1
|
Chen J, Müller VI, Dukart J, Hoffstaedter F, Baker JT, Holmes AJ, Vatansever D, Nickl-Jockschat T, Liu X, Derntl B, Kogler L, Jardri R, Gruber O, Aleman A, Sommer IE, Eickhoff SB, Patil KR. Intrinsic Connectivity Patterns of Task-Defined Brain Networks Allow Individual Prediction of Cognitive Symptom Dimension of Schizophrenia and Are Linked to Molecular Architecture. Biol Psychiatry 2021; 89:308-319. [PMID: 33357631 PMCID: PMC7770333 DOI: 10.1016/j.biopsych.2020.09.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Despite the marked interindividual variability in the clinical presentation of schizophrenia, the extent to which individual dimensions of psychopathology relate to the functional variability in brain networks among patients remains unclear. Here, we address this question using network-based predictive modeling of individual psychopathology along 4 data-driven symptom dimensions. Follow-up analyses assess the molecular underpinnings of predictive networks by relating them to neurotransmitter-receptor distribution patterns. METHODS We investigated resting-state functional magnetic resonance imaging data from 147 patients with schizophrenia recruited at 7 sites. Individual expression along negative, positive, affective, and cognitive symptom dimensions was predicted using a relevance vector machine based on functional connectivity within 17 meta-analytic task networks following repeated 10-fold cross-validation and leave-one-site-out analyses. Results were validated in an independent sample. Networks robustly predicting individual symptom dimensions were spatially correlated with density maps of 9 receptors/transporters from prior molecular imaging in healthy populations. RESULTS Tenfold and leave-one-site-out analyses revealed 5 predictive network-symptom associations. Connectivity within theory of mind, cognitive reappraisal, and mirror neuron networks predicted negative, positive, and affective symptom dimensions, respectively. Cognitive dimension was predicted by theory of mind and socioaffective default networks. Importantly, these predictions generalized to the independent sample. Intriguingly, these two networks were positively associated with D1 receptor and serotonin reuptake transporter densities as well as dopamine synthesis capacity. CONCLUSIONS We revealed a robust association between intrinsic functional connectivity within networks for socioaffective processes and the cognitive dimension of psychopathology. By investigating the molecular architecture, this work links dopaminergic and serotonergic systems with the functional topography of brain networks underlying cognitive symptoms in schizophrenia.
Collapse
Affiliation(s)
- Ji Chen
- Institute of Neuroscience and Medicine: Brain and Behavior (INM-7), Research Center Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Veronika I. Müller
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Justin T. Baker
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA 02478,Department of Psychiatry, Harvard Medical School, Boston, MA 02114
| | - Avram J. Holmes
- Department of Psychology, Yale University, New Haven, CT 06520
| | - Deniz Vatansever
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 200433, Shanghai, PR China
| | - Thomas Nickl-Jockschat
- Iowa Neuroscience Institute & Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Xiaojin Liu
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Birgit Derntl
- Department of Psychiatry and Psychotherapy, Medical School, University of Tübingen, Germany
| | - Lydia Kogler
- Department of Psychiatry and Psychotherapy, Medical School, University of Tübingen, Germany
| | - Renaud Jardri
- Univ Lille, INSERM U1172, Lille Neuroscience & Cognition Centre, Plasticity & SubjectivitY team & CHU Lille, Fontan Hospital, CURE platform, Lille, France
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Germany
| | - André Aleman
- Department of Neuroscience, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Iris E. Sommer
- Department of Biomedical Science of Cells and Systems, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Simon B. Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,Correspondence should be addressed to: Simon B. Eickhoff, Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany & Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, 52428 Jülich, Germany. Tel: +49 2461 61 1791; .; Ji Chen, Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany & Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, 52428 Jülich, Germany. Tel: +49 2461 61 85334;
| | - Kaustubh R. Patil
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|