1
|
Chen T, Jiang J, Xu M, Dai Y, Gao X, Jiang C. Atypical prefrontal neural activity during an emotional interference control task in adolescents with autism spectrum disorder: A functional near-infrared spectroscopy study. Neuroimage 2024; 302:120907. [PMID: 39490560 DOI: 10.1016/j.neuroimage.2024.120907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
Autism spectrum disorder (ASD) is typically characterized by impairments in social interaction and communication, which may be associated with a failure to naturally orient to social stimuli, particularly in recognizing and responding to facial emotions. As most previous studies have used nonsocial stimuli to investigate inhibitory control in children and adults with ASD, little is known about the behavioral and neural activation patterns of emotional inhibitory control in adolescent with ASD. Functional neuroimaging studies have underscored the key role of the prefrontal cortex (PFC) in inhibitory control and emotional face processing. Thus, this study aimed to examine whether adolescent with ASD exhibited altered PFC processing during an emotional Flanker task by using non-invasive functional near-infrared spectroscopy (fNIRS). Twenty-one adolescents with high-functioning ASD and 26 typically developing (TD) adolescents aged 13-16 years were recruited. All participants underwent an emotional Flanker task, which required to decide whether the centrally positioned facial emotion is consistent with the laterally positioned facial emotion. TD adolescents exhibited larger RT and mean O2Hb level in the incongruent condition than the congruent condition, evoking cortical activations primarily in right PFC regions in response to the emotional Flanker effect. In contrast, ASD adolescents failed to exhibit the processing advantage for congruent versus incongruent emotional face in terms of RT, but showed cortical activations primarily in left PFC regions in response to the emotional Flanker effect. These findings suggest that adolescents with ASD rely on different neural strategies to mobilize PFC neural resources to address the difficulties they experience when inhibiting the emotional face.
Collapse
Affiliation(s)
- Tingting Chen
- School of Education, Beijing Dance Academy, Beijing, China
| | - Jiarui Jiang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Mingchao Xu
- Department of Graduate, Capital University of Physical Education and Sports, Beijing, China
| | - Yuanfu Dai
- Department of Graduate, Capital University of Physical Education and Sports, Beijing, China
| | - Xiaoyan Gao
- Department of Graduate, Capital University of Physical Education and Sports, Beijing, China
| | - Changhao Jiang
- Beijing Key Lab of Physical Fitness Evaluation and Tech Analysis, Capital University of Physical Education and Sports, Beijing, China.
| |
Collapse
|
2
|
Xia H, Hou Y, Li Q, Chen A. A meta-analysis of cognitive flexibility in aging: Perspective from functional network and lateralization. Hum Brain Mapp 2024; 45:e70031. [PMID: 39360550 PMCID: PMC11447525 DOI: 10.1002/hbm.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
Cognitive flexibility, the ability to switch between mental processes to generate appropriate behavioral responses, is reduced with typical aging. Previous studies have found that age-related declines in cognitive flexibility are often accompanied by variations in the activation of multiple regions. However, no meta-analyses have examined the relationship between cognitive flexibility in aging and age-related variations in activation within large-scale networks. Here, we conducted a meta-analysis employing multilevel kernel density analysis to identify regions with different activity patterns between age groups, and determined how these regions fall into functional networks. We also employed lateralization analysis to explore the spatial distribution of regions exhibiting group differences in activation. The permutation tests based on Monte Carlo simulation were used to determine the significance of the activation and lateralization results. The results showed that cognitive flexibility in aging was associated with both decreased and increased activation in several functional networks. Compared to young adults, older adults exhibited increased activation in the default mode, dorsal attention, ventral attention, and somatomotor networks, while displayed decreased activation in the visual network. Moreover, we found a global-level left lateralization for regions with decreased activation, but no lateralization for regions with higher activation in older adults. At the network level, the regions with decreased activation were left-lateralized, while the regions with increased activation showed varying lateralization patterns within different networks. To sum up, we found that networks that support various mental functions contribute to age-related variations in cognitive flexibility. Additionally, the aging brain exhibited network-dependent activation and lateralization patterns in response to tasks involving cognitive flexibility. We highlighted that the comprehensive meta-analysis in this study offered new insights into understanding cognitive flexibility in aging from a network perspective.
Collapse
Affiliation(s)
- Haishuo Xia
- Faculty of PsychologySouthwest UniversityChongqingChina
| | - Yongqing Hou
- Faculty of PsychologySouthwest UniversityChongqingChina
| | - Qing Li
- Faculty of PsychologySouthwest UniversityChongqingChina
| | - Antao Chen
- School of Psychology, Research Center for Exercise and Brain ScienceShanghai University of SportChina
| |
Collapse
|
3
|
Müller VI, Cieslik EC, Ficco L, Tyralla S, Sepehry AA, Aziz-Safaie T, Feng C, Eickhoff SB, Langner R. Not All Stroop-Type Tasks Are Alike: Assessing the Impact of Stimulus Material, Task Design, and Cognitive Demand via Meta-analyses Across Neuroimaging Studies. Neuropsychol Rev 2024:10.1007/s11065-024-09647-1. [PMID: 39264479 DOI: 10.1007/s11065-024-09647-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/29/2024] [Indexed: 09/13/2024]
Abstract
The Stroop effect is one of the most often studied examples of cognitive conflict processing. Over time, many variants of the classic Stroop task were used, including versions with different stimulus material, control conditions, presentation design, and combinations with additional cognitive demands. The neural and behavioral impact of this experimental variety, however, has never been systematically assessed. We used activation likelihood meta-analysis to summarize neuroimaging findings with Stroop-type tasks and to investigate whether involvement of the multiple-demand network (anterior insula, lateral frontal cortex, intraparietal sulcus, superior/inferior parietal lobules, midcingulate cortex, and pre-supplementary motor area) can be attributed to resolving some higher-order conflict that all of the tasks have in common, or if aspects that vary between task versions lead to specialization within this network. Across 133 neuroimaging experiments, incongruence processing in the color-word Stroop variant consistently recruited regions of the multiple-demand network, with modulation of spatial convergence by task variants. In addition, the neural patterns related to solving Stroop-like interference differed between versions of the task that use different stimulus material, with the only overlap between color-word, emotional picture-word, and other types of stimulus material in the posterior medial frontal cortex and right anterior insula. Follow-up analyses on behavior reported in these studies (in total 164 effect sizes) revealed only little impact of task variations on the mean effect size of reaction time. These results suggest qualitative processing differences among the family of Stroop variants, despite similar task difficulty levels, and should carefully be considered when planning or interpreting Stroop-type neuroimaging experiments.
Collapse
Affiliation(s)
- Veronika I Müller
- Institute of Neuroscience and Medicine, INM-7, Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany.
| | - Edna C Cieslik
- Institute of Neuroscience and Medicine, INM-7, Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Linda Ficco
- Department of General Psychology and Cognitive Neuroscience, Friedrich Schiller University, Jena, Germany
- Department of Linguistics and Cultural Evolution, International Max Planck Research School for the Science of Human History, Jena, Germany
| | - Sandra Tyralla
- Institute for Experimental Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - Amir Ali Sepehry
- Clinical Psychology Program, Adler University (Vancouver Campus), Vancouver, Canada
| | - Taraneh Aziz-Safaie
- Institute of Neuroscience and Medicine, INM-7, Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Chunliang Feng
- Key Laboratory of Brain, Cognition and Education Sciences, South China Normal University, Guangzhou, China
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, INM-7, Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Robert Langner
- Institute of Neuroscience and Medicine, INM-7, Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
4
|
Dai YF, Zhong XK, Gao XY, Huang C, Leng WW, Chen HZ, Jiang CH. Aerobic fitness as a moderator of acute aerobic exercise effects on executive function. Cereb Cortex 2024; 34:bhae141. [PMID: 38602740 DOI: 10.1093/cercor/bhae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
This study aimed to investigate the moderating role of aerobic fitness on the effect of acute exercise on improving executive function from both behavioral and cerebral aspects. Thirty-four young individuals with motor skills were divided into high- and low-fitness groups based on their maximal oxygen uptake. Both groups completed 30 min of moderate-intensity aerobic exercise on a power bike. Executive function tests (Flanker, N-back, More-odd-shifting) were performed before and after exercise and functional near-infrared spectroscopy was used to monitor prefrontal cerebral blood flow changes during the tasks. The results indicated significant differences between the two groups regarding executive function. Participants with lower aerobic fitness performed better than their higher fitness counterparts in inhibitory control and working memory, but not in cognitive flexibility. This finding suggests that the aerobic fitness may moderate the extent of cognitive benefits gained from acute aerobic exercise. Furthermore, the neuroimaging data indicated negative activation in the frontopolar area and dorsolateral prefrontal cortex in response to three complex tasks. These findings underscore the importance of considering individual aerobic fitness when assessing the cognitive benefits of exercise and could have significant implications for tailoring fitness programs to enhance cognitive performance.
Collapse
Affiliation(s)
- Yuan-Fu Dai
- School of Kinesiology and Health, Capital University of Physical Education and Sports, No. 11, North 3rd Ring West Road, Haidian District, Beijing, 100191, China
| | - Xiao-Ke Zhong
- College of Physical Education and Sport Science, Fujian Normal University, No. 18, Wulongjiang Middle Avenue, Shangjie Town, Minhou County, Fuzhou, Fujian, 350108, China
| | - Xiao-Yan Gao
- School of Kinesiology and Health, Capital University of Physical Education and Sports, No. 11, North 3rd Ring West Road, Haidian District, Beijing, 100191, China
| | - Chen Huang
- School of Kinesiology and Health, Capital University of Physical Education and Sports, No. 11, North 3rd Ring West Road, Haidian District, Beijing, 100191, China
| | - Wen-Wu Leng
- Xinyu No. 4 Middle School, No. 328, North Lake West Road, Chengbei Street, Yushui District, Xinyu, Jiangxi, 338099, China
| | - Han-Zhe Chen
- Tianjin No. 2 High School, No. 109, Kunwei Road, Hebei District, Tianjin, 300143, China
| | - Chang-Hao Jiang
- The Center of Neuroscience and Sports, Capital University of Physical Education and Sports, No. 11, North 3rd Ring West Road, Haidian District, Beijing, 100191, China
| |
Collapse
|
5
|
Holczer A, Vékony T, Klivényi P, Must A. Frontal two-electrode transcranial direct current stimulation protocols may not affect performance on a combined flanker Go/No-Go task. Sci Rep 2023; 13:11901. [PMID: 37488206 PMCID: PMC10366169 DOI: 10.1038/s41598-023-39161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) has been tested to modulate cognitive control or response inhibition using various electrode montages. However, electrode montages and current polarities have not been systematically compared when examining tDCS effects on cognitive control and response inhibition. In this randomized, sham-controlled study, 38 healthy volunteers were randomly grouped into receiving one session of sham, anodal, and cathodal each in an electrode montage that targeted either the dorsolateral prefrontal cortex (DLPFC) or the fronto-medial (FM) region. Participants performed a combined flanker Go/No-Go task during stimulation. No effect of tDCS was found in the DLPFC and FM groups neither using anodal nor cathodal stimulation. No major adverse effects of tDCS were identified using either montage or stimulation type and the two groups did not differ in terms of the reported sensations. The present study suggests that single-session tDCS delivered in two two-electrode montages might not affect cognitive control or response inhibition, despite using widely popular stimulation parameters. This is in line with the heterogeneous findings in the field and calls for further systematic research to exclude less reliable methods from those with more pronounced effects, identify the determinants of responsiveness, and develop optimal ways to utilize this technique.
Collapse
Affiliation(s)
- Adrienn Holczer
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, Szeged, Hungary.
| | - Teodóra Vékony
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Université Claude Bernard Lyon 1, CNRS, INSERM, 95 Boulevard Pinel, 69500, Bron, France
| | - Péter Klivényi
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, Szeged, Hungary
| | - Anita Must
- Chronos Systems on behalf of WCG Clinical Endpoint Solutions, Budapest, Hungary
| |
Collapse
|
6
|
Li R, Xu M, You J, Zhou X, Meng J, Xiao X, Jung TP, Ming D. Modulation of rhythmic visual stimulation on left-right attentional asymmetry. Front Neurosci 2023; 17:1156890. [PMID: 37250403 PMCID: PMC10213214 DOI: 10.3389/fnins.2023.1156890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
The rhythmic visual stimulation (RVS)-induced oscillatory brain responses, namely steady-state visual evoked potentials (SSVEPs), have been widely used as a biomarker in studies of neural processing based on the assumption that they would not affect cognition. However, recent studies have suggested that the generation of SSVEPs might be attributed to neural entrainment and thus could impact brain functions. But their neural and behavioral effects are yet to be explored. No study has reported the SSVEP influence on functional cerebral asymmetry (FCA). We propose a novel lateralized visual discrimination paradigm to test the SSVEP effects on visuospatial selective attention by FCA analyses. Thirty-eight participants covertly shifted their attention to a target triangle appearing in either the lower-left or -right visual field (LVF or RVF), and judged its orientation. Meanwhile, participants were exposed to a series of task-independent RVSs at different frequencies, including 0 (no RVS), 10, 15, and 40-Hz. As a result, it showed that target discrimination accuracy and reaction time (RT) varied significantly across RVS frequency. Furthermore, attentional asymmetries differed for the 40-Hz condition relative to the 10-Hz condition as indexed by enhanced RT bias to the right visual field, and larger Pd EEG component for attentional suppression. Our results demonstrated that RVSs had frequency-specific effects on left-right attentional asymmetries in both behavior and neural activities. These findings provided new insights into the functional role of SSVEP on FCAs.
Collapse
Affiliation(s)
- Rong Li
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Minpeng Xu
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Jia You
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Xiaoyu Zhou
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Jiayuan Meng
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xiaolin Xiao
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Tzyy-Ping Jung
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Swartz Center for Computational Neuroscience, University of California San Diego, San Diego, CA, United States
| | - Dong Ming
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
7
|
Xia H, He Q, Chen A. Understanding cognitive control in aging: A brain network perspective. Front Aging Neurosci 2022; 14:1038756. [PMID: 36389081 PMCID: PMC9659905 DOI: 10.3389/fnagi.2022.1038756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Cognitive control decline is a major manifestation of brain aging that severely impairs the goal-directed abilities of older adults. Magnetic resonance imaging evidence suggests that cognitive control during aging is associated with altered activation in a range of brain regions, including the frontal, parietal, and occipital lobes. However, focusing on specific regions, while ignoring the structural and functional connectivity between regions, may impede an integrated understanding of cognitive control decline in older adults. Here, we discuss the role of aging-related changes in functional segregation, integration, and antagonism among large-scale networks. We highlight that disrupted spontaneous network organization, impaired information co-processing, and enhanced endogenous interference promote cognitive control declines during aging. Additionally, in older adults, severe damage to structural network can weaken functional connectivity and subsequently trigger cognitive control decline, whereas a relatively intact structural network ensures the compensation of functional connectivity to mitigate cognitive control impairment. Thus, we propose that age-related changes in functional networks may be influenced by structural networks in cognitive control in aging (CCA). This review provided an integrative framework to understand the cognitive control decline in aging by viewing the brain as a multimodal networked system.
Collapse
Affiliation(s)
- Haishuo Xia
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Qinghua He
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Antao Chen
- School of Psychology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
8
|
Caparelli EDC, Abulseoud OA, Gu H, Zhai T, Schleyer B, Yang Y. Low frequency repetitive transcranial magnetic stimulation to the right dorsolateral prefrontal cortex engages thalamus, striatum, and the default mode network. Front Neurosci 2022; 16:997259. [PMID: 36248660 PMCID: PMC9565480 DOI: 10.3389/fnins.2022.997259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
The positive treatment outcomes of low frequency (LF) repetitive transcranial magnetic stimulation (rTMS) when applied over the right dorsolateral prefrontal cortex (DLPFC) in treatment-refractory depression has been verified. However, the mechanism of action behind these results have not been well-explored. In this work we used simultaneous functional magnetic resonance imaging (fMRI) during TMS to explore the effect of LF rTMS on brain activity when applied to the right [RDLPFC1 (MNI: 50, 30, 36)] and left DLPFC sites [LDLPFC1 (MNI: -50, 30, 36), LDLPFC2 (MNI: -41, 16, 54)]. Seventeen healthy adult volunteers participated in this study. To identify brain areas affected by rTMS, an independent component analysis and a general linear model were used. Our results showed an important laterality effect when contrasting rTMS over the left and right sites. Specifically, LF rTMS increased brain activity at the striatum, thalamus, and areas of the default mode network when applied to the right, but not to the contralateral left DLPFC. In contrast, no site differences were observed when evaluating the effect of LF rTMS over the two left sites. These findings demonstrate that LF rTMS to the right DLPFC was able to stimulate the cortico-striato-thalamo-cortical pathway, which is dysregulated in patients with major depressive disorder; therefore, possibly providing some neurobiological justification for the successful outcomes found thus far for LF rTMS in the treatment of depression.
Collapse
Affiliation(s)
- Elisabeth de Castro Caparelli
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
- *Correspondence: Elisabeth de Castro Caparelli,
| | - Osama A. Abulseoud
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
- Department of Psychiatry and Psychology, Mayo Clinic, Phoenix, AZ, United States
| | - Hong Gu
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Tianye Zhai
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Brooke Schleyer
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
- Department of Psychology, College of Liberal Arts, Temple University, Philadelphia, PA, United States
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
9
|
Fedeli D, Del Maschio N, Del Mauro G, Defendenti F, Sulpizio S, Abutalebi J. Cingulate cortex morphology impacts on neurofunctional activity and behavioral performance in interference tasks. Sci Rep 2022; 12:13684. [PMID: 35953536 PMCID: PMC9372177 DOI: 10.1038/s41598-022-17557-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/27/2022] [Indexed: 12/25/2022] Open
Abstract
Inhibitory control is the capacity to withhold or suppress a thought or action intentionally. The anterior Midcingulate Cortex (aMCC) participates in response inhibition, a proxy measure of inhibitory control. Recent research suggests that response inhibition is modulated by individual variability in the aMCC sulcal morphology. However, no study has investigated if this phenomenon is associated with neurofunctional differences during a task. In this study, 42 participants performed an Attention Network Task and a Numerical Stroop task in an MRI scanner. We investigated differences in brain activity and response inhibition efficiency between individuals with symmetric and asymmetric aMCC sulcal patterns. The results showed that aMCC morphological variability is partly associated with inhibitory control, and revealed greater activation in individuals with symmetric patterns during the Stroop task. Our findings provide novel insights into the functional correlates of the relationship between aMCC morphology and executive abilities.
Collapse
Affiliation(s)
- Davide Fedeli
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Centre for Neurolinguistics and Psycholinguistics (CNPL), Università Vita-Salute San Raffaele, Via Olgettina, 58, 20132, Milan, Italy
| | - Nicola Del Maschio
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Università Vita-Salute San Raffaele, Via Olgettina, 58, 20132, Milan, Italy
| | - Gianpaolo Del Mauro
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Università Vita-Salute San Raffaele, Via Olgettina, 58, 20132, Milan, Italy
| | - Federica Defendenti
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Università Vita-Salute San Raffaele, Via Olgettina, 58, 20132, Milan, Italy
| | - Simone Sulpizio
- Department of Psychology, University of Milano-Bicocca, Milan, Italy.,Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Milan, Italy
| | | |
Collapse
|
10
|
Zhu Y, Sun F, Chiu MM, Siu AYS. Effects of high-intensity interval exercise and moderate-intensity continuous exercise on executive function of healthy young males. Physiol Behav 2021; 239:113505. [PMID: 34153324 DOI: 10.1016/j.physbeh.2021.113505] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE This study compared the executive function (EF) performance induced by moderate-intensity continuous exercise (MICE) versus high-intensity interval exercise (HIIE), under two exercise modalities (i.e., running vs. cycling), and explored whether the changes in EF performance were related to the hemodynamics response of the cerebral prefrontal area of the brain. METHODS In a randomized cross-over design, 16 male participants completed 4 main trials, i.e., 40 min of moderate-intensity continuous running (MICR) or cycling (MICC) with 60% maximal oxygen consumption (VO2max), 33 min of high-intensity interval running (HIIR) or cycling (HIIC). For HIIR or HIIC trials, the exercise intensity was 60% VO2max for the first 5 min, followed by four 4-minute bouts of exercise at 90% VO2max, separated by 3-minute active recovery at 60% VO2max. EF was assessed via the Eriksen Flanker task (EFT) before (Pre), immediately after (Post 0), and 10 min after exercise (Post 10). Functional near-infrared spectroscopy (fNIRS) measured oxygenated hemoglobin (O2Hb) and deoxygenated hemoglobin (HHb) concentrations in the prefrontal area. Each main trial measured the concentrations of blood glucose and lactate, heart rate, and rate of perceived exertion. RESULTS (1) Compared to the reaction time in EFT during the pretest, the corresponding reaction time was shorter at Post 10 (P < 0.01) but not at Post 0 (P = 0.06). Specifically, reaction time was shorter at Post 10 than in the pretest in HIIC (P = 0.04), MICC (P = 0.01), and HIIR (P < 0.01) but not MICR. (2) The fNIRS results revealed that O2Hb concentrations in the left dorsolateral prefrontal cortex area were much lower during Post 10 than during the pretest. (3) The blood lactate concentrations were not associated with EF performance regarding both accuracy and reaction time. CONCLUSION Compared to the pretest, EF was greater after the 10-minute rest during recovery but not immediately after exercise. The different HIIE or MICE protocols adopted in the present study may elicit minor differences regarding their effects on EF.
Collapse
Affiliation(s)
- Yuxin Zhu
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong SAR, China
| | - Fenghua Sun
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong SAR, China.
| | - Ming Ming Chiu
- Department of Special Education and Counselling & Assessment Research Centre, The Education University of Hong Kong, Hong Kong SAR, China.
| | - Agatha Yi-Sum Siu
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Yao Y, Jia X, Luo J, Chen F, Liang P. Involvement of the Right Dorsolateral Prefrontal Cortex in Numerical Rule Induction: A Transcranial Direct Current Stimulation Study. Front Hum Neurosci 2021; 14:566675. [PMID: 33424561 PMCID: PMC7785589 DOI: 10.3389/fnhum.2020.566675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022] Open
Abstract
Numerical inductive reasoning has been considered as one of the most important higher cognitive functions of the human brain. Importantly, previous behavioral studies have consistently reported that one critical component of numerical inductive reasoning is checking, which often occurs when a discrepant element is discovered, and reprocessing is needed to determine whether the discrepancy is an error of the original series. However, less is known about the neural mechanism underlying the checking process. Given that the checking effect involves cognitive control processes, such as the incongruent resolution, that are linked to the right dorsolateral prefrontal cortex (DLPFC), this study hypothesizes that the right DLPFC may play a specific role in the checking process. To test the hypothesis, this study utilized the transcranial direct current stimulation (tDCS), a non-invasive brain stimulation method that could modulate cortical excitability, and examined whether and how the stimulation of the right DLPFC via tDCS could modulate the checking effect during a number-series completion problem task. Ninety healthy participants were allocated to one of the anodal, cathodal, and sham groups. Subjects were required to verify whether number sequences formed rule-based series, and checking effect was assessed by the difference in performance between invalid and valid conditions. It was found that significantly longer response times (RTs) were exhibited in invalid condition compared with valid condition in groups of anodal, cathodal, and sham tDCS. Furthermore, the anodal tDCS significantly shortened the checking effect than those of the cathodal and sham groups, whereas no significantly prolonged checking effect was detected in the cathodal group. The current findings indicated that anodal tDCS affected the process of checking, which suggested that the right DLPFC might play a critical role in the checking process of numerical inductive reasoning by inhibiting incongruent response.
Collapse
Affiliation(s)
- Yuzhao Yao
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, China
| | - Xiuqin Jia
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jun Luo
- Center for Economic Behavior and Decision-making (CEBD), and School of Economics, Zhejiang University of Finance and Economics, Hangzhou, China
| | - Feiyan Chen
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, China
| | - Peipeng Liang
- School of Psychology, Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China
| |
Collapse
|
12
|
Chen Z, Zhao X, Fan J, Chen A. Functional cerebral asymmetry analyses reveal how the control system implements its flexibility. Hum Brain Mapp 2018; 39:4678-4688. [PMID: 30015380 DOI: 10.1002/hbm.24313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 12/23/2022] Open
Abstract
The control system in human brain generally exerts the goal-directed regulation on a variety of mental processes. To deal with different control demands, these brain areas of the control system, especially the dorsolateral prefrontal cortex (DLPFC), may be flexibly recruited across different tasks. However, few studies have investigated how the flexibility of the control system is realized during cognitive control. Present study employed functional magnetic resonance imaging to examine the brain responses during two domain distinct conflict tasks (verbal color-word Stroop and visuospatial arrow flanker). The voxel-wise asymmetries in both functional activity and psychophysiological interaction (PPI) between these two tasks were compared. The results showed that the brain areas of control system were consistently activated in these two tasks. When considering functional cerebral asymmetries, the left DLPFC was dominantly activated during the Stroop task, while more symmetric DLPFC activation was found during the flanker task. The left DLPFC rather than the right DLPFC showed greater positive interaction with the visual areas V1 and V2 during the Stroop interference, but interactions of both the left and right DLPFC with the right visual area V5/MT were positively enhanced during the flanker interference. These results suggest that the flexible cognitive control is achieved by the control system's task-specific activity and its top-down interaction with domain-specific brain areas, in implementing flexible representation and modulation of control demands.
Collapse
Affiliation(s)
- Zhencai Chen
- Department of Psychology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiaoyue Zhao
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Jin Fan
- Department of Psychology, Queens College, The City University of New York, Icahn School of Medicine at Mount Sinai, New York City, New York.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, New York.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Antao Chen
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|