1
|
Chepke C, Brunner E, Cutler AJ. Serotonergic Drugs for the Treatment of Attention-Deficit/Hyperactivity Disorder: A Review of Past Development, Pitfalls and Failures, and a Look to the Future. PSYCHOPHARMACOLOGY BULLETIN 2024; 54:45-80. [PMID: 39263202 PMCID: PMC11385260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Serotonin has been implicated in the neurobiology of attention-deficit/hyperactivity disorder (ADHD) due to its association with impulsivity, attention, and emotional regulation. Many compounds with serotonergic properties have been evaluated in ADHD, but few have been approved by regulatory authorities. Utilizing a search of public databases, we identified interventions studied in ADHD. Prescribing information and peer-reviewed and gray literature helped us to determine which compounds had an underlying mechanism of action associated with changing serotonin levels. Of the 24 compounds that met the search criteria, 16 had either failed clinical studies in an ADHD population or had been discontinued from future development. The available evidence was assessed to identify the developmental history of drugs with serotonergic activity and the outlook for new ADHD drug candidates targeting serotonin. Several treatment candidates floundered due to an inability to balance effectiveness with safety, underscoring the potential importance of potency, and selectivity. Ongoing drug development includes compounds with multimodal mechanisms of action targeting neurotransmission across serotonin, norepinephrine, and dopamine pathways; it appears likely that treatment which balances competing and complementary monoamine effects may provide improved outcomes for patients. It is hoped that continuing research into ADHD treatment will produce new therapeutic options targeting the serotonergic system, which can positively impact a wide range of symptoms, including mood, anxiety, and sleep as well as attention and hyperactivity.
Collapse
Affiliation(s)
- Craig Chepke
- Chepke, MD, DFAPA, Excel Psychiatric Associates, Huntersville, NC; Atrium Health, Charlotte, NC
| | - Elizabeth Brunner
- Brunner, MD, Otsuka Pharmaceutical Development & Commercialization, Inc., Princeton, NJ
| | - Andrew J Cutler
- Cutler, MD, SUNY Upstate Medical University, Lakewood Ranch, FL
| |
Collapse
|
2
|
Pedersen R, Johansson J, Nordin K, Rieckmann A, Wåhlin A, Nyberg L, Bäckman L, Salami A. Dopamine D1-Receptor Organization Contributes to Functional Brain Architecture. J Neurosci 2024; 44:e0621232024. [PMID: 38302439 PMCID: PMC10941071 DOI: 10.1523/jneurosci.0621-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 12/01/2023] [Accepted: 01/21/2024] [Indexed: 02/03/2024] Open
Abstract
Recent work has recognized a gradient-like organization in cortical function, spanning from primary sensory to transmodal cortices. It has been suggested that this axis is aligned with regional differences in neurotransmitter expression. Given the abundance of dopamine D1-receptors (D1DR), and its importance for modulation and neural gain, we tested the hypothesis that D1DR organization is aligned with functional architecture, and that inter-regional relationships in D1DR co-expression modulate functional cross talk. Using the world's largest dopamine D1DR-PET and MRI database (N = 180%, 50% female), we demonstrate that D1DR organization follows a unimodal-transmodal hierarchy, expressing a high spatial correspondence to the principal gradient of functional connectivity. We also demonstrate that individual differences in D1DR density between unimodal and transmodal regions are associated with functional differentiation of the apices in the cortical hierarchy. Finally, we show that spatial co-expression of D1DR primarily modulates couplings within, but not between, functional networks. Together, our results show that D1DR co-expression provides a biomolecular layer to the functional organization of the brain.
Collapse
Affiliation(s)
- Robin Pedersen
- Department of Integrative Medical Biology, Umeå University, Umeå S-90197, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå S-90197, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90197, Sweden
| | - Jarkko Johansson
- Department of Integrative Medical Biology, Umeå University, Umeå S-90197, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå S-90197, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90197, Sweden
| | - Kristin Nordin
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90197, Sweden
- Aging Research Center, Karolinska Institutet & Stockholm University, Stockholm S-17165, Sweden
| | - Anna Rieckmann
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90197, Sweden
- Department of Radiation Sciences, Umeå University, Umeå S-90197, Sweden
- Max-Planck-Institut für Sozialrecht und Sozialpolitik, Munich 80799, Germany
| | - Anders Wåhlin
- Department of Integrative Medical Biology, Umeå University, Umeå S-90197, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90197, Sweden
| | - Lars Nyberg
- Department of Integrative Medical Biology, Umeå University, Umeå S-90197, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå S-90197, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90197, Sweden
- Department of Radiation Sciences, Umeå University, Umeå S-90197, Sweden
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet & Stockholm University, Stockholm S-17165, Sweden
| | - Alireza Salami
- Department of Integrative Medical Biology, Umeå University, Umeå S-90197, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå S-90197, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90197, Sweden
- Aging Research Center, Karolinska Institutet & Stockholm University, Stockholm S-17165, Sweden
| |
Collapse
|
3
|
Yamamoto M, Inada T. Positron emission tomography studies in adult patients with attention-deficit/hyperactivity disorder. Jpn J Radiol 2022; 41:382-392. [PMID: 36480104 DOI: 10.1007/s11604-022-01368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by inattention, motor hyperactivity, impulsivity, and psychosocial as well as cognitive dysfunction. Although characteristic clinical manifestations have been described, no definitive biomarkers to diagnose ADHD have been established. In this review article, we summarize positron emission tomography (PET) studies conducted in adult patients with ADHD. We found that, although, disturbances of dopamine, serotonin, and norepinephrine functions have been implicated in ADHD, no characteristic findings have been identified from PET studies in patients with ADHD. Several previous PET studies on the central dopaminergic transmission-related ligands in patients with ADHD have shown altered binding of dopamine markers in the basal ganglia. However, no consistent results were observed in the binding characteristics for dopamine transporters and receptors. Findings from PET studies with ligands related to serotonin and norepinephrine pathways showed either unclear clinical significance or low replicability. Therefore, whether alterations of monoamine function may be involved in the pathophysiological mechanism remains to be clarified. The limitations of previous PET studies include their small sample sizes, focus on several kinds of existing ligands, and a questionable validity of the diagnosis (lack of biological diagnostic criteria). To determine the characteristic findings for diagnosing ADHD, further research is needed, and particularly, studies that evaluate new active ligands with specific binding to monoamine pathways should be undertaken.
Collapse
Affiliation(s)
- Maeri Yamamoto
- Department of Psychiatry, Nagoya University Hospital, 65 Tsurumai-Cho, Showa-Ku, Nagoya-Shi, Aichi, 466-8560, Japan
| | - Toshiya Inada
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, 65 Tsurumai-Cho, Showa-Ku, Nagoya-Shi, Aichi, 466-8550, Japan.
| |
Collapse
|
4
|
Kilany A, Nashaat NH, Zeidan HM, Hashish AF, El-Saied MM, Abdelraouf ER. Kynurenine and oxidative stress in children having learning disorder with and without attention deficit hyperactivity disorder: possible role and involvement. BMC Neurol 2022; 22:356. [PMID: 36127656 PMCID: PMC9487051 DOI: 10.1186/s12883-022-02886-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/12/2022] [Indexed: 11/12/2022] Open
Abstract
Background The etiological and pathophysiological factors of learning disorder (LD) and attention deficit hyperactivity disorder (ADHD) are currently not well understood. These disorders disrupt some cognitive abilities. Identifying biomarkers for these disorders is a cornerstone to their proper management. Kynurenine (KYN) and oxidative stress markers have been reported to influence some cognitive abilities. Therefore, the aim was to measure the level of KYN and some oxidative stress indicators in children with LD with and without ADHD and to investigate their correlations with the abilities of children with LD. Methods The study included 154 participants who were divided into 3 groups: one for children who have LD (N = 69); another for children with LD and ADHD (N = 31); and a group for neurotypical (NT) children (N = 54). IQ testing, reading, writing, and other ability performance evaluation was performed for children with LD. Measuring plasma levels of KYN, malondialdehyde, glutathione peroxidase, and superoxide dismutase by enzyme-linked immunosorbent assay was performed for all participants. Results Some IQ measures and learning skills differed between the first two groups. The biochemical measures differed between children with LD (with and without ADHD) and NT children (p < 0.001). However, the biochemical measures did not show a significant statistical difference between the first two groups. KYN and glutathione peroxidase levels were correlated with one-minute writing and at-risk quotient, respectively (p = 0.03;0.04). KYN and malondialdehyde showed the highest sensitivity and specificity values. Conclusion These biochemical measures could be involved or have a role in the abilities’ performance of children with specific learning disorder.
Collapse
Affiliation(s)
- Ayman Kilany
- Medical Research and Clinical Studies Institute, Children with Special Needs Research Department, National Research Centre, Elbuhouth Street, Cairo, 12622, Dokki, Egypt.,Pediatric Neurology Research Field, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
| | - Neveen Hassan Nashaat
- Medical Research and Clinical Studies Institute, Children with Special Needs Research Department, National Research Centre, Elbuhouth Street, Cairo, 12622, Dokki, Egypt. .,Learning Disability and Neurorehabilitation Research Field, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt.
| | - Hala M Zeidan
- Medical Research and Clinical Studies Institute, Children with Special Needs Research Department, National Research Centre, Elbuhouth Street, Cairo, 12622, Dokki, Egypt
| | - Adel F Hashish
- Medical Research and Clinical Studies Institute, Children with Special Needs Research Department, National Research Centre, Elbuhouth Street, Cairo, 12622, Dokki, Egypt
| | - Mostafa M El-Saied
- Medical Research and Clinical Studies Institute, Children with Special Needs Research Department, National Research Centre, Elbuhouth Street, Cairo, 12622, Dokki, Egypt.,Learning Disability and Neurorehabilitation Research Field, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
| | - Ehab Ragaa Abdelraouf
- Medical Research and Clinical Studies Institute, Children with Special Needs Research Department, National Research Centre, Elbuhouth Street, Cairo, 12622, Dokki, Egypt.,Learning Disability and Neurorehabilitation Research Field, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
| |
Collapse
|
5
|
Impact of Long-Rope Jumping on Monoamine and Attention in Young Adults. Brain Sci 2021; 11:brainsci11101347. [PMID: 34679411 PMCID: PMC8534060 DOI: 10.3390/brainsci11101347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/02/2022] Open
Abstract
Previous research has shown that rope jumping improves physical health; however, little is known about its impact on brain-derived monoamine neurotransmitters associated with cognitive regulation. To address these gaps in the literature, the present study compared outcomes between 15 healthy participants (mean age, 23.1 years) after a long-rope jumping exercise and a control condition. Long-rope jumping also requires co-operation between people, attention, spatial cognition, and rhythm sensation. Psychological questionnaires were administered to both conditions, and Stroop task performance and monoamine metabolite levels in the saliva and urine were evaluated. Participants performing the exercise exhibited lower anxiety levels than those in the control condition. Saliva analyses showed higher 3-methoxy-4-hydroxyphenylglycol (a norepinephrine metabolite) levels, and urine analyses revealed higher 3-methoxy-4-hydroxyphenylglycol and 5-hydroxyindoleacetic acid (a serotonin metabolite) levels in the exercise condition than in the control. Importantly, urinary 5-hydroxyindoleacetic acid level correlated with salivary and urinary 3-methoxy-4-hydroxyphenylglycol levels in the exercise condition. Furthermore, cognitive results revealed higher Stroop performance in the exercise condition than in the control condition; this performance correlated with salivary 3-methoxy-4-hydroxyphenylglycol levels. These results indicate an association between increased 3-methoxy-4-hydroxyphenylglycol and attention in long-rope jumping. We suggest that long-rope jumping predicts central norepinephrinergic activation and related attention maintenance.
Collapse
|
6
|
Association of norepinephrine transporter methylation with in vivo NET expression and hyperactivity-impulsivity symptoms in ADHD measured with PET. Mol Psychiatry 2021; 26:1009-1018. [PMID: 31383926 PMCID: PMC7910214 DOI: 10.1038/s41380-019-0461-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/04/2019] [Accepted: 04/11/2019] [Indexed: 01/29/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder with a robust genetic influence. The norepinephrine transporter (NET) is of particular interest as it is one of the main targets in treatment of the disorder. As ADHD is a complex and polygenetic condition, the possible regulation by epigenetic processes has received increased attention. We sought to determine possible differences in NET promoter DNA methylation between patients with ADHD and healthy controls. DNA methylation levels in the promoter region of the NET were determined in 23 adult patients with ADHD and 23 healthy controls. A subgroup of 18 patients with ADHD and 18 healthy controls underwent positron emission tomography (PET) with the radioligand (S,S)-[18F]FMeNER-D2 to quantify the NET in several brain areas in vivo. Analyses revealed significant differences in NET methylation levels at several cytosine-phosphate-guanine (CpG) sites between groups. A defined segment of the NET promoter ("region 1") was hypermethylated in patients in comparison with controls. In ADHD patients, a negative correlation between methylation of a CpG site in this region and NET distribution in the thalamus, locus coeruleus, and the raphe nuclei was detected. Furthermore, methylation of several sites in region 1 was negatively associated with the severity of hyperactivity-impulsivity symptoms. Our results point to an epigenetic dysregulation in ADHD, possibly due to a compensatory mechanisms or additional factors involved in transcriptional processing.
Collapse
|
7
|
Machine learning classification of ADHD and HC by multimodal serotonergic data. Transl Psychiatry 2020; 10:104. [PMID: 32265436 PMCID: PMC7138849 DOI: 10.1038/s41398-020-0781-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 12/15/2022] Open
Abstract
Serotonin neurotransmission may impact the etiology and pathology of attention-deficit and hyperactivity disorder (ADHD), partly mediated through single nucleotide polymorphisms (SNPs). We propose a multivariate, genetic and positron emission tomography (PET) imaging classification model for ADHD and healthy controls (HC). Sixteen patients with ADHD and 22 HC were scanned by PET to measure serotonin transporter (SERT') binding potential with [11C]DASB. All subjects were genotyped for thirty SNPs within the HTR1A, HTR1B, HTR2A and TPH2 genes. Cortical and subcortical regions of interest (ROI) were defined and random forest (RF) machine learning was used for feature selection and classification in a five-fold cross-validation model with ten repeats. Variable selection highlighted the ROI posterior cingulate gyrus, cuneus, precuneus, pre-, para- and postcentral gyri as well as the SNPs HTR2A rs1328684 and rs6311 and HTR1B rs130058 as most discriminative between ADHD and HC status. The mean accuracy for the validation sets across repeats was 0.82 (±0.09) with balanced sensitivity and specificity of 0.75 and 0.86, respectively. With a prediction accuracy above 0.8, the findings underlying the proposed model advocate the relevance of the SERT as well as the HTR1B and HTR2A genes in ADHD and hint towards disease-specific effects. Regarding the high rates of comorbidities and difficult differential diagnosis especially for ADHD, a reliable computer-aided diagnostic tool for disorders anchored in the serotonergic system will support clinical decisions.
Collapse
|
8
|
Veniaminova E, Oplatchikova M, Bettendorff L, Kotenkova E, Lysko A, Vasilevskaya E, Kalueff AV, Fedulova L, Umriukhin A, Lesch KP, Anthony DC, Strekalova T. Prefrontal cortex inflammation and liver pathologies accompany cognitive and motor deficits following Western diet consumption in non-obese female mice. Life Sci 2019; 241:117163. [PMID: 31837337 DOI: 10.1016/j.lfs.2019.117163] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022]
Abstract
AIMS The high sugar and lipid content of the Western diet (WD) is associated with metabolic dysfunction, non-alcoholic steatohepatitis, and it is an established risk factor for neuropsychiatric disorders. Our previous studies reported negative effects of the WD on rodent emotionality, impulsivity, and sociability in adulthood. Here, we investigated the effect of the WD on motor coordination, novelty recognition, and affective behavior in mice as well as molecular and cellular endpoints in brain and peripheral tissues. MAIN METHODS Female C57BL/6 J mice were fed the WD for three weeks and were investigated for glucose tolerance, insulin resistance, liver steatosis, and changes in motor coordination, object recognition, and despair behavior in the swim test. Lipids and liver injury markers, including aspartate-transaminase, alanine-transaminase and urea were measured in blood. Serotonin transporter (SERT) expression, the density of Iba1-positive cells and concentration of malondialdehyde were measured in brain. KEY FINDINGS WD-fed mice exhibited impaired glucose tolerance and insulin resistance, a loss of motor coordination, deficits in novel object exploration and recognition, increased helplessness, dyslipidemia, as well as signs of a non-alcoholic steatohepatitis (NASH)-like syndrome: liver steatosis and increased liver injury markers. Importantly, these changes were accompanied by decreased SERT expression, elevated numbers of microglia cells and malondialdehyde levels in, and restricted to, the prefrontal cortex. SIGNIFICANCE The WD induces a spectrum of behaviors that are more reminiscent of ADHD and ASD than previously recognized and suggests that, in addition to the impairment of impulsivity and sociability, the consumption of a WD might be expected to exacerbate motor dysfunction that is also known to be associated with adult ADHD and ASD.
Collapse
Affiliation(s)
- Ekaterina Veniaminova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229ER Maastricht, the Netherlands; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, 119991 Moscow, Russia
| | - Margarita Oplatchikova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, 119991 Moscow, Russia
| | - Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Av. Hippocrate 15, 4000 Liège, Belgium
| | - Elena Kotenkova
- V.M. Gorbatov Federal Research Center for Food Systems of RAS, Tallalikhina Str. 26, 109316 Moscow, Russia
| | - Alexander Lysko
- Institute of General Pathology and Pathophysiology, Baltiyskaya Str. 8, 125315 Moscow, Russia
| | - Ekaterina Vasilevskaya
- V.M. Gorbatov Federal Research Center for Food Systems of RAS, Tallalikhina Str. 26, 109316 Moscow, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, 400715 Chongqing, China; Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya Nab. 7-9, 199034 St. Petersburg, Russia; Ural Federal University, Mira Str. 19, 620002 Ekaterinburg, Russia
| | - Liliya Fedulova
- V.M. Gorbatov Federal Research Center for Food Systems of RAS, Tallalikhina Str. 26, 109316 Moscow, Russia
| | - Aleksei Umriukhin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, 119991 Moscow, Russia
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229ER Maastricht, the Netherlands; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, 119991 Moscow, Russia; Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany
| | - Daniel C Anthony
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, 119991 Moscow, Russia; Department of Pharmacology, Oxford University, Mansfield Road, OX1 3QT Oxford, UK
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229ER Maastricht, the Netherlands; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, 119991 Moscow, Russia; Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany.
| |
Collapse
|
9
|
Verger A, Horowitz T, Chawki MB, Eusebio A, Bordonne M, Azulay JP, Girard N, Guedj E. From metabolic connectivity to molecular connectivity: application to dopaminergic pathways. Eur J Nucl Med Mol Imaging 2019; 47:413-424. [DOI: 10.1007/s00259-019-04574-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022]
|
10
|
Riley TB, Overton PG. Enhancing the efficacy of 5-HT uptake inhibitors in the treatment of attention deficit hyperactivity disorder. Med Hypotheses 2019; 133:109407. [PMID: 31586811 DOI: 10.1016/j.mehy.2019.109407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 10/26/2022]
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common childhood behavioural disorders, the frontline treatments for which are drugs with abuse potential. As a consequence, there is an urgent need to develop non addictive drug treatments with equivalent efficacy. Preclinical evidence suggests that selective serotonin uptake inhibitors (SSRIs) are likely to be effective in ADHD, however clinical reports suggest that SSRIs are of limited therapeutic value for the treatment of ADHD. We propose that this disconnect can be explained by the pattern of drug administration in existing clinical trials (administration for short periods of time, or intermittently) leading to inadequate control of the autoregulatory processes which control 5-HT release, most notably at the level of inhibitory 5-HT1A somatodendritic autoreceptors. These autoreceptors reduce the firing rate of 5-HT neurons (limiting release) unless they are desensitised by a long term, frequent pattern of drug administration. As such, we argue that the participants in earlier trials were not administered SSRIs in a manner which realises any potential benefits of targeting 5-HT in the pharmacotherapy of ADHD. In light of this, we hypothesise that there may be under-researched potential to exploit 5-HT transmission therapeutically in ADHD, either through changing the administration regime, or by pharmacological means. Recent pharmacological research has successfully potentiated the effects of SSRIs in acute animal preparations by antagonising inhibitory 5-HT1A autoreceptors prior to the administration of the SSRI fluoxetine. We suggest that combination therapies linking SSRIs and 5-HT1A antagonists are a potential way forward in the development of efficacious non-addictive pharmacotherapies for ADHD.
Collapse
Affiliation(s)
- Timothy B Riley
- Department of Psychology, University of Sheffield, Sheffield S10 2TP, UK
| | - Paul G Overton
- Department of Psychology, University of Sheffield, Sheffield S10 2TP, UK
| |
Collapse
|
11
|
Hahn A, Lanzenberger R, Kasper S. Making Sense of Connectivity. Int J Neuropsychopharmacol 2019; 22:194-207. [PMID: 30544240 PMCID: PMC6403091 DOI: 10.1093/ijnp/pyy100] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 11/07/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023] Open
Abstract
In addition to the assessment of local alterations of specific brain regions, the investigation of entire networks with in vivo neuroimaging techniques has gained increasing attention. In general, connectivity analysis refers to the investigation of links between brain regions, with the aim to characterize their interactions and information transfer. These may represent or relate to different physiological characteristics (structural, functional, or metabolic information) and can be calculated across different levels of granularity (2 regions vs whole brain). In this article, we provide an overview of different connectivity analysis approaches with interpretations and limitations as well as examples in pharmacological imaging and clinical applications. Structural connectivity obtained from diffusion MRI enables the reconstruction of neuronal fiber tracts. These physical links represent major constraints of functional connections, which are in turn defined as correlations between signal time courses. In addition, molecular connectivity approaches based on PET imaging enable the assessment of interregional associations of metabolic demands and neurotransmitter systems. Application of these approaches in clinical investigations has demonstrated novel alterations in various neurological and psychiatric disorders on a network level. Future work should aim for the combined assessment of multiple imaging modalities and to establish robust biomarkers for clinical use. These advancements will further improve the biological interpretation of connectivity metrics and networks of the human brain.
Collapse
Affiliation(s)
- Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| |
Collapse
|
12
|
Nørgaard M, Ganz M, Svarer C, Feng L, Ichise M, Lanzenberger R, Lubberink M, Parsey RV, Politis M, Rabiner EA, Slifstein M, Sossi V, Suhara T, Talbot PS, Turkheimer F, Strother SC, Knudsen GM. Cerebral serotonin transporter measurements with [ 11C]DASB: A review on acquisition and preprocessing across 21 PET centres. J Cereb Blood Flow Metab 2019; 39:210-222. [PMID: 29651896 PMCID: PMC6365604 DOI: 10.1177/0271678x18770107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Positron Emission Tomography (PET) imaging has become a prominent tool to capture the spatiotemporal distribution of neurotransmitters and receptors in the brain. The outcome of a PET study can, however, potentially be obscured by suboptimal and/or inconsistent choices made in complex processing pipelines required to reach a quantitative estimate of radioligand binding. Variations in subject selection, experimental design, data acquisition, preprocessing, and statistical analysis may lead to different outcomes and neurobiological interpretations. We here review the approaches used in 105 original research articles published by 21 different PET centres, using the tracer [11C]DASB for quantification of cerebral serotonin transporter binding, as an exemplary case. We highlight and quantify the impact of the remarkable variety of ways in which researchers are currently conducting their studies, while implicitly expecting generalizable results across research groups. Our review provides evidence that the foundation for a given choice of a preprocessing pipeline seems to be an overlooked aspect in modern PET neuroscience. Furthermore, we believe that a thorough testing of pipeline performance is necessary to produce reproducible research outcomes, avoiding biased results and allowing for better understanding of human brain function.
Collapse
Affiliation(s)
- Martin Nørgaard
- 1 Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,2 Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Melanie Ganz
- 1 Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,3 Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Claus Svarer
- 1 Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ling Feng
- 1 Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Masanori Ichise
- 4 Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Rupert Lanzenberger
- 5 Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Mark Lubberink
- 6 Department of Nuclear Medicine and Positron Emission Tomography, Uppsala University, Uppsala, Sweden
| | - Ramin V Parsey
- 7 Department of Psychiatry, School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Marios Politis
- 8 Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
| | - Eugenii A Rabiner
- 9 Imanova Limited, London, UK.,10 Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mark Slifstein
- 7 Department of Psychiatry, School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Vesna Sossi
- 11 Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Tetsuya Suhara
- 4 Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Peter S Talbot
- 12 Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Stephen C Strother
- 14 Rotman Research Institute at Baycrest, University of Toronto, Toronto, Canada
| | - Gitte M Knudsen
- 1 Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,2 Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
James GM, Gryglewski G, Vanicek T, Berroterán-Infante N, Philippe C, Kautzky A, Nics L, Vraka C, Godbersen GM, Unterholzner J, Sigurdardottir HL, Spies M, Seiger R, Kranz GS, Hahn A, Mitterhauser M, Wadsak W, Bauer A, Hacker M, Kasper S, Lanzenberger R. Parcellation of the Human Cerebral Cortex Based on Molecular Targets in the Serotonin System Quantified by Positron Emission Tomography In vivo. Cereb Cortex 2019; 29:372-382. [PMID: 30357321 PMCID: PMC6294402 DOI: 10.1093/cercor/bhy249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 01/21/2023] Open
Abstract
Parcellation of distinct areas in the cerebral cortex has a long history in neuroscience and is of great value for the study of brain function, specialization, and alterations in neuropsychiatric disorders. Analysis of cytoarchitectonical features has revealed their close association with molecular profiles based on protein density. This provides a rationale for the use of in vivo molecular imaging data for parcellation of the cortex with the advantage of whole-brain coverage. In the current work, parcellation was based on expression of key players of the serotonin neurotransmitter system. Positron emission tomography was carried out for the quantification of serotonin 1A (5-HT1A, n = 30) and 5-HT2A receptors (n = 22), the serotonin-degrading enzyme monoamine oxidase A (MAO-A, n = 32) and the serotonin transporter (5-HTT, n = 24) in healthy participants. Cortical protein distribution maps were obtained using surface-based quantification. Based on k-means clustering, silhouette criterion and bootstrapping, five distinct clusters were identified as the optimal solution. The defined clusters proved of high explanatory value for the effects of psychotropic drugs acting on the serotonin system, such as antidepressants and psychedelics. Therefore, the proposed method constitutes a sensible approach towards integration of multimodal imaging data for research and development in neuropharmacology and psychiatry.
Collapse
Affiliation(s)
- Gregory M James
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Vanicek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Neydher Berroterán-Infante
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Cécile Philippe
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Alexander Kautzky
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Lukas Nics
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Godber M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Jakob Unterholzner
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Helen L Sigurdardottir
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Marie Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - René Seiger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Georg S Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University Hong Kong, China
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Andreas Bauer
- Institute of Neuroscience and Medicine (INM-2), Research Centre Jülich, Jülich, Germany
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Zheng J, Chen YH. [Research advances in pathogenesis of attention deficit hyperactivity disorder]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:775-780. [PMID: 30210033 PMCID: PMC7389180 DOI: 10.7499/j.issn.1008-8830.2018.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Both of genetic and environmental factors play important roles in the pathogenesis of attention deficit hyperactivity disorder (ADHD), and genetic factors can increase the susceptibility of individuals to environmental risk factors. There are extensive and various structural and functional abnormalities of the brain in patients with ADHD. Given the close functional relationship between brain areas, exploration has also been expanded to the dysfunction of brain network in recent years. As for the biochemical mechanism underlying ADHD, monoamine neurotransmitters are still most valued, and abnormalities of brain-derived neurotrophic factors and glutamic acid/γ-aminobutyric acid imbalance may also be present. Due to the abnormal neuroendocrine function and connectivity between brain areas caused by the synergistic effect of genetic and environmental factors, the prefrontal cortex loses control of the lower brain areas, so that the basal ganglia and amygdala affect normal behavioral and emotional reactions. Dysfunction of the endocrine axes may further aggravate neuroendocrine disorder. The above process may eventually lead to changes in brain structure and function, which may be associated with the development of ADHD. However, considering the heterogeneity of ADHD, its pathological process may not be the same, and the exact mechanism needs to be further clarified.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Pediatrics, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| | | |
Collapse
|
15
|
Kim JH, Cumming P, Son YD, Kim HK, Joo YH, Kim JH. Altered connectivity between striatal and extrastriatal regions in patients with schizophrenia on maintenance antipsychotics: an [18
F]fallypride PET and functional MRI study. Synapse 2018; 72:e22064. [DOI: 10.1002/syn.22064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Jeong-Hee Kim
- Research Institute for Advanced Industrial Technology; Korea University; Sejong Republic of Korea
- Neuroscience Research Institute; Gachon University; Incheon Republic of Korea
| | - Paul Cumming
- School of Psychology and Counselling and IHBI; Queensland University of Technology, and QIMR Berghofer Institute; Brisbane Queensland Australia
| | - Young-Don Son
- Neuroscience Research Institute; Gachon University; Incheon Republic of Korea
- Department of Biomedical Engineering; College of Health Science, Gachon University; Incheon Republic of Korea
| | - Hang-Keun Kim
- Neuroscience Research Institute; Gachon University; Incheon Republic of Korea
- Department of Biomedical Engineering; College of Health Science, Gachon University; Incheon Republic of Korea
| | - Yo-Han Joo
- Neuroscience Research Institute; Gachon University; Incheon Republic of Korea
| | - Jong-Hoon Kim
- Neuroscience Research Institute; Gachon University; Incheon Republic of Korea
- Department of Psychiatry, Gil Medical Center; Gachon University College of Medicine, Gachon University; Incheon Republic of Korea
| |
Collapse
|
16
|
Faraone SV. The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci Biobehav Rev 2018; 87:255-270. [PMID: 29428394 DOI: 10.1016/j.neubiorev.2018.02.001] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 12/20/2022]
Abstract
Psychostimulants, including amphetamines and methylphenidate, are first-line pharmacotherapies for individuals with attention-deficit/hyperactivity disorder (ADHD). This review aims to educate physicians regarding differences in pharmacology and mechanisms of action between amphetamine and methylphenidate, thus enhancing physician understanding of psychostimulants and their use in managing individuals with ADHD who may have comorbid psychiatric conditions. A systematic literature review of PubMed was conducted in April 2017, focusing on cellular- and brain system-level effects of amphetamine and methylphenidate. The primary pharmacologic effect of both amphetamine and methylphenidate is to increase central dopamine and norepinephrine activity, which impacts executive and attentional function. Amphetamine actions include dopamine and norepinephrine transporter inhibition, vesicular monoamine transporter 2 (VMAT-2) inhibition, and monoamine oxidase activity inhibition. Methylphenidate actions include dopamine and norepinephrine transporter inhibition, agonist activity at the serotonin type 1A receptor, and redistribution of the VMAT-2. There is also evidence for interactions with glutamate and opioid systems. Clinical implications of these actions in individuals with ADHD with comorbid depression, anxiety, substance use disorder, and sleep disturbances are discussed.
Collapse
Affiliation(s)
- Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States; K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway.
| |
Collapse
|
17
|
Abstract
Single-photon emission computed tomography (SPECT) and positron emission tomography (PET) with different radiotracers enable regional evaluation of blood flow and glucose metabolism, of receptors and transporters of several molecules, and of abnormal deposition of peptides and proteins in the brain. The cerebellum has been used as a reference region for different radiotracers in several disease conditions. Whole-brain voxel-wise analysis is not affected by a priori knowledge bias and should be preferred. SPECT and PET have contributed to establishing the cerebellum role in motion, cognition, and emotion control in physiologic and pathophysiologic conditions. The basic abnormal imaging findings include decreased or increased uptake of flow or metabolism tracers in the cerebellum alone or as part of a network. Decreased uptake is generally observed in primary structural damage of the cerebellum, but can also represent a distant effect of cerebral damage (crossed diaschisis). Increased uptake can be observed in Freidreich ataxia, inflammatory or immune-mediated diseases of the cerebellum, and in status epilepticus. The possibility is also recognized that primary structural damage of the cerebellum might determine distance effects on other brain structures (reversed diaschisis). So far, SPECT and PET have been predominantly used in clinical studies to investigate cerebellar changes in neurologic and psychiatric diseases and in connection with pharmacologic, transcranial magnetic stimulation, deep-brain stimulation, or surgical treatments.
Collapse
|