1
|
Boziki M, Bakirtzis C, Sintila SA, Kesidou E, Gounari E, Ioakimidou A, Tsavdaridou V, Skoura L, Fylaktou A, Nikolaidou V, Stangou M, Nikolaidis I, Giantzi V, Karafoulidou E, Theotokis P, Grigoriadis N. Ocrelizumab in Patients with Active Primary Progressive Multiple Sclerosis: Clinical Outcomes and Immune Markers of Treatment Response. Cells 2022; 11:cells11121959. [PMID: 35741088 PMCID: PMC9222195 DOI: 10.3390/cells11121959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Ocrelizumab is a B-cell-depleting monoclonal antibody approved for the treatment of relapsing-remitting multiple sclerosis (RRMS) and active primary progressive MS (aPPMS). This prospective, uncontrolled, open-label, observational study aimed to assess the efficacy of ocrelizumab in patients with aPPMS and to dissect the clinical, radiological and laboratory attributes of treatment response. In total, 22 patients with aPPMS followed for 24 months were included. The primary efficacy outcome was the proportion of patients with optimal response at 24 months, defined as patients free of relapses, free of confirmed disability accumulation (CDA) and free of T1 Gd-enhancing lesions and new/enlarging T2 lesions on the brain and cervical MRI. In total, 14 (63.6%) patients and 13 patients (59.1%) were classified as responders at 12 and 24 months, respectively. Time exhibited a significant effect on mean absolute and normalized gray matter cerebellar volume (F = 4.342, p = 0.23 and F = 4.279, p = 0.024, respectively). Responders at 24 months exhibited reduced peripheral blood ((%) of CD19+ cells) plasmablasts compared to non-responders at the 6-month point estimate (7.69 ± 4.4 vs. 22.66 ± 7.19, respectively, p = 0.043). Response to ocrelizumab was linked to lower total and gray matter cerebellar volume loss over time. Reduced plasmablast depletion was linked for the first time to sub-optimal response to ocrelizumab in aPPMS.
Collapse
Affiliation(s)
- Marina Boziki
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Christos Bakirtzis
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Styliani-Aggeliki Sintila
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Evangelia Kesidou
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Evdoxia Gounari
- Microbiology Laboratory, Department of Immunology, AHEPA University Hospital, 54636 Thessaloniki, Greece; (E.G.); (A.I.); (V.T.); (L.S.)
| | - Aliki Ioakimidou
- Microbiology Laboratory, Department of Immunology, AHEPA University Hospital, 54636 Thessaloniki, Greece; (E.G.); (A.I.); (V.T.); (L.S.)
| | - Vasiliki Tsavdaridou
- Microbiology Laboratory, Department of Immunology, AHEPA University Hospital, 54636 Thessaloniki, Greece; (E.G.); (A.I.); (V.T.); (L.S.)
| | - Lemonia Skoura
- Microbiology Laboratory, Department of Immunology, AHEPA University Hospital, 54636 Thessaloniki, Greece; (E.G.); (A.I.); (V.T.); (L.S.)
| | - Asimina Fylaktou
- National Peripheral Histocompatibility Center, Immunology Department, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (V.N.)
| | - Vasiliki Nikolaidou
- National Peripheral Histocompatibility Center, Immunology Department, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (V.N.)
| | - Maria Stangou
- Department of Nephrology, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, 54642 Thessaloniki, Greece;
| | - Ioannis Nikolaidis
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Virginia Giantzi
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Eleni Karafoulidou
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Paschalis Theotokis
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Nikolaos Grigoriadis
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
- Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Correspondence:
| |
Collapse
|
2
|
White matter connectometry in patients with disorders of consciousness revealed by 7-Tesla magnetic resonance imaging. Brain Imaging Behav 2022; 16:1983-1991. [DOI: 10.1007/s11682-022-00668-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 11/02/2022]
|
3
|
York EN, Thrippleton MJ, Meijboom R, Hunt DPJ, Waldman AD. Quantitative magnetization transfer imaging in relapsing-remitting multiple sclerosis: a systematic review and meta-analysis. Brain Commun 2022; 4:fcac088. [PMID: 35652121 PMCID: PMC9149789 DOI: 10.1093/braincomms/fcac088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/17/2021] [Accepted: 03/31/2022] [Indexed: 11/28/2022] Open
Abstract
Myelin-sensitive MRI such as magnetization transfer imaging has been widely used in multiple sclerosis. The influence of methodology and differences in disease subtype on imaging findings is, however, not well established. Here, we systematically review magnetization transfer brain imaging findings in relapsing-remitting multiple sclerosis. We examine how methodological differences, disease effects and their interaction influence magnetization transfer imaging measures. Articles published before 06/01/2021 were retrieved from online databases (PubMed, EMBASE and Web of Science) with search terms including 'magnetization transfer' and 'brain' for systematic review, according to a pre-defined protocol. Only studies that used human in vivo quantitative magnetization transfer imaging in adults with relapsing-remitting multiple sclerosis (with or without healthy controls) were included. Additional data from relapsing-remitting multiple sclerosis subjects acquired in other studies comprising mixed disease subtypes were included in meta-analyses. Data including sample size, MRI acquisition protocol parameters, treatments and clinical findings were extracted and qualitatively synthesized. Where possible, effect sizes were calculated for meta-analyses to determine magnetization transfer (i) differences between patients and healthy controls; (ii) longitudinal change and (iii) relationships with clinical disability in relapsing-remitting multiple sclerosis. Eighty-six studies met inclusion criteria. MRI acquisition parameters varied widely, and were also underreported. The majority of studies examined the magnetization transfer ratio in white matter, but magnetization transfer metrics, brain regions examined and results were heterogeneous. The analysis demonstrated a risk of bias due to selective reporting and small sample sizes. The pooled random-effects meta-analysis across all brain compartments revealed magnetization transfer ratio was 1.17 per cent units (95% CI -1.42 to -0.91) lower in relapsing-remitting multiple sclerosis than healthy controls (z-value: -8.99, P < 0.001, 46 studies). Linear mixed-model analysis did not show a significant longitudinal change in magnetization transfer ratio across all brain regions [β = 0.12 (-0.56 to 0.80), t-value = 0.35, P = 0.724, 14 studies] or normal-appearing white matter alone [β = 0.037 (-0.14 to 0.22), t-value = 0.41, P = 0.68, eight studies]. There was a significant negative association between the magnetization transfer ratio and clinical disability, as assessed by the Expanded Disability Status Scale [r = -0.32 (95% CI -0.46 to -0.17); z-value = -4.33, P < 0.001, 13 studies]. Evidence suggests that magnetization transfer imaging metrics are sensitive to pathological brain changes in relapsing-remitting multiple sclerosis, although effect sizes were small in comparison to inter-study variability. Recommendations include: better harmonized magnetization transfer acquisition protocols with detailed methodological reporting standards; larger, well-phenotyped cohorts, including healthy controls; and, further exploration of techniques such as magnetization transfer saturation or inhomogeneous magnetization transfer ratio.
Collapse
Affiliation(s)
- Elizabeth N. York
- Centre for Clinical Brain Sciences, University of
Edinburgh, Edinburgh, UK
| | | | - Rozanna Meijboom
- Centre for Clinical Brain Sciences, University of
Edinburgh, Edinburgh, UK
| | - David P. J. Hunt
- Centre for Clinical Brain Sciences, University of
Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of
Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic,
University of Edinburgh, Edinburgh, UK
| | - Adam D. Waldman
- Centre for Clinical Brain Sciences, University of
Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of
Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Luo SP, Chen FF, Zhang HW, Lin F, Huang GD, Lei Y. Trigeminal Nerve White Matter Fiber Abnormalities in Primary Trigeminal Neuralgia: A Diffusion Spectrum Imaging Study. Front Neurol 2022; 12:798969. [PMID: 35126296 PMCID: PMC8810829 DOI: 10.3389/fneur.2021.798969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Diffusion spectrum imaging (DSI) was used to quantitatively study the changes in the trigeminal cistern segment in patients with trigeminal neuralgia (TN) and to further explore the value of acquiring DSI data from patients with TN. METHODS To achieve high-resolution fiber tracking, 60 patients with TN and 35 healthy controls (HCs) were scanned with conventional magnetic resonance imaging (MRI) and DSI. The patients and the members of the control group were compared within and between groups. The correlations between quantitative parameters of DSI and the visual analog scale (VAS), and symptom duration and responsible vessel types were analyzed. RESULTS Compared with unaffected side of patients in the TN group, the affected side showed significantly decreased quantitative anisotropy (QA) (p < 0.001), fractional anisotropy (FA) (p = 0.001), and general FA (GFA) (p < 0.001). The unaffected side exhibited significantly decreased QA (p + 0.001), FA (p = 0.001), and GFA (p < 0.001) and significantly increased axial diffusivity (AD) (p = 0.036) compared with the affected side of patients in the TN group and the average values of HCs. There were significantly decreased QA (p = 0.046) and FA (p = 0.008) between the unaffected side of patients and the average values of HCs. GFA can evidently distinguish arteries, veins, and features of unaffected side in TN patients. CONCLUSION Using high-resolution fiber tracking technology, DSI can provide quantitative information that can be used to detect the integrity of trigeminal white matter in patients with TN and can improve the understanding of the disease mechanism.
Collapse
Affiliation(s)
- Si-ping Luo
- College of Medicine, Shantou University, Shantou, China
- Department of Radiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Fan-fan Chen
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Han-wen Zhang
- Department of Radiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Fan Lin
- Department of Radiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Guo-dong Huang
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Yi Lei
- Department of Radiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| |
Collapse
|
5
|
Jandric D, Doshi A, Scott R, Paling D, Rog D, Chataway J, Schoonheim M, Parker G, Muhlert N. A systematic review of resting state functional MRI connectivity changes and cognitive impairment in multiple sclerosis. Brain Connect 2021; 12:112-133. [PMID: 34382408 DOI: 10.1089/brain.2021.0104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Cognitive impairment in multiple sclerosis (MS) is increasingly being investigated with resting state functional MRI (rs-fMRI) functional connectivity (FC) . However, results remain difficult to interpret, showing both high and low FC associated with cognitive impairment. We conducted a systematic review of rs-fMRI studies in MS to understand whether the direction of FC change relates to cognitive dysfunction, and how this may be influenced by the choice of methodology. METHODS Embase, Medline and PsycINFO were searched for studies assessing cognitive function and rs-fMRI FC in adults with MS. RESULTS Fifty-seven studies were included in a narrative synthesis. Of these, 50 found an association between cognitive impairment and FC abnormalities. Worse cognition was linked to high FC in 18 studies, and to low FC in 17 studies. Nine studies found patterns of both high and low FC related to poor cognitive performance, in different regions or for different MR metrics. There was no clear link to increased FC during early stages of MS and reduced FC in later stages, as predicted by common models of MS pathology. Throughout, we found substantial heterogeneity in study methodology, and carefully consider how this may impact on the observed findings. DISCUSSION These results indicate an urgent need for greater standardisation in the field - in terms of the choice of MRI analysis and the definition of cognitive impairment. This will allow us to use rs-fMRI FC as a biomarker in future clinical studies, and as a tool to understand mechanisms underpinning cognitive symptoms in MS.
Collapse
Affiliation(s)
- Danka Jandric
- The University of Manchester, 5292, Oxford Road, Manchester, United Kingdom of Great Britain and Northern Ireland, M13 9PL;
| | - Anisha Doshi
- University College London, 4919, London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Richelle Scott
- The University of Manchester, 5292, Manchester, United Kingdom of Great Britain and Northern Ireland;
| | - David Paling
- Royal Hallamshire Hospital, 105629, Sheffield, Sheffield, United Kingdom of Great Britain and Northern Ireland;
| | - David Rog
- Salford Royal Hospital, 105621, Salford, Salford, United Kingdom of Great Britain and Northern Ireland;
| | - Jeremy Chataway
- University College London, 4919, London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Menno Schoonheim
- Amsterdam UMC Locatie VUmc, 1209, Anatomy & Neurosciences, Amsterdam, Noord-Holland, Netherlands;
| | - Geoff Parker
- University College London, 4919, London, London, United Kingdom of Great Britain and Northern Ireland.,The University of Manchester, 5292, Manchester, United Kingdom of Great Britain and Northern Ireland;
| | - Nils Muhlert
- The University of Manchester, 5292, Manchester, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|
6
|
Granziera C, Wuerfel J, Barkhof F, Calabrese M, De Stefano N, Enzinger C, Evangelou N, Filippi M, Geurts JJG, Reich DS, Rocca MA, Ropele S, Rovira À, Sati P, Toosy AT, Vrenken H, Gandini Wheeler-Kingshott CAM, Kappos L. Quantitative magnetic resonance imaging towards clinical application in multiple sclerosis. Brain 2021; 144:1296-1311. [PMID: 33970206 PMCID: PMC8219362 DOI: 10.1093/brain/awab029] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/25/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Quantitative MRI provides biophysical measures of the microstructural integrity of the CNS, which can be compared across CNS regions, patients, and centres. In patients with multiple sclerosis, quantitative MRI techniques such as relaxometry, myelin imaging, magnetization transfer, diffusion MRI, quantitative susceptibility mapping, and perfusion MRI, complement conventional MRI techniques by providing insight into disease mechanisms. These include: (i) presence and extent of diffuse damage in CNS tissue outside lesions (normal-appearing tissue); (ii) heterogeneity of damage and repair in focal lesions; and (iii) specific damage to CNS tissue components. This review summarizes recent technical advances in quantitative MRI, existing pathological validation of quantitative MRI techniques, and emerging applications of quantitative MRI to patients with multiple sclerosis in both research and clinical settings. The current level of clinical maturity of each quantitative MRI technique, especially regarding its integration into clinical routine, is discussed. We aim to provide a better understanding of how quantitative MRI may help clinical practice by improving stratification of patients with multiple sclerosis, and assessment of disease progression, and evaluation of treatment response.
Collapse
Affiliation(s)
- Cristina Granziera
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jens Wuerfel
- Medical Image Analysis Center, Basel, Switzerland
- Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, multiple sclerosis Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
- UCL Institutes of Healthcare Engineering and Neurology, London, UK
| | - Massimiliano Calabrese
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Nicola De Stefano
- Neurology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Christian Enzinger
- Department of Neurology and Division of Neuroradiology, Medical University of Graz, Graz, Austria
| | - Nikos Evangelou
- Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, multiple sclerosis Center Amsterdam, Neuroscience Amsterdam, Amsterdam University Medical Centers, location VUmc, Amsterdam, The Netherlands
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefan Ropele
- Neuroimaging Research Unit, Department of Neurology, Medical University of Graz, Graz, Austria
| | - Àlex Rovira
- Section of Neuroradiology (Department of Radiology), Vall d'Hebron University Hospital and Research Institute, Barcelona, Spain
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ahmed T Toosy
- Queen Square multiple sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, University College London, London, UK
| | - Hugo Vrenken
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, multiple sclerosis Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Claudia A M Gandini Wheeler-Kingshott
- Queen Square multiple sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, University College London, London, UK
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Brain MRI 3T Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
7
|
Zhang H, He WJ, Liang LH, Zhang HW, Zhang XJ, Zeng L, Luo SP, Lin F, Lei Y. Diffusion Spectrum Imaging of Corticospinal Tracts in Idiopathic Normal Pressure Hydrocephalus. Front Neurol 2021; 12:636518. [PMID: 33716939 PMCID: PMC7947286 DOI: 10.3389/fneur.2021.636518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/05/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose: The purpose of this study was to measure the diffusion spectrum imaging (DSI) parameters of corticospinal tracts (CSTs) and evaluate diffusional changes in CSTs in patients with idiopathic normal pressure hydrocephalus (iNPH) by DSI. Methods: Twenty-three iNPH patients and twenty-one healthy controls (HCs) were involved in this study. Brain DSI data for all participants were collected through the same MR scanning procedure. The diffusion parameters measured and analyzed included quantitative anisotropy (QA), the isotropic diffusion component (ISO), general fractional anisotropy (GFA), fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) of corticospinal tracts. Results: The QA and ISO values of corticospinal tracts in iNPH patients were significantly lower than those in HCs (PLQA = 0.008, PRQA = 0.016, PLISO = 0.024, PRISO = 0.016). The mean MD, AD, and RD values in iNPH patients were significantly higher than those in HCs (PMD = 0.032, PAD = 0.032, PRD = 0.048,). No significant differences in GFA and FA values were noted between iNPH patients and HCs. Conclusion: Decreased QA and ISO values of corticospinal tracts were found in iNPH patients. Quantitative CST evaluation using DSI may lead to information that can improve the present understanding of the disease mechanism.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Radiology, Health Science Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Wen-Jie He
- Department of Radiology, Health Science Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Li-Hong Liang
- Department of Radiology, Health Science Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Han-Wen Zhang
- Department of Radiology, Health Science Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xie-Jun Zhang
- Department of Neurosurgery, Health Science Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Liang Zeng
- Department of Radiology, Health Science Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Si-Ping Luo
- Department of Radiology, Health Science Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Fan Lin
- Department of Radiology, Health Science Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Fan Lin
| | - Yi Lei
- Department of Radiology, Health Science Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- *Correspondence: Yi Lei
| |
Collapse
|
8
|
Galbusera R, Parmar K, Boillat Y, Fartaria MJ, Todea AR, Brien KO, Smolinski A, Kappos L, van der Zwaag W, Granziera C. Laminar analysis of the cerebellar cortex shows widespread damage in early MS patients: A pilot study at 7T MRI. Mult Scler J Exp Transl Clin 2020; 6:2055217320961409. [PMID: 33149930 PMCID: PMC7586276 DOI: 10.1177/2055217320961409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/21/2020] [Accepted: 09/04/2020] [Indexed: 11/24/2022] Open
Abstract
Background To date, little is known about the presence and extent of cerebellar cortical pathology in early stages of MS. Objective The aims of this study were to (i) investigate microstructural changes in the normal-appearing cerebellar cortex of early MS patients by using 7 T MRI and (ii) evaluate the influence of those changes on clinical performance. Methods Eighteen RRMS patients and nine healthy controls underwent quantitative T1 and T2* measurement at 7 T MRI using high-resolution MP2RAGE and multi-echo gradient-echo imaging. After subtracting lesion masks, average T1 and T2* maps were computed for three layers in the cerebellar cortex and compared between groups using mixed effects models. Results The volume of the cerebellar cortex and its layers did not differ between patients and controls. In MS patients, significantly longer T1 values were observed in all vermis cortical layers and in the middle and external cortical layer of the cerebellar hemispheres. No between-group differences in T2* values were found. T1 values correlated with EDSS, SDMT and PASAT. Conclusions We found MRI evidence of damage in the normal-appearing cerebellar cortex at early MS stages and before volumetric changes. This microstructural alteration appears to be related to EDSS and cognitive performance.
Collapse
Affiliation(s)
- Riccardo Galbusera
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Katrin Parmar
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Yohan Boillat
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mario Joao Fartaria
- Advanced Clinical Imaging Technology, Siemens Healthcare AG (HC CMEA SUI DI BM PI), Lausanne, Switzerland
| | - Alexandra-Ramona Todea
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Kieran O' Brien
- Siemens Healthcare Pty Ltd., Bowen Hills, Australia; Centre for Advanced Imaging, University of Queensland, Australia
| | - Anna Smolinski
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | | | - Cristina Granziera
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Schiavi S, Petracca M, Battocchio M, El Mendili MM, Paduri S, Fleysher L, Inglese M, Daducci A. Sensory-motor network topology in multiple sclerosis: Structural connectivity analysis accounting for intrinsic density discrepancy. Hum Brain Mapp 2020; 41:2951-2963. [PMID: 32412678 PMCID: PMC7336144 DOI: 10.1002/hbm.24989] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Graph theory and network modelling have been previously applied to characterize motor network structural topology in multiple sclerosis (MS). However, between‐group differences disclosed by graph analysis might be primarily driven by discrepancy in density, which is likely to be reduced in pathologic conditions as a consequence of macroscopic damage and fibre loss that may result in less streamlines properly traced. In this work, we employed the convex optimization modelling for microstructure informed tractography (COMMIT) framework, which, given a tractogram, estimates the actual contribution (or weight) of each streamline in order to optimally explain the diffusion magnetic resonance imaging signal, filtering out those that are implausible or not necessary. Then, we analysed the topology of this ‘COMMIT‐weighted sensory‐motor network’ in MS accounting for network density. By comparing with standard connectivity analysis, we also tested if abnormalities in network topology are still identifiable when focusing on more ‘quantitative’ network properties. We found that topology differences identified with standard tractography in MS seem to be mainly driven by density, which, in turn, is strongly influenced by the presence of lesions. We were able to identify a significant difference in density but also in network global and local properties when accounting for density discrepancy. Therefore, we believe that COMMIT may help characterize the structural organization in pathological conditions, allowing a fair comparison of connectomes which considers discrepancies in network density. Moreover, discrepancy‐corrected network properties are clinically meaningful and may help guide prognosis assessment and treatment choice.
Collapse
Affiliation(s)
- Simona Schiavi
- Department of Computer Science, University of Verona, Verona, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genova, Italy
| | - Maria Petracca
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Mohamed M El Mendili
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Swetha Paduri
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lazar Fleysher
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genova, Italy.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | | |
Collapse
|
10
|
Cercignani M, Gandini Wheeler-Kingshott C. From micro- to macro-structures in multiple sclerosis: what is the added value of diffusion imaging. NMR IN BIOMEDICINE 2019; 32:e3888. [PMID: 29350435 DOI: 10.1002/nbm.3888] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 10/29/2017] [Accepted: 11/25/2017] [Indexed: 06/07/2023]
Abstract
Diffusion imaging has been instrumental in understanding damage to the central nervous system as a result of its sensitivity to microstructural changes. Clinical applications of diffusion imaging have grown exponentially over the past couple of decades in many neurological and neurodegenerative diseases, such as multiple sclerosis (MS). For several reasons, MS has been extensively researched using advanced neuroimaging techniques, which makes it an 'example disease' to illustrate the potential of diffusion imaging for clinical applications. In addition, MS pathology is characterized by several key processes competing with each other, such as inflammation, demyelination, remyelination, gliosis and axonal loss, enabling the specificity of diffusion to be challenged. In this review, we describe how diffusion imaging can be exploited to investigate micro-, meso- and macro-scale properties of the brain structure and discuss how they are affected by different pathological substrates. Conclusions from the literature are that larger studies are needed to confirm the exciting results from initial investigations before current trends in diffusion imaging can be translated to the neurology clinic. Also, for a comprehensive understanding of pathological processes, it is essential to take a multiple-level approach, in which information at the micro-, meso- and macroscopic scales is fully integrated.
Collapse
Affiliation(s)
- Mara Cercignani
- Clinical Imaging Sciences Centre, Department of Neuroscience, Brighton and Sussex Medical School, Brighton, UK
- Neuroimaging Laboratory, Santa Lucia Foundation, Rome, Italy
| | - Claudia Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, UCL Institute of Neurology, University College London, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain MRI 3T Mondino Research Center, C. Mondino National Neurological Institute, Pavia, Italy
| |
Collapse
|
11
|
Savini G, Pardini M, Castellazzi G, Lascialfari A, Chard D, D'Angelo E, Gandini Wheeler-Kingshott CAM. Default Mode Network Structural Integrity and Cerebellar Connectivity Predict Information Processing Speed Deficit in Multiple Sclerosis. Front Cell Neurosci 2019; 13:21. [PMID: 30853896 PMCID: PMC6396736 DOI: 10.3389/fncel.2019.00021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 01/17/2019] [Indexed: 01/21/2023] Open
Abstract
Cognitive impairment affects about 50% of multiple sclerosis (MS) patients, but the mechanisms underlying this remain unclear. The default mode network (DMN) has been linked with cognition, but in MS its role is still poorly understood. Moreover, within an extended DMN network including the cerebellum (CBL-DMN), the contribution of cortico-cerebellar connectivity to MS cognitive performance remains unexplored. The present study investigated associations of DMN and CBL-DMN structural connectivity with cognitive processing speed in MS, in both cognitively impaired (CIMS) and cognitively preserved (CPMS) MS patients. 68 MS patients and 22 healthy controls (HCs) completed a symbol digit modalities test (SDMT) and had 3T brain magnetic resonance imaging (MRI) scans that included a diffusion weighted imaging protocol. DMN and CBL-DMN tracts were reconstructed with probabilistic tractography. These networks (DMN and CBL-DMN) and the cortico-cerebellar tracts alone were modeled using a graph theoretical approach with fractional anisotropy (FA) as the weighting factor. Brain parenchymal fraction (BPF) was also calculated. In CIMS SDMT scores strongly correlated with the FA-weighted global efficiency (GE) of the network [GE(CBL-DMN): ρ = 0.87, R2 = 0.76, p < 0.001; GE(DMN): ρ = 0.82, R2 = 0.67, p < 0.001; GE(CBL): ρ = 0.80, R2 = 0.64, p < 0.001]. In CPMS the correlation between these measures was significantly lower [GE(CBL-DMN): ρ = 0.51, R2 = 0.26, p < 0.001; GE(DMN): ρ = 0.48, R2 = 0.23, p = 0.001; GE(CBL): ρ = 0.52, R2 = 0.27, p < 0.001] and SDMT scores correlated most with BPF (ρ = 0.57, R2 = 0.33, p < 0.001). In a multivariable regression model where SDMT was the independent variable, FA-weighted GE was the only significant explanatory variable in CIMS, while in CPMS BPF and expanded disability status scale were significant. No significant correlation was found in HC between SDMT scores, MRI or network measures. DMN structural GE is related to cognitive performance in MS, and results of CBL-DMN suggest that the cerebellum structural connectivity to the DMN plays an important role in information processing speed decline.
Collapse
Affiliation(s)
| | - Matteo Pardini
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Genoa, Italy.,Ospedale Policlinico S. Martino, Genoa, Italy
| | - Gloria Castellazzi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy.,NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, Institute of Neurology, University College London, London, United Kingdom
| | | | - Declan Chard
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, Institute of Neurology, University College London, London, United Kingdom.,National Institute for Health Research, University College London Hospitals, Biomedical Research Centre, London, United Kingdom
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, Institute of Neurology, University College London, London, United Kingdom.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Brain MRI 3T Mondino Research Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
12
|
Pagani E, Rocca MA, De Meo E, Horsfield MA, Colombo B, Rodegher M, Comi G, Filippi M. Structural connectivity in multiple sclerosis and modeling of disconnection. Mult Scler 2019; 26:220-232. [PMID: 30625050 DOI: 10.1177/1352458518820759] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is characterized by focal white matter damage, and when the brain is modeled as a network, lesions can be treated as disconnection events. OBJECTIVE To evaluate whether modeling disconnection caused by lesions helps explain motor and cognitive impairment in MS. METHODS Pathways connecting 116 cortical regions were reconstructed with magnetic resonance imaging (MRI) tractography from diffusion tensors averaged across healthy controls (HCs); maps of pathways were applied to 227 relapse-onset MS patients and 50 HCs to derive structural connectivity. Then, the likelihood of individual connections passing through lesions was used to model disconnection. Patients were grouped according to clinical phenotype (113 relapsing-remitting multiple sclerosis (RRMS), 69 secondary progressive multiple sclerosis (SPMS), 45 benign MS), and then network metrics were compared between groups (analysis of variance (ANOVA)) and correlated with motor and cognitive scores (linear regression). RESULTS Global metrics differentiated RRMS from SPMS and benign MS patients, but not benign from SPMS patients. Nodal connectivity strength replicated global results. After disconnection, few nodes were significantly different between benign MS and RRMS patients. Correlations revealed nodes pertinent to motor and cognitive dysfunctions; these became slightly stronger after disconnection. CONCLUSION Connectivity did not change greatly after modeled disconnection, suggesting that the brain network is robust against damage caused by MS lesions.
Collapse
Affiliation(s)
- Elisabetta Pagani
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy/Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Ermelinda De Meo
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy/Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Bruno Colombo
- Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Mariaemma Rodegher
- Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Giancarlo Comi
- Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy/Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
13
|
Connectometry evaluation in patients undergoing carotid endarterectomy: an exploratory study. Brain Imaging Behav 2018; 13:1708-1718. [DOI: 10.1007/s11682-018-0024-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Bonnier G, Fischi-Gomez E, Roche A, Hilbert T, Kober T, Krueger G, Granziera C. Personalized pathology maps to quantify diffuse and focal brain damage. NEUROIMAGE-CLINICAL 2018; 21:101607. [PMID: 30502080 PMCID: PMC6413479 DOI: 10.1016/j.nicl.2018.11.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 10/02/2018] [Accepted: 11/18/2018] [Indexed: 01/04/2023]
Abstract
Background and objectives Quantitative MRI (qMRI) permits the quantification of brain changes compatible with inflammation, degeneration and repair in multiple sclerosis (MS) patients. In this study, we propose a new method to provide personalized maps of tissue alterations and longitudinal brain changes based on different qMRI metrics, which provide complementary information about brain pathology. Methods We performed baseline and two-years follow-up on (i) 13 relapsing-remitting MS patients and (ii) four healthy controls. A group consisting of up to 65 healthy controls was used to compute the reference distribution of qMRI metrics in healthy tissue. All subjects underwent 3T MRI examinations including T1, T2, T2* relaxation and Magnetization Transfer Ratio (MTR) imaging. We used a recent partial volume estimation algorithm to estimate the concentration of different brain tissue types on T1 maps; then, we computed a deviation map (z-score map) for each contrast at both time-points. Finally, we subtracted those deviation maps only for voxels showing a significant difference with healthy tissue in one of the time points, to obtain a difference map for each subject. Results and conclusion Control subjects did not show any significant z-score deviations or longitudinal z-score changes. On the other hand, MS patients showed brain regions with cross-sectional and longitudinal concomitant increase in T1, T2, T2* z-scores and decrease of MTR z-scores, suggesting brain tissue degeneration/loss. In the lesion periphery, we observed areas with cross-sectional and longitudinal decreased T1/T2 and slight decrease in T2* most likely related to iron accumulation. Moreover, we measured longitudinal decrease in T1, T2 - and to a lesser extent in T2* - as well as a concomitant increase in MTR, suggesting remyelination/repair. In summary, we have developed a method that provides whole-brain personalized maps of cross-sectional and longitudinal changes in MS patients, which are computed in patient space. These maps may open new perspectives to complement and support radiological evaluation of brain damage for a given patient.
Collapse
Affiliation(s)
- G Bonnier
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - E Fischi-Gomez
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States; Signal Processing Laboratory 5 (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - A Roche
- Advanced Clinical Imaging Technology (HC CEMEA SUI DI PI), Siemens Healthcare AG, Switzerland; Department of Radiology, University Hospital (CHUV), Lausanne, Switzerland; Signal Processing Laboratory 5 (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - T Hilbert
- Advanced Clinical Imaging Technology (HC CEMEA SUI DI PI), Siemens Healthcare AG, Switzerland; Department of Radiology, University Hospital (CHUV), Lausanne, Switzerland; Signal Processing Laboratory 5 (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - T Kober
- Advanced Clinical Imaging Technology (HC CEMEA SUI DI PI), Siemens Healthcare AG, Switzerland; Department of Radiology, University Hospital (CHUV), Lausanne, Switzerland; Signal Processing Laboratory 5 (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - G Krueger
- Siemens Healthcare AG (HC CEMEA DI), Zürich, Switzerland
| | - C Granziera
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States; Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland; Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
15
|
Cognitive Deficits in Multiple Sclerosis: Recent Advances in Treatment and Neurorehabilitation. Curr Treat Options Neurol 2018; 20:53. [PMID: 30345468 DOI: 10.1007/s11940-018-0538-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE OF REVIEW This article highlights recent progress in research on treatment and neurorehabilitation of cognitive impairment in multiple sclerosis (MS) including pharmacological interventions, physical exercise, and neuropsychological rehabilitation, both in conventional and technology-assisted settings. RECENT FINDINGS The most consistent evidence in terms of improvement or preservation of circumscribed cognitive scores in MS patients comes from moderately sampled randomized clinical trials on multimodal approaches that combine conventional or computerized neuropsychological training with psychoeducation or cognitive behavioral therapy. Disease-modifying treatments also appear to have beneficial effects in preventing or attenuating cognitive decline, whereas there is little evidence for agents such as donepezil or stimulants. Finally, physical exercise may yield some cognitive improvement in MS patients. Despite substantial and often promising research efforts, there is a lack of validated and widely accepted clinical procedures for cognitive neurorehabilitation in MS. Development of such approaches will require collaborative efforts towards the design of interventions that are fundamentally inspired by cognitive neuroscience, potentially guided by neuroimaging, and composed of conventional neuropsychological training and cognitive behavioral therapy as well as physical exercise and therapeutic video games. Subsequently, large-scale validation will be needed with meaningful outcome measures reflecting transfer to everyday cognitive function and maintenance of training effects.
Collapse
|
16
|
Tahedl M, Levine SM, Greenlee MW, Weissert R, Schwarzbach JV. Functional Connectivity in Multiple Sclerosis: Recent Findings and Future Directions. Front Neurol 2018; 9:828. [PMID: 30364281 PMCID: PMC6193088 DOI: 10.3389/fneur.2018.00828] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/14/2018] [Indexed: 02/03/2023] Open
Abstract
Multiple sclerosis is a debilitating disorder resulting from scattered lesions in the central nervous system. Because of the high variability of the lesion patterns between patients, it is difficult to relate existing biomarkers to symptoms and their progression. The scattered nature of lesions in multiple sclerosis offers itself to be studied through the lens of network analyses. Recent research into multiple sclerosis has taken such a network approach by making use of functional connectivity. In this review, we briefly introduce measures of functional connectivity and how to compute them. We then identify several common observations resulting from this approach: (a) high likelihood of altered connectivity in deep-gray matter regions, (b) decrease of brain modularity, (c) hemispheric asymmetries in connectivity alterations, and (d) correspondence of behavioral symptoms with task-related and task-unrelated networks. We propose incorporating such connectivity analyses into longitudinal studies in order to improve our understanding of the underlying mechanisms affected by multiple sclerosis, which can consequently offer a promising route to individualizing imaging-related biomarkers for multiple sclerosis.
Collapse
Affiliation(s)
- Marlene Tahedl
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
- Institute for Experimental Psychology, University of Regensburg, Regensburg, Germany
| | - Seth M. Levine
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Mark W. Greenlee
- Institute for Experimental Psychology, University of Regensburg, Regensburg, Germany
| | - Robert Weissert
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Jens V. Schwarzbach
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| |
Collapse
|
17
|
Bipedal hopping timed to a metronome to detect impairments in anticipatory motor control in people with mild multiple sclerosis. Clin Biomech (Bristol, Avon) 2018; 55:45-52. [PMID: 29684789 DOI: 10.1016/j.clinbiomech.2018.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 01/30/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND People with mild multiple sclerosis (MS) often report subtle deficits in balance and cognition but display no measurable impairment on clinical assessments. We examined whether hopping to a metronome beat had the potential to detect anticipatory motor control deficits among people with mild MS (Expanded Disability Status Scale ≤ 3.5). METHODS Participants with MS (n = 13), matched controls (n = 9), and elderly subjects (n = 13) completed tests of cognition (Montreal Cognitive Assessment (MoCA)) and motor performance (Timed 25 Foot Walk Test (T25FWT)). Participants performed two bipedal hopping tasks: at 40 beats/min (bpm) and 60-bpm in random order. Hop characteristics (length, symmetry, variability) and delay from the metronome beat were extracted from an instrumented walkway and compared between groups. RESULTS The MS group became more delayed from the metronome beat over time whereas elderly subjects tended to hop closer to the beat (F = 4.52, p = 0.02). Delay of the first hop during 60-bpm predicted cognition in people with MS (R = 0.55, β = 4.64 (SD 4.63), F = 4.85, p = 0.05) but not among control (R = 0.07, p = 0.86) or elderly subjects (R = 0.17, p = 0.57). In terms of hopping characteristics, at 60-bpm, people with MS and matched controls were significantly different from the elderly group. However, at 40-bpm, the MS group was no longer significantly different from the elderly group, even though matched controls and elderly still differed significantly. CONCLUSIONS This new timed hopping test may be able to detect both physical ability, and feed-forward anticipatory control impairments in people with mild MS. Hopping at a frequency of 40-bpm seemed more challenging. Several aspects of anticipatory motor control can be measured: including reaction time to the first metronome cue and the ability to adapt and anticipate the beat over time.
Collapse
|
18
|
Moroso A, Ruet A, Lamargue-Hamel D, Munsch F, Deloire M, Ouallet JC, Cubizolle S, Charré-Morin J, Saubusse A, Tourdias T, Dousset V, Brochet B. Preliminary evidence of the cerebellar role on cognitive performances in clinically isolated syndrome. J Neurol Sci 2017; 385:1-6. [PMID: 29406885 DOI: 10.1016/j.jns.2017.11.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 11/02/2017] [Accepted: 11/29/2017] [Indexed: 01/29/2023]
Abstract
BACKGROUND Cerebellar and cognitive dysfunction can occur early in clinically isolated syndrome (CIS). Eye tracking is a reliable tool for the evaluation of both subtle cerebellar symptoms and cognitive impairment. OBJECTIVES To investigate the early cognitive profile using neuropsychological and ocular motor (OM) testing in CIS with and without cerebellar dysfunction with OM testing compared to healthy subjects (HS). METHODS Twenty-eight patients and 12 HC underwent OM and neuropsychological testing. Cerebellar impairment was defined by the registration of saccadic intrusions and/or at least 10% of dysmetria during ocular motor recording. Visually guided saccade (VGS), memory-guided saccade (MGS) and antisaccade (AS) paradigms were compared to neuropsychological assessments. RESULTS The group of patients with cerebellar dysfunction (n=16) performed worse on MGS latencies and error rates, and had worse working memory, executive function and information processing speed (IPS) z scores than patients without cerebellar dysfunction. IPS was correlated with the AS error rate in all patients and with the VGS error rate and the MGS final eye position ratio in cerebellar patients. CONCLUSION Eye tracking is a sensitive tool to assess cognitive and cerebellar dysfunctions in CIS. In CIS patients, cerebellar impairment is associated with working memory, executive functions and IPS slowness.
Collapse
Affiliation(s)
- Amandine Moroso
- CHU de Bordeaux, INSERM-CHU CIC-P 0005, Service de Neurologie, Bordeaux F-33076, France; Université de Bordeaux, Bordeaux F-33076, France; Neurocentre Magendie, INSERM U1215, Team Glia-neuron Interactions, Bordeaux F-33077, France
| | - Aurélie Ruet
- CHU de Bordeaux, INSERM-CHU CIC-P 0005, Service de Neurologie, Bordeaux F-33076, France; Université de Bordeaux, Bordeaux F-33076, France; Neurocentre Magendie, INSERM U1215, Team Glia-neuron Interactions, Bordeaux F-33077, France
| | - Delphine Lamargue-Hamel
- Université de Bordeaux, Bordeaux F-33076, France; Neurocentre Magendie, INSERM U1215, Team Glia-neuron Interactions, Bordeaux F-33077, France
| | - Fanny Munsch
- Université de Bordeaux, Bordeaux F-33076, France; Neurocentre Magendie, INSERM U1215, Team Glia-neuron Interactions, Bordeaux F-33077, France
| | - Mathilde Deloire
- CHU de Bordeaux, INSERM-CHU CIC-P 0005, Service de Neurologie, Bordeaux F-33076, France
| | | | - Stéphanie Cubizolle
- CHU de Bordeaux, INSERM-CHU CIC-P 0005, Service de Neurologie, Bordeaux F-33076, France
| | - Julie Charré-Morin
- CHU de Bordeaux, INSERM-CHU CIC-P 0005, Service de Neurologie, Bordeaux F-33076, France
| | - Aurore Saubusse
- CHU de Bordeaux, INSERM-CHU CIC-P 0005, Service de Neurologie, Bordeaux F-33076, France
| | - Thomas Tourdias
- CHU de Bordeaux, INSERM-CHU CIC-P 0005, Service de Neurologie, Bordeaux F-33076, France; Université de Bordeaux, Bordeaux F-33076, France; Neurocentre Magendie, INSERM U1215, Team Glia-neuron Interactions, Bordeaux F-33077, France
| | - Vincent Dousset
- CHU de Bordeaux, INSERM-CHU CIC-P 0005, Service de Neurologie, Bordeaux F-33076, France; Université de Bordeaux, Bordeaux F-33076, France; Neurocentre Magendie, INSERM U1215, Team Glia-neuron Interactions, Bordeaux F-33077, France
| | - Bruno Brochet
- CHU de Bordeaux, INSERM-CHU CIC-P 0005, Service de Neurologie, Bordeaux F-33076, France; Université de Bordeaux, Bordeaux F-33076, France; Neurocentre Magendie, INSERM U1215, Team Glia-neuron Interactions, Bordeaux F-33077, France.
| |
Collapse
|
19
|
Cocozza S, Petracca M, Mormina E, Buyukturkoglu K, Podranski K, Heinig MM, Pontillo G, Russo C, Tedeschi E, Russo CV, Costabile T, Lanzillo R, Harel A, Klineova S, Miller A, Brunetti A, Morra VB, Lublin F, Inglese M. Cerebellar lobule atrophy and disability in progressive MS. J Neurol Neurosurg Psychiatry 2017; 88:1065-1072. [PMID: 28844067 DOI: 10.1136/jnnp-2017-316448] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/10/2017] [Accepted: 07/23/2017] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To investigate global and lobular cerebellar volumetries in patients with progressive multiple sclerosis (MS), testing the contribution of cerebellar lobular atrophy to both motor and cognitive performances. METHODS Eighty-two patients with progressive MS and 46 healthy controls (HC) were enrolled in this cross-sectional study. Clinical evaluation included motor and cognitive testing: Expanded Disability Status Scale, cerebellar Functional System score, Timed 25-Foot Walk Test, 9-Hole Peg Test (9-HPT), Symbol Digit Modalities Test (SDMT), Brief Visuospatial Memory Test-Revised (BVMT) and California Verbal Learning Test II (CVLT). Cerebellar volumes were automatically obtained using the Spatially Unbiased Infratentorial Toolbox. A hierarchical multiple linear regression analysis was performed to assess the relationship between MRI variables of supratentorial and cerebellar damage (grey matter fraction, T2 lesion volume, metrics of cerebellar atrophy and cerebellar lesion volume) and motor/cognitive scores. RESULTS Patients with MS exhibited lower cerebellar volumes compared with HC. Regression analysis showed that cerebellar metrics accounted for extra variance in both motor and cognitive performances, with cerebellar lesion volume, cerebellar Lobules VI, Crus I and VIIIa atrophy being independent predictors of 9-HPT, SDMT, BVMT and CVLT performances. CONCLUSIONS Atrophy of specific cerebellar lobules explains different aspects of motor and cognitive disability in patients with progressive MS. Investigation of cerebellar involvement provides further insight into the pathophysiological basis of clinical disability in progressive MS.
Collapse
Affiliation(s)
- Sirio Cocozza
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Advanced Biomedical Sciences, University 'Federico II', Naples, Italy
| | - Maria Petracca
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Neurosciences, Reproductive and Odonto-stomatological Sciences, University 'Federico II', Naples, Italy
| | - Enricomaria Mormina
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | - Kornelius Podranski
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Monika M Heinig
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University 'Federico II', Naples, Italy
| | - Camilla Russo
- Department of Advanced Biomedical Sciences, University 'Federico II', Naples, Italy
| | - Enrico Tedeschi
- Department of Advanced Biomedical Sciences, University 'Federico II', Naples, Italy
| | - Cinzia Valeria Russo
- Department of Neurosciences, Reproductive and Odonto-stomatological Sciences, University 'Federico II', Naples, Italy
| | - Teresa Costabile
- Department of Neurosciences, Reproductive and Odonto-stomatological Sciences, University 'Federico II', Naples, Italy
| | - Roberta Lanzillo
- Department of Neurosciences, Reproductive and Odonto-stomatological Sciences, University 'Federico II', Naples, Italy
| | - Asaff Harel
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Sylvia Klineova
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Aaron Miller
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University 'Federico II', Naples, Italy
| | - Vincenzo Brescia Morra
- Department of Neurosciences, Reproductive and Odonto-stomatological Sciences, University 'Federico II', Naples, Italy
| | - Fred Lublin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Matilde Inglese
- Departments of Neurology, Radiology and Neuroscience, Icahn School of Medicine, New York, USA.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Perinatal Sciences, University of Genoa, Genova, Italy.,IRCCS Azienda Ospedale Università San Martino-IST, Genova, Italy
| |
Collapse
|
20
|
Bonnier G, Maréchal B, Fartaria MJ, Falkowskiy P, Marques JP, Simioni S, Schluep M, Du Pasquier R, Thiran JP, Krueger G, Granziera C. The Combined Quantification and Interpretation of Multiple Quantitative Magnetic Resonance Imaging Metrics Enlightens Longitudinal Changes Compatible with Brain Repair in Relapsing-Remitting Multiple Sclerosis Patients. Front Neurol 2017; 8:506. [PMID: 29021778 PMCID: PMC5623825 DOI: 10.3389/fneur.2017.00506] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/08/2017] [Indexed: 12/25/2022] Open
Abstract
Objective Quantitative and semi-quantitative MRI (qMRI) metrics provide complementary specificity and differential sensitivity to pathological brain changes compatible with brain inflammation, degeneration, and repair. Moreover, advanced magnetic resonance imaging (MRI) metrics with overlapping elements amplify the true tissue-related information and limit measurement noise. In this work, we combined multiple advanced MRI parameters to assess focal and diffuse brain changes over 2 years in a group of early-stage relapsing-remitting MS patients. Methods Thirty relapsing-remitting MS patients with less than 5 years disease duration and nine healthy subjects underwent 3T MRI at baseline and after 2 years including T1, T2, T2* relaxometry, and magnetization transfer imaging. To assess longitudinal changes in normal-appearing (NA) tissue and lesions, we used analyses of variance and Bonferroni correction for multiple comparisons. Multivariate linear regression was used to assess the correlation between clinical outcome and multiparametric MRI changes in lesions and NA tissue. Results In patients, we measured a significant longitudinal decrease of mean T2 relaxation times in NA white matter (p = 0.005) and a decrease of T1 relaxation times in the pallidum (p < 0.05), which are compatible with edema reabsorption and/or iron deposition. No longitudinal changes in qMRI metrics were observed in controls. In MS lesions, we measured a decrease in T1 relaxation time (p-value < 2.2e−16) and a significant increase in MTR (p-value < 1e−6), suggesting repair mechanisms, such as remyelination, increased axonal density, and/or a gliosis. Last, the evolution of advanced MRI metrics—and not changes in lesions or brain volume—were correlated to motor and cognitive tests scores evolution (Adj-R2 > 0.4, p < 0.05). In summary, the combination of multiple advanced MRI provided evidence of changes compatible with focal and diffuse brain repair at early MS stages as suggested by histopathological studies.
Collapse
Affiliation(s)
- Guillaume Bonnier
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Benedicte Maréchal
- Advanced Clinical Imaging Technology (HC CMEA SUI DI BM PI), Siemens Healthcare, Lausanne, Switzerland.,Signal Processing Laboratory 5 LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mário João Fartaria
- Advanced Clinical Imaging Technology (HC CMEA SUI DI BM PI), Siemens Healthcare, Lausanne, Switzerland.,Signal Processing Laboratory 5 LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Pavel Falkowskiy
- Advanced Clinical Imaging Technology (HC CMEA SUI DI BM PI), Siemens Healthcare, Lausanne, Switzerland.,Signal Processing Laboratory 5 LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - José P Marques
- Donders Centre for Cognitive Neuroimaging, Radbound University, Nijmegen, Netherlands
| | - Samanta Simioni
- Neuropsychology, Institution de Lavigny, Denens, Switzerland
| | - Myriam Schluep
- Neurology Service and Neuroimmunology Laboratory, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Renaud Du Pasquier
- Neurology Service and Neuroimmunology Laboratory, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Laboratory 5 LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Gunnar Krueger
- Siemens Medical Solutions USA IM MR COL NEZ, Burlington, MA, United States
| | - Cristina Granziera
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States.,Neurology Service and Neuroimmunology Laboratory, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
21
|
Albert M, Barrantes-Freer A, Lohrberg M, Antel JP, Prineas JW, Palkovits M, Wolff JR, Brück W, Stadelmann C. Synaptic pathology in the cerebellar dentate nucleus in chronic multiple sclerosis. Brain Pathol 2017; 27:737-747. [PMID: 27706868 DOI: 10.1111/bpa.12450] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/27/2016] [Indexed: 12/27/2022] Open
Abstract
In multiple sclerosis, cerebellar symptoms are associated with clinical impairment and an increased likelihood of progressive course. Cortical atrophy and synaptic dysfunction play a prominent role in cerebellar pathology and although the dentate nucleus is a predilection site for lesion development, structural synaptic changes in this region remain largely unexplored. Moreover, the mechanisms leading to synaptic dysfunction have not yet been investigated at an ultrastructural level in multiple sclerosis. Here, we report on synaptic changes of dentate nuclei in post-mortem cerebella of 16 multiple sclerosis patients and eight controls at the histological level as well as an electron microscopy evaluation of afferent synapses of the cerebellar dentate and pontine nuclei of one multiple sclerosis patient and one control. We found a significant reduction of afferent dentate synapses in multiple sclerosis, irrespective of the presence of demyelination, and a close relationship between glial processes and dentate synapses. Ultrastructurally, we show autophagosomes containing degradation products of synaptic vesicles within dendrites, residual bodies within intact-appearing axons and free postsynaptic densities opposed to astrocytic appendages. Our study demonstrates loss of dentate afferent synapses and provides, for the first time, ultrastructural evidence pointing towards neuron-autonomous and neuroglia-mediated mechanisms of synaptic degradation in chronic multiple sclerosis.
Collapse
Affiliation(s)
- Monika Albert
- Department of Neuropathology, University Medical Center, Robert-Koch-Straße 40, Göttingen, D-37075, Germany
| | - Alonso Barrantes-Freer
- Department of Neuropathology, University Medical Center, Robert-Koch-Straße 40, Göttingen, D-37075, Germany
| | - Melanie Lohrberg
- Department of Anatomy, University Medical Center, Kreuzbergring 36, Göttingen, D-37075, Germany
| | - Jack P Antel
- Neuroimmunology unit, 3801 University Street, Montreal, Canada
| | - John W Prineas
- Department of Neurology, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Miklós Palkovits
- Department of Anatomy and Human Brain Tissue Bank, Tüzoltó utca 58, Budapest, Hungary
| | - Joachim R Wolff
- Department of Anatomy, University Medical Center, Kreuzbergring 36, Göttingen, D-37075, Germany
| | - Wolfgang Brück
- Department of Neuropathology, University Medical Center, Robert-Koch-Straße 40, Göttingen, D-37075, Germany
| | - Christine Stadelmann
- Department of Neuropathology, University Medical Center, Robert-Koch-Straße 40, Göttingen, D-37075, Germany
| |
Collapse
|
22
|
Kocevar G, Stamile C, Hannoun S, Cotton F, Vukusic S, Durand-Dubief F, Sappey-Marinier D. Graph Theory-Based Brain Connectivity for Automatic Classification of Multiple Sclerosis Clinical Courses. Front Neurosci 2016; 10:478. [PMID: 27826224 PMCID: PMC5078266 DOI: 10.3389/fnins.2016.00478] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/06/2016] [Indexed: 11/13/2022] Open
Abstract
Purpose: In this work, we introduce a method to classify Multiple Sclerosis (MS) patients into four clinical profiles using structural connectivity information. For the first time, we try to solve this question in a fully automated way using a computer-based method. The main goal is to show how the combination of graph-derived metrics with machine learning techniques constitutes a powerful tool for a better characterization and classification of MS clinical profiles. Materials and Methods: Sixty-four MS patients [12 Clinical Isolated Syndrome (CIS), 24 Relapsing Remitting (RR), 24 Secondary Progressive (SP), and 17 Primary Progressive (PP)] along with 26 healthy controls (HC) underwent MR examination. T1 and diffusion tensor imaging (DTI) were used to obtain structural connectivity matrices for each subject. Global graph metrics, such as density and modularity, were estimated and compared between subjects' groups. These metrics were further used to classify patients using tuned Support Vector Machine (SVM) combined with Radial Basic Function (RBF) kernel. Results: When comparing MS patients to HC subjects, a greater assortativity, transitivity, and characteristic path length as well as a lower global efficiency were found. Using all graph metrics, the best F-Measures (91.8, 91.8, 75.6, and 70.6%) were obtained for binary (HC-CIS, CIS-RR, RR-PP) and multi-class (CIS-RR-SP) classification tasks, respectively. When using only one graph metric, the best F-Measures (83.6, 88.9, and 70.7%) were achieved for modularity with previous binary classification tasks. Conclusion: Based on a simple DTI acquisition associated with structural brain connectivity analysis, this automatic method allowed an accurate classification of different MS patients' clinical profiles.
Collapse
Affiliation(s)
- Gabriel Kocevar
- CREATIS Centre National de la Recherche Scientifique UMR5220 and Institut National de la Santé et de la Recherche Médicale U1206, INSA-Lyon, Université de Lyon, Université Claude Bernard-Lyon 1Lyon, France
| | - Claudio Stamile
- CREATIS Centre National de la Recherche Scientifique UMR5220 and Institut National de la Santé et de la Recherche Médicale U1206, INSA-Lyon, Université de Lyon, Université Claude Bernard-Lyon 1Lyon, France
| | - Salem Hannoun
- CREATIS Centre National de la Recherche Scientifique UMR5220 and Institut National de la Santé et de la Recherche Médicale U1206, INSA-Lyon, Université de Lyon, Université Claude Bernard-Lyon 1Lyon, France
- Faculty of Medicine, Abu-Haidar Neuroscience Institute, American University of BeirutBeirut, Lebanon
| | - François Cotton
- CREATIS Centre National de la Recherche Scientifique UMR5220 and Institut National de la Santé et de la Recherche Médicale U1206, INSA-Lyon, Université de Lyon, Université Claude Bernard-Lyon 1Lyon, France
- Service de Radiologie, Centre Hospitalier Lyon-Sud, Hospices Civils de LyonLyon, France
| | - Sandra Vukusic
- Service de Neurologie A, Hôpital Neurologique, Hospices Civils de LyonLyon, France
| | - Françoise Durand-Dubief
- CREATIS Centre National de la Recherche Scientifique UMR5220 and Institut National de la Santé et de la Recherche Médicale U1206, INSA-Lyon, Université de Lyon, Université Claude Bernard-Lyon 1Lyon, France
- Service de Neurologie A, Hôpital Neurologique, Hospices Civils de LyonLyon, France
| | - Dominique Sappey-Marinier
- CREATIS Centre National de la Recherche Scientifique UMR5220 and Institut National de la Santé et de la Recherche Médicale U1206, INSA-Lyon, Université de Lyon, Université Claude Bernard-Lyon 1Lyon, France
- CERMEP—Imagerie du Vivant, Université de LyonLyon, France
| |
Collapse
|
23
|
Sbardella E, Upadhyay N, Tona F, Prosperini L, De Giglio L, Petsas N, Pozzilli C, Pantano P. Dentate nucleus connectivity in adult patients with multiple sclerosis: functional changes at rest and correlation with clinical features. Mult Scler 2016; 23:546-555. [PMID: 27411700 DOI: 10.1177/1352458516657438] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVE The dentate nucleus, which is the largest of the cerebellar nuclei, plays a critical role in movement and cognition. The aim of our study was to assess any changes in dentate functional connectivity (FC) in adult relapsing remitting multiple sclerosis (RR-MS) patients and to investigate possible clinical correlates. MATERIALS AND METHODS In all, 54 patients and 24 healthy subjects (HS) underwent multimodal magnetic resonance imaging (MRI), including diffusion tensor imaging (DTI), three-dimensional-T1-weighted and resting state (RS) functional images; they also underwent a cognitive evaluation, that is, attention and information processing speed, by means of the Paced Auditory Serial Addition Test (PASAT). Patients were also scored according to Expanded Disability Status Scale (EDSS). RS-MRI data were analysed using FMRIB Software Library (FSL) tools, with the seed-based method to identify dentate FC. RESULTS When compared with HS, patients exhibited brain atrophy and widespread DTI abnormalities, as well as greater FC between the dentate nucleus and cortical areas, particularly in the frontal and parietal lobes. Within these areas, FC in patients correlated inversely with clinical impairment. Finally, FC correlated inversely with lesion load and microstructural brain damage. CONCLUSION Our findings indicate that dentate FC at rest is altered in MS patients. Whether these functional changes are induced by the disease and play a compensatory role remains to be established.
Collapse
Affiliation(s)
- Emilia Sbardella
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Neeraj Upadhyay
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Francesca Tona
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Luca Prosperini
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Laura De Giglio
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Nikolaos Petsas
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Carlo Pozzilli
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Patrizia Pantano
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy/IRCSS Neuromed, Pozzilli (Isernia), Italy
| |
Collapse
|
24
|
Kuhle J, Barro C, Disanto G, Mathias A, Soneson C, Bonnier G, Yaldizli Ö, Regeniter A, Derfuss T, Canales M, Schluep M, Du Pasquier R, Krueger G, Granziera C. Serum neurofilament light chain in early relapsing remitting MS is increased and correlates with CSF levels and with MRI measures of disease severity. Mult Scler 2016; 22:1550-1559. [PMID: 26754800 DOI: 10.1177/1352458515623365] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/20/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND/OBJECTIVES Neurofilament light chain (NfL) levels in the cerebrospinal fluid (CSF) of multiple sclerosis (MS) patients correlate with the degree of neuronal injury. To date, little is known about NfL concentrations in the serum of relapsing remitting multiple sclerosis (RRMS) patients and their relationship with CSF levels and magnetic resonance imaging (MRI) measures of disease severity. We aimed to validate the quantification of NfL in serum samples of RRMS, as a biofluid source easily accessible for longitudinal studies. METHODS A total of 31 RRMS patients underwent CSF and serum sampling. After a median time of 3.6 years, 19 of these RRMS patients, 10 newly recruited RRMS patients and 18 healthy controls had a 3T MRI and serum sampling. NfL concentrations were determined by electrochemiluminescence immunoassay. RESULTS NfL levels in serum were highly correlated to levels in CSF (r = 0.62, p = 0.0002). Concentrations in serum were higher in patients than in controls at baseline (p = 0.004) and follow-up (p = 0.0009) and did not change over time (p = 0.56). Serum NfL levels correlated with white matter (WM) lesion volume (r = 0.68, p < 0.0001), mean T1 (r = 0.40, p = 0.034) and T2* relaxation time (r = 0.49, p = 0.007) and with magnetization transfer ratio in normal appearing WM (r = -0.41, p = 0.029). CONCLUSION CSF and serum NfL levels were highly correlated, and serum concentrations were increased in RRMS. Serum NfL levels correlated with MRI markers of WM disease severity. Our findings further support longitudinal studies of serum NfL as a potential biomarker of on-going disease progression and as a potential surrogate to quantify effects of neuroprotective drugs in clinical trials.
Collapse
Affiliation(s)
- Jens Kuhle
- Neurology, Departments of Medicine, Clinical Research and Biomedicine, University Hospital of Basel, Basel, Switzerland
| | - Christian Barro
- Neurology, Departments of Medicine, Clinical Research and Biomedicine, University Hospital of Basel, Basel, Switzerland
| | - Giulio Disanto
- Neurocenter of Southern Switzerland, Ospedale Civico, Lugano, Switzerland
| | - Amandine Mathias
- Laboratory of Neuroimmunology, Center of Research in Neurosciences, Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland
| | - Charlotte Soneson
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland/University of Zurich, Zurich, Switzerland
| | - Guillaume Bonnier
- Advanced Clinical Imaging Technology Group, Siemens Healthcare IM BM PI, Lausanne, Switzerland/Neuro-Immunology, Neurology Division, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland/LTS5, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Özguer Yaldizli
- Neurology, Departments of Medicine, Clinical Research and Biomedicine, University Hospital of Basel, Basel, Switzerland
| | - Axel Regeniter
- Clinical Neurochemistry, University Hospital of Basel, Basel, Switzerland
| | - Tobias Derfuss
- Neurology, Departments of Medicine, Clinical Research and Biomedicine, University Hospital of Basel, Basel, Switzerland
| | - Mathieu Canales
- Laboratory of Neuroimmunology, Center of Research in Neurosciences, Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland
| | - Myriam Schluep
- Service of Neurology, Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland
| | - Renaud Du Pasquier
- Laboratory of Neuroimmunology, Center of Research in Neurosciences, Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland/Service of Neurology, Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland
| | - Gunnar Krueger
- Advanced Clinical Imaging Technology Group, Siemens Healthcare IM BM PI, Lausanne, Switzerland/Healthcare Sector IM&WS S, Siemens Schweiz AG, Renens, Switzerland
| | - Cristina Granziera
- Advanced Clinical Imaging Technology Group, Siemens Healthcare IM BM PI, Lausanne, Switzerland/Neuro-Immunology, Neurology Division, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland/LTS5, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
The neurocognitive profile of the cerebellum in multiple sclerosis. Int J Mol Sci 2015; 16:12185-98. [PMID: 26030676 PMCID: PMC4490438 DOI: 10.3390/ijms160612185] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/20/2015] [Accepted: 05/26/2015] [Indexed: 01/22/2023] Open
Abstract
In recent years, a high number of studies have demonstrated that neuropsychological functions are altered in multiple sclerosis (MS) patients with cerebellar lesions, mainly including attention, working memory and verbal fluency. Since the present literature is often elusive on this topic, we aim to provide a comprehensive report about the real impact of cerebellar damages (evaluated as volume, lesions or connectivity measures) on cognitive functions. In particular in this review, we report and discuss recent works from 2009 to 2015, which have demonstrated the key role of the cerebellum in cognitive impairment of MS patients.
Collapse
|