1
|
Sudati IP, Damiano D, Rovai G, de Campos AC. Neural Correlates of Mobility in Children with Cerebral Palsy: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1039. [PMID: 39200649 PMCID: PMC11354175 DOI: 10.3390/ijerph21081039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024]
Abstract
Recent advances in brain mapping tools have enabled the study of brain activity during functional tasks, revealing neuroplasticity after early brain injuries and resulting from rehabilitation. Understanding the neural correlates of mobility limitations is crucial for treating individuals with cerebral palsy (CP). The aim is to summarize the neural correlates of mobility in children with CP and to describe the brain mapping methods that have been utilized in the existing literature. This systematic review was conducted based on PRISMA guidelines and was registered on PROSPERO (n° CRD42021240296). The literature search was conducted in the PubMed and Embase databases. Observational studies involving participants with CP, with a mean age of up to 18 years, that utilized brain mapping techniques and correlated these with mobility outcomes were included. The results were analyzed in terms of sample characteristics, brain mapping methods, mobility measures, and main results. The risk of bias was evaluated using a checklist previously created by our research group, based on STROBE guidelines, the Cochrane Handbook, and the Critical Appraisal Skills Programme (CASP). A total of 15 studies comprising 313 children with CP and 229 with typical development using both static and mobile techniques met the inclusion criteria. The studies indicate that children"with'CP have increased cerebral activity and higher variability in brain reorganization during mobility activities, such as gait, quiet standing, cycling, and gross motor tasks when compared with children with typical development. Altered brain activity and reorganization underline the importance of conducting more studies to investigate the neural correlates during mobility activities in children with CP. Such information could guide neurorehabilitation strategies targeting brain neuroplasticity for functional gains.
Collapse
Affiliation(s)
- Isabella Pessóta Sudati
- Department of Physical Therapy, Child Development Analysis Laboratory (LADI), Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| | - Diane Damiano
- Rehabilitation Medicine Department, Clinical Center, National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| | - Gabriela Rovai
- Department of Physical Therapy, Child Development Analysis Laboratory (LADI), Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| | - Ana Carolina de Campos
- Department of Physical Therapy, Child Development Analysis Laboratory (LADI), Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| |
Collapse
|
2
|
Crotti M, Genoe S, Ben Itzhak N, Mailleux L, Ortibus E. The relation between neuroimaging and visual impairment in children and adolescents with cerebral palsy: A systematic review. Brain Dev 2024; 46:75-92. [PMID: 38016876 DOI: 10.1016/j.braindev.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/30/2023]
Abstract
OBJECTIVE The structure-function relation between magnetic resonance imaging (MRI) and visual impairment (VI) in children with cerebral palsy (CP) has not been fully unravelled. The present systematic review aims to summarize the relation between brain lesions on MRI and VI in children and adolescents with CP. METHODS PubMed, Embase, Web of Science Core Collection, and Cochrane Database were systematically searched according to the PRISMA checklist. A total of 45 articles met the inclusion criteria. RESULTS White matter lesions were most frequently associated with VI. Only 25 studies described lesions within specific structures, mainly in the optic radiations. Only four studies reported on the thalamus. 8.4% of children with CP showed no brain abnormalities on MRI. Diffusion-weighted MRI studies showed that decreased structural connectivity in the optic radiations, superior longitudinal fasciculus, posterior limb of the internal capsule, and occipital lobe is associated with more severe VI. CONCLUSIONS All types of brain lesions lead to visual dysfunctions, arguing for a comprehensive visual assessment in all children with CP. Whereas white matter damage is a well-known contributor, the exact contribution of specific visual structures requires further investigation, to enable early prediction, detection, and intervention.
Collapse
Affiliation(s)
- Monica Crotti
- KU Leuven, Department of Development and Regeneration, B-3000 Leuven, Belgium; KU Leuven, Child and Youth Institute, B-3000 Leuven, Belgium.
| | - Sarah Genoe
- KU Leuven, Faculty of Medicine, B-3000 Leuven, Belgium.
| | - Nofar Ben Itzhak
- KU Leuven, Department of Development and Regeneration, B-3000 Leuven, Belgium; KU Leuven, Child and Youth Institute, B-3000 Leuven, Belgium.
| | - Lisa Mailleux
- KU Leuven, Child and Youth Institute, B-3000 Leuven, Belgium; KU Leuven, Department of Rehabilitation Sciences, Research group for Neurorehabilitation, B-3000 Leuven, Belgium.
| | - Els Ortibus
- KU Leuven, Department of Development and Regeneration, B-3000 Leuven, Belgium; KU Leuven, Child and Youth Institute, B-3000 Leuven, Belgium.
| |
Collapse
|
3
|
Trevarrow MP, Dukkipati SS, Baker SE, Wilson TW, Kurz MJ. Reduced brainstem volume is associated with mobility impairments in youth with cerebral palsy. J Clin Neurosci 2023; 117:114-119. [PMID: 37801875 PMCID: PMC10841759 DOI: 10.1016/j.jocn.2023.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/09/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Persons with cerebral palsy (CP) have impaired mobility that has been attributed to changes in structure and function within the nervous system. The brainstem is a region that plays a critical role in mobility by connecting the cortex and cerebellum to the spinal cord, yet this region has been largely unstudied in persons with CP. RESEARCH QUESTION We used high-resolution structural MRI and biomechanical analyses to examine whether the volume of the whole brainstem and its constituent elements are altered in CP and if these alterations relate to the mobility impairments within this population. METHODS A cohort study was conducted to assess the volume of the whole brainstem, pons, midbrain, medulla, and superior cerebellar peduncle in a cohort of persons with CP (N = 26; Age = 16.3 ± 1.0 years; GMFCS levels I-IV, Females = 12) and a cohort of neurotypical (NT) controls (N = 38; Age = 14.3 ± 0.4 years, Females = 14) using structural MR imaging of the brainstem. Outside the scanner, a digital mat was used to quantify the spatiotemporal gait biomechanics of these individuals. RESULTS We found a significant decrease in volume of the total brainstem, midbrain, and pons in persons with CP in comparison to the NT controls. Furthermore, we found that the altered volumes were related to reduced gait velocity and step length. SIGNIFICANCE The structural changes in the brainstems of persons with CP may contribute to the mobility impairments that are ubiquitous within this population.
Collapse
Affiliation(s)
- Michael P Trevarrow
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - Saihari S Dukkipati
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - Sarah E Baker
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Max J Kurz
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
4
|
Shinde K, Craig BT, Hassett J, Dlamini N, Brooks BL, Kirton A, Carlson HL. Alterations in cortical morphometry of the contralesional hemisphere in children, adolescents, and young adults with perinatal stroke. Sci Rep 2023; 13:11391. [PMID: 37452141 PMCID: PMC10349116 DOI: 10.1038/s41598-023-38185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Perinatal stroke causes most hemiparetic cerebral palsy and cognitive dysfunction may co-occur. Compensatory developmental changes in the intact contralesional hemisphere may mediate residual function and represent targets for neuromodulation. We used morphometry to explore cortical thickness, grey matter volume, gyrification, and sulcal depth of the contralesional hemisphere in children, adolescents, and young adults after perinatal stroke and explored associations with motor, attention, and executive function. Participants aged 6-20 years (N = 109, 63% male) with unilateral perinatal stroke underwent T1-weighted imaging. Participants had arterial ischemic stroke (AIS; n = 36), periventricular venous infarction (PVI; n = 37) or were controls (n = 36). Morphometry was performed using the Computational Anatomy Toolbox (CAT12). Group differences and associations with motor and executive function (in a smaller subsample) were assessed. Group comparisons revealed areas of lower cortical thickness in contralesional hemispheres in both AIS and PVI and greater gyrification in AIS compared to controls. Areas of greater grey matter volume and sulcal depth were also seen for AIS. The PVI group showed lower grey matter volume in cingulate cortex and less volume in precuneus relative to controls. No associations were found between morphometry metrics, motor, attention, and executive function. Cortical structure of the intact contralesional hemisphere is altered after perinatal stroke. Alterations in contralesional cortical morphometry shown in perinatal stroke may be associated with different mechanisms of damage or timing of early injury. Further investigations with larger samples are required to more thoroughly explore associations with motor and cognitive function.
Collapse
Affiliation(s)
- Karan Shinde
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, 28 Oki Drive NW, Calgary, AB, Canada
| | - Brandon T Craig
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, 28 Oki Drive NW, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jordan Hassett
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, 28 Oki Drive NW, Calgary, AB, Canada
| | - Nomazulu Dlamini
- Children's Stroke Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Brian L Brooks
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Neurosciences Program, Alberta Children's Hospital, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Adam Kirton
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, 28 Oki Drive NW, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Helen L Carlson
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, 28 Oki Drive NW, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
5
|
Xia Y, Sun H, Hua L, Dai Z, Wang X, Tang H, Han Y, Du Y, Zhou H, Zou H, Yao Z, Lu Q. Spontaneous beta power, motor-related beta power and cortical thickness in major depressive disorder with psychomotor disturbance. Neuroimage Clin 2023; 38:103433. [PMID: 37216848 PMCID: PMC10209543 DOI: 10.1016/j.nicl.2023.103433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023]
Abstract
INTRODUCTION The psychomotor disturbance is a common symptom in patients with major depressive disorder (MDD). The neurological mechanisms of psychomotor disturbance are intricate, involving alterations in the structure and function of motor-related regions. However, the relationship among changes in the spontaneous activity, motor-related activity, local cortical thickness, and psychomotor function remains unclear. METHOD A total of 140 patients with MDD and 68 healthy controls performed a simple right-hand visuomotor task during magnetoencephalography (MEG) scanning. All patients were divided into two groups according to the presence of psychomotor slowing. Spontaneous beta power, movement-related beta desynchronization (MRBD), absolute beta power during movement and cortical characteristics in the bilateral primary motor cortex were compared using general linear models with the group as a fixed effect and age as a covariate. Finally, the moderated mediation model was tested to examine the relationship between brain metrics with group differences and psychomotor performance. RESULTS The patients with psychomotor slowing showed higher spontaneous beta power, movement-related beta desynchronization and absolute beta power during movement than patients without psychomotor slowing. Compared with the other two groups, significant decreases were found in cortical thickness of the left primary motor cortex in patients with psychomotor slowing. Our moderated mediation model showed that the increased spontaneous beta power indirectly affected impaired psychomotor performance by abnormal MRBD, and the indirect effects were moderated by cortical thickness. CONCLUSION These results suggest that patients with MDD have aberrant cortical beta activity at rest and during movement, combined with abnormal cortical thickness, contributing to the psychomotor disturbance observed in this patient population.
Collapse
Affiliation(s)
- Yi Xia
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Sun
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Lingling Hua
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhongpeng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Xiaoqin Wang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Tang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yinglin Han
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yishan Du
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hongliang Zhou
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haowen Zou
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Zhijian Yao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China.
| |
Collapse
|
6
|
Trevarrow MP, Dukkipati SS, Baker SE, Wilson TW, Kurz MJ. Reduced Brainstem Volume is Associated with Mobility Impairments in Youth with Cerebral Palsy. RESEARCH SQUARE 2023:rs.3.rs-2566073. [PMID: 36824764 PMCID: PMC9949252 DOI: 10.21203/rs.3.rs-2566073/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Persons with cerebral palsy (CP) have impaired mobility that has been attributed to changes in structure and function within the nervous system. The brainstem is a region that plays a critical role in locomotion by connecting the cortex and cerebellum to the spinal cord, yet this region has been largely unstudied in persons with CP. The objective of this investigation was to use high-resolution structural MRI and biomechanical analyses to examine whether the volume of the whole brainstem and its constituent elements are altered in CP, and if these alterations relate to the mobility impairments within this population. We assessed the volume of the pons, midbrain, medulla, and superior cerebellar peduncle (SCP) in a cohort of persons with CP (N = 26; Age = 16.3 ± 1.0 yrs; GMFCS levels I-IV, Females = 12) and a cohort of neurotypical (NT) controls (N = 38; Age = 14.3 ± 0.4 yrs, Females = 14) using structural MR imaging of the brainstem. Outside the scanner, a digital mat was used to quantify the spatiotemporal gait biomechanics of these individuals. Our MRI results revealed that there was a significant decrease in volume of the total brainstem, midbrain, and pons in persons with CP in comparison to the NT controls. Furthermore, we found that the altered volumes were related to reduced gait velocity and step length. These results suggest that there are structural changes in the brainstems of persons with CP that may contribute to the mobility impairments that are ubiquitous within this population.
Collapse
|
7
|
White matter microstructure and receptive vocabulary in children with cerebral palsy: The role of interhemispheric connectivity. PLoS One 2023; 18:e0280055. [PMID: 36649231 PMCID: PMC9844879 DOI: 10.1371/journal.pone.0280055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Communication and cognitive impairments are common impediments to participation and social functioning in children with cerebral palsy (CP). Bilateral language networks underlie the function of some high-level language-related cognitive functions. PURPOSE To explore the association between receptive vocabulary and white-matter microstructure in the temporal lobes and the central part of the temporo-temporal bundles in children with CP. MATERIALS AND METHODS 37 children with spastic motor type CP (mean age 9.6 years, 25 male) underwent a receptive vocabulary test (Peabody Picture Vocabulary Test, PPVT-IV) and 3T MRI. Mean fractional anisotropy (FA) and mean diffusivity (MD) were calculated for the temporal lobes and the interhemispheric bundles traversing the splenium of the corpus callosum and the anterior commissure. Associations between microstructure and receptive vocabulary function were explored using univariable linear regression. RESULTS PPVT-IV scores were significantly associated with mean white matter MD in the left temporal lobe, but not the right temporal lobe. There was no association between PPVT-IV and mean white matter FA in the temporal lobes. PPVT-IV scores were not significantly associated with the laterality of these diffusion tensor metrics. Within the corpus callosum, FA, but not MD of the temporo-temporal bundles was significantly associated with the PPVT-IV scores. Within the anterior commissure no equivalent relationship between diffusion metrics and PPVT-IV was found. CONCLUSION Our findings add further understanding to the pathophysiological basis underlying receptive vocabulary skills in children with CP that could extend to other patients with early brain damage. This study highlights the importance of interhemispheric connections for receptive vocabulary.
Collapse
|
8
|
Predicting motor and cognitive outcomes from MRIs of brain structure in children with acquired brain injury: A pilot study. Pediatr Neonatol 2022; 64:297-305. [PMID: 36456422 DOI: 10.1016/j.pedneo.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/12/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Acquired Brain Injury (ABI) describes a range of brain injuries occurring after birth, including tumor, traumatic brain injury or stroke. Although MRIs are routinely used for diagnosis, prediction of outcome following brain injury is challenging. Quantitative structural information from brain images may provide an opportunity to predict patient outcomes; however, due to the high prevalence of severe pathology in children with ABI, quantitative approaches must be robust to injury severity. METHODS In this pilot cross-sectional study, automated quantitative measures were extracted from the MRIs of a cohort of children with ABI (n = 30, 8-16 years, follow up MRI taken 1.8-13.4 years after time of injury) as well as 36 typically developing controls with no brain injury (7-17 years) using a pathology-robust technique. Measures of brain volume, lesion volume and cortical morphology were associated with concurrent motor, behavioral, visual and communicative function using Least Absolute Shrinkage and Selection Operator (LASSO) regression. RESULTS These regression models were validated on a separate test set (n = 8 of the ABI cohort), which revealed significant correlations between measures of brain structure with motor, cognitive, visual and communicative function (r = 0.65-0.85, all p < 0.01). Furthermore, comparisons of the structural measures to the typically developing cohort revealed overall reductions in global grey matter volume among the ABI cohort, as well as cortical thinning in several cortical areas. CONCLUSIONS These preliminary associations reveal that motor and behavioral function can be estimated from MRI alone, highlighting the potential utility of the proposed pathology-robust MRI quantification tools to provide estimates of long-term clinical prognosis of children with ABI following injury.
Collapse
|
9
|
Zhang JJ, Yang YL, Hu J, Zhao CF, He XH, Yang QY, Qi XS, Lu H, He C, Liu H. Development and validation of a novel model based on hand knob score and white matter injury on MRI to predict hand function in children with cerebral palsy. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1102. [PMID: 36388818 PMCID: PMC9652546 DOI: 10.21037/atm-22-4112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/30/2022] [Indexed: 08/30/2023]
Abstract
BACKGROUND Childhood hand function is considered to be one of the strongest predictors of the ability to participate in daily activities as children with cerebral palsy (CP) reach adulthood. The manual ability classification system (MACS) is currently the most widely used for grading hand function in children with CP. However, the MACS method is subjective and may be affected by the raters' experience. Hand knob is an important control center for hand movement. Therefor this study aimed to develop and validate an objective model for hand function estimation in children with CP and visualize it as a nomogram. METHODS A total of 70 Children (2-12 years old) with CP underwent magnetic resonance imaging (MRI) scanning, MACS assessment. According to MACS, children with CP were divided into mild impairment group (grade I-III) and severe impairment group (grade IV-V). Hand function prediction models based on (I) hand knob score, (II) clinical features, and (III) the combination of clinical features and hand knob score were developed and validated separately. The models were subjected to stepwise regression according to the maximum likelihood method, and the Akaike information criterion was used to select the best model. Model discrimination was assessed using receiver operating characteristic (ROC) and calibration curves. The nomogram was finally built according to the best model. RESULTS The area under the curve (AUC) of the hand knob score model in the training set was 0.752, the clinical features model was 0.819, and the hand knob score and clinical features combined model was 0.880. The AUC of the hand knob score model in the validation set was 0.765, the clinical features model was 0.782, and the combined model was 0.894. The best model was the hand knob score-clinical features combined model, and the nomogram finally incorporated two assessment items: the hand knob score and white matter injury. The estimated probability of hand function injury degree of the combined model displayed good agreement with the actual occurrence probability. CONCLUSIONS The hand knob score-clinical features combined model can be used to preliminarily assess the degree of hand impairment in children with CP, with good calibration.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Department of Radiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Radiology, Mianyang Hospital of T.C.M, Mianyang, China
| | - Yan-Li Yang
- Department of Radiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jie Hu
- Department of Radiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chun-Feng Zhao
- Department of Radiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xing-Hong He
- Department of Radiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qian-Yu Yang
- Department of Radiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiao-Shan Qi
- Department of Radiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hong Lu
- Department of Radiology, The Seventh People’s Hospital of Chongqing, The Central Hospital Affiliated to Chongqing University of Technology, Chongqing, China
| | - Cheng He
- Medical Imaging Department, Chongqing University Central Hospital, Chongqing, China
| | - Heng Liu
- Department of Radiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
10
|
Trevarrow M, Sanmann JN, Wilson TW, Kurz MJ. A Val 66Met polymorphism is associated with weaker somatosensory cortical activity in individuals with cerebral palsy. Heliyon 2022; 8:e10545. [PMID: 36119851 PMCID: PMC9474307 DOI: 10.1016/j.heliyon.2022.e10545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 06/21/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022] Open
Abstract
Background The brain-derived neurotrophic factor (BDNF) protein plays a prominent role in the capacity for neuroplastic change. However, a single nucleotide polymorphism at codon 66 of the BDNF gene results in significant reductions in neuroplastic change. Potentially, this polymorphism also contributes to the weaker somatosensory cortical activity that has been extensively reported in the neuroimaging literature on cerebral palsy (CP). Aims The primary objective of this study was to use magnetoencephalography (MEG) to probe if BDNF genotype affects the strength of the somatosensory-evoked cortical activity seen within individuals with CP. Methods and procedures and Procedures: Twenty individuals with CP and eighteen neurotypical controls participated. Standardized low resolution brain electromagnetic tomography (sLORETA) was used to image the somatosensory cortical activity evoked by stimulation of the tibial nerve. BDNF genotypes were determined from saliva samples. Outcomes and results The somatosensory cortical activity was weaker in individuals with CP compared to healthy controls (P = 0.04). The individuals with a Val66Met or Met66Met BDNF polymorphism also showed a reduced response compared to the individuals without the polymorphism (P = 0.03), had higher GMFCS levels (P = 0.04), and decreased walking velocity (P = 0.05). Conclusions and implications These results convey that BDNF genotype influences the strength of the somatosensory activity and mobility in individuals with CP. What this paper adds Previous literature has extensively documented altered sensorimotor cortical activity in individuals with CP, which ultimately contributes to the clinical deficits in sensorimotor processing documented in this population. While some individuals with CP see vast improvements in their sensorimotor functioning following therapeutic intervention, others are clear non-responders. The underlying basis for this discrepancy is not well understood. Our study is the first to identify that a polymorphism at the gene that codes for brain derived neurotrophic factor (BDNF), a protein well-known to be involved in the capacity for neuroplastic change, may influence the altered sensorimotor cortical activity within this population. Potentially, individuals with CP that have a polymorphism at the BDNF gene may reflect those that have difficulties in achieving beneficial outcomes following intervention. Thus, these individuals may require different therapeutic approaches in order to stimulate neuroplastic change and get similar benefits from therapy as their neurotypical peers.
Collapse
Affiliation(s)
- Michael Trevarrow
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Jennifer N Sanmann
- Department of Genetic Medicine, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA.,Department of Pharmacology and Neuroscience, College of Medicine, Creighton University, Omaha, NE, USA
| | - Max J Kurz
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA.,Department of Pharmacology and Neuroscience, College of Medicine, Creighton University, Omaha, NE, USA
| |
Collapse
|
11
|
Trevarrow MP, Lew BJ, Hoffman RM, Taylor BK, Wilson TW, Kurz MJ. Altered Somatosensory Cortical Activity Is Associated with Cortical Thickness in Adults with Cerebral Palsy: Multimodal Evidence from MEG/sMRI. Cereb Cortex 2021; 32:1286-1294. [PMID: 34416763 DOI: 10.1093/cercor/bhab293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
Somatosensory cortical activity is altered in individuals with cerebral palsy (CP). However, previous studies have focused on the lower extremities in children with CP and have given less attention to structural changes that may contribute to these alterations. We used a multimodal neuroimaging approach to investigate the relationship between somatosensory cortical activity and cortical thickness in 17 adults with CP (age = 32.8 ± 9.3 years) and 18 healthy adult controls (age = 30.7 ± 9.8 years). Participants performed a median nerve paired-pulse stimulation paradigm while undergoing magnetoencephalography (MEG) to investigate somatosensory cortical activity and sensory gating. Participants also underwent magnetic resonance imaging to evaluate cortical thickness within the area of the somatosensory cortex that generated the MEG response. We found that the somatosensory responses were attenuated in the adults with CP (P = 0.004). The adults with CP also hypergated the second stimulation (P = 0.030) and had decreased cortical thickness in the somatosensory cortex (P = 0.015). Finally, the strength of the somatosensory response was significantly correlated with the cortical thickness (P = 0.023). These findings demonstrate that the aberrant somatosensory cortical activity in adults with CP extends to the upper extremities and appears to be related to cortical thickness.
Collapse
Affiliation(s)
- Michael P Trevarrow
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Brandon J Lew
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Rashelle M Hoffman
- Department of Physical Therapy, Creighton University, Omaha, NE 68178, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Max J Kurz
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| |
Collapse
|
12
|
Sakzewski L, Reedman S, McLeod K, Thorley M, Burgess A, Trost S, Ahmadi M, Rowell D, Chatfield M, Bleyenheuft Y, Boyd RN. Preschool HABIT-ILE: study protocol for a randomised controlled trial to determine efficacy of intensive rehabilitation compared with usual care to improve motor skills of children, aged 2-5 years, with bilateral cerebral palsy. BMJ Open 2021; 11:e041542. [PMID: 33653745 PMCID: PMC7929797 DOI: 10.1136/bmjopen-2020-041542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Young children with bilateral cerebral palsy (BCP) often experience difficulties with gross motor function, manual ability and posture, impacting developing independence in daily life activities, participation and quality of life. Hand Arm Bimanual Intensive Training Including Lower Extremity (HABIT-ILE) is a novel intensive motor intervention integrating upper and lower extremity training that has been developed and tested in older school-aged children with unilateral and BCP. This study aims to compare an adapted preschool version of HABIT-ILE to usual care in a randomised controlled trial. METHODS AND ANALYSIS 60 children with BCP aged 2-5 years, Gross Motor Function Classification System (GMFCS) II-IV will be recruited. Children will be stratified by GMFCS and randomised using concealed allocation to either receive Preschool HABIT-ILE or usual care. Preschool HABIT-ILE will be delivered in groups of four to six children, for 3 hours/day for 10 days (total 30 hours). Children receiving Preschool HABIT-ILE be provided a written home programme with the aim of achieving an additional 10 hours of home practice (total dose 40 hours). Outcomes will be assessed at baseline, immediately following intervention and then retention of effects will be tested at 26 weeks. The primary outcome will be the Peabody Developmental Motors Scales-Second Edition to evaluate gross and fine motor skills. Secondary outcomes will be gross motor function (Gross Motor Function Measure-66), bimanual hand performance (Both Hands Assessment), self-care and mobility (Pediatric Evaluation of Disability Inventory-Computer Adapted Test), goal attainment (Canadian Occupational Performance Measure), global performance of daily activities (ACTIVLIM-CP), cognition and adaptive function (Behavior Rating Inventory of Executive Function-Preschool Version), habitual physical activity (ActiGraph GT3X+) and quality of life (Infant Toddler Quality of Life Questionnaire and Child Health Utility Index-9). Analyses will follow standard principles for RCTs using two-group comparisons on all participants on an intention-to-treat basis. Comparisons between groups for primary and secondary outcomes will be conducted using regression models. ETHICS AND DISSEMINATION Ethics approval has been granted by the Medical Research Ethics Committee Children's Health Queensland Hospital and Health Service Human Research Ethics Committee (HREC/19/QCHQ/59444) and The University of Queensland (2020000336/HREC/19/QCHQ/59444). TRIAL REGISTRATION NUMBER ACTRN126200000719.
Collapse
Affiliation(s)
- Leanne Sakzewski
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Child Health Research Centre, The University of Queensland Faculty of Medicine, Herston, Queensland, Australia
| | - Sarah Reedman
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Child Health Research Centre, The University of Queensland Faculty of Medicine, Herston, Queensland, Australia
| | - Kate McLeod
- Queensland Paediatric Rehabilitation Service, Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Megan Thorley
- Queensland Paediatric Rehabilitation Service, Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Andrea Burgess
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Child Health Research Centre, The University of Queensland Faculty of Medicine, Herston, Queensland, Australia
| | - Stewart Trost
- Institute of Health and Biomedical Innovation, Centre for Children's Health Research, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Matthew Ahmadi
- Faculty of Medicine and Health, School of Health Sciences, Charles Perkins Centre, Camperdown, New South Wales, Australia
| | - David Rowell
- Faculty of Business, Economics and Law, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Mark Chatfield
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Child Health Research Centre, The University of Queensland Faculty of Medicine, Herston, Queensland, Australia
| | - Yannick Bleyenheuft
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Roslyn N Boyd
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Child Health Research Centre, The University of Queensland Faculty of Medicine, Herston, Queensland, Australia
| |
Collapse
|
13
|
Carlson HL, Craig BT, Hilderley AJ, Hodge J, Rajashekar D, Mouches P, Forkert ND, Kirton A. Structural and functional connectivity of motor circuits after perinatal stroke: A machine learning study. Neuroimage Clin 2020; 28:102508. [PMID: 33395997 PMCID: PMC7704459 DOI: 10.1016/j.nicl.2020.102508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/19/2020] [Accepted: 11/15/2020] [Indexed: 11/15/2022]
Abstract
Developmental neuroplasticity allows young brains to adapt via experiences early in life and also to compensate after injury. Why certain individuals are more adaptable remains underexplored. Perinatal stroke is an ideal human model of neuroplasticity with focal lesions acquired near birth in a healthy brain. Machine learning can identify complex patterns in multi-dimensional datasets. We used machine learning to identify structural and functional connectivity biomarkers most predictive of motor function. Forty-nine children with perinatal stroke and 27 controls were studied. Functional connectivity was quantified by fluctuations in blood oxygen-level dependent (BOLD) signal between regions. White matter tractography of corticospinal tracts quantified structural connectivity. Motor function was assessed using validated bimanual and unimanual tests. RELIEFF feature selection and random forest regression models identified predictors of each motor outcome using neuroimaging and demographic features. Unilateral motor outcomes were predicted with highest accuracy (8/54 features r = 0.58, 11/54 features, r = 0.34) but bimanual function required more features (51/54 features, r = 0.38). Connectivity of both hemispheres had important roles as did cortical and subcortical regions. Lesion size, age at scan, and type of stroke were predictive but not highly ranked. Machine learning regression models may represent a powerful tool in identifying neuroimaging biomarkers associated with clinical motor function in perinatal stroke and may inform personalized targets for neuromodulation.
Collapse
Affiliation(s)
- Helen L Carlson
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Brandon T Craig
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Alicia J Hilderley
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jacquie Hodge
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada
| | - Deepthi Rajashekar
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Pauline Mouches
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Nils D Forkert
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Adam Kirton
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
14
|
George JM, Pagnozzi AM, Bora S, Boyd RN, Colditz PB, Rose SE, Ware RS, Pannek K, Bursle JE, Fripp J, Barlow K, Iyer K, Leishman SJ, Jendra RL. Prediction of childhood brain outcomes in infants born preterm using neonatal MRI and concurrent clinical biomarkers (PREBO-6): study protocol for a prospective cohort study. BMJ Open 2020; 10:e036480. [PMID: 32404396 PMCID: PMC7228524 DOI: 10.1136/bmjopen-2019-036480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Infants born very preterm are at risk of adverse neurodevelopmental outcomes, including cognitive deficits, motor impairments and cerebral palsy. Earlier identification enables targeted early interventions to be implemented with the aim of improving outcomes. METHODS AND ANALYSIS Protocol for 6-year follow-up of two cohorts of infants born <31 weeks gestational age (PPREMO: Prediction of Preterm Motor Outcomes; PREBO: Prediction of Preterm Brain Outcomes) and a small term-born reference sample in Brisbane, Australia. Both preterm cohorts underwent very early MRI and concurrent clinical assessment at 32 and 40 weeks postmenstrual age (PMA) and were followed up at 3, 12 and 24 months corrected age (CA). This study will perform MRI and electroencephalography (EEG). Primary outcomes include the Movement Assessment Battery for Children second edition and Full-Scale IQ score from the Wechsler Intelligence Scale for Children fifth edition (WISC-V). Secondary outcomes include the Gross Motor Function Classification System for children with cerebral palsy; executive function (Behavior Rating Inventory of Executive Function second edition, WISC-V Digit Span and Picture Span, Wisconsin Card Sorting Test 64 Card Version); attention (Test of Everyday Attention for Children second edition); language (Clinical Evaluation of Language Fundamentals fifth edition), academic achievement (Woodcock Johnson IV Tests of Achievement); mental health and quality of life (Development and Well-Being Assessment, Autism Spectrum Quotient-10 Items Child version and Child Health Utility-9D). AIMS Examine the ability of early neonatal MRI, EEG and concurrent clinical measures at 32 weeks PMA to predict motor, cognitive, language, academic achievement and mental health outcomes at 6 years CA.Determine if early brain abnormalities persist and are evident on brain MRI at 6 years CA and the relationship to EEG and concurrent motor, cognitive, language, academic achievement and mental health outcomes. ETHICS AND DISSEMINATION Ethical approval has been obtained from Human Research Ethics Committees at Children's Health Queensland (HREC/19/QCHQ/49800) and The University of Queensland (2019000426). Study findings will be presented at national and international conferences and published in peer-reviewed journals. TRIAL REGISTRATION NUMBER ACTRN12619000155190p. WEB ADDRESS OF TRIAL: http://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12619000155190p.
Collapse
Affiliation(s)
- Joanne M George
- Child Health Research Centre, Queensland Cerebral Palsy and Rehabilitation Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Alex M Pagnozzi
- The Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, Queensland, Australia
| | - Samudragupta Bora
- Mothers, Babies and Women's Health Program, Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Roslyn N Boyd
- Child Health Research Centre, Queensland Cerebral Palsy and Rehabilitation Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul B Colditz
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
- Perinatal Research Centre, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Stephen E Rose
- The Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, Queensland, Australia
| | - Robert S Ware
- Menzies Health Institute Queensland, Griffith University, Nathan, Queensland, Australia
| | - Kerstin Pannek
- The Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, Queensland, Australia
| | - Jane E Bursle
- Department of Medical Imaging, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Jurgen Fripp
- The Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, Queensland, Australia
| | - Karen Barlow
- Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Kartik Iyer
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Shaneen J Leishman
- Child Health Research Centre, Queensland Cerebral Palsy and Rehabilitation Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | | |
Collapse
|
15
|
Mailleux L, Simon-Martinez C, Radwan A, Blommaert J, Gooijers J, Wenderoth N, Klingels K, Ortibus E, Sunaert S, Feys H. White matter characteristics of motor, sensory and interhemispheric tracts underlying impaired upper limb function in children with unilateral cerebral palsy. Brain Struct Funct 2020; 225:1495-1509. [PMID: 32318818 DOI: 10.1007/s00429-020-02070-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 04/11/2020] [Indexed: 12/19/2022]
Abstract
This study explored the role of lesion timing (periventricular white matter versus cortical and deep grey matter lesions) and type of corticospinal tract (CST) wiring pattern (contralateral, bilateral, ipsilateral) on white matter characteristics of the CST, medial lemniscus, superior thalamic radiations and sensorimotor transcallosal fibers in children with unilateral cerebral palsy (CP), and examined the association with upper limb function. Thirty-four children (mean age 10 years 7 months ± 2 years 3 months) with unilateral CP underwent a comprehensive upper limb evaluation and diffusion weighted imaging (75 directions, b value 2800). Streamline count, fractional anisotropy and mean diffusivity were extracted from the targeted tracts and asymmetry indices were additionally calculated. Transcranial magnetic stimulation was applied to assess the CST wiring pattern. Results showed a more damaged CST in children with cortical and deep grey matter lesions (N = 10) and ipsilateral CST projections (N = 11) compared to children with periventricular white matter lesions (N = 24; p < 0.02) and contralateral CST projections (N = 9; p < 0.025), respectively. Moderate to high correlations were found between diffusion metrics of the targeted tracts and upper limb function (r = 0.45-0.72; p < 0.01). Asymmetry indices of the CST and sensory tracts could best explain bimanual performance (74%, p < 0.0001) and unimanual capacity (50%, p = 0.004). Adding lesion timing and CST wiring pattern did not further improve the model of bimanual performance, while for unimanual capacity lesion timing was additionally retained (58%, p = 0.0002). These results contribute to a better understanding of the underlying neuropathology of upper limb function in children with unilateral CP and point towards a clinical potential of tractography.
Collapse
Affiliation(s)
- Lisa Mailleux
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.
| | | | - Ahmed Radwan
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | | | | | - Nicole Wenderoth
- Department of Movement Sciences, KU Leuven, Leuven, Belgium.,Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Katrijn Klingels
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.,BIOMED, Rehabilitation Research Center (REVAL), UHasselt, Diepenbeek, Belgium
| | - Els Ortibus
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Hilde Feys
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Pagnozzi AM, Pannek K, Fripp J, Fiori S, Boyd RN, Rose S. Understanding the impact of bilateral brain injury in children with unilateral cerebral palsy. Hum Brain Mapp 2020; 41:2794-2807. [PMID: 32134174 PMCID: PMC7294067 DOI: 10.1002/hbm.24978] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/27/2020] [Accepted: 02/23/2020] [Indexed: 11/29/2022] Open
Abstract
The presence of bilateral brain injury in patients with unilateral cerebral palsy (CP) may impact neuroplasticity in the ipsilateral hemisphere; however, this pattern of injury is typically under‐analyzed due to the lack of methods robust to severe injury. In this study, injury‐robust methods have been applied to structural brain magnetic resonance imaging (MRI) data of a cohort of 91 children with unilateral CP (37 with unilateral and 54 with bilateral brain injury, 4–17 years) and 44 typically developing controls (5–17 years), to determine how brain structure is associated with concurrent motor function, and if these associations differ between patients with unilateral or bilateral injury. Regression models were used to associate these measures with two clinical scores of hand function, with patient age, gender, brain injury laterality, and interaction effects included. Significant associations with brain structure and motor function were observed (Pearson's r = .494–.716), implicating several regions of the motor pathway, and demonstrating an accurate prediction of hand function from MRI, regardless of the extent of brain injury. Reduced brain volumes were observed in patients with bilateral injury, including volumes of the thalamus and corpus callosum splenium, compared to those with unilateral injury, and the healthy controls. Increases in cortical thickness in several cortical regions were observed in cohorts with unilateral and bilateral injury compared to controls, potentially suggesting neuroplasticity might be occurring in the inferior frontal gyrus and the precuneus. These findings identify prospective useful target regions for transcranial magnetic stimulation intervention.
Collapse
Affiliation(s)
- Alex M Pagnozzi
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| | - Kerstin Pannek
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| | - Jurgen Fripp
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| | | | - Roslyn N Boyd
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Faculty of Medicine, Centre for Children's Health Research, The University of Queensland, Brisbane, Australia
| | - Stephen Rose
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| |
Collapse
|
17
|
Liu H, Jiang H, Bi W, Huang B, Li X, Wang M, Wang X, Zhao H, Cheng Y, Tao X, Liu C, Huang T, Jin C, Zhang T, Yang J. Abnormal Gray Matter Structural Covariance Networks in Children With Bilateral Cerebral Palsy. Front Hum Neurosci 2019; 13:343. [PMID: 31708758 PMCID: PMC6819944 DOI: 10.3389/fnhum.2019.00343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/18/2019] [Indexed: 01/04/2023] Open
Abstract
Bilateral cerebral palsy (BCP) is a common movement disorder in children, which often results in lifelong motor disability. One main symptom of BCP is the limitation of hand function in everyday activities. However, the neuroanatomical basis of this prominent hand impairment is yet to discover. Recent advances mainly focus on the lesions of BCP, but the views on the atypical development of cortical parcellations are extremely lacking. Here, in our study, neuroimaging with network analysis was employed to evaluate the changes of structural covariance networks (SCNs) in BCP children. We aimed to elucidate the alteration of SCNs based on cortical thickness (CT), and to reveal the relationship of CT and hand function in the participants with BCP. SCNs were constructed using covariance between regional CT, which was acquired from T1-weighted images of 19 children with BCP and 19 demographically matched healthy controls (HCs). Compared with HCs, BCP children showed increased CT in several regions involving the bilateral areas (lateral occipital, lingual, and fusiform) and right areas (cuneus, pericalcarine, inferior temporal, middle temporal, superior temporal, and insula). Decreased CT was found in the left superior temporal and right superior parietal cortices. Global network analyses revealed significantly decreased normalized clustering and small-worldness in the BCP network. The area under the curve (AUC) of global network measures varied slightly between the BCP and HC networks. The resistance of the both SCNs to the target and random attack showed no significant difference. Also, the BCP foci (right superior temporal and subtemporal cortex) showed a significantly negative correlation between the CT and manual ability. In this work, we identified the CT-based SCNs changes in children with BCP. The abnormal topological organization of SCNs was revealed, indicating abnormal CT, incongruous development of structural wiring, destructive nodal profiles of betweenness, and moved hub distribution in BCP children. This may provide a neuroanatomical hallmark of BCP in the developing brain. Therefore, our results may not only reflect neurodevelopmental aberrations but also compensatory mechanisms.
Collapse
Affiliation(s)
- Heng Liu
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Medical Imaging Center of Guizhou Province, Department of Radiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Haoxiang Jiang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wenchuan Bi
- School of Pharmaceutical Sciences, Shenzhen, China
| | - Bingsheng Huang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Shenzhen University Clinical Research Center for Neurological Diseases, Shenzhen, China
| | - Xianjun Li
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Miaomiao Wang
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyu Wang
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huifang Zhao
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yannan Cheng
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xingxing Tao
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Congcong Liu
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ting Huang
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chao Jin
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tijiang Zhang
- Medical Imaging Center of Guizhou Province, Department of Radiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jian Yang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
18
|
Liu H, Jiang H, Wang X, Zheng J, Zhao H, Cheng Y, Tao X, Wang M, Liu C, Huang T, Wu L, Jin C, Li X, Wang H, Yang J. Treatment response prediction of rehabilitation program in children with cerebral palsy using radiomics strategy: protocol for a multicenter prospective cohort study in west China. Quant Imaging Med Surg 2019; 9:1402-1412. [PMID: 31559169 DOI: 10.21037/qims.2019.04.04] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Cerebral palsy (CP) is a major cause of chronic childhood disability worldwide, causing activity limitation as well as impairments in sensation, cognition, and communication. Leveraging biomarkers to establish individualized predictions of future treatment responses will be of great value. We aim to develop and validate a model that can be used to predict the individualized treatment response in Children with CP. Methods A multicenter prospective cohort study will be conducted in 4 hospitals in west China. One hundred and thirty children with CP will be recruited and undergo clinical assessment using the Peabody Developmental Motor Scales, Manual Ability Classification System (MACS), Hand Assessment for Infants (HAI), Assisting Hand Assessment (AHA), and Gross Motor Function Classification System (GMFCS). The data collected will include MRI image, clinical status, and socioeconomic status. The clinical information and MRI features extracted using radiomics strategy will be combined for exploratory analysis. The accuracy, sensitivity, and specificity of the model will be assessed using multiple modeling methodologies. Internal and external validation will be used to evaluate the performance of the radiomics model. Discussion We hypothesized that the findings from this study could provide a critical step towards the prediction of treatment response in children with CP, which could also complement other biomarkers in the development of precision medicine approaches for this severe disorder. Trial registration The study was registered with clinicaltrials.gov (NCT02979743).
Collapse
Affiliation(s)
- Heng Liu
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.,The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China.,Medical Imaging Center of Guizhou Province, Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Haoxiang Jiang
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.,The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Xiaoyu Wang
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jie Zheng
- Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Huifang Zhao
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yannan Cheng
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xingxing Tao
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Miaomiao Wang
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Congcong Liu
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ting Huang
- Department of Radiology, the First Affiliated Hospital of Henan University of TCM, Zhengzhou 450046, China
| | - Liang Wu
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.,The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Chao Jin
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xianjun Li
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Hui Wang
- Department of Brain Disease, Xi'an Brain Disease Hospital of Traditional Chinese Medicine, Xi'an 710032, China
| | - Jian Yang
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.,The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| |
Collapse
|
19
|
Obst SJ, Boyd R, Read F, Barber L. Quantitative 3-D Ultrasound of the Medial Gastrocnemius Muscle in Children with Unilateral Spastic Cerebral Palsy. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2814-2823. [PMID: 28967503 DOI: 10.1016/j.ultrasmedbio.2017.08.929] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 08/07/2017] [Accepted: 08/13/2017] [Indexed: 06/07/2023]
Abstract
Three-dimensional ultrasound (3-DUS) was used to examine the size and appearance of the medial gastrocnemius (MG) muscle in children with unilateral cerebral palsy (CP). Twenty-six children with CP and 10 typically developing (TD) children participated. Three-dimensional US images of both limbs in children with CP and the right limb in TD children were analysed using quantitative methods to determine muscle volume, global echo intensity, global echo pattern and regional echo intensity. Significant differences in MG volume and all echo parameters were found between TD and CP children. The more involved limb was smaller and had higher echo intensity and a more heterogenous echo pattern compared with the TD group. Compared with that of the more involved limb, the MG of the less involved limb was larger but had a similar echo appearance. The MG of both limbs in children with unilateral spastic CP is smaller and, based on quantitative ultrasound, structurally different from that of TD children.
Collapse
Affiliation(s)
- Steven J Obst
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia; School of Health, Medical and Applied Sciences, Central Queensland University, Bundaberg, Queensland, Australia.
| | - Roslyn Boyd
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Felicity Read
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Lee Barber
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
20
|
Pagnozzi AM, Dowson N, Doecke J, Fiori S, Bradley AP, Boyd RN, Rose S. Identifying relevant biomarkers of brain injury from structural MRI: Validation using automated approaches in children with unilateral cerebral palsy. PLoS One 2017; 12:e0181605. [PMID: 28763455 PMCID: PMC5538741 DOI: 10.1371/journal.pone.0181605] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 05/02/2017] [Indexed: 11/19/2022] Open
Abstract
Previous studies have proposed that the early elucidation of brain injury from structural Magnetic Resonance Images (sMRI) is critical for the clinical assessment of children with cerebral palsy (CP). Although distinct aetiologies, including cortical maldevelopments, white and grey matter lesions and ventricular enlargement, have been categorised, these injuries are commonly only assessed in a qualitative fashion. As a result, sMRI remains relatively underexploited for clinical assessments, despite its widespread use. In this study, several automated and validated techniques to automatically quantify these three classes of injury were generated in a large cohort of children (n = 139) aged 5–17, including 95 children diagnosed with unilateral CP. Using a feature selection approach on a training data set (n = 97) to find severity of injury biomarkers predictive of clinical function (motor, cognitive, communicative and visual function), cortical shape and regional lesion burden were most often chosen associated with clinical function. Validating the best models on the unseen test data (n = 42), correlation values ranged between 0.545 and 0.795 (p<0.008), indicating significant associations with clinical function. The measured prevalence of injury, including ventricular enlargement (70%), white and grey matter lesions (55%) and cortical malformations (30%), were similar to the prevalence observed in other cohorts of children with unilateral CP. These findings support the early characterisation of injury from sMRI into previously defined aetiologies as part of standard clinical assessment. Furthermore, the strong and significant association between quantifications of injury observed on structural MRI and multiple clinical scores accord with empirically established structure-function relationships.
Collapse
Affiliation(s)
- Alex M. Pagnozzi
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
- The School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
- * E-mail:
| | - Nicholas Dowson
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| | - James Doecke
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| | | | - Andrew P. Bradley
- The School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Roslyn N. Boyd
- Queensland Cerebral Palsy and Rehabilitation Research Centre, School of Medicine and Science, Centre for Children’s Health Research, The University of Queensland, Brisbane, Australia
| | - Stephen Rose
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| |
Collapse
|
21
|
Reid LB, Pagnozzi AM, Fiori S, Boyd RN, Dowson N, Rose SE. Measuring neuroplasticity associated with cerebral palsy rehabilitation: An MRI based power analysis. Int J Dev Neurosci 2017; 58:17-25. [DOI: 10.1016/j.ijdevneu.2017.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 10/20/2022] Open
Affiliation(s)
- Lee B. Reid
- The Australian e‐Health Research Centre, CSIROBrisbaneAustralia
- Queensland Cerebral Palsy and Rehabilitation Research CentreFaculty of MedicineThe University of QueenslandBrisbaneAustralia
| | - Alex M. Pagnozzi
- The Australian e‐Health Research Centre, CSIROBrisbaneAustralia
- Queensland Cerebral Palsy and Rehabilitation Research CentreFaculty of MedicineThe University of QueenslandBrisbaneAustralia
| | - Simona Fiori
- Department of Clinical and Experimental MedicineUniversità di PisaPisaItaly
| | - Roslyn N. Boyd
- Queensland Cerebral Palsy and Rehabilitation Research CentreFaculty of MedicineThe University of QueenslandBrisbaneAustralia
| | - Nicholas Dowson
- The Australian e‐Health Research Centre, CSIROBrisbaneAustralia
| | - Stephen E. Rose
- The Australian e‐Health Research Centre, CSIROBrisbaneAustralia
| |
Collapse
|