1
|
Kristanto D, Burkhardt M, Thiel C, Debener S, Gießing C, Hildebrandt A. The multiverse of data preprocessing and analysis in graph-based fMRI: A systematic literature review of analytical choices fed into a decision support tool for informed analysis. Neurosci Biobehav Rev 2024; 165:105846. [PMID: 39117132 DOI: 10.1016/j.neubiorev.2024.105846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/04/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
The large number of different analytical choices used by researchers is partly responsible for the challenge of replication in neuroimaging studies. For an exhaustive robustness analysis, knowledge of the full space of analytical options is essential. We conducted a systematic literature review to identify the analytical decisions in functional neuroimaging data preprocessing and analysis in the emerging field of cognitive network neuroscience. We found 61 different steps, with 17 of them having debatable parameter choices. Scrubbing, global signal regression, and spatial smoothing are among the controversial steps. There is no standardized order in which different steps are applied, and the parameter settings within several steps vary widely across studies. By aggregating the pipelines across studies, we propose three taxonomic levels to categorize analytical choices: 1) inclusion or exclusion of specific steps, 2) parameter tuning within steps, and 3) distinct sequencing of steps. We have developed a decision support application with high educational value called METEOR to facilitate access to the data in order to design well-informed robustness (multiverse) analysis.
Collapse
Affiliation(s)
- Daniel Kristanto
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany.
| | - Micha Burkhardt
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany
| | - Christiane Thiel
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany; Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Germany; Cluster of Excellence "Hearing4All", Carl von Ossietzky Universität Oldenburg, Germany
| | - Stefan Debener
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany; Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Germany; Cluster of Excellence "Hearing4All", Carl von Ossietzky Universität Oldenburg, Germany
| | - Carsten Gießing
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany; Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Germany.
| | - Andrea Hildebrandt
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany; Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Germany; Cluster of Excellence "Hearing4All", Carl von Ossietzky Universität Oldenburg, Germany.
| |
Collapse
|
2
|
Fang M, Huang H, Yang J, Zhang S, Wu Y, Huang CC. Changes in microstructural similarity of hippocampal subfield circuits in pathological cognitive aging. Brain Struct Funct 2024; 229:311-321. [PMID: 38147082 DOI: 10.1007/s00429-023-02721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/02/2023] [Indexed: 12/27/2023]
Abstract
The hippocampal networks support multiple cognitive functions and may have biological roles and functions in pathological cognitive aging (PCA) and its associated diseases, which have not been explored. In the current study, a total of 116 older adults with 39 normal controls (NC) (mean age: 52.3 ± 13.64 years; 16 females), 39 mild cognitive impairment (MCI) (mean age: 68.15 ± 9.28 years, 14 females), and 38 dementia (mean age: 73.82 ± 8.06 years, 8 females) were included. The within-hippocampal subfields and the cortico-hippocampal circuits were assessed via a micro-structural similarity network approach using T1w/T2w ratio and regional gray matter tissue probability maps, respectively. An analysis of covariance was conducted to identify between-group differences in structural similarities among hippocampal subfields. The partial correlation analyses were performed to associate changes in micro-structural similarities with cognitive performance in the three groups, controlling the effect of age, sex, education, and cerebral small-vessel disease. Compared with the NC, an altered T1w/T2w ratio similarity between left CA3 and left subiculum was observed in the mild cognitive impairment (MCI) and dementia. The left CA3 was the most impaired region correlated with deteriorated cognitive performance. Using these regions as seeds for GM similarity comparisons between hippocampal subfields and cortical regions, group differences were observed primarily between the left subiculum and several cortical regions. By utilizing T1w/T2w ratio as a proxy measure for myelin content, our data suggest that the imbalanced synaptic weights within hippocampal CA3 provide a substrate to explain the abnormal firing characteristics of hippocampal neurons in PCA. Furthermore, our work depicts specific brain structural characteristics of normal and pathological cognitive aging and suggests a potential mechanism for cognitive aging heterogeneity.
Collapse
Affiliation(s)
- Min Fang
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huanghuang Huang
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Yang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Shuying Zhang
- School of Medicine, Tongji University, Shanghai, China
| | - Yujie Wu
- Changning Mental Health Center, Shanghai, China
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.
- Changning Mental Health Center, Shanghai, China.
| |
Collapse
|
3
|
Wu H, Fan S, Yan C, Wang H. Cortical microstructural brain network mediates the association between personality trait of agreeableness and life satisfaction. Cereb Cortex 2024; 34:bhad410. [PMID: 37948663 DOI: 10.1093/cercor/bhad410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023] Open
Abstract
Personality traits are commonly regarded as relatively stable, whereas life satisfaction can fluctuate with time and circumstances, shaped by external influences and personal encounters. The correlation between personality traits and life satisfaction is well-established, yet the underlying neural mechanisms of the myelin-based microstructural brain network connecting them remain unclear. Here, we constructed individual-level whole-brain myelin microstructural networks from the MRI data of 1,043 healthy adults and performed correlation analysis to detect significant personality trait-related and life satisfaction-related subnetworks. A mediation analysis was used to verify whether the shared structural basis of personality traits and life satisfaction significantly mediated their association. The results showed that agreeableness positively correlated with life satisfaction. We identified a shared structural basis of the personality trait of agreeableness and life satisfaction. The regions comprising this overlapping network include the superior parietal lobule, inferior parietal lobule, and temporoparietal junction. Moreover, the shared microstructural connections mediate the association between the personality trait of agreeableness and life satisfaction. This large-scale neuroimaging investigation substantiates a mediation framework for understanding the microstructural connections between personality and life satisfaction, offering potential targets for assessment and interventions to promote human well-being.
Collapse
Affiliation(s)
- Huijun Wu
- School of Media & Communication, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shijia Fan
- School of Psychological and Cognitive Sciences & Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China
| | - Chuyao Yan
- School of Psychology, Nanjing Normal University, Nanjing 200097, China
| | - Hao Wang
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China
- G. Oppenheimer Center for Neurobiology of Stress & Resilience, UCLA, Los Angeles, CA 90095, United States
| |
Collapse
|
4
|
Wang W, Bo T, Zhang G, Li J, Ma J, Ma L, Hu G, Tong H, Lv Q, Araujo DJ, Luo D, Chen Y, Wang M, Wang Z, Wang GZ. Noncoding transcripts are linked to brain resting-state activity in non-human primates. Cell Rep 2023; 42:112652. [PMID: 37335775 DOI: 10.1016/j.celrep.2023.112652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/05/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023] Open
Abstract
Brain-derived transcriptomes are known to correlate with resting-state brain activity in humans. Whether this association holds in nonhuman primates remains uncertain. Here, we search for such molecular correlates by integrating 757 transcriptomes derived from 100 macaque cortical regions with resting-state activity in separate conspecifics. We observe that 150 noncoding genes explain variations in resting-state activity at a comparable level with protein-coding genes. In-depth analysis of these noncoding genes reveals that they are connected to the function of nonneuronal cells such as oligodendrocytes. Co-expression network analysis finds that the modules of noncoding genes are linked to both autism and schizophrenia risk genes. Moreover, genes associated with resting-state noncoding genes are highly enriched in human resting-state functional genes and memory-effect genes, and their links with resting-state functional magnetic resonance imaging (fMRI) signals are altered in the brains of patients with autism. Our results highlight the potential for noncoding RNAs to explain resting-state activity in the nonhuman primate brain.
Collapse
Affiliation(s)
- Wei Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tingting Bo
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Clinical Neuroscience Center, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ge Zhang
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, China
| | - Jie Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Junjie Ma
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liangxiao Ma
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ganlu Hu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Huige Tong
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qian Lv
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Daniel J Araujo
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Dong Luo
- School of Biomedical Engineering, Hainan University, Haikou, Hainan, China
| | - Yuejun Chen
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, China
| | - Zheng Wang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; School of Biomedical Engineering, Hainan University, Haikou, Hainan, China.
| | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
5
|
Bero J, Li Y, Kumar A, Humphries C, Nag S, Lee H, Ahn WY, Hahn S, Constable RT, Kim H, Lee D. Coordinated anatomical and functional variability in the human brain during adolescence. Hum Brain Mapp 2023; 44:1767-1778. [PMID: 36479851 PMCID: PMC9921246 DOI: 10.1002/hbm.26173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 10/26/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Adolescence represents a time of unparalleled brain development. In particular, developmental changes in morphometric and cytoarchitectural features are accompanied by maturation in the functional connectivity (FC). Here, we examined how three facets of the brain, including myelination, cortical thickness (CT), and resting-state FC, interact in children between the ages of 10 and 15. We investigated the pattern of coordination in these measures by computing correlation matrices for each measure as well as meta-correlations among them both at the regional and network levels. The results revealed consistently higher meta-correlations among myelin, CT, and FC in the sensory-motor cortical areas than in the association cortical areas. We also found that these meta-correlations were stable and little affected by age-related changes in each measure. In addition, regional variations in the meta-correlations were consistent with the previously identified gradient in the FC and therefore reflected the hierarchy of cortical information processing, and this relationship persists in the adult brain. These results demonstrate that heterogeneity in FC among multiple cortical areas are closely coordinated with the development of cortical myelination and thickness during adolescence.
Collapse
Affiliation(s)
- John Bero
- Neurogazer, Inc.BaltimoreMarylandUSA
| | - Yang Li
- Neurogazer, Inc.BaltimoreMarylandUSA
| | | | | | | | | | - Woo Young Ahn
- Department of PsychologySeoul National UniversitySeoulKorea
| | - Sowon Hahn
- Department of PsychologySeoul National UniversitySeoulKorea
| | - Robert Todd Constable
- Department of Diagnostic Radiology and NeurosurgeryYale School of MedicineNew HavenConnecticutUSA
| | - Hackjin Kim
- Department of PsychologyKorea UniversitySeoulKorea
| | - Daeyeol Lee
- Neurogazer, Inc.BaltimoreMarylandUSA
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins UniversityBaltimoreMarylandUSA
- Department of NeuroscienceJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Psychological and Brain SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
- Kavli Neuroscience Discovery Institute, Johns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
6
|
Glasser MF, Coalson TS, Harms MP, Xu J, Baum GL, Autio JA, Auerbach EJ, Greve DN, Yacoub E, Van Essen DC, Bock NA, Hayashi T. Empirical transmit field bias correction of T1w/T2w myelin maps. Neuroimage 2022; 258:119360. [PMID: 35697132 PMCID: PMC9483036 DOI: 10.1016/j.neuroimage.2022.119360] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 12/30/2022] Open
Abstract
T1-weighted divided by T2-weighted (T1w/T2w) myelin maps were initially developed for neuroanatomical analyses such as identifying cortical areas, but they are increasingly used in statistical comparisons across individuals and groups with other variables of interest. Existing T1w/T2w myelin maps contain radiofrequency transmit field (B1+) biases, which may be correlated with these variables of interest, leading to potentially spurious results. Here we propose two empirical methods for correcting these transmit field biases using either explicit measures of the transmit field or alternatively a 'pseudo-transmit' approach that is highly correlated with the transmit field at 3T. We find that the resulting corrected T1w/T2w myelin maps are both better neuroanatomical measures (e.g., for use in cross-species comparisons), and more appropriate for statistical comparisons of relative T1w/T2w differences across individuals and groups (e.g., sex, age, or body-mass-index) within a consistently acquired study at 3T. We recommend that investigators who use the T1w/T2w approach for mapping cortical myelin use these B1+ transmit field corrected myelin maps going forward.
Collapse
Affiliation(s)
| | | | - Michael P Harms
- Psychiatry, Washington University Medical School, St. Louis, MO, United States
| | - Junqian Xu
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States; Departments of Radiology and Psychiatry, Baylor College of Medicine, Houston, TX, United States
| | - Graham L Baum
- Department of Psychology, Harvard University, Cambridge, MA, United States
| | - Joonas A Autio
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Edward J Auerbach
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Douglas N Greve
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | | | - Nicholas A Bock
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Takuya Hayashi
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
7
|
Sehmbi M, Suh JS, Rowley CD, Minuzzi L, Kapczinski F, Bock NA, Frey BN. Network properties of intracortical myelin associated with psychosocial functioning in bipolar I disorder. Bipolar Disord 2022; 24:539-548. [PMID: 35114029 DOI: 10.1111/bdi.13181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Psychosocial functioning in bipolar disorder (BD) persists even during euthymia and has repeatedly been associated with illness progression and cognitive function. Its neurobiological correlates remain largely unexplored. Using a structural covariance approach, we explored whole cortex intracortical myelin (ICM) and psychosocial functioning in 39 BD type I and 58 matched controls. METHOD T1 -weighted images (3T) optimized for ICM measurement were analyzed using a surface-based approach. The ICM signal was sampled at cortical mid-depth using the MarsAtlas parcellation, and psychosocial functioning was measured via the Functioning Assessment Short Test (FAST). Following construction of structural covariance matrices, graph theoretical measures were calculated for each subject. Within BD and HC groups separately, correlations between network measures and FAST were explored. After accounting for multiple comparisons, significant correlations were tested formally using rank-based regressions accounting for sex differences. RESULTS In BD only, psychosocial functioning was associated with global efficiency (β = -0.312, pcorr = 0.03), local efficiency in the right rostral dorsolateral prefrontal cortex (β = 0.545, pcorr = 0.001) and clustering coefficient in this region (β = 0.497, pcorr = 0.0002) as well as in the right ventromedial prefrontal cortex (β = 0.428, pcorr = 0.002). All results excepting global efficiency remained significant after accounting for severity of depressive symptoms. In contrast, no significant associations between functioning and network measures were observed in the HC group. CONCLUSION These results uncovered a novel brain-behaviour relationship between intracortical myelin signal changes and psychosocial functioning in BD.
Collapse
Affiliation(s)
- Manpreet Sehmbi
- Mood Disorders Program, Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Jee Su Suh
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada
| | | | - Luciano Minuzzi
- Mood Disorders Program, Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.,Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Flavio Kapczinski
- Mood Disorders Program, Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Nicholas A Bock
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Benicio N Frey
- Mood Disorders Program, Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.,Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Yuan S, Liu M, Kim S, Yang J, Barkovich AJ, Xu D, Kim H. Cyto/myeloarchitecture of cortical gray matter and superficial white matter in early neurodevelopment: multimodal MRI study in preterm neonates. Cereb Cortex 2022; 33:357-373. [PMID: 35235643 PMCID: PMC9837610 DOI: 10.1093/cercor/bhac071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 01/19/2023] Open
Abstract
The cerebral cortex undergoes rapid microstructural changes throughout the third trimester. Recently, there has been growing interest on imaging features that represent cyto/myeloarchitecture underlying intracortical myelination, cortical gray matter (GM), and its adjacent superficial whitematter (sWM). Using 92 magnetic resonance imaging scans from 78 preterm neonates, the current study used combined T1-weighted/T2-weighted (T1w/T2w) intensity ratio and diffusion tensor imaging (DTI) measurements, including fractional anisotropy (FA) and mean diffusivity (MD), to characterize the developing cyto/myeloarchitectural architecture. DTI metrics showed a linear trajectory: FA decreased in GM but increased in sWM with time; and MD decreased in both GM and sWM. Conversely, T1w/T2w measurements showed a distinctive parabolic trajectory, revealing additional cyto/myeloarchitectural signature inferred. Furthermore, the spatiotemporal courses were regionally heterogeneous: central, ventral, and temporal regions of GM and sWM exhibited faster T1w/T2w changes; anterior sWM areas exhibited faster FA increases; and central and cingulate areas in GM and sWM exhibited faster MD decreases. These results may explain cyto/myeloarchitectural processes, including dendritic arborization, synaptogenesis, glial proliferation, and radial glial cell organization and apoptosis. Finally, T1w/T2w values were significantly associated with 1-year language and cognitive outcome scores, while MD significantly decreased with intraventricular hemorrhage.
Collapse
Affiliation(s)
| | | | | | - Jingda Yang
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Anthony James Barkovich
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Duan Xu
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hosung Kim
- Corresponding author: 2025 Zonal Ave, Los Angeles, CA 90033, USA.
| |
Collapse
|
9
|
Wei W, Yin Y, Zhang Y, Li X, Li M, Guo W, Wang Q, Deng W, Ma X, Zhao L, Palaniyappan L, Li T. Structural Covariance of Depth-Dependent Intracortical Myelination in the Human Brain and Its Application to Drug-Naïve Schizophrenia: A T1w/T2w MRI Study. Cereb Cortex 2021; 32:2373-2384. [PMID: 34581399 DOI: 10.1093/cercor/bhab337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/05/2023] Open
Abstract
Aberrations in intracortical myelination are increasingly being considered as a cardinal feature in the pathophysiology of schizophrenia. We investigated the network-level distribution of intracortical myelination across various cortex depths. We enrolled 126 healthy subjects and 106 first-episode drug-naïve schizophrenia patients. We used T1w/T2w ratio as a proxy of intracortical myelination, parcellated cortex into several equivolumetric surfaces based on cortical depths and mapped T1w/T2w ratios to each surface. Non-negative matrix factorization was used to generate depth-dependent structural covariance networks (dSCNs) of intracortical myelination from 2 healthy controls datasets-one from our study and another from 100-unrelated dataset of the Human Connectome Project. For patient versus control comparisons, partial least squares approach was used; we also related myelination to clinical features of schizophrenia. We found that dSCNs were highly reproducible in 2 independent samples. Network-level myelination was reduced in prefrontal and cingulate cortex and increased in perisylvian cortex in schizophrenia. The abnormal network-level myelination had a canonical correlation with symptom burden in schizophrenia. Moreover, myelination of prefrontal cortex correlated with duration of untreated psychosis. In conclusion, we offer a feasible and sensitive framework to study depth-dependent myelination and its relationship with clinical features.
Collapse
Affiliation(s)
- Wei Wei
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China
| | - Yubing Yin
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China
| | - Yamin Zhang
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China
| | - Xiaojing Li
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China
| | - Mingli Li
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China
| | - Wanjun Guo
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China
| | - Qiang Wang
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China
| | - Wei Deng
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China
| | - Xiaohong Ma
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China
| | - Liansheng Zhao
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China
| | - Lena Palaniyappan
- Department of Psychiatry, University of Western Ontario, London, Ontario N6A 3K7, Canada.,Robarts Research Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada.,Lawson Health Research Institute, London, Ontario N6C 2R5, Canada
| | - Tao Li
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China.,Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310013, China
| |
Collapse
|
10
|
Vandewouw MM, Hunt BAE, Ziolkowski J, Taylor MJ. The developing relations between networks of cortical myelin and neurophysiological connectivity. Neuroimage 2021; 237:118142. [PMID: 33951516 DOI: 10.1016/j.neuroimage.2021.118142] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 01/01/2023] Open
Abstract
Recent work identified that patterns of distributed brain regions sharing similar myeloarchitecture are related to underlying functional connectivity, demonstrating cortical myelin's plasticity to changes in functional demand. However, the changing relations between functional and structural architecture throughout child and adulthood are poorly understood. We show that structural covariance connectivity (T1-weighted/T2-weighted ratio) and functional connectivity (magnetoencephalography) exhibit nonlinear developmental changes. We then show significant relations between structural and functional connectivity, which have shared and distinct characteristics dependent on the neural oscillatory frequency. Increases in structure-function coupling are visible during the protracted myelination observed throughout childhood and adolescence and are followed by decreases near the onset of adulthood. Our work lays the foundation for understanding the mechanisms by which myeloarchitecture supports brain function, enabling future investigations into how clinical populations may deviate from normative patterns.
Collapse
Affiliation(s)
- Marlee M Vandewouw
- Department of Diagnostic Imaging, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 0A4, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 0A4, Canada; Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G 1R8, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, Canada.
| | - Benjamin A E Hunt
- Department of Diagnostic Imaging, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 0A4, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Justine Ziolkowski
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 0A4, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 0A4, Canada; Department of Psychology, University of Toronto, Toronto M5G 0A4 Canada; Department of Medical Imaging, University of Toronto, Toronto M5G 0A4, Canada
| |
Collapse
|
11
|
Chen H, Long J, Yang S, He B. Atypical Functional Covariance Connectivity Between Gray and White Matter in Children With Autism Spectrum Disorder. Autism Res 2020; 14:464-472. [PMID: 33206448 DOI: 10.1002/aur.2435] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 11/09/2022]
Abstract
Autism spectrum disorder (ASD) is a type of neurodevelopmental disorder with atypical gray matter (GM) and white matter (WM) functional developmental course. However, the functional co-developmental pattern between GM and WM in ASD is unclear. Here, we utilized a functional covariance connectivity method to explore the concordance pattern between GM and WM function in individuals with ASD. A multi-center resting-state fMRI dataset composed of 105 male children with ASD and 102 well-matched healthy controls (HCs) from six sites of the ABIDE dataset was utilized. GM and WM ALFF maps were calculated for each subject. Voxel by voxel functional covariance connectivity of the ALFF values across subjects was calculated between GM and WM for children with ASD and HCs. A Z-test combining FDR multi-comparison correction was then employed to determine whether the functional covariance is significantly different between the two groups. A "bundling" strategy was utilized to ensure that the GM/WM clusters showing atypical functional covariance were larger than 5 voxels. Finally, canonical correlation analysis was conducted to explore whether the atypical GM/WM functional covariance is related to ASD symptoms. Results showed atypical functional covariance connections between specific GM and WM regions, whereas the ALFF values of these regions indicated no significant difference between the two groups. Canonical correlation analysis revealed a significant relationship between the atypical functional covariance and stereotyped behaviors of ASD. The results indicated an altered functional co-developmental pattern between WM and GM in ASD. LAY SUMMARY: White matter (WM) and gray matter (GM) are two major human brain organs supporting brain function. WM and GM functions show a specific co-developmental pattern in typical developed individuals. This study showed that this GM/WM co-developmental pattern was altered in children with ASD, while this altered GM/WM co-developmental pattern was related to stereotyped behaviors. These findings may help understand the GM/WM functional development of ASD.
Collapse
Affiliation(s)
- Heng Chen
- School of Medicine, Guizhou University, Guiyang, Guizhou, China.,Key laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinjin Long
- School of Medicine, Guizhou University, Guiyang, Guizhou, China
| | - Shanshan Yang
- School of Medicine, Guizhou University, Guiyang, Guizhou, China
| | - Bifang He
- School of Medicine, Guizhou University, Guiyang, Guizhou, China.,Key laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
12
|
Berman S, Schurr R, Atlan G, Citri A, Mezer AA. Automatic Segmentation of the Dorsal Claustrum in Humans Using in vivo High-Resolution MRI. Cereb Cortex Commun 2020; 1:tgaa062. [PMID: 34296125 PMCID: PMC8153060 DOI: 10.1093/texcom/tgaa062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/02/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
The claustrum is a thin sheet of neurons enclosed by white matter and situated between the insula and the putamen. It is highly interconnected with sensory, frontal, and subcortical regions. The deep location of the claustrum, with its fine structure, has limited the degree to which it could be studied in vivo. Particularly in humans, identifying the claustrum using magnetic resonance imaging (MRI) is extremely challenging, even manually. Therefore, automatic segmentation of the claustrum is an invaluable step toward enabling extensive and reproducible research of the anatomy and function of the human claustrum. In this study, we developed an automatic algorithm for segmenting the human dorsal claustrum in vivo using high-resolution MRI. Using this algorithm, we segmented the dorsal claustrum bilaterally in 1068 subjects of the Human Connectome Project Young Adult dataset, a publicly available high-resolution MRI dataset. We found good agreement between the automatic and manual segmentations performed by 2 observers in 10 subjects. We demonstrate the use of the segmentation in analyzing the covariation of the dorsal claustrum with other brain regions, in terms of macro- and microstructure. We identified several covariance networks associated with the dorsal claustrum. We provide an online repository of 1068 bilateral dorsal claustrum segmentations.
Collapse
Affiliation(s)
- Shai Berman
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Roey Schurr
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gal Atlan
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ami Citri
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Aviv A Mezer
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
13
|
Wei W, Zhang Y, Li Y, Meng Y, Li M, Wang Q, Deng W, Ma X, Palaniyappan L, Zhang N, Li T. Depth-dependent abnormal cortical myelination in first-episode treatment-naïve schizophrenia. Hum Brain Mapp 2020; 41:2782-2793. [PMID: 32239735 PMCID: PMC7294057 DOI: 10.1002/hbm.24977] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 02/05/2023] Open
Abstract
Myelination is key to effective message passing in the central nervous system and is likely linked to the pathogenesis of schizophrenia (SZ). Emerging evidence indicates that a large portion of intracortical myelin insulates inhibitory interneurons that are highly relevant to pathogenesis of schizophrenia. Here for the first time, we characterized intracortical myelination across the entire cortical surface in first‐episode treatment‐naïve patients with schizophrenia (FES) using T1w/T2w ratio of structural MRI, FES patients exhibited significantly higher myelin content in the left inferior parietal lobe, supramarginal gyrus, and superior temporal gyrus in the superficial layer, as well as left IPL in the middle layer, but significantly lower myelin content in the left middle insula and posterior cingulate gyrus. Years of education, a proxy for onset of functional decline, significantly altered the relationship between abnormal parietal and posterior cingulate myelination and clinical symptoms, indicating that the pathoplastic role of myelination hinges on the age of onset of functional decline. In addition, higher myelination generally related to better cognitive function in younger subjects but worse cognitive function in older subjects. We conclude that FES is characterized by increased myelination of the superficial layers of the parietal–temporal association cortex, but reduced myelination of the cingulo‐insular midcortical layer cortex. Intracortical myelin content affects both cognitive functioning and symptom burden in FES, with the effect conditional upon age and timing of onset of functional decline. These results suggest myelination might be a critical biological target for procognitive interventions in SZ.
Collapse
Affiliation(s)
- Wei Wei
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yamin Zhang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yinfei Li
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yajin Meng
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Mingli Li
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Deng
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaohong Ma
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lena Palaniyappan
- Robarts Research Institute & Department of Psychiatry, University of Western Ontario, London, Ontario, Canada.,Lawson Health Research Institute, London, Ontario, Canada
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Tao Li
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Yun JY, Kim YK. Phenotype Network and Brain Structural Covariance Network of Anxiety. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1191:21-34. [PMID: 32002920 DOI: 10.1007/978-981-32-9705-0_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Network-based approach for psychological phenotypes assumes the dynamical interactions among the psychiatric symptoms, psychological characteristics, and neurocognitive performances arise, as they coexist, propagate, and inhibit other components within the network of mental phenomena. For differential types of dataset from which the phenotype network is to be estimated, a Gaussian graphical model, an Ising model, a directed acyclic graph, or an intraindividual covariance network could be used. Accordingly, these network-based approaches for anxiety-related psychological phenomena have been helpful in quantitative and pictorial understanding of qualitative dynamics among the diverse psychological phenomena as well as mind-environment interactions. Brain structural covariance refers to the correlative patterns of diverse brain morphological features among differential brain regions comprising the brain, as calculated per participant or across the participants. These covarying patterns of brain morphology partly overlap with longitudinal patterns of brain cortical maturation and also with propagating pattern of brain morphological changes such as cortical thinning and brain volume reduction in patients diagnosed with neurologic or psychiatric disorders along the trajectory of disease progression. Previous studies that used the brain structural covariance network could show neural correlates of specific anxiety disorder such as panic disorder and also elucidate the neural underpinning of anxiety symptom severity in diverse psychiatric and neurologic disorder patients.
Collapse
Affiliation(s)
- Je-Yeon Yun
- Seoul National University Hospital, Seoul, South Korea. .,Yeongeon Student Support Center, Seoul National University College of Medicine, Seoul, South Korea.
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
15
|
Ye C, Albert M, Brown T, Bilgel M, Hsu J, Ma T, Caffo B, Miller MI, Mori S, Oishi K. Extended multimodal whole-brain anatomical covariance analysis: detection of disrupted correlation networks related to amyloid deposition. Heliyon 2019; 5:e02074. [PMID: 31372540 PMCID: PMC6656959 DOI: 10.1016/j.heliyon.2019.e02074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/22/2019] [Accepted: 07/08/2019] [Indexed: 01/27/2023] Open
Abstract
Background An anatomical covariance analysis (ACA) enables to elucidate inter-regional connections on a group basis, but little is known about the connections among white matter structures or among gray and white matter structures. Effect of including multiple magnetic resonance imaging (MRI) modalities into ACA framework in detecting white-to-white or gray-to-white connections is yet to be investigated. New method Proposed extended anatomical covariance analysis (eACA), analyzes correlations among gray and white matter structures (multi-structural) in various types of imaging modalities (T1-weighted images, T2 maps obtained from dual-echo sequences, and diffusion tensor images (DTI)). To demonstrate the capability to detect a disruption of the correlation network affected by pathology, we applied the eACA to two groups of cognitively-normal elderly individuals, one with (PiB+) and one without (PiB-) amyloid deposition in their brains. Results The volume of each anatomical structure was symmetric and functionally related structures formed a cluster. The pseudo-T2 value was highly homogeneous across the entire cortex in the PiB- group, while a number of physiological correlations were altered in the PiB + group. The DTI demonstrated unique correlation network among structures within the same phylogenetic portions of the brain that were altered in the PiB + group. Comparison with Existing Method The proposed eACA expands the concept of existing ACA to the connections among the white matter structures. The extension to other image modalities expands the way in which connectivity may be detected. Conclusion The eACA has potential to evaluate alterations of the anatomical network related to pathological processes.
Collapse
Affiliation(s)
- Chenfei Ye
- Department of Electronics and Information, Harbin Institute of Technology at Shenzhen, Shenzhen, Guangdong Province, China.,The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Peng Cheng Laboratory, Shenzhen, Guangdong, China
| | - Marilyn Albert
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Johns Hopkins Alzheimer's Disease Research Center, Baltimore, MD, USA
| | - Timothy Brown
- Center for Imaging Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Johnny Hsu
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
| | - Ting Ma
- Department of Electronics and Information, Harbin Institute of Technology at Shenzhen, Shenzhen, Guangdong Province, China.,Peng Cheng Laboratory, Shenzhen, Guangdong, China
| | - Brian Caffo
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Michael I Miller
- Center for Imaging Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susumu Mori
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Hagiwara A, Hori M, Kamagata K, Warntjes M, Matsuyoshi D, Nakazawa M, Ueda R, Andica C, Koshino S, Maekawa T, Irie R, Takamura T, Kumamaru KK, Abe O, Aoki S. Myelin Measurement: Comparison Between Simultaneous Tissue Relaxometry, Magnetization Transfer Saturation Index, and T 1w/T 2w Ratio Methods. Sci Rep 2018; 8:10554. [PMID: 30002497 PMCID: PMC6043493 DOI: 10.1038/s41598-018-28852-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/02/2018] [Indexed: 01/06/2023] Open
Abstract
Magnetization transfer (MT) imaging has been widely used for estimating myelin content in the brain. Recently, two other approaches, namely simultaneous tissue relaxometry of R1 and R2 relaxation rates and proton density (SyMRI) and the ratio of T1-weighted to T2-weighted images (T1w/T2w ratio), were also proposed as methods for measuring myelin. SyMRI and MT imaging have been reported to correlate well with actual myelin by histology. However, for T1w/T2w ratio, such evidence is limited. In 20 healthy adults, we examined the correlation between these three methods, using MT saturation index (MTsat) for MT imaging. After calibration, white matter (WM) to gray matter (GM) contrast was the highest for SyMRI among these three metrics. Even though SyMRI and MTsat showed strong correlation in the WM (r = 0.72), only weak correlation was found between T1w/T2w and SyMRI (r = 0.45) or MTsat (r = 0.38) (correlation coefficients significantly different from each other, with p values < 0.001). In subcortical and cortical GM, these measurements showed moderate to strong correlations to each other (r = 0.54 to 0.78). In conclusion, the high correlation between SyMRI and MTsat indicates that both methods are similarly suited to measure myelin in the WM, whereas T1w/T2w ratio may be less optimal.
Collapse
Affiliation(s)
- Akifumi Hagiwara
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan.
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Marcel Warntjes
- SyntheticMR AB, Linköping, Sweden
- Center for Medical Imaging Science and Visualization (CMIV), Linköping, Sweden
| | - Daisuke Matsuyoshi
- Araya Inc., Tokyo, Japan
- Research Institute for Science and Engineering, Waseda University, Waseda, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Misaki Nakazawa
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ryo Ueda
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Office of Radiation Technology, Keio University Hospital, Tokyo, Japan
| | - Christina Andica
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Saori Koshino
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoko Maekawa
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryusuke Irie
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Takamura
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|