1
|
Massara M, Delogu C, Cardinale L, Livoti V, Liso A, Cainelli E, Sarlo M, Begliomini C, Ceolin C, De Rui M, Bisiacchi P, Sergi G, Mapelli D, Devita M. The lateralized cerebellum: insights into motor, cognitive, and affective functioning across ages: a scoping review. J Neurol 2025; 272:122. [PMID: 39812809 DOI: 10.1007/s00415-024-12884-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025]
Abstract
Research on the cerebellum and its functional organization has significantly expanded over the last decades, expanding our comprehension of its role far beyond motor control, including critical contributions to cognition and affective processing. Notably, the cerebellar lateralization mirrors contralateral brain lateralization, a complex phenomenon that remains unexplored, especially across different stages of life. The present work aims to bridge this gap by providing a comprehensive scoping review of the lateralization of motor, cognitive, and affective functioning within the cerebellum across the lifespan. A methodical search in electronic databases (i.e., PubMed, Embase, and PsycINFO) was conducted up to October 2024, focusing on neuroimaging studies with healthy participants of all ages performing motor, cognitive, or affective tasks. Our selection process, which involved multiple independent reviewers, identified 128 studies reporting cerebellar asymmetries in individuals from early childhood to older age, with a significant portion of studies regarding young-middle adults (19-45 years old). The majority of the findings confirmed established lateralization patterns in motor and language processing, such as ipsilateral motor control and right-lateralized language functions. However, less attention has been paid to other cognitive functions and affective processing where more heterogeneous and less consistent asymmetries have been observed. To the best of our knowledge, this scoping review is the first to comprehensively investigate the motor, cognitive, and affective functional lateralization of the cerebellum across lifespan, highlighting previously overlooked dimensions of cerebellar contributions.
Collapse
Affiliation(s)
- Matilde Massara
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
| | - Carla Delogu
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
| | - Luca Cardinale
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
| | - Vincenzo Livoti
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
- Padova Neuroscience Center (PNC), University of Padua, Via Orus 2/B, 35129, Padua, Italy
| | - Alba Liso
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 64, 44121, Ferrara, Italy
| | - Elisa Cainelli
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
| | - Michela Sarlo
- Department of Communication Sciences, Humanities and International Studies, University of Urbino Carlo Bo, Via Saffi 15, 61029, Urbino, Italy
| | - Chiara Begliomini
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
- Padova Neuroscience Center (PNC), University of Padua, Via Orus 2/B, 35129, Padua, Italy
| | - Chiara Ceolin
- Geriatrics Division, Department of Medicine (DIMED), University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Marina De Rui
- Geriatrics Division, Department of Medicine (DIMED), University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Patrizia Bisiacchi
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
- Padova Neuroscience Center (PNC), University of Padua, Via Orus 2/B, 35129, Padua, Italy
| | - Giuseppe Sergi
- Geriatrics Division, Department of Medicine (DIMED), University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Daniela Mapelli
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
| | - Maria Devita
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy.
- Geriatrics Division, Department of Medicine (DIMED), University of Padua, Via Giustiniani 2, 35128, Padua, Italy.
| |
Collapse
|
2
|
Hong Y, Bao D, Manor B, Zhou J. Characterizing the supraspinal sensorimotor control of walking using MRI-compatible system: a systematic review. J Neuroeng Rehabil 2024; 21:34. [PMID: 38443983 PMCID: PMC10913571 DOI: 10.1186/s12984-024-01323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND The regulation of gait is critical to many activities of everyday life. When walking, somatosensory information obtained from mechanoreceptors throughout body is delivered to numerous supraspinal networks and used to execute the appropriate motion to meet ever-changing environmental and task demands. Aging and age-related conditions oftentimes alter the supraspinal sensorimotor control of walking, including the responsiveness of the cortical brain regions to the sensorimotor inputs obtained from the peripheral nervous system, resulting in diminished mobility in the older adult population. It is thus important to explicitly characterize such supraspinal sensorimotor elements of walking, providing knowledge informing novel rehabilitative targets. The past efforts majorly relied upon mental imagery or virtual reality to study the supraspinal control of walking. Recent efforts have been made to develop magnetic resonance imaging (MRI)-compatible devices simulating specific somatosensory and/or motor aspects of walking. However, there exists large variance in the design and functionality of these devices, and as such inconsistent functional MRI (fMRI) observations. METHODS We have therefore completed a systematic review to summarize current achievements in the development of these MRI-compatible devices and synthesize available imaging results emanating from studies that have utilized these devices. RESULTS The device design, study protocol and neuroimaging observations of 26 studies using 13 types of devices were extracted. Three of these devices can provide somatosensory stimuli, eight motor stimuli, and two both types of stimuli. Our review demonstrated that using these devices, fMRI data of brain activation can be successfully obtained when participants remain motionless and experience sensorimotor stimulation during fMRI acquisition. The activation in multiple cortical (e.g., primary sensorimotor cortex) and subcortical (e.g., cerebellum) regions has been each linked to these types of walking-related sensorimotor stimuli. CONCLUSION The observations of these publications suggest the promise of implementing these devices to characterize the supraspinal sensorimotor control of walking. Still, the evidence level of these neuroimaging observations was still low due to small sample size and varied study protocols, which thus needs to be confirmed via studies with more rigorous design.
Collapse
Affiliation(s)
- Yinglu Hong
- School of Sport Medicine and Physical Therapy, Beijing Sport University, Beijing, China
| | - Dapeng Bao
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China.
| | - Brad Manor
- Hebrew SeniorLife Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA, USA
| | - Junhong Zhou
- Hebrew SeniorLife Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Guida P, Michiels M, Redgrave P, Luque D, Obeso I. An fMRI meta-analysis of the role of the striatum in everyday-life vs laboratory-developed habits. Neurosci Biobehav Rev 2022; 141:104826. [PMID: 35963543 DOI: 10.1016/j.neubiorev.2022.104826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/17/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022]
Abstract
The dorsolateral striatum plays a critical role in the acquisition and expression of stimulus-response habits that are learned in experimental laboratories. Here, we use meta-analytic procedures to contrast the neural circuits activated by laboratory-acquired habits with those activated by stimulus-response behaviours acquired in everyday-life. We confirmed that newly learned habits rely more on the anterior putamen with activation extending into caudate and nucleus accumbens. Motor and associative components of everyday-life habits were identified. We found that motor-dominant stimulus-response associations developed outside the laboratory primarily engaged posterior dorsal putamen, supplementary motor area (SMA) and cerebellum. Importantly, associative components were also represented in the posterior putamen. Thus, common neural representations for both naturalistic and laboratory-based habits were found in the left posterior and right anterior putamen. These findings suggest a partial common striatal substrate for habitual actions that are performed predominantly by stimulus-response associations represented in the posterior striatum. The overlapping neural substrates for laboratory and everyday-life habits supports the use of both methods for the analysis of habitual behaviour.
Collapse
Affiliation(s)
- Pasqualina Guida
- HM CINAC, Centro Integral de Neurociencias AC. Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid, Spain; Ph.D. Program in Neuroscience, Universidad Autónoma de Madrid Cajal Institute, Madrid 28029, Spain
| | - Mario Michiels
- HM CINAC, Centro Integral de Neurociencias AC. Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid, Spain; Ph.D. Program in Neuroscience, Universidad Autónoma de Madrid Cajal Institute, Madrid 28029, Spain
| | - Peter Redgrave
- Department of Psychology, University of Sheffield, Sheffield S10 2TN, UK
| | - David Luque
- Departamento de Psicología Básica, Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Psicología Básica, Universidad de Málaga, Madrid, Spain
| | - Ignacio Obeso
- HM CINAC, Centro Integral de Neurociencias AC. Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid, Spain; Psychobiology department, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
4
|
Rudas J, Martínez D, Castellanos G, Demertzi A, Martial C, Carriére M, Aubinet C, Soddu A, Laureys S, Gómez F. Time-Delay Latency of Resting-State Blood Oxygen Level-Dependent Signal Related to the Level of Consciousness in Patients with Severe Consciousness Impairment. Brain Connect 2020; 10:83-94. [DOI: 10.1089/brain.2019.0716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Jorge Rudas
- Institute of Biotechnology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Darwin Martínez
- Department of Computer Science, Universidad Nacional de Colombia, Bogotá, Colombia
- Department of Computer Science, Universidad Central de Colombia, Bogotá, Colombia
| | - Gabriel Castellanos
- Department of Physiological Sciences, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Athena Demertzi
- Physiology of Cognition Research Lab, GIGA-Consciousness, GIGA Institute, University of Liege, Liège, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
| | - Manon Carriére
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
| | - Charlène Aubinet
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
| | - Andrea Soddu
- Department of Physics and Astronomy, University of Western Ontario, London, Ontario
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
| | - Francisco Gómez
- Department of Mathematics, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
5
|
McCrum C, Karamanidis K, Willems P, Zijlstra W, Meijer K. Retention, savings and interlimb transfer of reactive gait adaptations in humans following unexpected perturbations. Commun Biol 2018; 1:230. [PMID: 30564751 PMCID: PMC6294781 DOI: 10.1038/s42003-018-0238-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/28/2018] [Indexed: 11/09/2022] Open
Abstract
Reactive locomotor adaptations are crucial for safe mobility, but remain relatively unexplored. Here we assess reactive gait adaptations, and their retention, savings and interlimb transfer. Using new methods to normalise walking speed and perturbation magnitude, we expose eighteen healthy adults to ten unexpected treadmill belt accelerations during walking (the first and last perturbing the right leg, the others perturbing the left leg) on two days, one month apart. Analysis of the margins of stability using kinematic data reveals that humans reactively adapt gait, improving stability and taking fewer recovery steps, and fully retain these adaptations over time. On re-exposure, retention and savings lead to further improvements in stability. Currently, the role of interlimb transfer is unclear. Our findings show that humans utilise retention and savings in reactive gait adaptations to benefit stability, but that interlimb transfer may not be exclusively responsible for improvements following perturbations to the untrained limb.
Collapse
Affiliation(s)
- Christopher McCrum
- 1Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, Maastricht, 6200 MD The Netherlands.,2Institute of Movement and Sport Gerontology, German Sport University Cologne, Am Sportpark Müngersdorf 6, Cologne, 50933 Germany
| | - Kiros Karamanidis
- 3Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, 103 Borough Road, London, SE1 0AA UK
| | - Paul Willems
- 1Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, Maastricht, 6200 MD The Netherlands
| | - Wiebren Zijlstra
- 2Institute of Movement and Sport Gerontology, German Sport University Cologne, Am Sportpark Müngersdorf 6, Cologne, 50933 Germany
| | - Kenneth Meijer
- 1Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, Maastricht, 6200 MD The Netherlands
| |
Collapse
|
6
|
Toyomura A, Yokosawa K, Shimojo A, Fujii T, Kuriki S. Turning a cylindrical treadmill with feet: An MR-compatible device for assessment of the neural correlates of lower-limb movement. J Neurosci Methods 2018; 307:14-22. [PMID: 29924979 DOI: 10.1016/j.jneumeth.2018.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/24/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Locomotion, which is one of the most basic motor functions, is critical for performing various daily-life activities. Despite its essential function, assessment of brain activity during lower-limb movement is still limited because of the constraints of existing brain imaging methods. NEW METHOD Here, we describe an MR-compatible, cylindrical treadmill device that allows participants to perform stepping movements on an MRI scanner table. The device was constructed from wood and all of the parts were handmade by the authors. RESULTS We confirmed the MR-compatibility of the device by evaluating the temporal signal-to-noise ratio of 64 voxels of a phantom during scanning. Brain activity was measured while twenty participants turned the treadmill with feet in sync with metronome sounds. The rotary speed of the cylinder was encoded by optical fibers. The post/pre-central gyrus and cerebellum showed significant activity during the movements, which was comparable to the activity patterns reported in previous studies. Head movement on the y- and z-axes was influenced more by lower-limb movement than was head movement on the x-axis. Among the 60 runs (3 runs × 20 participants), head movement during two of the runs (3.3%) was excessive due to the lower-limb movement. COMPARISON WITH EXISTING METHODS Compared to MR-compatible devices proposed in the previous studies, the advantage of this device may be simple structure and replicability to realize stepping movement with a supine position. CONCLUSIONS Collectively, our results suggest that the treadmill device is useful for evaluating lower-limb-related neural activity.
Collapse
Affiliation(s)
- Akira Toyomura
- Graduate School of Health Sciences, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8514, Japan; Research and Education Center for Brain Science, Hokkaido University, Kita 15, Nishi 7 Kita-ku, Sapporo 060-8638, Japan.
| | - Koichi Yokosawa
- Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5 Kita-ku, Sapporo 060-0812, Japan
| | - Atsushi Shimojo
- Department of Pediatrics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7 Kita-ku, Sapporo 060-8638, Japan
| | - Tetsunoshin Fujii
- Department of Psychology, Graduate School of Letters, Hokkaido University, Kita 10, Nishi 7 Kita-ku, Sapporo 060-0810, Japan
| | - Shinya Kuriki
- Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5 Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
7
|
Boyne P, Maloney T, DiFrancesco M, Fox MD, Awosika O, Aggarwal P, Woeste J, Jaroch L, Braswell D, Vannest J. Resting-state functional connectivity of subcortical locomotor centers explains variance in walking capacity. Hum Brain Mapp 2018; 39:4831-4843. [PMID: 30052301 DOI: 10.1002/hbm.24326] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/02/2018] [Accepted: 07/12/2018] [Indexed: 12/17/2022] Open
Abstract
Walking capacity influences the quality of life and disability in normal aging and neurological disease, but the neural correlates remain unclear and subcortical locomotor regions identified in animals have been more challenging to assess in humans. Here we test whether resting-state functional MRI connectivity (rsFC) of midbrain and cerebellar locomotor regions (MLR and CLR) is associated with walking capacity among healthy adults. Using phenotypic and MRI data from the Nathan Kline Institute Rockland Sample (n =119, age 18-85), the association between walking capacity (6-min walk test distance) and rsFC was calculated from subcortical locomotor regions to 81 other gait-related regions of interest across the brain. Additional analyses assessed the independence and specificity of the results. Walking capacity was associated with higher rsFC between the MLR and superior frontal gyrus adjacent to the anterior cingulate cortex, higher rsFC between the MLR and paravermal cerebellum, and lower rsFC between the CLR and primary motor cortex foot area. These rsFC correlates were more strongly associated with walking capacity than phenotypic variables such as age, and together explained 25% of the variance in walking capacity. Results were specific to locomotor regions compared with the other brain regions. The rsFC of locomotor centers correlates with walking capacity among healthy adults. These locomotion-related biomarkers may prove useful in future work aimed at helping patients with reduced walking capacity.
Collapse
Affiliation(s)
- Pierce Boyne
- Department of Rehabilitation, Exercise and Nutrition Sciences, College of Allied Health Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Thomas Maloney
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mark DiFrancesco
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Michael D Fox
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, Massachusetts
| | - Oluwole Awosika
- Department of Neurology and Rehabilitation Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Pushkar Aggarwal
- Department of Rehabilitation, Exercise and Nutrition Sciences, College of Allied Health Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Jennifer Woeste
- Department of Rehabilitation, Exercise and Nutrition Sciences, College of Allied Health Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Laurel Jaroch
- Department of Rehabilitation, Exercise and Nutrition Sciences, College of Allied Health Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Daniel Braswell
- Department of Rehabilitation, Exercise and Nutrition Sciences, College of Allied Health Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Jennifer Vannest
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
8
|
Kinematics in the brain: unmasking motor control strategies? Exp Brain Res 2017; 235:2639-2651. [PMID: 28573311 PMCID: PMC5550544 DOI: 10.1007/s00221-017-4982-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 05/10/2017] [Indexed: 12/02/2022]
Abstract
In rhythmical movement performance, our brain has to sustain movement while correcting for biological noise-induced variability. Here, we explored the functional anatomy of brain networks during voluntary rhythmical elbow flexion/extension using kinematic movement regressors in fMRI analysis to verify the interest of method to address motor control in a neurological population. We found the expected systematic activation of the primary sensorimotor network that is suggested to generate the rhythmical movement. By adding the kinematic regressors to the model, we demonstrated the potential involvement of cerebellar–frontal circuits as a function of the irregularity of the variability of the movement and the primary sensory cortex in relation to the trajectory length during task execution. We suggested that different functional brain networks were related to two different aspects of rhythmical performance: rhythmicity and error control. Concerning the latter, the partitioning between more automatic control involving cerebellar–frontal circuits versus less automatic control involving the sensory cortex seemed thereby crucial for optimal performance. Our results highlight the potential of using co-registered fine-grained kinematics and fMRI measures to interpret functional MRI activations and to potentially unmask the organisation of neural correlates during motor control.
Collapse
|