1
|
Shin JH, Kim H, Lee SY, Yoon WT, Park SW, Park S, Yoo D, Lee JY. Impaired cognitive flexibility and disrupted cognitive cerebellum in degenerative cerebellar ataxias. Brain Commun 2024; 6:fcae064. [PMID: 38454963 PMCID: PMC10919478 DOI: 10.1093/braincomms/fcae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/27/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
There is a clinically unmet need for a neuropsychological tool that reflects the pathophysiology of cognitive dysfunction in cerebellar degeneration. We investigated cognitive flexibility in degenerative cerebellar ataxia patients and aim to identify the pathophysiological correlates of cognitive dysfunction in relation to cerebellar cognitive circuits. We prospectively enrolled degenerative cerebellar ataxia patients with age-matched healthy controls who underwent 3 T 3D and resting-state functional MRI. All 56 participants were evaluated with the Scale for Assessment and Rating of Ataxia and neuropsychological tests including the Wisconsin Card Sorting Test, Trail Making Test, Montreal Cognitive Assessment and Mini-Mental State Examination. From MRI scans, we analysed the correlation of whole-brain volume and cortico-cerebellar functional connectivity with the Wisconsin Card Sorting Test performances. A total of 52 participants (29 ataxia patients and 23 healthy controls) were enrolled in this study. The Wisconsin Card Sorting Test scores (total error percentage, perseverative error percentage, non-perseverative error percentage and categories completed), Trail Making Test A and Montreal Cognitive Assessment were significantly impaired in ataxia patients (P < 0.05) compared to age-matched healthy controls. The Wisconsin Card Sorting Test error scores showed a significant correlation with the ataxia score (P < 0.05) controlling for age and sex. In volumetric analysis, the cerebellar right crus I, II, VIIb and VIII atrophy correlated with non-perseverative error percentage in the ataxia group. In functional connectivity analysis, the connectivity between crus I, II and VIIb of the cerebellum and bilateral superior parietal and superior temporal gyrus was significantly altered in ataxia patients. The functional connectivity between left crus II and VIIb of the cerebellum and dorsolateral prefrontal and superior frontal/parietal cortices showed a positive correlation with perseverative error percentage. The connectivity between left crus VIIb and pontine nucleus/middle cerebellar peduncle showed a significant negative correlation with non-perseverative error percentage in the ataxia group. The impaired cognitive flexibility represented by the Wisconsin Card Sorting Test was significantly impaired in degenerative cerebellar ataxia patients and correlated with disease severity. The Wisconsin Card Sorting Test performance reflects hypoactivity of the cognitive cerebellum and disrupted cortico-cerebellar connectivity in non-demented patients with degenerative cerebellar ataxia.
Collapse
Affiliation(s)
- Jung Hwan Shin
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center and Seoul National University College of Medicine, Seoul 07061, South Korea
- Department of Neurology, Seoul National University Hospital and Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Heejung Kim
- Department of Nuclear Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul 07061, South Korea
- Department of Neurology, Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul 03080, South Korea
| | - So Yeon Lee
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center and Seoul National University College of Medicine, Seoul 07061, South Korea
| | - Won Tae Yoon
- Department of Neurology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, South Korea
| | - Sun-Won Park
- Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center and Seoul National University College of Medicine, Seoul 07061, South Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Sangmin Park
- Department of Neurology, Eulji University Hospital, Eulji University School of Medicine, Daejeon 35233, South Korea
| | - Dallah Yoo
- Department of Neurology, Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul 05278, South Korea
| | - Jee-Young Lee
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center and Seoul National University College of Medicine, Seoul 07061, South Korea
| |
Collapse
|
2
|
Acharya A, Ren P, Yi L, Tian W, Liang X. Structural atrophy and functional dysconnectivity patterns in the cerebellum relate to cerebral networks in svMCI. Front Neurosci 2023; 16:1006231. [PMID: 36711147 PMCID: PMC9874318 DOI: 10.3389/fnins.2022.1006231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/26/2022] [Indexed: 01/12/2023] Open
Abstract
Subcortical vascular mild cognitive impairment (svMCI) is associated with structural and functional changes in the cerebral cortex affecting major brain networks. While recent studies have shown that the intrinsic cerebral connectivity networks can be mapped onto the cerebellum, and the cortex and cerebellum are interconnected via the cortico-basal ganglia-cerebellar circuit, structural and functional disruptions in cerebellum in svMCI are rarely studied. In this study, we conducted voxel-based morphometry analysis to investigate gray matter atrophy pattern across cerebellar regions in 40 svMCI patients, and explored alterations in functional connectivity between the basal ganglia and cerebellum. The results showed that the amount of cerebellar atrophy within the default mode, salience, and frontoparietal networks correlated with their counterpart in the cerebral cortex. Moreover, key regions of the cerebellum, including the lobule VI, VIIb, VIII, and Crus I, which are reported to have a role in cognitive function, showed both anatomical atrophy and decreased functional connectivity with the striatum. These atrophy and connectivity patterns in the cerebellum also correlated with memory performances. These findings demonstrate that there are coupled changes in cerebral and cerebellar circuits, reflecting that degeneration patterns in svMCI are not limited to the cerebral cortex but similarly extend to the cerebellum as well, and suggest the cortico-basal ganglia-cerebellar circuit may play an important role in the pathology of svMCI.
Collapse
Affiliation(s)
- Alaka Acharya
- School of Life Science, Harbin Institute of Technology, Harbin, China
| | - Peng Ren
- School of Life Science, Harbin Institute of Technology, Harbin, China
| | - Liye Yi
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weiming Tian
- School of Life Science, Harbin Institute of Technology, Harbin, China
| | - Xia Liang
- School of Life Science, Harbin Institute of Technology, Harbin, China,Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, China,*Correspondence: Xia Liang ✉
| |
Collapse
|
3
|
Marapin RS, van der Horn HJ, van der Stouwe AMM, Dalenberg JR, de Jong BM, Tijssen MAJ. Altered brain connectivity in hyperkinetic movement disorders: A review of resting-state fMRI. Neuroimage Clin 2022; 37:103302. [PMID: 36669351 PMCID: PMC9868884 DOI: 10.1016/j.nicl.2022.103302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Hyperkinetic movement disorders (HMD) manifest as abnormal and uncontrollable movements. Despite reported involvement of several neural circuits, exact connectivity profiles remain elusive. OBJECTIVES Providing a comprehensive literature review of resting-state brain connectivity alterations using resting-state fMRI (rs-fMRI). We additionally discuss alterations from the perspective of brain networks, as well as correlations between connectivity and clinical measures. METHODS A systematic review was performed according to PRISMA guidelines and searching PubMed until October 2022. Rs-fMRI studies addressing ataxia, chorea, dystonia, myoclonus, tics, tremor, and functional movement disorders (FMD) were included. The standardized mean difference was used to summarize findings per region in the Automated Anatomical Labeling atlas for each phenotype. Furthermore, the activation likelihood estimation meta-analytic method was used to analyze convergence of significant between-group differences per phenotype. Finally, we conducted hierarchical cluster analysis to provide additional insights into commonalities and differences across HMD phenotypes. RESULTS Most articles concerned tremor (51), followed by dystonia (46), tics (19), chorea (12), myoclonus (11), FMD (11), and ataxia (8). Altered resting-state connectivity was found in several brain regions: in ataxia mainly cerebellar areas; for chorea, the caudate nucleus; for dystonia, sensorimotor and basal ganglia regions; for myoclonus, the thalamus and cingulate cortex; in tics, the basal ganglia, cerebellum, insula, and frontal cortex; for tremor, the cerebello-thalamo-cortical circuit; finally, in FMD, frontal, parietal, and cerebellar regions. Both decreased and increased connectivity were found for all HMD. Significant spatial convergence was found for dystonia, FMD, myoclonus, and tremor. Correlations between clinical measures and resting-state connectivity were frequently described. CONCLUSION Key brain regions contributing to functional connectivity changes across HMD often overlap. Possible increases and decreases of functional connections of a specific region emphasize that HMD should be viewed as a network disorder. Despite the complex interplay of physiological and methodological factors, this review serves to gain insight in brain connectivity profiles across HMD phenotypes.
Collapse
Affiliation(s)
- Ramesh S Marapin
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Harm J van der Horn
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - A M Madelein van der Stouwe
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Jelle R Dalenberg
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Bauke M de Jong
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Marina A J Tijssen
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands.
| |
Collapse
|
4
|
Bohne P, Rybarski M, Mourabit DBE, Krause F, Mark MD. Cerebellar contribution to threat probability in a SCA6 mouse model. Hum Mol Genet 2022; 31:3807-3828. [PMID: 35708512 PMCID: PMC9652111 DOI: 10.1093/hmg/ddac135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/24/2022] [Accepted: 06/09/2022] [Indexed: 02/05/2023] Open
Abstract
Fear and anxiety have proven to be essential during the evolutionary process. However, the mechanisms involved in recognizing and categorizing threat probability (i.e. low to high) to elicit the appropriate defensive behavior are yet to be determined. In this study, we investigated the cerebellar contribution in evoking appropriate defensive escape behavior using a purely cerebellar, neurodegenerative mouse model for spinocerebellar ataxia type 6 which is caused by an expanded CAG repeat in exon 47 of the P/Q type calcium channel α1A subunit. These mice overexpress the carboxy terminus (CT) of the P/Q type calcium channel containing an expanded 27 CAG repeat specifically in cerebellar Purkinje cells (CT-longQ27PC). We found that our CT-longQ27PC mice exhibit anxiolytic behavior in the open field, elevated plus maze and light/dark place preference tests, which could be recovered with more threatening conditions such as brighter lighting, meowing sounds and an ultrasound repellent. Their innate fear to find safety in the Barnes maze and visual cliff tests was also diminished with subsequent trials, which could be partially recovered with an ultrasound repellent in the Barnes maze. However, under higher threat conditions such as in the light/dark place preference with ultrasound repellent and in the looming tests, CT-longQ27PC mice responded with higher defensive escape behaviors as controls. Moreover, CT-longQ27PC mice displayed increased levels of CT-labeled aggregates compared with controls. Together these data suggest that cerebellar degeneration by overexpression of CT-longQ27PC is sufficient to impair defensive escape responses in those mice.
Collapse
Affiliation(s)
- Pauline Bohne
- Behavioral Neuroscience, Ruhr-University Bochum, Bochum D-44780, Germany
| | - Max Rybarski
- Behavioral Neuroscience, Ruhr-University Bochum, Bochum D-44780, Germany
| | | | - Felix Krause
- Behavioral Neuroscience, Ruhr-University Bochum, Bochum D-44780, Germany
| | - Melanie D Mark
- Behavioral Neuroscience, Ruhr-University Bochum, Bochum D-44780, Germany
| |
Collapse
|
5
|
Öz G, Harding IH, Krahe J, Reetz K. MR imaging and spectroscopy in degenerative ataxias: toward multimodal, multisite, multistage monitoring of neurodegeneration. Curr Opin Neurol 2021; 33:451-461. [PMID: 32657886 DOI: 10.1097/wco.0000000000000834] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Degenerative ataxias are rare and currently untreatable movement disorders, primarily characterized by neurodegeneration in the cerebellum and brainstem. We highlight MRI studies with the most potential for utility in pending ataxia trials and underscore advances in disease characterization and diagnostics in the field. RECENT FINDINGS With availability of advanced MRI acquisition methods and specialized software dedicated to the analysis of MRI of the cerebellum, patterns of cerebellar atrophy in different degenerative ataxias are increasingly well defined. The field further embraced rigorous multimodal investigations to study network-level microstructural and functional brain changes and their neurochemical correlates. MRI and magnetic resonance spectroscopy were shown to be more sensitive to disease progression than clinical scales and to detect abnormalities in premanifest mutation carriers. SUMMARY Magnetic resonance techniques are increasingly well placed for characterizing the expression and progression of degenerative ataxias. The most impactful work has arguably come through multi-institutional studies that monitor relatively large cohorts, multimodal investigations that assess the sensitivity of different measures and their interrelationships, and novel imaging approaches that are targeted to known pathophysiology (e.g., iron and spinal imaging in Friedreich ataxia). These multimodal, multi-institutional studies are paving the way to clinical trial readiness and enhanced understanding of disease in degenerative ataxias.
Collapse
Affiliation(s)
- Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Ian H Harding
- Department of Neuroscience, Central Clinical School.,Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Janna Krahe
- Department of Neurology.,JARA Brain Institute Molecular Neuroscience and Neuroimaging, Research Centre Ju[Combining Diaeresis]lich, RWTH Aachen University, Aachen, Germany
| | - Kathrin Reetz
- Department of Neurology.,JARA Brain Institute Molecular Neuroscience and Neuroimaging, Research Centre Ju[Combining Diaeresis]lich, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Zhang XW, Dai RP, Cheng GW, Zhang WH, Long Q. Altered amplitude of low-frequency fluctuations and default mode network connectivity in high myopia: a resting-state fMRI study. Int J Ophthalmol 2020; 13:1629-1636. [PMID: 33078115 DOI: 10.18240/ijo.2020.10.18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/09/2020] [Indexed: 12/26/2022] Open
Abstract
AIM To analyze changes in amplitude of low-frequency fluctuations (ALFFs) and default mode network (DMN) connectivity in the brain, using resting-state functional magnetic resonance imaging (rs-fMRI), in high myopia (HM) patients. METHODS Eleven patients with HM (HM group) and 15 age- and sex-matched non-HM controls (non-HM group) were recruited. ALFFs were calculated and compared between HM group and non-HM group. Independent component analysis (ICA) was conducted to identify DMN, and comparisons between DMNs of two groups were performed. Region-of-interest (ROI)-based analysis was performed to explore functional connectivity (FC) between DMN regions. RESULTS Significantly increased ALFFs in left inferior temporal gyrus (ITG), bilateral rectus gyrus (REC), bilateral middle temporal gyrus (MTG), left superior temporal gyrus (STG), and left angular gyrus (ANG) were detected in HM group compared with non-HM group (all P<0.01). HM group showed increased FC in the posterior cingulate gyrus (PCC)/precuneus (preCUN) and decreased FC in the left medial prefrontal cortex (mPFG) within DMN compared with non-HM group (all P<0.01). Compared with non-HM group, HM group showed higher FC between mPFG and bilateral middle frontal gyrus (MFG), ANG, and MTG (all P<0.01). In addition, HM patients showed higher FC between PCC/(preCUN) and the right cerebellum, superior frontal gyrus (SFG), left preCUN, superior frontal gyrus (SFG), and medial orbital of the superior frontal gyrus (ORB supmed; all P<0.01). CONCLUSION HM patients show different ALFFs and DMNs compared with non-HM subjects, which may imply the cognitive alterations related to HM.
Collapse
Affiliation(s)
- Xue-Wei Zhang
- Department of Radiology, Translational Medical Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.,Department of Interventional Radiology, Emergency General Hospital, Beijing 100028, China
| | - Rong-Ping Dai
- Department of Ophthalmology, Translational Medical Center, Peking Union Medical College Hospital, Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Gang-Wei Cheng
- Department of Ophthalmology, Translational Medical Center, Peking Union Medical College Hospital, Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Wei-Hong Zhang
- Department of Radiology, Translational Medical Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Qin Long
- Department of Ophthalmology, Translational Medical Center, Peking Union Medical College Hospital, Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
7
|
Argyropoulos GPD, van Dun K, Adamaszek M, Leggio M, Manto M, Masciullo M, Molinari M, Stoodley CJ, Van Overwalle F, Ivry RB, Schmahmann JD. The Cerebellar Cognitive Affective/Schmahmann Syndrome: a Task Force Paper. CEREBELLUM (LONDON, ENGLAND) 2020; 19:102-125. [PMID: 31522332 PMCID: PMC6978293 DOI: 10.1007/s12311-019-01068-8] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sporadically advocated over the last two centuries, a cerebellar role in cognition and affect has been rigorously established in the past few decades. In the clinical domain, such progress is epitomized by the "cerebellar cognitive affective syndrome" ("CCAS") or "Schmahmann syndrome." Introduced in the late 1990s, CCAS reflects a constellation of cerebellar-induced sequelae, comprising deficits in executive function, visuospatial cognition, emotion-affect, and language, over and above speech. The CCAS thus offers excellent grounds to investigate the functional topography of the cerebellum, and, ultimately, illustrate the precise mechanisms by which the cerebellum modulates cognition and affect. The primary objective of this task force paper is thus to stimulate further research in this area. After providing an up-to-date overview of the fundamental findings on cerebellar neurocognition, the paper substantiates the concept of CCAS with recent evidence from different scientific angles, promotes awareness of the CCAS as a clinical entity, and examines our current insight into the therapeutic options available. The paper finally identifies topics of divergence and outstanding questions for further research.
Collapse
Affiliation(s)
| | - Kim van Dun
- Rehabilitation Research Center REVAL, UHasselt, Hasselt, Belgium
| | - Michael Adamaszek
- Clinical and Cognitive Neurorehabilitation, Center of Neurology and Neurorehabilitation, Klinik Bavaria Kreischa, An der Wolfsschlucht 1-2, 01703 Kreischa, Germany
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, 6000 Charleroi, Belgium
- Department of Neurosciences, University of Mons, 7000 Mons, Belgium
| | - Marcella Masciullo
- SPInal REhabilitation Lab (SPIRE), IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Marco Molinari
- Neuro-Robot Rehabilitation Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | | | | | - Richard B. Ivry
- Department of Psychology, University of California, Berkeley, CA USA
| | - Jeremy D. Schmahmann
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
8
|
Naeije G, Wens V, Coquelet N, Sjøgård M, Goldman S, Pandolfo M, De Tiège XP. Age of onset determines intrinsic functional brain architecture in Friedreich ataxia. Ann Clin Transl Neurol 2020; 7:94-104. [PMID: 31854120 PMCID: PMC6952309 DOI: 10.1002/acn3.50966] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/30/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Friedreich ataxia (FRDA) is the commonest hereditary ataxia in Caucasians. Most patients are homozygous for expanded GAA triplet repeats in the first intron of the frataxin (FXN) gene, involved in mitochondrial iron metabolism. Here, we used magnetoencephalography (MEG) to characterize the main determinants of FRDA-related changes in intrinsic functional brain architecture. METHODS Five minutes of MEG signals were recorded at rest from 18 right-handed FRDA patients (mean age 27 years, 9 females; mean SARA score: 21.4) and matched healthy individuals. The MEG connectome was estimated as resting-state functional connectivity (rsFC) matrices involving 37 nodes from six major resting state networks and the cerebellum. Source-level rsFC maps were computed using leakage-corrected broad-band (3-40 Hz) envelope correlations. Post hoc median-split was used to contrast rsFC in FRDA patients with different clinical characteristics. Nonparametric permutations and Spearman rank correlation test were used for statistics. RESULTS High rank correlation levels were found between rsFC and age of symptoms onset in FRDA mostly between the ventral attention, the default-mode, and the cerebellar networks; patients with higher rsFC developing symptoms at an older age. Increased rsFC was found in FRDA with later age of symptoms onset compared to healthy subjects. No correlations were found between rsFC and other clinical parameters. CONCLUSION Age of symptoms onset is a major determinant of FRDA patients' intrinsic functional brain architecture. Higher rsFC in FRDA patients with later age of symptoms onset supports compensatory mechanisms for FRDA-related neural network dysfunction and position neuromagnetic rsFC as potential marker of FRDA neural reserve.
Collapse
Affiliation(s)
- Gilles Naeije
- Laboratoire de Cartographie fonctionnelle du CerveauULB Neuroscience Institute (UNI)Université libre de Bruxelles (ULB)BrusselsBelgium
- Department of NeurologyCUB Hôpital ErasmeUniversité libre de Bruxelles (ULB)BrusselsBelgium
| | - Vincent Wens
- Laboratoire de Cartographie fonctionnelle du CerveauULB Neuroscience Institute (UNI)Université libre de Bruxelles (ULB)BrusselsBelgium
- Department of Functional NeuroimagingService of Nuclear MedicineCUB Hôpital ErasmeUniversité libre de Bruxelles (ULB)BrusselsBelgium
| | - Nicolas Coquelet
- Laboratoire de Cartographie fonctionnelle du CerveauULB Neuroscience Institute (UNI)Université libre de Bruxelles (ULB)BrusselsBelgium
| | - Martin Sjøgård
- Laboratoire de Cartographie fonctionnelle du CerveauULB Neuroscience Institute (UNI)Université libre de Bruxelles (ULB)BrusselsBelgium
| | - Serge Goldman
- Laboratoire de Cartographie fonctionnelle du CerveauULB Neuroscience Institute (UNI)Université libre de Bruxelles (ULB)BrusselsBelgium
- Department of Functional NeuroimagingService of Nuclear MedicineCUB Hôpital ErasmeUniversité libre de Bruxelles (ULB)BrusselsBelgium
| | - Massimo Pandolfo
- Department of NeurologyCUB Hôpital ErasmeUniversité libre de Bruxelles (ULB)BrusselsBelgium
| | - Xavier P. De Tiège
- Laboratoire de Cartographie fonctionnelle du CerveauULB Neuroscience Institute (UNI)Université libre de Bruxelles (ULB)BrusselsBelgium
- Department of Functional NeuroimagingService of Nuclear MedicineCUB Hôpital ErasmeUniversité libre de Bruxelles (ULB)BrusselsBelgium
| |
Collapse
|
9
|
Tunc S, Baginski N, Lubs J, Bally JF, Weissbach A, Baaske MK, Tadic V, Brüggemann N, Bäumer T, Beste C, Münchau A. Predictive coding and adaptive behavior in patients with genetically determined cerebellar ataxia--A neurophysiology study. Neuroimage Clin 2019; 24:102043. [PMID: 31678909 PMCID: PMC6978209 DOI: 10.1016/j.nicl.2019.102043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/23/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022]
Abstract
Genetically determined cerebellar ataxias (CA) are a heterogeneous group of disorders with progressive decline of cerebellar functions. The cerebellum influences internal forward models that play a role in cognitive control, but whether these processes are dysfunctional in CA is unclear. Here, we examined sensory predictive coding processes and response adaptation in CA and healthy controls (HC) using behavioral tests with concomitant EEG recordings. N = 23 patients and N = 29 age- and sex-matched HC were studied. Sensory prediction coding was tested with an auditory distraction paradigm and error-related behavioral adaptation with a visual flanker task. As neurophysiological markers we studied different event-related potentials: the P3a for orientation of attention; the N2 and the error-related negativity (ERN) for cognitive adaptation processes/consequences of response errors; error-related positivity (Pe) for error-awareness; the mismatch negativity (MMN) for sensory predictive coding; and reorientation negativity (RON) for reorientation after unexpected events. Overall reaction times were slower in patients compared to HC, but error rates did not differ. Both in patients and HC, P3a amplitudes were larger in distraction trials, but the P3a amplitude was smaller in patients compared to HC. The MMN as well as behavioral and EEG-correlates of response adaptation (ERN/N2) did not differ between groups, while the Pe was attenuated in patients. During sensory predictive coding, RON amplitudes were significantly larger in HC compared to patients. In HC, but not in patients, RON amplitudes were also larger in deviant compared to frequent trials. Processes generating internal forward models are largely intact in genetically determined CA, whereas updating of mental models and error awareness are disturbed in these patients.
Collapse
Affiliation(s)
- Sinem Tunc
- Institute of Neurogenetics, University of Lübeck, Germany; Department of Neurology, University Hospital Schleswig Holstein, Campus Lübeck, Germany
| | | | - Juliane Lubs
- Institute of Neurogenetics, University of Lübeck, Germany
| | - Julien F Bally
- Department of Neurology, University Hospitals of Geneva, Geneva, Switzerland
| | - Anne Weissbach
- Institute of Neurogenetics, University of Lübeck, Germany
| | - Magdalena Khira Baaske
- Institute of Neurogenetics, University of Lübeck, Germany; Department of Neurology, University Hospital Schleswig Holstein, Campus Lübeck, Germany
| | - Vera Tadic
- Institute of Neurogenetics, University of Lübeck, Germany; Department of Neurology, University Hospital Schleswig Holstein, Campus Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, Germany; Department of Neurology, University Hospital Schleswig Holstein, Campus Lübeck, Germany
| | - Tobias Bäumer
- Institute of Neurogenetics, University of Lübeck, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany.
| | | |
Collapse
|
10
|
Argyropoulos GPD, van Dun K, Adamaszek M, Leggio M, Manto M, Masciullo M, Molinari M, Stoodley CJ, Van Overwalle F, Ivry RB, Schmahmann JD. The Cerebellar Cognitive Affective/Schmahmann Syndrome: a Task Force Paper. CEREBELLUM (LONDON, ENGLAND) 2019. [PMID: 31522332 DOI: 10.1007/s12311‐019‐01068‐8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sporadically advocated over the last two centuries, a cerebellar role in cognition and affect has been rigorously established in the past few decades. In the clinical domain, such progress is epitomized by the "cerebellar cognitive affective syndrome" ("CCAS") or "Schmahmann syndrome." Introduced in the late 1990s, CCAS reflects a constellation of cerebellar-induced sequelae, comprising deficits in executive function, visuospatial cognition, emotion-affect, and language, over and above speech. The CCAS thus offers excellent grounds to investigate the functional topography of the cerebellum, and, ultimately, illustrate the precise mechanisms by which the cerebellum modulates cognition and affect. The primary objective of this task force paper is thus to stimulate further research in this area. After providing an up-to-date overview of the fundamental findings on cerebellar neurocognition, the paper substantiates the concept of CCAS with recent evidence from different scientific angles, promotes awareness of the CCAS as a clinical entity, and examines our current insight into the therapeutic options available. The paper finally identifies topics of divergence and outstanding questions for further research.
Collapse
Affiliation(s)
| | - Kim van Dun
- Rehabilitation Research Center REVAL, UHasselt, Hasselt, Belgium
| | - Michael Adamaszek
- Clinical and Cognitive Neurorehabilitation, Center of Neurology and Neurorehabilitation, Klinik Bavaria Kreischa, An der Wolfsschlucht 1-2, 01703, Kreischa, Germany
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, 6000, Charleroi, Belgium.,Department of Neurosciences, University of Mons, 7000, Mons, Belgium
| | - Marcella Masciullo
- SPInal REhabilitation Lab (SPIRE), IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy
| | - Marco Molinari
- Neuro-Robot Rehabilitation Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy
| | | | | | - Richard B Ivry
- Department of Psychology, University of California, Berkeley, CA, USA
| | - Jeremy D Schmahmann
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Bostan AC, Strick PL. The basal ganglia and the cerebellum: nodes in an integrated network. Nat Rev Neurosci 2019; 19:338-350. [PMID: 29643480 DOI: 10.1038/s41583-018-0002-7] [Citation(s) in RCA: 416] [Impact Index Per Article: 83.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The basal ganglia and the cerebellum are considered to be distinct subcortical systems that perform unique functional operations. The outputs of the basal ganglia and the cerebellum influence many of the same cortical areas but do so by projecting to distinct thalamic nuclei. As a consequence, the two subcortical systems were thought to be independent and to communicate only at the level of the cerebral cortex. Here, we review recent data showing that the basal ganglia and the cerebellum are interconnected at the subcortical level. The subthalamic nucleus in the basal ganglia is the source of a dense disynaptic projection to the cerebellar cortex. Similarly, the dentate nucleus in the cerebellum is the source of a dense disynaptic projection to the striatum. These observations lead to a new functional perspective that the basal ganglia, the cerebellum and the cerebral cortex form an integrated network. This network is topographically organized so that the motor, cognitive and affective territories of each node in the network are interconnected. This perspective explains how synaptic modifications or abnormal activity at one node can have network-wide effects. A future challenge is to define how the unique learning mechanisms at each network node interact to improve performance.
Collapse
Affiliation(s)
- Andreea C Bostan
- Systems Neuroscience Center and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Peter L Strick
- Systems Neuroscience Center and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA. .,University of Pittsburgh Brain Institute and Departments of Neurobiology, Neuroscience and Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Coarelli G, Brice A, Durr A. Recent advances in understanding dominant spinocerebellar ataxias from clinical and genetic points of view. F1000Res 2018; 7. [PMID: 30473770 PMCID: PMC6234732 DOI: 10.12688/f1000research.15788.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2018] [Indexed: 12/12/2022] Open
Abstract
Abstract Spinocerebellar ataxias (SCAs) are rare types of cerebellar ataxia with a dominant mode of inheritance. To date, 47 SCA subtypes have been identified, and the number of genes implicated in SCAs is continually increasing. Polyglutamine (polyQ) expansion diseases (
ATXN1/SCA1,
ATXN2/SCA2,
ATXN3/SCA3,
CACNA1A/SCA6,
ATXN7/SCA7,
TBP/SCA17, and
ATN1/DRPLA) are the most common group of SCAs. No preventive or curative treatments are currently available, but various therapeutic approaches, including RNA-targeting treatments, such as antisense oligonucleotides (ASOs), are being developed. Clinical trials of ASOs in SCA patients are already planned. There is, therefore, a need to identify valid outcome measures for such studies. In this review, we describe recent advances towards identifying appropriate biomarkers, which are essential for monitoring disease progression and treatment efficacy. Neuroimaging biomarkers are the most powerful markers identified to date, making it possible to reduce sample sizes for clinical trials. Changes on brain MRI are already evident at the premanifest stage in SCA1 and SCA2 carriers and are correlated with CAG repeat size. Other potential biomarkers have also been developed, based on neurological examination, oculomotor study, cognitive assessment, and blood and cerebrospinal fluid analysis. Longitudinal studies based on multimodal approaches are required to establish the relationships between parameters and to validate the biomarkers identified.
Collapse
Affiliation(s)
- Giulia Coarelli
- Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Neurology, Avicenne Hospital, Paris 13 University, Bobigny, 93000, France.,Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Paris, 75013, France
| | - Alexis Brice
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Paris, 75013, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Genetic department, Pitié-Salpêtrière University Hospital, Paris, 75013, France
| | - Alexandra Durr
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne University, Paris, 75013, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Genetic department, Pitié-Salpêtrière University Hospital, Paris, 75013, France
| |
Collapse
|
13
|
Zhang C, Yang H, Qin W, Liu C, Qi Z, Chen N, Li K. Characteristics of Resting-State Functional Connectivity in Intractable Unilateral Temporal Lobe Epilepsy Patients with Impaired Executive Control Function. Front Hum Neurosci 2017; 11:609. [PMID: 29375338 PMCID: PMC5770650 DOI: 10.3389/fnhum.2017.00609] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 11/28/2017] [Indexed: 11/13/2022] Open
Abstract
Executive control function (ECF) deficit is a common complication of temporal lobe epilepsy (TLE). Characteristics of brain network connectivity in TLE with ECF dysfunction are still unknown. The aim of this study was to investigate resting-state functional connectivity (FC) changes in patients with unilateral intractable TLE with impaired ECF. Forty right-handed patients with left TLE confirmed by comprehensive preoperative evaluation and postoperative pathological findings were enrolled. The patients were divided into normal ECF (G1) and decreased ECF (G2) groups according to whether they showed ECF impairment on the Wisconsin Card Sorting Test (WCST). Twenty-three healthy volunteers were recruited as the healthy control (HC) group. All subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI). Group-information-guided independent component analysis (GIG-ICA) was performed to estimate resting-state networks (RSNs) for all subjects. General linear model (GLM) was employed to analyze intra-network FC (p < 0.05, false discovery rate, FDR correction) and inter-network FC (p < 0.05, Bonferroni correction) of RSN among three groups. Pearson correlations between FC and neuropsychological tests were also determined through partial correlation analysis (p < 0.05). Eleven meaningful RSNs were identified from 40 left TLE and 23 HC subjects. Comparison of intra-network FC of all 11 meaningful RSNs did not reveal significant difference among the three groups (p > 0.05, FDR correction). For inter-network analysis, G2 exhibited decreased FC between the executive control network (ECN) and default-mode network (DMN) when compared with G1 (p = 0.000, Bonferroni correction) and HC (p = 0.000, Bonferroni correction). G1 showed no significant difference of FC between ECN and DMN when compared with HC. Furthermore, FC between ECN and DMN had significant negative correlation with perseverative responses (RP), response errors (RE) and perseverative errors (RPE) and had significant positive correlation categories completed (CC) in both G1 and G2 (p < 0.05). No significant difference of Montreal Cognitive Assessment (MoCA) was found between G1 and G2, while intelligence quotient (IQ) testing showed significant difference between G1and G2.There was no correlation between FC and either MoCA or IQ performance. Our findings suggest that ECF impairment in unilateral TLE is not confined to the diseased temporal lobe. Decreased FC between DMN and ECN may be an important characteristic of RSN in intractable unilateral TLE.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Hongyu Yang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Chang Liu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhigang Qi
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Nan Chen
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| |
Collapse
|