortices were completely different between patients with partial and complete recovery. Complex cortical structural changes and their dynamic evolution patterns were different, even contrasting, in patients with partial and complete recovery, and were associated with lesion location and with impairment of specific CST fiber subsets.
Collapse
Affiliation(s)
- Jingchun Liu
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Caihong Wang
- Department of MRIThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Hao Ding
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina,School of Medical ImagingTianjin Medical UniversityTianjinChina
| | - Yanmin Peng
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina,School of Medical ImagingTianjin Medical UniversityTianjinChina
| | - Jun Guo
- Department of RadiologyTianjin Huanhu HospitalTianjinChina
| | - Tong Han
- Department of RadiologyTianjin Huanhu HospitalTianjinChina
| | - Jingliang Cheng
- Department of MRIThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina,CAS Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghaiChina
| |
Collapse
|
16
|
Billot A, Thiebaut de Schotten M, Parrish TB, Thompson CK, Rapp B, Caplan D, Kiran S. Structural disconnections associated with language impairments in chronic post-stroke aphasia using disconnectome maps. Cortex 2022; 155:90-106. [PMID: 35985126 PMCID: PMC9623824 DOI: 10.1016/j.cortex.2022.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/14/2021] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
Inconsistent findings have been reported about the impact of structural disconnections on language function in post-stroke aphasia. This study investigated patterns of structural disconnections associated with chronic language impairments using disconnectome maps. Seventy-six individuals with post-stroke aphasia underwent a battery of language assessments and a structural MRI scan. Support-vector regression disconnectome-symptom mapping analyses were performed to examine the correlations between disconnectome maps, representing the probability of disconnection at each white matter voxel and different language scores. To further understand whether significant disconnections were primarily representing focal damage or a more extended network of seemingly preserved but disconnected areas beyond the lesion site, results were qualitatively compared to support-vector regression lesion-symptom mapping analyses. Part of the left white matter perisylvian network was similarly disconnected in 90% of the individuals with aphasia. Surrounding this common left perisylvian disconnectome, specific structural disconnections in the left fronto-temporo-parietal network were significantly associated with aphasia severity and with lower performance in auditory comprehension, syntactic comprehension, syntactic production, repetition and naming tasks. Auditory comprehension, repetition and syntactic processing deficits were related to disconnections in areas that overlapped with and extended beyond lesion sites significant in SVR-LSM analyses. In contrast, overall language abilities as measured by aphasia severity and naming seemed to be mostly explained by focal damage at the level of the insular and central opercular cortices, given the high overlap between SVR-DSM and SVR-LSM results for these scores. While focal damage seems to be sufficient to explain broad measures of language performance, the structural disconnections between language areas provide additional information on the neural basis of specific and persistent language impairments at the chronic stage beyond lesion volume. Leveraging routinely available clinical data, disconnectome mapping furthers our understanding of anatomical connectivity constraints that may limit the recovery of some language abilities in chronic post-stroke aphasia.
Collapse
Affiliation(s)
- Anne Billot
- Sargent College of Health & Rehabilitation Sciences, Boston University, Boston, MA, USA; School of Medicine, Boston University, Boston, MA, USA.
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Todd B Parrish
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Cynthia K Thompson
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Brenda Rapp
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA
| | - David Caplan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Swathi Kiran
- Sargent College of Health & Rehabilitation Sciences, Boston University, Boston, MA, USA
| |
Collapse
|
17
|
Yu M, Song Y, Liu J. The posterior middle temporal gyrus serves as a hub in syntactic comprehension: A model on the syntactic neural network. BRAIN AND LANGUAGE 2022; 232:105162. [PMID: 35908340 DOI: 10.1016/j.bandl.2022.105162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/18/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Neuroimaging studies have revealed a distributed neural network involving multiple fronto-temporal regions that are active during syntactic processing. Here, we investigated how these regions work collaboratively to support syntactic comprehension by examining the behavioral relevance of the global functional integration of the syntax network (SN). We found that individuals with a stronger resting-state within-network integration in the left posterior middle temporal gyrus (lpMTG) were better at syntactic comprehension. Furthermore, the pair-wise functional connectivity between the lpMTG and the Broca's area, the middle frontal gyrus, and the angular and supramarginal gyri was positively correlated with participants' syntactic processing ability. In short, our study reveals the behavioral significance of intrinsic functional integration of the SN in syntactic comprehension, and provides empirical evidence for the hub-like role of the lpMTG. We proposed a neural model for syntactic comprehension highlighting the hub of the SN and its interactions with other regions in the network.
Collapse
Affiliation(s)
- Mengxia Yu
- Bilingual Cognition and Development Lab, Center for Linguistics and Applied Linguistics, Guangdong University of Foreign Studies, Guangzhou 510420, China
| | - Yiying Song
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing 100875, China.
| | - Jia Liu
- Department of Psychology & Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Meier EL, Kelly CR, Hillis AE. Dissociable language and executive control deficits and recovery in post-stroke aphasia: An exploratory observational and case series study. Neuropsychologia 2022; 172:108270. [PMID: 35597266 PMCID: PMC9728463 DOI: 10.1016/j.neuropsychologia.2022.108270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 04/30/2022] [Accepted: 05/13/2022] [Indexed: 01/04/2023]
Abstract
A growing body of evidence indicates many, but not all, individuals with post-stroke aphasia experience executive dysfunction. Relationships between language and executive function skills are often reported in the literature, but the degree of interdependence between these abilities remains largely unanswered. Therefore, in this study, we investigated the extent to which language and executive control deficits dissociated in 1) acute stroke and 2) longitudinal aphasia recovery. Twenty-three individuals admitted to Johns Hopkins Hospital with a new left hemisphere stroke completed the Western Aphasia Battery-Revised (WAB-R), several additional language measures (of naming, semantics, spontaneous speech, and oral reading), and three non-linguistic cognitive tasks from the NIH Toolbox (i.e., Pattern Comparison Processing Speed Test, Flanker Inhibitory Control and Attention Test, and Dimensional Change Card Sort Test). Two participants with aphasia (PWA) with temporoparietal lesions, one of whom (PWA1) had greater temporal but less frontal and superior parietal damage than the other (PWA2), also completed testing at subacute (three months post-onset) and early chronic (six months post-onset) time points. In aim 1, principal component analysis on the acute test data (excluding the WAB-R) revealed language and non-linguistic executive control tasks largely loaded onto separate components. Both components were significant predictors of acute aphasia severity per the WAB-R Aphasia Quotient (AQ). Crucially, executive dysfunction explained an additional 17% of the variance in AQ beyond the explanatory power of language impairments alone. In aim 2, both case patients exhibited language and executive control deficits at the acute post-stroke stage. A dissociation was observed in longitudinal recovery of these patients. By the early chronic time point, PWA1 exhibited improved (but persistent) deficits in several language domains and recovered executive control. In contrast, PWA2 demonstrated mostly recovered language but persistent executive dysfunction. Greater damage to language and attention networks in these respective patients may explain the observed behavioral patterns. These results demonstrate that language and executive control can dissociate (at least to a degree), but both contribute to early post-stroke presentation of aphasia and likely influence longitudinal aphasia recovery.
Collapse
Affiliation(s)
| | | | - Argye E Hillis
- Department of Neurology, USA; Physical Medicine and Rehabilitation, USA; Cognitive Science, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
19
|
Integrity of the Left Arcuate Fasciculus Segments Significantly Affects Language Performance in Individuals with Acute/Subacute Post-Stroke Aphasia: A Cross-Sectional Diffusion Tensor Imaging Study. Brain Sci 2022; 12:brainsci12070907. [PMID: 35884714 PMCID: PMC9313217 DOI: 10.3390/brainsci12070907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 01/05/2023] Open
Abstract
Objective: To investigate the correlation between the left arcuate fasciculus (AF) segments and acute/subacute post-stroke aphasia (PSA). Methods: Twenty-six patients underwent language assessment and MRI scanning. The integrity of the AF based on a three-segment model was evaluated using diffusion tensor imaging. All patients were classified into three groups according to the reconstruction of the left AF: completely reconstructed (group A, 8 cases), non-reconstructed (group B, 6 cases), and partially reconstructed (group C, 12 cases). The correlations and intergroup differences in language performance and diffusion indices were comprehensively estimated. Results: A correlation analyses showed that the lesion load of the language areas and diffusion indices on the left AF posterior and long segments was significantly related to some language subsets, respectively. When controlled lesion load was variable, significant correlations between diffusion indices on the posterior and long segments and comprehension, repetition, naming, and aphasia quotient were retained. Multiple comparison tests revealed intergroup differences in diffusion indices on the left AF posterior and long segments, as well as these language subsets. No significant correlation was found between the anterior segment and language performance. Conclusions: The integrity of the left AF segments, particularly the posterior segment, is crucial for the residual comprehension and repetition abilities in individuals with acute/subacute PSA, and lesion load in cortical language areas is an important factor that should be taken into account when illustrating the contributions of damage to special fiber tracts to language impairments.
Collapse
|
20
|
Matchin W, den Ouden DB, Hickok G, Hillis AE, Bonilha L, Fridriksson J. The Wernicke conundrum revisited: evidence from connectome-based lesion-symptom mapping. Brain 2022; 145:3916-3930. [PMID: 35727949 DOI: 10.1093/brain/awac219] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Wernicke's area has been assumed since the 1800s to be the primary region supporting word and sentence comprehension. However, in 2015 and 2019, Mesulam and colleagues raised what they termed the 'Wernicke conundrum', noting widespread variability in the anatomical definition of this area and presenting data from primary progressive aphasia that challenged this classical assumption. To resolve the conundrum, they posited a 'double disconnection' hypothesis: that word and sentence comprehension deficits in stroke-based aphasia result from disconnection of anterior temporal and inferior frontal regions from other parts of the brain due to white matter damage, rather than dysfunction of Wernicke's area itself. To test this hypothesis, we performed lesion-deficit correlations, including connectome-based lesion-symptom mapping, in four large, partially overlapping groups of English-speaking chronic left hemisphere stroke survivors. After removing variance due to object recognition and associative semantic processing, the same middle and posterior temporal lobe regions were implicated in both word comprehension deficits and complex noncanonical sentence comprehension deficits. Connectome lesion-symptom mapping revealed similar temporal-occipital white matter disconnections for impaired word and noncanonical sentence comprehension, including the temporal pole. We found an additional significant temporal-parietal disconnection for noncanonical sentence comprehension deficits, which may indicate a role for phonological working memory in processing complex syntax, but no significant frontal disconnections. Moreover, damage to these middle-posterior temporal lobe regions was associated with both word and noncanonical sentence comprehension deficits even when accounting for variance due to the strongest anterior temporal and inferior frontal white matter disconnections, respectively. Our results largely agree with the classical notion that Wernicke's area, defined here as middle superior temporal gyrus and middle-posterior superior temporal sulcus, supports both word and sentence comprehension, suggest a supporting role for temporal pole in both word and sentence comprehension, and speak against the hypothesis that comprehension deficits in Wernicke's aphasia result from double disconnection.
Collapse
Affiliation(s)
- William Matchin
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Dirk Bart den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Department of Language Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA.,Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA.,Department of Cognitive Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Leonardo Bonilha
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
21
|
Riccardi N, Rorden C, Fridriksson J, Desai RH. Canonical Sentence Processing and the Inferior Frontal Cortex: Is There a Connection? NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:318-344. [PMID: 37215558 PMCID: PMC10158581 DOI: 10.1162/nol_a_00067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 01/21/2022] [Indexed: 05/24/2023]
Abstract
The role of left inferior frontal cortex (LIFC) in canonical sentence comprehension is controversial. Many studies have found involvement of LIFC in sentence production or complex sentence comprehension, but negative or mixed results are often found in comprehension of simple or canonical sentences. We used voxel-, region-, and connectivity-based lesion symptom mapping (VLSM, RLSM, CLSM) in left-hemisphere chronic stroke survivors to investigate canonical sentence comprehension while controlling for lexical-semantic, executive, and phonological processes. We investigated how damage and disrupted white matter connectivity of LIFC and two other language-related regions, the left anterior temporal lobe (LATL) and posterior temporal-inferior parietal area (LpT-iP), affected sentence comprehension. VLSM and RLSM revealed that LIFC damage was not associated with canonical sentence comprehension measured by a sensibility judgment task. LIFC damage was associated instead with impairments in a lexical semantic similarity judgment task with high semantic/executive demands. Damage to the LpT-iP, specifically posterior middle temporal gyrus (pMTG), predicted worse sentence comprehension after controlling for visual lexical access, semantic knowledge, and auditory-verbal short-term memory (STM), but not auditory single-word comprehension, suggesting pMTG is vital for auditory language comprehension. CLSM revealed that disruption of left-lateralized white-matter connections from LIFC to LATL and LpT-iP was associated with worse sentence comprehension, controlling for performance in tasks related to lexical access, auditory word comprehension, and auditory-verbal STM. However, the LIFC connections were accounted for by the lexical semantic similarity judgment task, which had high semantic/executive demands. This suggests that LIFC connectivity is relevant to canonical sentence comprehension when task-related semantic/executive demands are high.
Collapse
Affiliation(s)
- Nicholas Riccardi
- Department of Psychology, University of South Carolina, Columbia, SC
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC
- Institute for Mind and Brain, University of South Carolina, Columbia, SC
| | - Julius Fridriksson
- Institute for Mind and Brain, University of South Carolina, Columbia, SC
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC
| | - Rutvik H. Desai
- Department of Psychology, University of South Carolina, Columbia, SC
- Institute for Mind and Brain, University of South Carolina, Columbia, SC
| |
Collapse
|
22
|
Matchin W, Basilakos A, Ouden DBD, Stark BC, Hickok G, Fridriksson J. Functional differentiation in the language network revealed by lesion-symptom mapping. Neuroimage 2022; 247:118778. [PMID: 34896587 PMCID: PMC8830186 DOI: 10.1016/j.neuroimage.2021.118778] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/17/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Theories of language organization in the brain commonly posit that different regions underlie distinct linguistic mechanisms. However, such theories have been criticized on the grounds that many neuroimaging studies of language processing find similar effects across regions. Moreover, condition by region interaction effects, which provide the strongest evidence of functional differentiation between regions, have rarely been offered in support of these theories. Here we address this by using lesion-symptom mapping in three large, partially-overlapping groups of aphasia patients with left hemisphere brain damage due to stroke (N = 121, N = 92, N = 218). We identified multiple measure by region interaction effects, associating damage to the posterior middle temporal gyrus with syntactic comprehension deficits, damage to posterior inferior frontal gyrus with expressive agrammatism, and damage to inferior angular gyrus with semantic category word fluency deficits. Our results are inconsistent with recent hypotheses that regions of the language network are undifferentiated with respect to high-level linguistic processing.
Collapse
Affiliation(s)
- William Matchin
- Department of Communication Sciences and Disorders, University of South Carolina, Discovery 1, Room 202D, 915 Greene St., Columbia, SC 29208, United States.
| | - Alexandra Basilakos
- Department of Communication Sciences and Disorders, University of South Carolina, Discovery 1, Room 202D, 915 Greene St., Columbia, SC 29208, United States
| | - Dirk-Bart den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Discovery 1, Room 202D, 915 Greene St., Columbia, SC 29208, United States
| | - Brielle C Stark
- Department of Speech and Hearing Sciences, Program in Neuroscience, Indiana University Bloomington, Bloomington, Indiana, United States
| | - Gregory Hickok
- Department of Cognitive Sciences, Department of Language Science, University of California, Irvine, California, United States
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Discovery 1, Room 202D, 915 Greene St., Columbia, SC 29208, United States
| |
Collapse
|
23
|
Sheppard SM, Meier EL, Kim KT, Breining BL, Keator LM, Tang B, Caffo BS, Hillis AE. Neural correlates of syntactic comprehension: A longitudinal study. BRAIN AND LANGUAGE 2022; 225:105068. [PMID: 34979477 PMCID: PMC9232253 DOI: 10.1016/j.bandl.2021.105068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Broca's area is frequently implicated in sentence comprehension but its specific role is debated. Most lesion studies have investigated deficits at the chronic stage. We aimed (1) to use acute imaging to predict which left hemisphere stroke patients will recover sentence comprehension; and (2) to better understand the role of Broca's area in sentence comprehension by investigating acute deficits prior to functional reorganization. We assessed comprehension of canonical and noncanonical sentences in 15 patients with left hemisphere stroke at acute and chronic stages. LASSO regression was used to conduct lesion symptom mapping analyses. Patients with more severe word-level comprehension deficits and a greater proportion of damage to supramarginal gyrus and superior longitudinal fasciculus were likely to experience acute deficits prior to functional reorganization. Broca's area was only implicated in chronic deficits. We propose that when temporoparietal regions are damaged, intact Broca's area can support syntactic processing after functional reorganization occurs.
Collapse
Affiliation(s)
- Shannon M Sheppard
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; Department of Communication Sciences & Disorders, Chapman University, Irvine, CA 92618, United States.
| | - Erin L Meier
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Kevin T Kim
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Bonnie L Breining
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Lynsey M Keator
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Bohao Tang
- Department of Biostatics, Johns Hopkins School of Public Health, Baltimore, MD 21287, United States
| | - Brian S Caffo
- Department of Biostatics, Johns Hopkins School of Public Health, Baltimore, MD 21287, United States
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; Department of Cognitive Science, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, United States
| |
Collapse
|
24
|
Cassarly C, Doyle A, Ly T, Horn J, Aitchison M, Elm J, Fridriksson J, Bonilha L. Speech Entrainment for Aphasia Recovery (SpARc) phase II trial design. Contemp Clin Trials Commun 2021; 24:100876. [PMID: 34841125 PMCID: PMC8606333 DOI: 10.1016/j.conctc.2021.100876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/19/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022] Open
Abstract
Background and purpose: Speech entrainment therapy (SET) is a computerized therapeutic approach that involves mimicking an audiovisual speech model to improve speech production. In a pilot study using SET for treatment of post-stroke non-fluent aphasia, significant gains were achieved in verbs per minute (VPM) during discourse using untrained items 1 and 6 weeks after treatment, suggesting that SET may yield meaningful improvements in fluent spontaneous speech for individuals with non-fluent aphasia. Methods The Speech Entrainment for Aphasia Recovery (SpARc) trial is a prospective, randomized, assessor-blinded, multicenter phase II clinical trial studying persons with chronic post-stroke non-fluent aphasia. Participants will be randomized to 3 weeks, 4.5 weeks, or 6 weeks of SET delivered via telehealth or a no SET control condition for 6 weeks. 80 adults (ages 21–81) with history of left hemisphere ischemic or hemorrhagic stroke with residual chronic (>6 months post stroke) non-fluent aphasia diagnosed by the Western Aphasia Battery-Revised (WAB-R) will be randomized (1:1:1:1) over 4 years. The trial will be conducted at the clinical research facilities at three sites: the Medical University of South Carolina, the University of South Carolina, and the University of Utah. Conclusions This paper details the trial design of the SpARc trial, which aims to determine the dose of SET that will generate the highest effect size on speech fluency, VPM, sustained at 3 months post-treatment compared to a no SET control arm, for individuals with chronic post-stroke non-fluent aphasia to permit a future definitive trial to test the clinical utility of SET.
Collapse
Affiliation(s)
- Christy Cassarly
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Anna Doyle
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Trinh Ly
- National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA
| | - Janet Horn
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA
| | - Mary Aitchison
- Department of Communications Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Jordan Elm
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Julius Fridriksson
- Department of Communications Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
25
|
LaCroix AN, James E, Rogalsky C. Neural Resources Supporting Language Production vs. Comprehension in Chronic Post-stroke Aphasia: A Meta-Analysis Using Activation Likelihood Estimates. Front Hum Neurosci 2021; 15:680933. [PMID: 34759804 PMCID: PMC8572938 DOI: 10.3389/fnhum.2021.680933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/22/2021] [Indexed: 02/04/2023] Open
Abstract
In post-stroke aphasia, language tasks recruit a combination of residual regions within the canonical language network, as well as regions outside of it in the left and right hemispheres. However, there is a lack of consensus as to how the neural resources engaged by language production and comprehension following a left hemisphere stroke differ from one another and from controls. The present meta-analysis used activation likelihood estimates to aggregate across 44 published fMRI and PET studies to characterize the functional reorganization patterns for expressive and receptive language processes in persons with chronic post-stroke aphasia (PWA). Our results in part replicate previous meta-analyses: we find that PWA activate residual regions within the left lateralized language network, regardless of task. Our results extend this work to show differential recruitment of the left and right hemispheres during language production and comprehension in PWA. First, we find that PWA engage left perilesional regions during language comprehension, and that the extent of this activation is likely driven by stimulus type and domain-general cognitive resources needed for task completion. In contrast to comprehension, language production was associated with activation of the right frontal and temporal cortices. Further analyses linked right hemisphere regions involved in motor speech planning for language production with successful naming in PWA, while unsuccessful naming was associated with the engagement of the right inferior frontal gyrus, a region often implicated in domain-general cognitive processes. While the within-group findings indicate that the engagement of the right hemisphere during language tasks in post-stroke aphasia differs for expressive vs. receptive tasks, the overall lack of major between-group differences between PWA and controls implies that PWA rely on similar cognitive-linguistic resources for language as controls. However, more studies are needed that report coordinates for PWA and controls completing the same tasks in order for future meta-analyses to characterize how aphasia affects the neural resources engaged during language, particularly for specific tasks and as a function of behavioral performance.
Collapse
Affiliation(s)
- Arianna N LaCroix
- College of Health Sciences, Midwestern University, Glendale, AZ, United States
| | - Eltonnelle James
- College of Health Sciences, Midwestern University, Glendale, AZ, United States
| | - Corianne Rogalsky
- College of Health Solutions, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
26
|
Gleichgerrcht E, Roth R, Fridriksson J, den Ouden D, Delgaizo J, Stark B, Hickok G, Rorden C, Wilmskoetter J, Hillis A, Bonilha L. Neural bases of elements of syntax during speech production in patients with aphasia. BRAIN AND LANGUAGE 2021; 222:105025. [PMID: 34555689 PMCID: PMC8546356 DOI: 10.1016/j.bandl.2021.105025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
The ability to string together words into a structured arrangement capable of conveying nuanced information is key to speech production. The assessment of the neural bases for structuring sentences has been challenged by the need of experts to delineate the aberrant morphosyntactic structures in aphasic speech. Most studies have relied on focused tasks with limited ecological validity. We characterized syntactic complexity during connected speech produced by patients with chronic post-stroke aphasia. We automated this process by employing Natural Language Processing (NLP). We conducted voxel-based and connectome-based lesion-symptom mapping to identify brain regions crucially associated with sentence production and syntactic complexity. Posterior-inferior aspects of left frontal and parietal lobes, as well as white matter tracts connecting these areas, were essential for syntactic complexity, particularly the posterior inferior frontal gyrus. These findings suggest that sentence structuring during word production depends on the integrity of Broca's area and the dorsal stream of language processing.
Collapse
Affiliation(s)
| | - Rebecca Roth
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Dirk den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - John Delgaizo
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Brielle Stark
- Department of Speech and Hearing Sciences, Indiana University, Bloomington, IN, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, University of California, Irvine, CA, USA
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Janina Wilmskoetter
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Argye Hillis
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
27
|
Lwi SJ, Herron TJ, Curran BC, Ivanova MV, Schendel K, Dronkers NF, Baldo JV. Auditory Comprehension Deficits in Post-stroke Aphasia: Neurologic and Demographic Correlates of Outcome and Recovery. Front Neurol 2021; 12:680248. [PMID: 34456845 PMCID: PMC8397517 DOI: 10.3389/fneur.2021.680248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022] Open
Abstract
Introduction: One of the most challenging symptoms of aphasia is an impairment in auditory comprehension. The inability to understand others has a direct impact on a person's quality of life and ability to benefit from treatment. Despite its importance, limited research has examined the recovery pattern of auditory comprehension and instead has focused on aphasia recovery more generally. Thus, little is known about the time frame for auditory comprehension recovery following stroke, and whether specific neurologic and demographic variables contribute to recovery and outcome. Methods: This study included 168 left hemisphere chronic stroke patients stroke patients with auditory comprehension impairments ranging from mild to severe. Univariate and multivariate lesion-symptom mapping (LSM) was used to identify brain regions associated with auditory comprehension outcomes on three different tasks: Single-word comprehension, yes/no sentence comprehension, and comprehension of sequential commands. Demographic variables (age, gender, and education) were also examined for their role in these outcomes. In a subset of patients who completed language testing at two or more time points, we also analyzed the trajectory of recovery in auditory comprehension using survival curve-based time compression. Results: LSM analyses revealed that poor single-word auditory comprehension was associated with lesions involving the left mid- to posterior middle temporal gyrus, and portions of the angular and inferior-middle occipital gyri. Poor yes/no sentence comprehension was associated almost exclusively with the left mid-posterior middle temporal gyrus. Poor comprehension of sequential commands was associated with lesions in the left posterior middle temporal gyrus. There was a small region of convergence between the three comprehension tasks, in the very posterior portion of the left middle temporal gyrus. The recovery analysis revealed that auditory comprehension scores continued to improve beyond the first year post-stroke. Higher education was associated with better outcome on all auditory comprehension tasks. Age and gender were not associated with outcome or recovery slopes. Conclusions: The current findings suggest a critical role for the posterior left middle temporal gyrus in the recovery of auditory comprehension following stroke, and that spontaneous recovery of auditory comprehension can continue well beyond the first year post-stroke.
Collapse
Affiliation(s)
- Sandy J Lwi
- Veterans Affairs Northern California Health Care System, Martinez, CA, United States
| | - Timothy J Herron
- Veterans Affairs Northern California Health Care System, Martinez, CA, United States
| | - Brian C Curran
- Veterans Affairs Northern California Health Care System, Martinez, CA, United States
| | - Maria V Ivanova
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Krista Schendel
- Veterans Affairs Northern California Health Care System, Martinez, CA, United States
| | - Nina F Dronkers
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Juliana V Baldo
- Veterans Affairs Northern California Health Care System, Martinez, CA, United States
| |
Collapse
|
28
|
Herlin B, Navarro V, Dupont S. The temporal pole: From anatomy to function-A literature appraisal. J Chem Neuroanat 2021; 113:101925. [PMID: 33582250 DOI: 10.1016/j.jchemneu.2021.101925] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/22/2022]
Abstract
Historically, the anterior part of the temporal lobe was labelled as a unique structure named Brain Area 38 by Brodmann or Temporopolar Area TG by Von Economo, but its functions were unknown at that time. Later on, a few studies proposed to divide the temporal pole in several different subparts, based on distinct cytoarchitectural structure or connectivity patterns, while a still growing number of studies have associated the temporal pole with many cognitive functions. In this review, we provide an overview of the temporal pole anatomical and histological structure and its various functions. We performed a literature review of articles published prior to September 30, 2020 that included 112 articles. The temporal pole has thereby been associated with several high-level cognitive processes: visual processing for complex objects and face recognition, autobiographic memory, naming and word-object labelling, semantic processing in all modalities, and socio-emotional processing, as demonstrated in healthy subjects and in patients with neurological or psychiatric diseases, especially in the field of neurodegenerative disorders. A good knowledge of those functions and the symptoms associated with temporal pole lesions or dysfunctions is helpful to identify these diseases, whose diagnosis may otherwise be difficult.
Collapse
Affiliation(s)
- Bastien Herlin
- APHP Pitie-Salpêtrière-Charles-Foix, Epileptology Unit, Paris, France.
| | - Vincent Navarro
- APHP Pitie-Salpêtrière-Charles-Foix, Epileptology Unit, Paris, France; Sorbonne University, UPMC, Paris, France; APHP Pitie-Salpêtrière-Charles-Foix, Neurophysiology Unit, Paris, France; Brain and Spine Institute (INSERM UMRS1127, CNRS UMR7225, UPMC), Paris, France
| | - Sophie Dupont
- APHP Pitie-Salpêtrière-Charles-Foix, Epileptology Unit, Paris, France; Sorbonne University, UPMC, Paris, France; Brain and Spine Institute (INSERM UMRS1127, CNRS UMR7225, UPMC), Paris, France; APHP Pitie-Salpêtrière-Charles-Foix, Rehabilitation Unit, Paris, France
| |
Collapse
|
29
|
Morshed RA, Young JS, Lee AT, Berger MS, Hervey-Jumper SL. Clinical Pearls and Methods for Intraoperative Awake Language Mapping. Neurosurgery 2020; 89:143-153. [PMID: 33289505 DOI: 10.1093/neuros/nyaa440] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022] Open
Abstract
Intraoperative language mapping of tumor and peritumor tissue is a well-established technique for avoiding permanent neurological deficits and maximizing extent of resection. Although there are several components of language that may be tested intraoperatively (eg, naming, writing, reading, and repetition), there is a lack of consistency in how patients are tested intraoperatively as well as the techniques involved to ensure safety during an awake procedure. Here, we review appropriate patient selection, neuroanesthetic techniques, cortical and subcortical language mapping stimulation paradigms, and selection of intraoperative language tasks used during awake craniotomies. We also expand on existing language mapping reviews by considering how intensity and timing of electrical stimulation may impact interpretation of mapping results.
Collapse
|
30
|
Iwabuchi T, Makuuchi M. When a sentence loses semantics: Selective involvement of a left anterior temporal subregion in semantic processing. Eur J Neurosci 2020; 53:929-942. [PMID: 33103315 DOI: 10.1111/ejn.15022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 11/28/2022]
Abstract
Although the left anterior temporal lobe (ATL) has been associated with semantic processing, the role of this region in syntactic structure building of sentences remains a subject of debate. Functional neuroimaging studies contrasting well-formed sentences with word lists lacking syntactic structure have produced mixed results. The current functional magnetic resonance imaging study examined whether the left ATL is selectively involved in semantic processing or also plays a role in syntactic structure building by manipulating syntactic complexity and meaningfulness in a novel way. To deprive semantic/pragmatic information from a sentence, we replaced all content words with pronounceable meaningless placeholders. We conducted an experiment with a 2 × 2 factorial design with factors of SEMANTICS (natural sentences [NAT]; sentences with placeholders [SPH]) and SYNTAX (the basic Japanese Subject-Object-Verb [SOV] word order; a changed Object-Subject-Verb [OSV] word order). A main effect of SEMANTICS (NAT > SPH) was found in the left ATL, as well as in the ventral occipitotemporal regions. The opposite contrast (SPH > NAT) revealed activation in the dorsal regions encompassing Brodmann area 44, the premotor area, and the parietal cortex in the left hemisphere. We found no main effect of SYNTAX (OSV > SOV) in a subregion of the left ATL that was more responsive to natural sentences than meaningless sentences. These results indicate selective involvement of a subregion of the left ATL in semantic/pragmatic processing.
Collapse
Affiliation(s)
- Toshiki Iwabuchi
- Section of Neuropsychology, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Michiru Makuuchi
- Section of Neuropsychology, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| |
Collapse
|
31
|
Zhao Y, Halai AD, Lambon Ralph MA. Evaluating the granularity and statistical structure of lesions and behaviour in post-stroke aphasia. Brain Commun 2020; 2:fcaa062. [PMID: 32954319 PMCID: PMC7472896 DOI: 10.1093/braincomms/fcaa062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/06/2023] Open
Abstract
The pursuit of relating the location of neural damage to the pattern of acquired language and general cognitive deficits post-stroke stems back to the 19th century behavioural neurology. While spatial specificity has improved dramatically over time, from the large areas of damage specified by post-mortem investigation to the millimetre precision of modern MRI, there is an underlying issue that is rarely addressed, which relates to the fact that damage to a given area of the brain is not random but constrained by the brain’s vasculature. Accordingly, the aim of this study was to uncover the statistical structure underlying the lesion profile in chronic aphasia post-stroke. By applying varimax-rotated principal component analysis to the lesions of 70 patients with chronic post-stroke aphasia, we identified 17 interpretable clusters, largely reflecting the vascular supply of middle cerebral artery sub-branches and other sources of individual variation in vascular supply as shown in classical angiography studies. This vascular parcellation produced smaller displacement error in simulated lesion–symptom analysis compared with individual voxels and Brodmann regions. A second principal component analysis of the patients’ detailed neuropsychological data revealed a four-factor solution reflecting phonological, semantic, executive-demand and speech fluency abilities. As a preliminary exploration, stepwise regression was used to relate behavioural factor scores to the lesion principal components. Phonological ability was related to two components, which covered the posterior temporal region including the posterior segment of the arcuate fasciculus, and the inferior frontal gyrus. Three components were linked to semantic ability and were located in the white matter underlying the anterior temporal lobe, the supramarginal gyrus and angular gyrus. Executive-demand related to two components covering the dorsal edge of the middle cerebral artery territory, while speech fluency was linked to two components that were located in the middle frontal gyrus, precentral gyrus and subcortical regions (putamen and thalamus). Future studies can explore in formal terms the utility of these principal component analysis-derived lesion components for relating post-stroke lesions and symptoms.
Collapse
Affiliation(s)
- Ying Zhao
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Ajay D Halai
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | | |
Collapse
|
32
|
LaCroix AN, Blumenstein N, Tully M, Baxter LC, Rogalsky C. Effects of prosody on the cognitive and neural resources supporting sentence comprehension: A behavioral and lesion-symptom mapping study. BRAIN AND LANGUAGE 2020; 203:104756. [PMID: 32032865 PMCID: PMC7064294 DOI: 10.1016/j.bandl.2020.104756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/03/2019] [Accepted: 01/19/2020] [Indexed: 05/29/2023]
Abstract
Non-canonical sentence comprehension impairments are well-documented in aphasia. Studies of neurotypical controls indicate that prosody can aid comprehension by facilitating attention towards critical pitch inflections and phrase boundaries. However, no studies have examined how prosody may engage specific cognitive and neural resources during non-canonical sentence comprehension in persons with left hemisphere damage. Experiment 1 examines the relationship between comprehension of non-canonical sentences spoken with typical and atypical prosody and several cognitive measures in 25 persons with chronic left hemisphere stroke and 20 matched controls. Experiment 2 explores the neural resources critical for non-canonical sentence comprehension with each prosody type using region-of-interest-based multiple regressions. Lower orienting attention abilities and greater inferior frontal and parietal damage predicted lower comprehension, but only for sentences with typical prosody. Our results suggest that typical sentence prosody may engage attention resources to support non-canonical sentence comprehension, and this relationship may be disrupted following left hemisphere stroke.
Collapse
Affiliation(s)
- Arianna N LaCroix
- College of Health Solutions, Arizona State University, Tempe, AZ, USA; College of Health Sciences, Midwestern University, Glendale, AZ, USA
| | | | - McKayla Tully
- College of Health Solutions, Arizona State University, Tempe, AZ, USA
| | | | - Corianne Rogalsky
- College of Health Solutions, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
33
|
Abstract
Syntax, the structure of sentences, enables humans to express an infinite range of meanings through finite means. The neurobiology of syntax has been intensely studied but with little consensus. Two main candidate regions have been identified: the posterior inferior frontal gyrus (pIFG) and the posterior middle temporal gyrus (pMTG). Integrating research in linguistics, psycholinguistics, and neuroscience, we propose a neuroanatomical framework for syntax that attributes distinct syntactic computations to these regions in a unified model. The key theoretical advances are adopting a modern lexicalized view of syntax in which the lexicon and syntactic rules are intertwined, and recognizing a computational asymmetry in the role of syntax during comprehension and production. Our model postulates a hierarchical lexical-syntactic function to the pMTG, which interconnects previously identified speech perception and conceptual-semantic systems in the temporal and inferior parietal lobes, crucial for both sentence production and comprehension. These relational hierarchies are transformed via the pIFG into morpho-syntactic sequences, primarily tied to production. We show how this architecture provides a better account of the full range of data and is consistent with recent proposals regarding the organization of phonological processes in the brain.
Collapse
Affiliation(s)
- William Matchin
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, 29208, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Language Science, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
34
|
Ding J, Martin RC, Hamilton AC, Schnur TT. Dissociation between frontal and temporal-parietal contributions to connected speech in acute stroke. Brain 2020; 143:862-876. [PMID: 32155246 PMCID: PMC7089660 DOI: 10.1093/brain/awaa027] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/03/2019] [Accepted: 12/17/2019] [Indexed: 02/04/2023] Open
Abstract
Humans are uniquely able to retrieve and combine words into syntactic structure to produce connected speech. Previous identification of focal brain regions necessary for production focused primarily on associations with the content produced by speakers with chronic stroke, where function may have shifted to other regions after reorganization occurred. Here, we relate patterns of brain damage with deficits to the content and structure of spontaneous connected speech in 52 speakers during the acute stage of a left hemisphere stroke. Multivariate lesion behaviour mapping demonstrated that damage to temporal-parietal regions impacted the ability to retrieve words and produce them within increasingly complex combinations. Damage primarily to inferior frontal cortex affected the production of syntactically accurate structure. In contrast to previous work, functional-anatomical dissociations did not depend on lesion size likely because acute lesions were smaller than typically found in chronic stroke. These results are consistent with predictions from theoretical models based primarily on evidence from language comprehension and highlight the importance of investigating individual differences in brain-language relationships in speakers with acute stroke.
Collapse
Affiliation(s)
- Junhua Ding
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Randi C Martin
- Department of Psychological Sciences, Rice University, Houston, Texas, USA
| | - A Cris Hamilton
- Department of Institution Reporting, Research and Information Systems, University of Texas at Austin, Austin, Texas, USA
| | - Tatiana T Schnur
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
35
|
Kristinsson S, Thors H, Yourganov G, Magnusdottir S, Hjaltason H, Stark BC, Basilakos A, den Ouden DB, Bonilha L, Rorden C, Hickok G, Hillis A, Fridriksson J. Brain Damage Associated with Impaired Sentence Processing in Acute Aphasia. J Cogn Neurosci 2020; 32:256-271. [PMID: 31596169 PMCID: PMC7132331 DOI: 10.1162/jocn_a_01478] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Left-hemisphere brain damage commonly affects patients' abilities to produce and comprehend syntactic structures, a condition typically referred to as "agrammatism." The neural correlates of agrammatism remain disputed in the literature, and distributed areas have been implicated as important predictors of performance, for example, Broca's area, anterior temporal areas, and temporo-parietal areas. We examined the association between damage to specific language-related ROIs and impaired syntactic processing in acute aphasia. We hypothesized that damage to the posterior middle temporal gyrus, and not Broca's area, would predict syntactic processing abilities. One hundred four individuals with acute aphasia (<20 days poststroke) were included in the study. Structural MRI scans were obtained, and all participants completed a 45-item sentence-picture matching task. We performed an ROI-based stepwise regression analyses to examine the relation between cortical brain damage and impaired comprehension of canonical and noncanonical sentences. Damage to the posterior middle temporal gyrus was the strongest predictor for overall task performance and performance on noncanonical sentences. Damage to the angular gyrus was the strongest predictor for performance on canonical sentences, and damage to the posterior superior temporal gyrus predicted noncanonical scores when performance on canonical sentences was included as a cofactor. Overall, our models showed that damage to temporo-parietal and posterior temporal areas was associated with impaired syntactic comprehension. Our results indicate that the temporo-parietal area is crucially implicated in complex syntactic processing, whereas the role of Broca's area may be complementary.
Collapse
|
36
|
Matchin W, Basilakos A, Stark BC, den Ouden DB, Fridriksson J, Hickok G. Agrammatism and Paragrammatism: A Cortical Double Dissociation Revealed by Lesion-Symptom Mapping. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2020; 1:208-225. [PMID: 34296193 PMCID: PMC8293792 DOI: 10.1162/nol_a_00010] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/27/2020] [Indexed: 05/21/2023]
Abstract
The fundamental distinction of grammatical deficits in aphasia, agrammatism and paragrammatism, was made over a century ago. However, the extent to which the agrammatism/paragrammatism distinction exists independently of differences in speech fluency has not clearly been investigated. Despite much research on agrammatism, the lesion correlates of paragrammatism are essentially unknown. Lesion-symptom mapping was used to investigate the degree to which the lesion correlates of agrammatism and paragrammatism overlap or dissociate. Four expert raters assessed videos of 53 right-handed patients with aphasia following chronic left-hemisphere stroke retelling the Cinderella story. Consensus discussion determined each subject's classification with respect to grammatical deficits as Agrammatic, Paragrammatic, Both, or No Grammatical Deficit. Each subject's lesion was manually drawn on a high-resolution MRI and warped to standard space for group analyses. Lesion-symptom mapping analyses were performed in NiiStat including lesion volume as a covariate. Secondary analyses included speech rate (words per minute) as an additional covariate. Region of interest analyses identified a double dissociation between these syndromes: damage to Broca's area was significantly associated with agrammatism, p = 0.001 (but not paragrammatism, p = 0.930), while damage to the left posterior superior and middle temporal gyri was significantly associated with paragrammatism, p < 0.001 (but not agrammatism, p = 0.873). The same results obtained when regressing out the effect of speech rate, and nonoverlapping lesion distributions between the syndromes were confirmed by uncorrected whole brain analyses. Our results support a fundamental distinction between agrammatism and paragrammatism.
Collapse
Affiliation(s)
| | - Alexandra Basilakos
- Department of Communication Sciences and Disorders, University of South Carolina
| | - Brielle C. Stark
- ISpeech and Hearing Sciences Department and Program in Neuroscience Faculty, Indiana University Bloomington
| | - Dirk-Bart den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina
| | - Gregory Hickok
- Department of Cognitive Sciences, Department of Language Sciences, University of California, Irvine
| |
Collapse
|
37
|
Fridriksson J, den Ouden DB, Hillis AE, Hickok G, Rorden C, Basilakos A, Yourganov G, Bonilha L. Anatomy of aphasia revisited. Brain 2019; 141:848-862. [PMID: 29360947 DOI: 10.1093/brain/awx363] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 11/08/2017] [Indexed: 12/31/2022] Open
Abstract
In most cases, aphasia is caused by strokes involving the left hemisphere, with more extensive damage typically being associated with more severe aphasia. The classical model of aphasia commonly adhered to in the Western world is the Wernicke-Lichtheim model. The model has been in existence for over a century, and classification of aphasic symptomatology continues to rely on it. However, far more detailed models of speech and language localization in the brain have been formulated. In this regard, the dual stream model of cortical brain organization proposed by Hickok and Poeppel is particularly influential. Their model describes two processing routes, a dorsal stream and a ventral stream, that roughly support speech production and speech comprehension, respectively, in normal subjects. Despite the strong influence of the dual stream model in current neuropsychological research, there has been relatively limited focus on explaining aphasic symptoms in the context of this model. Given that the dual stream model represents a more nuanced picture of cortical speech and language organization, cortical damage that causes aphasic impairment should map clearly onto the dual processing streams. Here, we present a follow-up study to our previous work that used lesion data to reveal the anatomical boundaries of the dorsal and ventral streams supporting speech and language processing. Specifically, by emphasizing clinical measures, we examine the effect of cortical damage and disconnection involving the dorsal and ventral streams on aphasic impairment. The results reveal that measures of motor speech impairment mostly involve damage to the dorsal stream, whereas measures of impaired speech comprehension are more strongly associated with ventral stream involvement. Equally important, many clinical tests that target behaviours such as naming, speech repetition, or grammatical processing rely on interactions between the two streams. This latter finding explains why patients with seemingly disparate lesion locations often experience similar impairments on given subtests. Namely, these individuals' cortical damage, although dissimilar, affects a broad cortical network that plays a role in carrying out a given speech or language task. The current data suggest this is a more accurate characterization than ascribing specific lesion locations as responsible for specific language deficits.5705668782001awx363media15705668782001.
Collapse
Affiliation(s)
- Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, USA
| | - Dirk-Bart den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine; Department of Cognitive Science, Johns Hopkins University, Baltimore, USA.,Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine; Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA
| | - Gregory Hickok
- Cognitive Sciences, School of Social Sciences, University of California, Irvine, USA
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, USA
| | - Alexandra Basilakos
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, USA
| | - Grigori Yourganov
- Department of Psychology, University of South Carolina, Columbia, USA
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
38
|
LaCroix AN, Blumenstein N, Houlihan C, Rogalsky C. The effects of prosody on sentence comprehension: evidence from a neurotypical control group and seven cases of chronic stroke. Neurocase 2019; 25:106-117. [PMID: 31241420 PMCID: PMC6662577 DOI: 10.1080/13554794.2019.1630447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Both prosody and sentence structure (e.g., canonical versus non-canonical) affect sentence comprehension. However, few previous studies have examined a possible interaction between prosody and sentence structure. In adult controls we found a significant interaction: typical sentence prosody, versus list prosody, facilitated comprehension of only some sentence structures. In seven stroke patients, impaired attentional control was related to impaired comprehension with sentence prosody but not list prosody; impaired working memory was related to impaired comprehension with list prosody, but not sentence prosody. Thus, non-canonical sentence comprehension impairments in stroke patients may be modulated by prosody, based on a patient's cognitive abilities.
Collapse
Affiliation(s)
- Arianna N LaCroix
- a College of Health Solutions , Arizona State University , Tempe , AZ , USA.,b College of Health Sciences , Midwestern University , Glendale , AZ , USA
| | - Nicole Blumenstein
- a College of Health Solutions , Arizona State University , Tempe , AZ , USA
| | - Chloe Houlihan
- a College of Health Solutions , Arizona State University , Tempe , AZ , USA
| | - Corianne Rogalsky
- a College of Health Solutions , Arizona State University , Tempe , AZ , USA
| |
Collapse
|
39
|
den Ouden D, Malyutina S, Basilakos A, Bonilha L, Gleichgerrcht E, Yourganov G, Hillis AE, Hickok G, Rorden C, Fridriksson J. Cortical and structural-connectivity damage correlated with impaired syntactic processing in aphasia. Hum Brain Mapp 2019; 40:2153-2173. [PMID: 30666767 PMCID: PMC6445708 DOI: 10.1002/hbm.24514] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/28/2018] [Accepted: 01/07/2019] [Indexed: 11/06/2022] Open
Abstract
Agrammatism in aphasia is not a homogeneous syndrome, but a characterization of a nonuniform set of language behaviors in which grammatical markers and complex syntactic structures are omitted, simplified, or misinterpreted. In a sample of 71 left-hemisphere stroke survivors, syntactic processing was quantified with the Northwestern Assessment of Verbs and Sentences (NAVS). Classification analyses were used to assess the relation between NAVS performance and morphosyntactically reduced speech in picture descriptions. Voxel-based and connectivity-based lesion-symptom mapping were applied to investigate neural correlates of impaired syntactic processing. Despite a nonrandom correspondence between NAVS performance and morphosyntactic production deficits, there was variation in individual patterns of syntactic processing. Morphosyntactically reduced production was predicted by lesions to left-hemisphere inferior frontal cortex. Impaired verb argument structure production was predicted by damage to left-hemisphere posterior superior temporal and angular gyrus, as well as to a ventral pathway between temporal and frontal cortex. Damage to this pathway was also predictive of impaired sentence comprehension and production, particularly of noncanonical sentences. Although agrammatic speech production is primarily predicted by lesions to inferior frontal cortex, other aspects of syntactic processing rely rather on regional integrity in temporoparietal cortex and the ventral stream.
Collapse
Affiliation(s)
- Dirk‐Bart den Ouden
- Department of Communication Sciences and DisordersUniversity of South CarolinaColumbiaSouth Carolina
| | - Svetlana Malyutina
- Department of Communication Sciences and DisordersUniversity of South CarolinaColumbiaSouth Carolina
| | - Alexandra Basilakos
- Department of Communication Sciences and DisordersUniversity of South CarolinaColumbiaSouth Carolina
| | - Leonardo Bonilha
- Department of NeurologyMedical University of South CarolinaCharlestonSouth Carolina
| | | | - Grigori Yourganov
- Department of PsychologyUniversity of South CarolinaColumbiaSouth Carolina
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins University School of Medicine and Department of Cognitive ScienceJohns Hopkins UniversityBaltimoreMaryland
| | - Gregory Hickok
- School of Social SciencesUniversity of CaliforniaIrvineCalifornia
| | - Chris Rorden
- Department of PsychologyUniversity of South CarolinaColumbiaSouth Carolina
| | - Julius Fridriksson
- Department of Communication Sciences and DisordersUniversity of South CarolinaColumbiaSouth Carolina
| |
Collapse
|
40
|
Gao Y, Chen Y, Xiong W, Li S, Zhan A. Distribution patterns of dinoflagellate communities along the Songhua River. PeerJ 2019; 7:e6733. [PMID: 30993050 PMCID: PMC6461062 DOI: 10.7717/peerj.6733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/07/2019] [Indexed: 12/04/2022] Open
Abstract
Background Dinoflagellates have the potential to pose severe ecological and economic damages to aquatic ecosystems. It is therefore largely needed to understand the causes and consequences of distribution patterns of dinoflagellate communities in order to manage potential environmental problems. However, a majority of studies have focused on marine ecosystems, while the geographical distribution patterns of dinoflagellate communities and associated determinants in freshwater ecosystems remain unexplored, particularly in running water ecosystems such as rivers and streams. Methods Here we utilized multiple linear regression analysis and combined information on species composition recovered by high-throughput sequencing and spatial and environmental variables to analyze the distribution patterns of dinoflagellate communities along the Songhua River. Results After high-throughput sequencing, a total of 490 operational taxonomic units (OTUs) were assigned to dinoflagellates, covering seven orders, 13 families and 22 genera. Although the sample sites were grouped into three distinctive clusters with significant difference (p < 0.05) in environmental variables, OTUs-based dinoflagellate communities among the three clusters showed no significant difference (p > 0.05). Among all 24 environmental factors, two environmental variables, including NO3-N and total dissolved solids (TDS), were selected as the significantly influential factors (p < 0.05) on the distribution patterns of dinoflagellate communities based on forward selection. The redundancy analysis (RDA) model showed that only a small proportion of community variation (6.1%) could be explained by both environmental (NO3-N and TDS) and dispersal predictors (watercourse distance) along the River. Variance partitioning revealed a larger contribution of local environmental factors (5.85%) than dispersal (0.50%) to the total variation of dinoflagellate communities. Discussion Our findings indicated that in addition to the two quantifiable processes in this study (species sorting and dispersal), more unquantifiable stochastic processes such as temporal extinction and colonization events due to rainfall may be responsible for the observed geographical distribution of the dinoflagellate community along the Songhua River. Results obtained in this study suggested that deeper investigations covering different seasons are needed to understand the causes and consequences of geographical distribution patterns of dinoflagellate biodiversity in river ecosystems.
Collapse
Affiliation(s)
- Yangchun Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Wei Xiong
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Matchin W, Liao CH, Gaston P, Lau E. Same words, different structures: An fMRI investigation of argument relations and the angular gyrus. Neuropsychologia 2019; 125:116-128. [DOI: 10.1016/j.neuropsychologia.2019.01.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 01/09/2019] [Accepted: 01/31/2019] [Indexed: 01/01/2023]
|
42
|
Walenski M, Europa E, Caplan D, Thompson CK. Neural networks for sentence comprehension and production: An ALE-based meta-analysis of neuroimaging studies. Hum Brain Mapp 2019; 40:2275-2304. [PMID: 30689268 DOI: 10.1002/hbm.24523] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 12/14/2018] [Accepted: 12/26/2018] [Indexed: 12/24/2022] Open
Abstract
Comprehending and producing sentences is a complex endeavor requiring the coordinated activity of multiple brain regions. We examined three issues related to the brain networks underlying sentence comprehension and production in healthy individuals: First, which regions are recruited for sentence comprehension and sentence production? Second, are there differences for auditory sentence comprehension vs. visual sentence comprehension? Third, which regions are specifically recruited for the comprehension of syntactically complex sentences? Results from activation likelihood estimation (ALE) analyses (from 45 studies) implicated a sentence comprehension network occupying bilateral frontal and temporal lobe regions. Regions implicated in production (from 15 studies) overlapped with the set of regions associated with sentence comprehension in the left hemisphere, but did not include inferior frontal cortex, and did not extend to the right hemisphere. Modality differences between auditory and visual sentence comprehension were found principally in the temporal lobes. Results from the analysis of complex syntax (from 37 studies) showed engagement of left inferior frontal and posterior temporal regions, as well as the right insula. The involvement of the right hemisphere in the comprehension of these structures has potentially important implications for language treatment and recovery in individuals with agrammatic aphasia following left hemisphere brain damage.
Collapse
Affiliation(s)
- Matthew Walenski
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, Illinois.,Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, Illinois
| | - Eduardo Europa
- Department of Neurology, University of California, San Francisco
| | - David Caplan
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - Cynthia K Thompson
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, Illinois.,Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, Illinois.,Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, Illinois
| |
Collapse
|
43
|
Ernst M, Boers AMM, Forkert ND, Berkhemer OA, Roos YB, Dippel DWJ, van der Lugt A, van Oostenbrugge RJ, van Zwam WH, Vettorazzi E, Fiehler J, Marquering HA, Majoie CBLM, Gellissen S. Impact of Ischemic Lesion Location on the mRS Score in Patients with Ischemic Stroke: A Voxel-Based Approach. AJNR Am J Neuroradiol 2018; 39:1989-1994. [PMID: 30287456 DOI: 10.3174/ajnr.a5821] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/07/2018] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Previous studies indicated that ischemic lesion volume might be a useful surrogate marker for functional outcome in ischemic stroke but should be considered in the context of lesion location. In contrast to previous studies using the ROI approach, which has several drawbacks, the present study aimed to measure the impact of ischemic lesion location on functional outcome using a more precise voxelwise approach. MATERIALS AND METHODS Datasets of patients with acute ischemic strokes from the Multicenter Randomized Clinical Trial of Endovascular Therapy for Acute Ischemic Stroke in the Netherlands (MR CLEAN) were used. Primary outcome was functional outcome as assessed by the modified Rankin Scale 3 months after stroke. Ischemic lesion volume was determined on CT scans 3-9 days after stroke. Voxel-based lesion-symptom mapping techniques, including covariates that are known to be associated with functional outcome, were used to determine the impact of ischemic lesion location for outcome. RESULTS Of the 500 patients in the MR CLEAN trial, 216 were included for analysis. The mean age was 63 years. Lesion-symptom mapping with inclusion of covariates revealed that especially left-hemispheric lesions in the deep periventricular white matter and adjacent internal capsule showed a great influence on functional outcome. CONCLUSIONS Our study confirms that infarct location has an important impact on functional outcome of patients with stroke and should be considered in prediction models. After we adjusted for covariates, the left-hemispheric corticosubcortical fiber tracts seemed to be of higher functional importance compared with cortical lesions.
Collapse
Affiliation(s)
- M Ernst
- From the Departments of Diagnostic and Interventional Neuroradiology (M.E., J.F., S.G.)
| | - A M M Boers
- Departments of Radiology and Nuclear Medicine (A.M.M.B., O.A.B., H.A.M., C.B.L.M.M.).,Biomedical Engineering and Physics (A.M.M.B., H.A.M.).,Department of Robotics and Mechatronics (A.M.M.B.), University of Twente, Enschede, the Netherlands
| | - N D Forkert
- Department of Radiology and Hotchkiss Brain Institute (N.D.F.), University of Calgary, Calgary, Alberta, Canada
| | - O A Berkhemer
- Departments of Radiology and Nuclear Medicine (A.M.M.B., O.A.B., H.A.M., C.B.L.M.M.).,Departments of Neurology (O.A.B., D.W.J.D.).,Department of Radiology (O.A.B.), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Y B Roos
- Neurology (Y.B.R.), Academic Medical Center, Amsterdam, the Netherlands
| | | | - A van der Lugt
- Radiology (A.v.d.L.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - R J van Oostenbrugge
- Department of Neurology (R.J.v.O.), Maastricht University Medical Center and Cardiovascular Research Institute, Maastricht, the Netherlands
| | - W H van Zwam
- Department of Radiology and Cardiovascular Research Institute Maastricht (W.H.v.Z.), Maastricht University Medical Center, Maastricht, the Netherlands
| | - E Vettorazzi
- Medical Biometry and Epidemiology (E.V.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - J Fiehler
- From the Departments of Diagnostic and Interventional Neuroradiology (M.E., J.F., S.G.)
| | - H A Marquering
- Departments of Radiology and Nuclear Medicine (A.M.M.B., O.A.B., H.A.M., C.B.L.M.M.).,Biomedical Engineering and Physics (A.M.M.B., H.A.M.)
| | - C B L M Majoie
- Departments of Radiology and Nuclear Medicine (A.M.M.B., O.A.B., H.A.M., C.B.L.M.M.)
| | - S Gellissen
- From the Departments of Diagnostic and Interventional Neuroradiology (M.E., J.F., S.G.)
| | | |
Collapse
|
44
|
Desai RH, Choi W, Henderson JM. Word Frequency Effects in Naturalistic Reading. LANGUAGE, COGNITION AND NEUROSCIENCE 2018; 35:583-594. [PMID: 33015218 PMCID: PMC7531031 DOI: 10.1080/23273798.2018.1527376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 09/17/2018] [Indexed: 06/11/2023]
Abstract
Word frequency is a central psycholinguistic variable that accounts for substantial variance in language processing. A number of neuroimaging studies have examined frequency at a single word level, typically demonstrating a strong negative, and sometimes positive correlation between frequency and hemodynamic response. Here, 40 subjects read passages of text in an MRI scanner while their eye movements were recorded. We used fixation-related analysis to identify neural activity tied to the frequency of each fixated word. We found that negative correlations with frequency were reduced, while strong positive correlations were found in the temporal and parietal areas associated with semantics. We propose that the processing cost of low frequency words is reduced due to contextual cues. Meanings of high frequency words are more readily accessed and integrated with context resulting in enhanced processing in the semantic system. The results demonstrate similarities and differences between single word and naturalistic text processing.
Collapse
Affiliation(s)
- Rutvik H. Desai
- Department of Psychology University of South Carolina, Columbia, SC, 29028, USA
| | - Wonil Choi
- Liberal Arts and Sciences Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - John M. Henderson
- Center for Mind and Brain
- Department of Psychology University of California, Davis, CA, 95616, USA
| |
Collapse
|
45
|
Johnson L, Fitzhugh MC, Yi Y, Mickelsen S, Baxter LC, Howard P, Rogalsky C. Functional Neuroanatomy of Second Language Sentence Comprehension: An fMRI Study of Late Learners of American Sign Language. Front Psychol 2018; 9:1626. [PMID: 30237778 PMCID: PMC6136263 DOI: 10.3389/fpsyg.2018.01626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/14/2018] [Indexed: 01/16/2023] Open
Abstract
The neurobiology of sentence comprehension is well-studied but the properties and characteristics of sentence processing networks remain unclear and highly debated. Sign languages (i.e., visual-manual languages), like spoken languages, have complex grammatical structures and thus can provide valuable insights into the specificity and function of brain regions supporting sentence comprehension. The present study aims to characterize how these well-studied spoken language networks can adapt in adults to be responsive to sign language sentences, which contain combinatorial semantic and syntactic visual-spatial linguistic information. Twenty native English-speaking undergraduates who had completed introductory American Sign Language (ASL) courses viewed videos of the following conditions during fMRI acquisition: signed sentences, signed word lists, English sentences and English word lists. Overall our results indicate that native language (L1) sentence processing resources are responsive to ASL sentence structures in late L2 learners, but that certain L1 sentence processing regions respond differently to L2 ASL sentences, likely due to the nature of their contribution to language comprehension. For example, L1 sentence regions in Broca's area were significantly more responsive to L2 than L1 sentences, supporting the hypothesis that Broca's area contributes to sentence comprehension as a cognitive resource when increased processing is required. Anterior temporal L1 sentence regions were sensitive to L2 ASL sentence structure, but demonstrated no significant differences in activation to L1 than L2, suggesting its contribution to sentence processing is modality-independent. Posterior superior temporal L1 sentence regions also responded to ASL sentence structure but were more activated by English than ASL sentences. An exploratory analysis of the neural correlates of L2 ASL proficiency indicates that ASL proficiency is positively correlated with increased activations in response to ASL sentences in L1 sentence processing regions. Overall these results suggest that well-established fronto-temporal spoken language networks involved in sentence processing exhibit functional plasticity with late L2 ASL exposure, and thus are adaptable to syntactic structures widely different than those in an individual's native language. Our findings also provide valuable insights into the unique contributions of the inferior frontal and superior temporal regions that are frequently implicated in sentence comprehension but whose exact roles remain highly debated.
Collapse
Affiliation(s)
- Lisa Johnson
- Department of Speech and Hearing Science, Arizona State University, Tempe, AZ, United States
| | - Megan C Fitzhugh
- Department of Speech and Hearing Science, Arizona State University, Tempe, AZ, United States.,Interdisciplinary Graduate Neuroscience Program, Arizona State University, Tempe, AZ, United States
| | - Yuji Yi
- Department of Speech and Hearing Science, Arizona State University, Tempe, AZ, United States
| | - Soren Mickelsen
- Department of Speech and Hearing Science, Arizona State University, Tempe, AZ, United States
| | - Leslie C Baxter
- Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Pamela Howard
- Department of Speech and Hearing Science, Arizona State University, Tempe, AZ, United States
| | - Corianne Rogalsky
- Department of Speech and Hearing Science, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
46
|
Anderson AJ, Binder JR, Fernandino L, Humphries CJ, Conant LL, Aguilar M, Wang X, Doko D, Raizada RDS. Predicting Neural Activity Patterns Associated with Sentences Using a Neurobiologically Motivated Model of Semantic Representation. Cereb Cortex 2018; 27:4379-4395. [PMID: 27522069 DOI: 10.1093/cercor/bhw240] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 07/14/2016] [Indexed: 12/11/2022] Open
Abstract
We introduce an approach that predicts neural representations of word meanings contained in sentences then superposes these to predict neural representations of new sentences. A neurobiological semantic model based on sensory, motor, social, emotional, and cognitive attributes was used as a foundation to define semantic content. Previous studies have predominantly predicted neural patterns for isolated words, using models that lack neurobiological interpretation. Fourteen participants read 240 sentences describing everyday situations while undergoing fMRI. To connect sentence-level fMRI activation patterns to the word-level semantic model, we devised methods to decompose the fMRI data into individual words. Activation patterns associated with each attribute in the model were then estimated using multiple-regression. This enabled synthesis of activation patterns for trained and new words, which were subsequently averaged to predict new sentences. Region-of-interest analyses revealed that prediction accuracy was highest using voxels in the left temporal and inferior parietal cortex, although a broad range of regions returned statistically significant results, showing that semantic information is widely distributed across the brain. The results show how a neurobiologically motivated semantic model can decompose sentence-level fMRI data into activation features for component words, which can be recombined to predict activation patterns for new sentences.
Collapse
Affiliation(s)
| | - Jeffrey R Binder
- Medical College of Wisconsin, Department of Neurology, Milwaukee, WI53226, USA
| | - Leonardo Fernandino
- Medical College of Wisconsin, Department of Neurology, Milwaukee, WI53226, USA
| | - Colin J Humphries
- Medical College of Wisconsin, Department of Neurology, Milwaukee, WI53226, USA
| | - Lisa L Conant
- Medical College of Wisconsin, Department of Neurology, Milwaukee, WI53226, USA
| | | | - Xixi Wang
- Brain and Cognitive Sciences, University of Rochester, NY14627, USA
| | - Donias Doko
- Brain and Cognitive Sciences, University of Rochester, NY14627, USA
| | | |
Collapse
|
47
|
Liu J, Wang C, Diao Q, Qin W, Cheng J, Yu C. Connection Disruption Underlying Attention Deficit in Subcortical Stroke. Radiology 2018; 288:186-194. [PMID: 29737956 DOI: 10.1148/radiol.2018171730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Purpose To investigate neural substrates underlying attention deficit in patients with chronic subcortical stroke by combining voxel-based lesion-symptom mapping (VLSM) and diffusion-tensor (DT) tractography. Materials and Methods Institutional review board approval and written informed consent were obtained. Diffusion magnetic resonance imaging data were prospectively acquired from August 1, 2014, to March 30, 2015, in 49 patients (32 men, 17 women; mean age, 55.7 years ± 8.0; age range, 40-71 years) with subcortical infarctions in the basal ganglia and neighboring regions and 52 control subjects (30 men, 22 women; mean age, 54.4 years ± 7.5; age range, 40-68 years). A modified version of the attention network test was used to assess visual attention function. On the basis of the lesion map at the acute stage, VLSM was used to identify lesion locations related to attention deficit in patients with stroke. DT tractography then was used to determine the responsible impaired connections by using diffusion data at the chronic stage (>6 months after stroke). Results When compared with control subjects, patients with chronic stroke exhibited prolonged reaction time (RT) of correct responses (P = .009). VLSM revealed that acute stroke lesion in the right caudate nucleus and nearby white matter (found in seven patients) was correlated with the prolonged RT (P < .05). DTT showed that the responsible lesion was located in the right thalamic- and caudate-prefrontal pathways in control subjects. The subgroup with right-sided brain damage had significantly decreased fractional anisotropy in these pathways (P < .001), which were correlated with the prolonged RT (P = .009 for the thalamic-prefrontal pathway, P < .001 for the caudate-prefrontal pathway). Conclusion Thalamic-prefrontal and caudate-prefrontal pathways impaired by stroke lesions appear to underlie attention deficit in patients with subcortical stroke in the right hemisphere.
Collapse
Affiliation(s)
- Jingchun Liu
- From the Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Rd, Heping District, Tianjin 300052, China (J.L., Q.D., W.Q., C.Y.); and Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (C.W., J.C.)
| | - Caihong Wang
- From the Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Rd, Heping District, Tianjin 300052, China (J.L., Q.D., W.Q., C.Y.); and Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (C.W., J.C.)
| | - Qingqing Diao
- From the Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Rd, Heping District, Tianjin 300052, China (J.L., Q.D., W.Q., C.Y.); and Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (C.W., J.C.)
| | - Wen Qin
- From the Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Rd, Heping District, Tianjin 300052, China (J.L., Q.D., W.Q., C.Y.); and Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (C.W., J.C.)
| | - Jingliang Cheng
- From the Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Rd, Heping District, Tianjin 300052, China (J.L., Q.D., W.Q., C.Y.); and Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (C.W., J.C.)
| | - Chunshui Yu
- From the Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Rd, Heping District, Tianjin 300052, China (J.L., Q.D., W.Q., C.Y.); and Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (C.W., J.C.)
| |
Collapse
|
48
|
Połczyńska M, Kuhn T, You SC, Walshaw P, Curtiss S, Bookheimer S. Assessment of grammar optimizes language tasks for the intracarotid amobarbital procedure. Epilepsy Behav 2017; 76:89-100. [PMID: 28923498 DOI: 10.1016/j.yebeh.2017.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/24/2017] [Accepted: 08/14/2017] [Indexed: 11/16/2022]
Abstract
PURPOSE A previous study showed that assessment of language laterality could be improved by adding grammar tests to the recovery phase of the intracarotid amobarbital procedure (IAP) (Połczyńska et al. 2014). The aim of this study was to further investigate the extent to which grammar tests lateralize language function during the recovery phase of the IAP in a larger patient sample. METHODS Forty patients with drug-resistant epilepsy (14 females, thirty-two right-handed, mean age 38.5years, SD=10.6) participated in this study. On EEG, 24 patients had seizures originating in the left hemisphere (LH), 13 in the right hemisphere (RH), and 4 demonstrated mixed seizure origin. Thirty participants (75%) had bilateral injections, and ten (25%) had unilateral injections (five RH and five LH). Based on results from the encoding phase, we segregated our study participants to a LH language dominant and a mixed dominance group. In the recovery phase of the IAP, the participants were administered a new grammar test (the CYCLE-N) and a standard language test. We analyzed the laterality index measure and effect sizes in the two tests. KEY FINDINGS In the LH-dominant group, the CYCLE-N generated more profound language deficits in the recovery phase than the standard after injection to either hemisphere (p<0.001). At the same time, the laterality index for the grammar tasks was still higher than for the standard tests. Critically, the CYCLE-N administered in the recovery phase was nearly as effective as the standard tests given during the encoding phase. SIGNIFICANCE The results may be significant for individuals with epilepsy undergoing IAP. The grammar tests may be a highly efficient measure for lateralizing language function in the recovery phase.
Collapse
Affiliation(s)
- Monika Połczyńska
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, USA; Faculty of English, Adam Mickiewicz University, Poznań, Poland.
| | - Taylor Kuhn
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, USA.
| | - S Christine You
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, USA.
| | - Patricia Walshaw
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, USA.
| | | | - Susan Bookheimer
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, USA.
| |
Collapse
|
49
|
Rogalsky C, LaCroix AN, Chen KH, Anderson SW, Damasio H, Love T, Hickok G. The Neurobiology of Agrammatic Sentence Comprehension: A Lesion Study. J Cogn Neurosci 2017; 30:234-255. [PMID: 29064339 DOI: 10.1162/jocn_a_01200] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Broca's area has long been implicated in sentence comprehension. Damage to this region is thought to be the central source of "agrammatic comprehension" in which performance is substantially worse (and near chance) on sentences with noncanonical word orders compared with canonical word order sentences (in English). This claim is supported by functional neuroimaging studies demonstrating greater activation in Broca's area for noncanonical versus canonical sentences. However, functional neuroimaging studies also have frequently implicated the anterior temporal lobe (ATL) in sentence processing more broadly, and recent lesion-symptom mapping studies have implicated the ATL and mid temporal regions in agrammatic comprehension. This study investigates these seemingly conflicting findings in 66 left-hemisphere patients with chronic focal cerebral damage. Patients completed two sentence comprehension measures, sentence-picture matching and plausibility judgments. Patients with damage including Broca's area (but excluding the temporal lobe; n = 11) on average did not exhibit the expected agrammatic comprehension pattern-for example, their performance was >80% on noncanonical sentences in the sentence-picture matching task. Patients with ATL damage ( n = 18) also did not exhibit an agrammatic comprehension pattern. Across our entire patient sample, the lesions of patients with agrammatic comprehension patterns in either task had maximal overlap in posterior superior temporal and inferior parietal regions. Using voxel-based lesion-symptom mapping, we find that lower performances on canonical and noncanonical sentences in each task are both associated with damage to a large left superior temporal-inferior parietal network including portions of the ATL, but not Broca's area. Notably, however, response bias in plausibility judgments was significantly associated with damage to inferior frontal cortex, including gray and white matter in Broca's area, suggesting that the contribution of Broca's area to sentence comprehension may be related to task-related cognitive demands.
Collapse
Affiliation(s)
| | | | - Kuan-Hua Chen
- University of Iowa.,University of California, Berkeley
| | | | | | | | | |
Collapse
|
50
|
Połczyńska M, Japardi K, Curtiss S, Moody T, Benjamin C, Cho A, Vigil C, Kuhn T, Jones M, Bookheimer S. Improving language mapping in clinical fMRI through assessment of grammar. NEUROIMAGE-CLINICAL 2017; 15:415-427. [PMID: 28616382 PMCID: PMC5458087 DOI: 10.1016/j.nicl.2017.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 05/03/2017] [Accepted: 05/25/2017] [Indexed: 11/27/2022]
Abstract
Introduction Brain surgery in the language dominant hemisphere remains challenging due to unintended post-surgical language deficits, despite using pre-surgical functional magnetic resonance (fMRI) and intraoperative cortical stimulation. Moreover, patients are often recommended not to undergo surgery if the accompanying risk to language appears to be too high. While standard fMRI language mapping protocols may have relatively good predictive value at the group level, they remain sub-optimal on an individual level. The standard tests used typically assess lexico-semantic aspects of language, and they do not accurately reflect the complexity of language either in comprehension or production at the sentence level. Among patients who had left hemisphere language dominance we assessed which tests are best at activating language areas in the brain. Method We compared grammar tests (items testing word order in actives and passives, wh-subject and object questions, relativized subject and object clauses and past tense marking) with standard tests (object naming, auditory and visual responsive naming), using pre-operative fMRI. Twenty-five surgical candidates (13 females) participated in this study. Sixteen patients presented with a brain tumor, and nine with epilepsy. All participants underwent two pre-operative fMRI protocols: one including CYCLE-N grammar tests (items testing word order in actives and passives, wh-subject and object questions, relativized subject and object clauses and past tense marking); and a second one with standard fMRI tests (object naming, auditory and visual responsive naming). fMRI activations during performance in both protocols were compared at the group level, as well as in individual candidates. Results The grammar tests generated more volume of activation in the left hemisphere (left/right angular gyrus, right anterior/posterior superior temporal gyrus) and identified additional language regions not shown by the standard tests (e.g., left anterior/posterior supramarginal gyrus). The standard tests produced more activation in left BA 47. Ten participants had more robust activations in the left hemisphere in the grammar tests and two in the standard tests. The grammar tests also elicited substantial activations in the right hemisphere and thus turned out to be superior at identifying both right and left hemisphere contribution to language processing. Conclusion The grammar tests may be an important addition to the standard pre-operative fMRI testing. We added comprehensive grammar tests to standard presurgical fMRI of language. The grammar tests generated more volume of activation bilaterally. The tests identified additional language regions not shown by the standard tests. The grammar tests may be an important addition to standard pre-operative fMRI.
Collapse
Affiliation(s)
- Monika Połczyńska
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA 90095, USA; Faculty of English, Adam Mickiewicz University, Poznań, Poland.
| | - Kevin Japardi
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA 90095, USA
| | | | - Teena Moody
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA 90095, USA.
| | | | - Andrew Cho
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA 90095, USA
| | - Celia Vigil
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA 90095, USA
| | - Taylor Kuhn
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA 90095, USA.
| | - Michael Jones
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA 90095, USA
| | - Susan Bookheimer
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA 90095, USA.
| |
Collapse
|