1
|
Cui AX, Kraeutner SN, Kepinska O, Motamed Yeganeh N, Hermiston N, Werker JF, Boyd LA. Musical Sophistication and Multilingualism: Effects on Arcuate Fasciculus Characteristics. Hum Brain Mapp 2024; 45:e70035. [PMID: 39360580 PMCID: PMC11447524 DOI: 10.1002/hbm.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
The processing of auditory stimuli which are structured in time is thought to involve the arcuate fasciculus, the white matter tract which connects the temporal cortex and the inferior frontal gyrus. Research has indicated effects of both musical and language experience on the structural characteristics of the arcuate fasciculus. Here, we investigated in a sample of n = 84 young adults whether continuous conceptualizations of musical and multilingual experience related to structural characteristics of the arcuate fasciculus, measured using diffusion tensor imaging. Probabilistic tractography was used to identify the dorsal and ventral parts of the white matter tract. Linear regressions indicated that different aspects of musical sophistication related to the arcuate fasciculus' volume (emotional engagement with music), volumetric asymmetry (musical training and music perceptual abilities), and fractional anisotropy (music perceptual abilities). Our conceptualization of multilingual experience, accounting for participants' proficiency in reading, writing, understanding, and speaking different languages, was not related to the structural characteristics of the arcuate fasciculus. We discuss our results in the context of other research on hemispheric specializations and a dual-stream model of auditory processing.
Collapse
Affiliation(s)
- Anja-Xiaoxing Cui
- Department of Musicology, University of Vienna, Vienna, Austria
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
| | - Sarah N Kraeutner
- Department of Psychology, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Olga Kepinska
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Negin Motamed Yeganeh
- Brain Behaviour Lab, Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nancy Hermiston
- School of Music, University of British Columbia, Vancouver, British Columbia, Canada
| | - Janet F Werker
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lara A Boyd
- Brain Behaviour Lab, Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Chang R, Zhang Q, Yang X. The impact of music training on temporal order processing in Mandarin Chinese sentence reading: Evidence from event-related potentials (ERPs). COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:766-778. [PMID: 38773021 DOI: 10.3758/s13415-024-01195-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 05/23/2024]
Abstract
The objective of this study was to investigate the impact of music training on the processing of temporal order in Mandarin sentence reading using event-related potentials (ERPs). Two-clause sentences with temporal connectives ("before" or "after") were presented to both musicians and non-musicians. Additionally, a verbal N-back task was utilized to evaluate the participants' working memory capacities. The findings revealed that musicians, but not nonmusicians, demonstrated a more negative amplitude in the second clauses of "before" sentences compared with "after" sentences. In the N-back task, musicians exhibited faster reaction times than nonmusicians in the two-back condition. Furthermore, a correlation was observed between the ERP amplitude differences (before vs. after) and reaction time differences in the N-back task (0-back vs. 2-back) among musicians. These findings suggested that music training enhances the depth of temporal order processing, potentially mediated by improvements in working memory capacity.
Collapse
Affiliation(s)
- Ruohan Chang
- School of Psychology, Beijing Language and Culture University, Beijing, China
| | - Qian Zhang
- Naval Medical Center, Naval Medical University, Shanghai, China
| | - Xiaohong Yang
- Department of Psychology, Renmin University of China, Beijing, China.
- Jiangsu Collaborative Innovation Center for Language Ability, Jiangsu Normal University, Xuzhou, China.
| |
Collapse
|
3
|
Ju P, Zhou Z, Xie Y, Hui J, Yang X. Music training influences online temporal order processing during reading comprehension. Acta Psychol (Amst) 2024; 248:104340. [PMID: 38870685 DOI: 10.1016/j.actpsy.2024.104340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
Numerous studies have demonstrated the influence of musical expertise on spoken language processing; however, its effects on reading comprehension remain largely unexplored. This study aims to investigate the role of musical expertise in sentence comprehension, particularly concerning the processing of temporal order. Using two self-paced reading experiments, we examined individuals' responses to two-clause sentences connected by the temporal connectives "before" or "after". "After" sentences consistently presented events in their actual order of temporal occurrence, while "before" sentences described events in reverse temporal order. In both experiments, our analyses of reading times consistently uncovered a significant temporal order effect, with words immediately following the temporal connectives being processed slower in "before" sentences compared to "after" sentences. This suggests the presence of immediate online processing costs associated with "before" sentences. Notably, these processing costs were found to be attenuated in individuals with musical expertise compared to those without. However, analyses of comprehension accuracy showed no advantage of musicians over non-musicians. Specifically, in Experiment 1, the two groups showed no difference in comprehension accuracy, while in Experiment 2, musicians exhibited lower accuracy rates compared to non-musicians in both "before" and "after" sentences. These results suggest that musical expertise may attenuate online processing costs associated with complex linguistic constructs, but could not promote reading accuracy. We concluded that music training is associated with a restricted effect on written sentence comprehension.
Collapse
Affiliation(s)
- Ping Ju
- Department of Psychology, Renmin University of China, Beijing, China
| | - Zihang Zhou
- Department of Psychology, Renmin University of China, Beijing, China; School of foreign languages, Renmin University of China, Beijing, China
| | - Yuhan Xie
- Department of Psychology, Renmin University of China, Beijing, China
| | - Jiaying Hui
- Department of Psychology, Renmin University of China, Beijing, China
| | - Xiaohong Yang
- Department of Psychology, Renmin University of China, Beijing, China; Jiangsu Collaborative Innovation Center for Language Ability, Jiangsu Normal University, Xuzhou, China.
| |
Collapse
|
4
|
Kausel L, Zamorano F, Billeke P, Sutherland ME, Alliende MI, Larrain‐Valenzuela J, Soto‐Icaza P, Aboitiz F. Theta and alpha oscillations may underlie improved attention and working memory in musically trained children. Brain Behav 2024; 14:e3517. [PMID: 38702896 PMCID: PMC11069029 DOI: 10.1002/brb3.3517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 05/06/2024] Open
Abstract
INTRODUCTION Attention and working memory are key cognitive functions that allow us to select and maintain information in our mind for a short time, being essential for our daily life and, in particular, for learning and academic performance. It has been shown that musical training can improve working memory performance, but it is still unclear if and how the neural mechanisms of working memory and particularly attention are implicated in this process. In this work, we aimed to identify the oscillatory signature of bimodal attention and working memory that contributes to improved working memory in musically trained children. MATERIALS AND METHODS We recruited children with and without musical training and asked them to complete a bimodal (auditory/visual) attention and working memory task, whereas their brain activity was measured using electroencephalography. Behavioral, time-frequency, and source reconstruction analyses were made. RESULTS Results showed that, overall, musically trained children performed better on the task than children without musical training. When comparing musically trained children with children without musical training, we found modulations in the alpha band pre-stimuli onset and the beginning of stimuli onset in the frontal and parietal regions. These correlated with correct responses to the attended modality. Moreover, during the end phase of stimuli presentation, we found modulations correlating with correct responses independent of attention condition in the theta and alpha bands, in the left frontal and right parietal regions. CONCLUSIONS These results suggest that musically trained children have improved neuronal mechanisms for both attention allocation and memory encoding. Our results can be important for developing interventions for people with attention and working memory difficulties.
Collapse
Affiliation(s)
- Leonie Kausel
- Centro de Estudios en Neurociencia Humana y Neuropsicología, Facultad de PsicologíaUniversidad Diego PortalesSantiagoChile
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social (CICS), Facultad de GobiernoUniversidad del DesarrolloSantiagoChile
- Centro Interdisciplinario de NeurocienciasPontificia Universidad Católica de ChileSantiagoChile
| | - F. Zamorano
- Unidad de Imágenes Cuantitativas Avanzadas, Departamento de ImágenesClínica Alemanade SantiagoSantiagoChile
- Facultad de Ciencias para el Cuidado de la SaludUniversidad San SebastiánSantiagoChile
- Laboratorio de Psiquiatría TraslacionalDepartamento de PsiquiatríaFacultad de MedicinaUniversidad de ChileSantiagoChile
| | - P. Billeke
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social (CICS), Facultad de GobiernoUniversidad del DesarrolloSantiagoChile
| | - M. E. Sutherland
- Centro Interdisciplinario de NeurocienciasPontificia Universidad Católica de ChileSantiagoChile
| | - M. I. Alliende
- Centro Interdisciplinario de NeurocienciasPontificia Universidad Católica de ChileSantiagoChile
| | - J. Larrain‐Valenzuela
- Centro de Investigación en Complejidad Social (CICS), Facultad de GobiernoUniversidad del DesarrolloSantiagoChile
| | - P. Soto‐Icaza
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social (CICS), Facultad de GobiernoUniversidad del DesarrolloSantiagoChile
| | - F. Aboitiz
- Centro Interdisciplinario de NeurocienciasPontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
5
|
Elmer S, Besson M, Rodriguez-Fornells A, Giroud N. Foreign speech sound discrimination and associative word learning lead to a fast reconfiguration of resting-state networks. Neuroimage 2023; 271:120026. [PMID: 36921678 DOI: 10.1016/j.neuroimage.2023.120026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Learning new words in an unfamiliar language is a complex endeavor that requires the orchestration of multiple perceptual and cognitive functions. Although the neural mechanisms governing word learning are becoming better understood, little is known about the predictive value of resting-state (RS) metrics for foreign word discrimination and word learning attainment. In addition, it is still unknown which of the multistep processes involved in word learning have the potential to rapidly reconfigure RS networks. To address these research questions, we used electroencephalography (EEG), measured forty participants, and examined scalp-based power spectra, source-based spectral density maps and functional connectivity metrics before (RS1), in between (RS2) and after (RS3) a series of tasks which are known to facilitate the acquisition of new words in a foreign language, namely word discrimination, word-referent mapping and semantic generalization. Power spectra at the scalp level consistently revealed a reconfiguration of RS networks as a function of foreign word discrimination (RS1 vs. RS2) and word learning (RS1 vs. RS3) tasks in the delta, lower and upper alpha, and upper beta frequency ranges. Otherwise, functional reconfigurations at the source level were restricted to the theta (spectral density maps) and to the lower and upper alpha frequency bands (spectral density maps and functional connectivity). Notably, scalp RS changes related to the word discrimination tasks (difference between RS2 and RS1) correlated with word discrimination abilities (upper alpha band) and semantic generalization performance (theta and upper alpha bands), whereas functional changes related to the word learning tasks (difference between RS3 and RS1) correlated with word discrimination scores (lower alpha band). Taken together, these results highlight that foreign speech sound discrimination and word learning have the potential to rapidly reconfigure RS networks at multiple functional scales.
Collapse
Affiliation(s)
- Stefan Elmer
- Department of Computational Linguistics, Computational Neuroscience of Speech & Hearing, University of Zurich, Zurich, Switzerland; Bellvitge Biomedical Research Institute, Barcelona, Spain; Competence center Language & Medicine, University of Zurich, Switzerland.
| | - Mireille Besson
- Laboratoire de Neurosciences Cognitives, Université Publique de France, CNRS & Aix-Marseille University, Marseille, France
| | - Antoni Rodriguez-Fornells
- Bellvitge Biomedical Research Institute, Barcelona, Spain; University of Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Nathalie Giroud
- Department of Computational Linguistics, Computational Neuroscience of Speech & Hearing, University of Zurich, Zurich, Switzerland; Center for Neuroscience Zurich, University and ETH of Zurich, Zurich, Switzerland; Competence center Language & Medicine, University of Zurich, Switzerland
| |
Collapse
|
6
|
Gray R, Sarampalis A, Başkent D, Harding EE. Working-Memory, Alpha-Theta Oscillations and Musical Training in Older Age: Research Perspectives for Speech-on-speech Perception. Front Aging Neurosci 2022; 14:806439. [PMID: 35645774 PMCID: PMC9131017 DOI: 10.3389/fnagi.2022.806439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/24/2022] [Indexed: 12/18/2022] Open
Abstract
During the normal course of aging, perception of speech-on-speech or “cocktail party” speech and use of working memory (WM) abilities change. Musical training, which is a complex activity that integrates multiple sensory modalities and higher-order cognitive functions, reportedly benefits both WM performance and speech-on-speech perception in older adults. This mini-review explores the relationship between musical training, WM and speech-on-speech perception in older age (> 65 years) through the lens of the Ease of Language Understanding (ELU) model. Linking neural-oscillation literature associating speech-on-speech perception and WM with alpha-theta oscillatory activity, we propose that two stages of speech-on-speech processing in the ELU are underpinned by WM-related alpha-theta oscillatory activity, and that effects of musical training on speech-on-speech perception may be reflected in these frequency bands among older adults.
Collapse
Affiliation(s)
- Ryan Gray
- Department of Experimental Psychology, University of Groningen, Groningen, Netherlands
- Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, Netherlands
- Department of Psychology, Centre for Applied Behavioural Sciences, School of Social Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Anastasios Sarampalis
- Department of Experimental Psychology, University of Groningen, Groningen, Netherlands
- Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, Netherlands
| | - Deniz Başkent
- Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, Netherlands
- Department of Otorhinolaryngology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Eleanor E. Harding
- Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, Netherlands
- Department of Otorhinolaryngology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- *Correspondence: Eleanor E. Harding,
| |
Collapse
|
7
|
Links of Prosodic Stress Perception and Musical Activities to Language Skills of Children With Cochlear Implants and Normal Hearing. Ear Hear 2021; 41:395-410. [PMID: 31397704 DOI: 10.1097/aud.0000000000000763] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES A major issue in the rehabilitation of children with cochlear implants (CIs) is unexplained variance in their language skills, where many of them lag behind children with normal hearing (NH). Here, we assess links between generative language skills and the perception of prosodic stress, and with musical and parental activities in children with CIs and NH. Understanding these links is expected to guide future research and toward supporting language development in children with a CI. DESIGN Twenty-one unilaterally and early-implanted children and 31 children with NH, aged 5 to 13, were classified as musically active or nonactive by a questionnaire recording regularity of musical activities, in particular singing, and reading and other activities shared with parents. Perception of word and sentence stress, performance in word finding, verbal intelligence (Wechsler Intelligence Scale for Children (WISC) vocabulary), and phonological awareness (production of rhymes) were measured in all children. Comparisons between children with a CI and NH were made against a subset of 21 of the children with NH who were matched to children with CIs by age, gender, socioeconomic background, and musical activity. Regression analyses, run separately for children with CIs and NH, assessed how much variance in each language task was shared with each of prosodic perception, the child's own music activity, and activities with parents, including singing and reading. All statistical analyses were conducted both with and without control for age and maternal education. RESULTS Musically active children with CIs performed similarly to NH controls in all language tasks, while those who were not musically active performed more poorly. Only musically nonactive children with CIs made more phonological and semantic errors in word finding than NH controls, and word finding correlated with other language skills. Regression analysis results for word finding and VIQ were similar for children with CIs and NH. These language skills shared considerable variance with the perception of prosodic stress and musical activities. When age and maternal education were controlled for, strong links remained between perception of prosodic stress and VIQ (shared variance: CI, 32%/NH, 16%) and between musical activities and word finding (shared variance: CI, 53%/NH, 20%). Links were always stronger for children with CIs, for whom better phonological awareness was also linked to improved stress perception and more musical activity, and parental activities altogether shared significantly variance with word finding and VIQ. CONCLUSIONS For children with CIs and NH, better perception of prosodic stress and musical activities with singing are associated with improved generative language skills. In addition, for children with CIs, parental singing has a stronger positive association to word finding and VIQ than parental reading. These results cannot address causality, but they suggest that good perception of prosodic stress, musical activities involving singing, and parental singing and reading may all be beneficial for word finding and other generative language skills in implanted children.
Collapse
|
8
|
Barbaroux M, Norena A, Rasamimanana M, Castet E, Besson M. From Psychoacoustics to Brain Waves: A Longitudinal Approach to Novel Word Learning. J Cogn Neurosci 2020; 33:8-27. [PMID: 32985943 DOI: 10.1162/jocn_a_01629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Musical expertise has been shown to positively influence high-level speech abilities such as novel word learning. This study addresses the question whether low-level enhanced perceptual skills causally drives successful novel word learning. We used a longitudinal approach with psychoacoustic procedures to train 2 groups of nonmusicians either on pitch discrimination or on intensity discrimination, using harmonic complex sounds. After short (approximately 3 hr) psychoacoustic training, discrimination thresholds were lower on the specific feature (pitch or intensity) that was trained. Moreover, compared to the intensity group, participants trained on pitch were faster to categorize words varying in pitch. Finally, although the N400 components in both the word learning phase and in the semantic task were larger in the pitch group than in the intensity group, no between-group differences were found at the behavioral level in the semantic task. Thus, these results provide mixed evidence that enhanced perception of relevant features through a few hours of acoustic training with harmonic sounds causally impacts the categorization of speech sounds as well as novel word learning. These results are discussed within the framework of near and far transfer effects from music training to speech processing.
Collapse
|
9
|
Functional Dissociations of the Left Anterior and Posterior Occipitotemporal Cortex for Semantic and Non-semantic Phonological Access. Neuroscience 2020; 430:94-104. [PMID: 32032670 DOI: 10.1016/j.neuroscience.2020.01.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 11/22/2022]
Abstract
Previous studies have identified the ventral and dorsal brain regions that respectively support semantic and non-semantic phonological access. Nevertheless, the specific role of the left occipitotemporal cortex (lOTC) in the two pathways of phonological access is ambiguous. To address that question, the present study compared word reading in Chinese (presumably relying on the semantic pathway) with that in English (presumably relying on the non-semantic pathway). Results revealed a clear dissociation in the involvement of the anterior and posterior lOTC in semantic and non-semantic phonological access. Specifically, the anterior lOTC showed greater activation for Chinese than for English, whereas the posterior lOTC showed greater activation for English than for Chinese. More importantly, both psychophysiological interaction analysis and resting-state functional connectivity analysis showed that the anterior lOTC was functionally connected to the ventral brain regions (e.g., left anterior fusiform gyrus, anterior temporal lobe, and ventral inferior frontal gyrus), whereas the posterior lOTC was functionally connected to the dorsal brain regions (e.g., left posterior superior temporal gyrus, supramarginal gyrus, and dorsal inferior frontal gyrus). These results suggest that the anterior and posterior lOTC are involved in semantic and non-semantic phonological access, respectively.
Collapse
|
10
|
Yurgil KA, Velasquez MA, Winston JL, Reichman NB, Colombo PJ. Music Training, Working Memory, and Neural Oscillations: A Review. Front Psychol 2020; 11:266. [PMID: 32153474 PMCID: PMC7047970 DOI: 10.3389/fpsyg.2020.00266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
This review focuses on reports that link music training to working memory and neural oscillations. Music training is increasingly associated with improvement in working memory, which is strongly related to both localized and distributed patterns of neural oscillations. Importantly, there is a small but growing number of reports of relationships between music training, working memory, and neural oscillations in adults. Taken together, these studies make important contributions to our understanding of the neural mechanisms that support effects of music training on behavioral measures of executive functions. In addition, they reveal gaps in our knowledge that hold promise for further investigation. The current review is divided into the main sections that follow: (1) discussion of behavioral measures of working memory, and effects of music training on working memory in adults; (2) relationships between music training and neural oscillations during temporal stages of working memory; (3) relationships between music training and working memory in children; (4) relationships between music training and working memory in older adults; and (5) effects of entrainment of neural oscillations on cognitive processing. We conclude that the study of neural oscillations is proving useful in elucidating the neural mechanisms of relationships between music training and the temporal stages of working memory. Moreover, a lifespan approach to these studies will likely reveal strategies to improve and maintain executive function during development and aging.
Collapse
Affiliation(s)
- Kate A. Yurgil
- Department of Psychological Sciences, Loyola University, New Orleans, LA, United States
| | | | - Jenna L. Winston
- Department of Psychology, Tulane University, New Orleans, LA, United States
| | - Noah B. Reichman
- Brain Institute, Tulane University, New Orleans, LA, United States
| | - Paul J. Colombo
- Department of Psychology, Tulane University, New Orleans, LA, United States
- Brain Institute, Tulane University, New Orleans, LA, United States
| |
Collapse
|
11
|
Dittinger E, Scherer J, Jäncke L, Besson M, Elmer S. Testing the influence of musical expertise on novel word learning across the lifespan using a cross-sectional approach in children, young adults and older adults. BRAIN AND LANGUAGE 2019; 198:104678. [PMID: 31450024 DOI: 10.1016/j.bandl.2019.104678] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/01/2019] [Accepted: 08/07/2019] [Indexed: 05/25/2023]
Abstract
Word learning is a multifaceted perceptual and cognitive task that is omnipresent in everyday life. Currently, it is unclear whether this ability is influenced by age, musical expertise or both variables. Accordingly, we used EEG and compared behavioral and electrophysiological indices of word learning between older adults with and without musical expertise (older adults' perspective) as well as between musically trained and untrained children, young adults, and older adults (lifespan perspective). Results of the older adults' perspective showed that the ability to learn new words is preserved in elderly, however, without a beneficial influence of musical expertise. Otherwise, results of the lifespan perspective revealed lower error rates and faster reaction times in young adults compared to children and older adults. Furthermore, musically trained children and young adults outperformed participants without musical expertise, and this advantage was accompanied by EEG manifestations reflecting faster learning and neural facilitation in accessing lexical-semantic representations.
Collapse
Affiliation(s)
- Eva Dittinger
- CNRS & Aix-Marseille University, Laboratoire de Neurosciences Cognitives (LNC, UMR 7291), Marseille, France; CNRS & Aix-Marseille University, Laboratoire Parole et Langage (LPL, UMR 7309), Aix-en-Provence, France; Brain and Language Research Institute (BLRI), Aix-en-Provence, France.
| | - Johanna Scherer
- Division Neuropsychology (Auditory Research Group Zurich, ARGZ), Institute of Psychology, University of Zurich, Switzerland.
| | - Lutz Jäncke
- Division Neuropsychology (Auditory Research Group Zurich, ARGZ), Institute of Psychology, University of Zurich, Switzerland; University Research Priority Program (URRP) "Dynamic of Healthy Aging", Zurich, Switzerland.
| | - Mireille Besson
- CNRS & Aix-Marseille University, Laboratoire de Neurosciences Cognitives (LNC, UMR 7291), Marseille, France.
| | - Stefan Elmer
- Division Neuropsychology (Auditory Research Group Zurich, ARGZ), Institute of Psychology, University of Zurich, Switzerland.
| |
Collapse
|
12
|
Looi V, Torppa R, Prvan T, Vickers D. The Role of Music in Families of Children With Hearing Loss and Normal Hearing in Australia, Finland, and the UK. Front Neurosci 2019; 13:1002. [PMID: 31680796 PMCID: PMC6798058 DOI: 10.3389/fnins.2019.01002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/04/2019] [Indexed: 01/10/2023] Open
Abstract
The primary aim of this current study was to compare the role, importance and value placed on music by families with normally hearing (NH) children, to those who had a child with a hearing loss (HL) who wore either hearing aids and/or cochlear implants. A secondary aim was to see whether this differed between the countries. Parents of children aged 2-6 years living in Australia, Finland, and the United Kingdom were invited to complete the Role of Music in Families Questionnaire (RMFQ). Two groups of participants were recruited from each country: (i) parents of NH children, and (ii) parents of children with a HL. The RMFQ had seven subsections covering topics such as music participation, attitudes to music, importance of music in the family, and future perspectives on music. Three hundred and twenty-two families of NH children, and 56 families of children with HL completed the questionnaire (Australia: 50 NH, 25 HL; Finland: 242 NH, 21 HL; United Kingdom: 30 NH, 10 HL). Analyses compared between NH and HL groups within each country, and between the three countries for the NH group, and the HL group, independently. Overall, there were few significant differences between the participation levels, role, or importance of music in families with NH children compared to those with a child who had a HL, regardless of whether the families lived in Australia, Finland or the United Kingdom. Children first started to respond to music at similar ages, and overall music participation frequency, and music enjoyment were relatively similar. The importance of music in the family was also similar between the NH and HL groups. In comparing between the countries, Finnish children had a tendency to have higher participation rates in musical activities, with few other differences noted. Overall, the results of this study indicate that children, regardless of hearing levels or country of residence, have similar levels of music engagement and enjoyment, and HL is not seen as a contraindication to music participation and involvement by the parents involved in this study.
Collapse
Affiliation(s)
- Valerie Looi
- SCIC – An RIDBC Service, Sydney, NSW, Australia
- Advanced Bionics (Asia Pacific), Sydney, NSW, Australia
| | - Ritva Torppa
- Logopedics and Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tania Prvan
- Department of Mathematics and Statistics, Macquarie University, Sydney, NSW, Australia
| | - Debi Vickers
- Department of Clinical Neurosciences, The University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Zhang G, Si Y, Dang J. Revealing the Dynamic Brain Connectivity from Perception of Speech Sound to Semantic Processing by EEG. Neuroscience 2019; 415:70-76. [PMID: 31330232 DOI: 10.1016/j.neuroscience.2019.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/25/2019] [Accepted: 07/11/2019] [Indexed: 01/10/2023]
Abstract
Understanding brain processing mechanisms from the perception of speech sounds to high-level semantic processing is vital for effective human-robot communication. In this study, 128-channel electroencephalograph (EEG) signals were recorded when subjects were listening to real and pseudowords in Mandarin. By using an EEG source reconstruction method and a sliding-window Granger causality analysis, we analyzed the dynamic brain connectivity patterns. Results showed that the bilateral temporal cortex (lTC and rTC), the bilateral motor cortex (lMC and rMC), the frontal cortex (FC), and the occipital cortex (OC) were recruited in the process, with complex patterns in the real word condition than in the pseudoword condition. The spatial pattern is basically consistent with previous functional MRI studies on the understanding of spoken Chinese. For the real word condition, speech perception and processing involved different connection patterns in the initial phoneme perception and processing phase, the phonological processing and lexical selection phase, and the semantic integration phase. Specifically, compared with pseudowords, a hub region in the FC and unique patterns of lMC → rMC and lTC → FC connectivity were found during processing real words after 180 ms, while a distributed network of temporal, motor, and frontal brain areas was involved after 300 ms. This may be related to semantic processing and integration. The involvement of both bottom-up input and top-down modulation in real word processing may support the previously proposed TRACE model. In sum, the findings of this study suggest that representations of speech involve dynamic interactions among distributed brain regions that communicate through time-specific functional networks.
Collapse
Affiliation(s)
- Gaoyan Zhang
- College of Intelligence and Computing, Tianjin Key lab of Cognitive Computing and Application, Tianjin University, Tianjin, China.
| | - Yuke Si
- College of Intelligence and Computing, Tianjin Key lab of Cognitive Computing and Application, Tianjin University, Tianjin, China
| | - Jianwu Dang
- College of Intelligence and Computing, Tianjin Key lab of Cognitive Computing and Application, Tianjin University, Tianjin, China; School of Information Science, Japan Advanced Institute of Science and Technology, Japan.
| |
Collapse
|
14
|
Wang S, Hu L, Cao J, Huang W, Sun C, Zheng D, Wang Z, Gan S, Niu X, Gu C, Bai G, Ye L, Zhang D, Zhang N, Yin B, Zhang M, Bai L. Sex Differences in Abnormal Intrinsic Functional Connectivity After Acute Mild Traumatic Brain Injury. Front Neural Circuits 2018; 12:107. [PMID: 30555304 PMCID: PMC6282647 DOI: 10.3389/fncir.2018.00107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/13/2018] [Indexed: 01/12/2023] Open
Abstract
Mild traumatic brain injury (TBI) is considered to induce abnormal intrinsic functional connectivity within resting-state networks (RSNs). The objective of this study was to estimate the role of sex in intrinsic functional connectivity after acute mild TBI. We recruited a cohort of 54 patients (27 males and 27 females with mild TBI within 7 days post-injury) from the emergency department (ED) and 34 age-, education-matched healthy controls (HCs; 17 males and 17 females). On the clinical scales, there were no statistically significant differences between males and females in either control group or mild TBI group. To detect whether there was abnormal sex difference on functional connectivity in RSNs, we performed independent component analysis (ICA) and a dual regression approach to investigate the between-subject voxel-wise comparisons of functional connectivity within seven selected RSNs. Compared to female patients, male patients showed increased intrinsic functional connectivity in motor network, ventral stream network, executive function network, cerebellum network and decreased connectivity in visual network. Further analysis demonstrated a positive correlation between the functional connectivity in executive function network and insomnia severity index (ISI) scores in male patients (r = 0.515, P = 0.006). The abnormality of the functional connectivity of RSNs in acute mild TBI showed the possibility of brain recombination after trauma, mainly concerning male-specific.
Collapse
Affiliation(s)
- Shan Wang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Liuxun Hu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jieli Cao
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Wenmin Huang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Chuanzhu Sun
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Dongdong Zheng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuonan Wang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuoqiu Gan
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuan Niu
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chenghui Gu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guanghui Bai
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Limei Ye
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Danbin Zhang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Nu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bo Yin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ming Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lijun Bai
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
15
|
Theta Coherence Asymmetry in the Dorsal Stream of Musicians Facilitates Word Learning. Sci Rep 2018; 8:4565. [PMID: 29545619 PMCID: PMC5854697 DOI: 10.1038/s41598-018-22942-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/01/2018] [Indexed: 01/19/2023] Open
Abstract
Word learning constitutes a human faculty which is dependent upon two anatomically distinct processing streams projecting from posterior superior temporal (pST) and inferior parietal (IP) brain regions toward the prefrontal cortex (dorsal stream) and the temporal pole (ventral stream). The ventral stream is involved in mapping sensory and phonological information onto lexical-semantic representations, whereas the dorsal stream contributes to sound-to-motor mapping, articulation, complex sequencing in the verbal domain, and to how verbal information is encoded, stored, and rehearsed from memory. In the present source-based EEG study, we evaluated functional connectivity between the IP lobe and Broca's area while musicians and non-musicians learned pseudowords presented in the form of concatenated auditory streams. Behavioral results demonstrated that musicians outperformed non-musicians, as reflected by a higher sensitivity index (d'). This behavioral superiority was paralleled by increased left-hemispheric theta coherence in the dorsal stream, whereas non-musicians showed stronger functional connectivity in the right hemisphere. Since no between-group differences were observed in a passive listening control condition nor during rest, results point to a task-specific intertwining between musical expertise, functional connectivity, and word learning.
Collapse
|
16
|
Elmer S, Jäncke L. Relationships between music training, speech processing, and word learning: a network perspective. Ann N Y Acad Sci 2018; 1423:10-18. [PMID: 29542125 DOI: 10.1111/nyas.13581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/16/2017] [Accepted: 11/27/2017] [Indexed: 01/19/2023]
Abstract
Numerous studies have documented the behavioral advantages conferred on professional musicians and children undergoing music training in processing speech sounds varying in the spectral and temporal dimensions. These beneficial effects have previously often been associated with local functional and structural changes in the auditory cortex (AC). However, this perspective is oversimplified, in that it does not take into account the intrinsic organization of the human brain, namely, neural networks and oscillatory dynamics. Therefore, we propose a new framework for extending these previous findings to a network perspective by integrating multimodal imaging, electrophysiology, and neural oscillations. In particular, we provide concrete examples of how functional and structural connectivity can be used to model simple neural circuits exerting a modulatory influence on AC activity. In addition, we describe how such a network approach can be used for better comprehending the beneficial effects of music training on more complex speech functions, such as word learning.
Collapse
Affiliation(s)
- Stefan Elmer
- Division of Neuropsychology (Auditory Research Group Zurich, ARGZ), Institute of Psychology, University of Zurich, Zurich, Switzerland
| | - Lutz Jäncke
- Division of Neuropsychology (Auditory Research Group Zurich, ARGZ), Institute of Psychology, University of Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- International Normal Aging and Plasticity Imaging Center (INAPIC), University of Zurich, Zurich, Switzerland
- University Research Priority Program (URPP) "Dynamic of Healthy Aging", University of Zurich, Zurich, Switzerland
- Department of Special Education, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
17
|
Dittinger E, Valizadeh SA, Jäncke L, Besson M, Elmer S. Increased functional connectivity in the ventral and dorsal streams during retrieval of novel words in professional musicians. Hum Brain Mapp 2017; 39:722-734. [PMID: 29105247 DOI: 10.1002/hbm.23877] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/13/2017] [Accepted: 10/23/2017] [Indexed: 01/01/2023] Open
Abstract
Current models of speech and language processing postulate the involvement of two parallel processing streams (the dual stream model): a ventral stream involved in mapping sensory and phonological representations onto lexical and conceptual representations and a dorsal stream contributing to sound-to-motor mapping, articulation, and to how verbal information is encoded and manipulated in memory. Based on previous evidence showing that music training has an influence on language processing, cognitive functions, and word learning, we examined EEG-based intracranial functional connectivity in the ventral and dorsal streams while musicians and nonmusicians learned the meaning of novel words through picture-word associations. In accordance with the dual stream model, word learning was generally associated with increased beta functional connectivity in the ventral stream compared to the dorsal stream. In addition, in the linguistically most demanding "semantic task," musicians outperformed nonmusicians, and this behavioral advantage was accompanied by increased left-hemispheric theta connectivity in both streams. Moreover, theta coherence in the left dorsal pathway was positively correlated with the number of years of music training. These results provide evidence for a complex interplay within a network of brain regions involved in semantic processing and verbal memory functions, and suggest that intensive music training can modify its functional architecture leading to advantages in novel word learning.
Collapse
Affiliation(s)
- Eva Dittinger
- CNRS & Aix-Marseille Univ, Laboratoire de Neurosciences Cognitives (LNC, UMR 7291), Marseille, France.,CNRS & Aix-Marseille Univ, Laboratoire Parole et Langage (LPL, UMR 7309), Aix-en-Provence, France.,Brain and Language Research Institute (BLRI), Aix-en-Provence, France
| | - Seyed Abolfazl Valizadeh
- Auditory Research Group Zurich (ARGZ), Division Neuropsychology, Institute of Psychology, University of Zurich, Zurich, Switzerland.,Sensory-Motor System Lab, Institute of Robotics and Intelligence Systems, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Lutz Jäncke
- Auditory Research Group Zurich (ARGZ), Division Neuropsychology, Institute of Psychology, University of Zurich, Zurich, Switzerland.,University Research Priority Program (URRP) "Dynamic of Healthy Aging", Zurich, Switzerland
| | - Mireille Besson
- CNRS & Aix-Marseille Univ, Laboratoire de Neurosciences Cognitives (LNC, UMR 7291), Marseille, France
| | - Stefan Elmer
- Auditory Research Group Zurich (ARGZ), Division Neuropsychology, Institute of Psychology, University of Zurich, Zurich, Switzerland
| |
Collapse
|