1
|
Pellegrino G, Isabella SL, Ferrazzi G, Gschwandtner L, Tik M, Arcara G, Marinazzo D, Schuler AL. Reliable measurement of auditory-driven gamma synchrony with a single EEG electrode: A simultaneous EEG-MEG study. Neuroimage 2024; 300:120862. [PMID: 39305968 DOI: 10.1016/j.neuroimage.2024.120862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
OBJECTIVE Auditory-driven gamma synchrony (GS) is linked to the function of a specific cortical circuit based on a parvalbumin+ and pyramidal neuron loop. This circuit is impaired in neuropsychiatric conditions (i.e. schizophrenia, Alzheimer's disease, stroke etc.) and its relevance in clinical practice is increasingly being recognized. Auditory stimulation at a typical gamma frequency of 40 Hz can be applied as a 'stress test' of excitation/inhibition (E/I) of the entire cerebral cortex, to drive GS and record it with magnetoencephalography (MEG) or high-density electroencephalography (EEG). However, these two techniques are costly and not widely available. Therefore, we assessed whether a single EEG electrode is sufficient to provide an accurate estimate of the auditory-driven GS level of the entire cortical surface while expecting the highest correspondence in the auditory and somatosensory cortices. METHODS We measured simultaneous EEG-MEG in 29 healthy subjects, utilizing 3 EEG electrodes (C4, F4, O2) and a full MEG setup. Recordings were performed during binaural exposure to auditory gamma stimulation and during silence. We compared GS measurement of each of the three EEG electrodes separately against full MEG mapping. Time-resolved phase locking value (PLVt) was computed between EEG signals and cortex reconstructed MEG signals. RESULTS During auditory stimulation, but not at rest, EEG captures a significant amount of GS, especially from both auditory cortices and motor-premotor regions. This was especially true for frontal (C4) and central electrodes (F4). DISCUSSION AND CONCLUSIONS While hd-EEG and MEG are necessary for accurate spatial mapping of GS at rest and during auditory stimulation, a single EEG channel is sufficient to detect the global level of GS. These results have great translational potential for mapping GS in standard clinical settings.
Collapse
Affiliation(s)
- Giovanni Pellegrino
- Clinical Neurological Sciences Department, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Silvia L Isabella
- Campus Bio-Medico University of Rome, Rome, Italy; IRCCS San Camillo Hospital, Via Alberoni 80, 30126, Venice, Italy
| | | | - Laura Gschwandtner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Martin Tik
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria.
| | - Giorgio Arcara
- IRCCS San Camillo Hospital, Via Alberoni 80, 30126, Venice, Italy; Department of General Psychology, University of Padua, Padua, Italy
| | - Daniele Marinazzo
- Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Belgium
| | - Anna-Lisa Schuler
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
2
|
Arutiunian V, Arcara G, Buyanova I, Fedorov M, Davydova E, Pereverzeva D, Sorokin A, Tyushkevich S, Mamokhina U, Danilina K, Dragoy O. Abnormalities in both stimulus-induced and baseline MEG alpha oscillations in the auditory cortex of children with Autism Spectrum Disorder. Brain Struct Funct 2024; 229:1225-1242. [PMID: 38683212 DOI: 10.1007/s00429-024-02802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
The neurobiology of Autism Spectrum Disorder (ASD) is hypothetically related to the imbalance between neural excitation (E) and inhibition (I). Different studies have revealed that alpha-band (8-12 Hz) activity in magneto- and electroencephalography (MEG and EEG) may reflect E and I processes and, thus, can be of particular interest in ASD research. Previous findings indicated alterations in event-related and baseline alpha activity in different cortical systems in individuals with ASD, and these abnormalities were associated with core and co-occurring conditions of ASD. However, the knowledge on auditory alpha oscillations in this population is limited. This MEG study investigated stimulus-induced (Event-Related Desynchronization, ERD) and baseline alpha-band activity (both periodic and aperiodic) in the auditory cortex and also the relationships between these neural activities and behavioral measures of children with ASD. Ninety amplitude-modulated tones were presented to two groups of children: 20 children with ASD (5 girls, Mage = 10.03, SD = 1.7) and 20 typically developing controls (9 girls, Mage = 9.11, SD = 1.3). Children with ASD had a bilateral reduction of alpha-band ERD, reduced baseline aperiodic-adjusted alpha power, and flattened aperiodic exponent in comparison to TD children. Moreover, lower raw baseline alpha power and aperiodic offset in the language-dominant left auditory cortex were associated with better language skills of children with ASD measured in formal assessment. The findings highlighted the alterations of E / I balance metrics in response to basic auditory stimuli in children with ASD and also provided evidence for the contribution of low-level processing to language difficulties in ASD.
Collapse
Affiliation(s)
- Vardan Arutiunian
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, 1920 Terry Ave, Seattle, WA, 98101, United States of America.
| | | | - Irina Buyanova
- Center for Language and Brain, HSE University, Moscow, Russia
- University of Otago, Dunedin, New Zealand
| | - Makar Fedorov
- Center for Language and Brain, HSE University, Nizhny Novgorod, Russia
| | - Elizaveta Davydova
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
- Chair of Differential Psychology and Psychophysiology, Moscow State University of Psychology and Education, Moscow, Russia
| | - Darya Pereverzeva
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
| | - Alexander Sorokin
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
- Haskins Laboratories, New Haven, CT, United States of America
| | - Svetlana Tyushkevich
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
| | - Uliana Mamokhina
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
| | - Kamilla Danilina
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
- Scientific Research and Practical Center of Pediatric Psychoneurology, Moscow, Russia
| | - Olga Dragoy
- Center for Language and Brain, HSE University, Moscow, Russia
- Institute of Linguistics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Pinardi M, Schuler AL, Di Pino G, Pellegrino G. 40 Hz Repetitive auditory stimulation promotes corticospinal plasticity. Clin Neurophysiol 2024; 162:79-81. [PMID: 38583408 DOI: 10.1016/j.clinph.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Affiliation(s)
- Mattia Pinardi
- NEXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Anna-Lisa Schuler
- Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Giovanni Di Pino
- NEXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Giovanni Pellegrino
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
4
|
Pellegrino G, Schuler AL, Cai Z, Marinazzo D, Tecchio F, Ricci L, Tombini M, Di Lazzaro V, Assenza G. Assessing cortical excitability with electroencephalography: A pilot study with EEG-iTBS. Brain Stimul 2024; 17:176-183. [PMID: 38286400 DOI: 10.1016/j.brs.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/26/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Cortical excitability measures neural reactivity to stimuli, usually delivered via Transcranial Magnetic Stimulation (TMS). Excitation/inhibition balance (E/I) is the ongoing equilibrium between excitatory and inhibitory activity of neural circuits. According to some studies, E/I could be estimated in-vivo and non-invasively through the modeling of electroencephalography (EEG) signals and termed 'intrinsic excitability' measures. Several measures have been proposed (phase consistency in the gamma band, sample entropy, exponent of the power spectral density 1/f curve, E/I index extracted from detrend fluctuation analysis, and alpha power). Intermittent theta burst stimulation (iTBS) of the primary motor cortex (M1) is a non-invasive neuromodulation technique allowing controlled and focal enhancement of TMS cortical excitability and E/I of the stimulated hemisphere. OBJECTIVE Investigating to what extent E/I estimates scale with TMS excitability and how they relate to each other. METHODS M1 excitability (TMS) and several E/I estimates extracted from resting state EEG recordings were assessed before and after iTBS in a cohort of healthy subjects. RESULTS Enhancement of TMS M1 excitability, as measured through motor-evoked potentials (MEPs), and phase consistency of the cortex in high gamma band correlated with each other. Other measures of E/I showed some expected results, but no correlation with TMS excitability measures or strong consistency with each other. CONCLUSIONS EEG E/I estimates offer an intriguing opportunity to map cortical excitability non-invasively, with high spatio-temporal resolution and with a stimulus independent approach. While different EEG E/I estimates may reflect the activity of diverse excitatory-inhibitory circuits, spatial phase synchrony in the gamma band is the measure that best captures excitability changes in the primary motor cortex.
Collapse
Affiliation(s)
- Giovanni Pellegrino
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| | - Anna-Lisa Schuler
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Zhengchen Cai
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Daniele Marinazzo
- Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Franca Tecchio
- Laboratory of Electrophysiology for Translational NeuroScience (LET'S), Institute of Cognitive Sciences and Technologies (ISTC) - Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Lorenzo Ricci
- UOC Neurologia, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy; UOC Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
| | - Mario Tombini
- UOC Neurologia, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy; UOC Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
| | - Vincenzo Di Lazzaro
- UOC Neurologia, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy; UOC Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
| | - Giovanni Assenza
- UOC Neurologia, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy; UOC Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Via Alvaro Del Portillo, 21, 00128, Roma, Italy.
| |
Collapse
|
5
|
Meltzer JA, Sivaratnam G, Deschamps T, Zadeh M, Li C, Farzan F, Francois-Nienaber A. Contrasting MEG effects of anodal and cathodal high-definition TDCS on sensorimotor activity during voluntary finger movements. FRONTIERS IN NEUROIMAGING 2024; 3:1341732. [PMID: 38379832 PMCID: PMC10875011 DOI: 10.3389/fnimg.2024.1341732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/15/2024] [Indexed: 02/22/2024]
Abstract
Introduction Protocols for noninvasive brain stimulation (NIBS) are generally categorized as "excitatory" or "inhibitory" based on their ability to produce short-term modulation of motor-evoked potentials (MEPs) in peripheral muscles, when applied to motor cortex. Anodal and cathodal stimulation are widely considered excitatory and inhibitory, respectively, on this basis. However, it is poorly understood whether such polarity-dependent changes apply for neural signals generated during task performance, at rest, or in response to sensory stimulation. Methods To characterize such changes, we measured spontaneous and movement-related neural activity with magnetoencephalography (MEG) before and after high-definition transcranial direct-current stimulation (HD-TDCS) of the left motor cortex (M1), while participants performed simple finger movements with the left and right hands. Results Anodal HD-TDCS (excitatory) decreased the movement-related cortical fields (MRCF) localized to left M1 during contralateral right finger movements while cathodal HD-TDCS (inhibitory), increased them. In contrast, oscillatory signatures of voluntary motor output were not differentially affected by the two stimulation protocols, and tended to decrease in magnitude over the course of the experiment regardless. Spontaneous resting state oscillations were not affected either. Discussion MRCFs are thought to reflect reafferent proprioceptive input to motor cortex following movements. Thus, these results suggest that processing of incoming sensory information may be affected by TDCS in a polarity-dependent manner that is opposite that seen for MEPs-increases in cortical excitability as defined by MEPs may correspond to reduced responses to afferent input, and vice-versa.
Collapse
Affiliation(s)
- Jed A. Meltzer
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
- Departments of Psychology and Speech-language Pathology, University of Toronto, Toronto, ON, Canada
| | - Gayatri Sivaratnam
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
| | - Tiffany Deschamps
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
| | - Maryam Zadeh
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
| | - Catherine Li
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
| | - Faranak Farzan
- School of Mechatronic Systems Engineering, Simon Fraser University, Burnaby, BC, Canada
| | - Alex Francois-Nienaber
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
| |
Collapse
|
6
|
Wang MC, Chi TS, Shiao AS, Li LPH, Hsieh JC. Clinical standardization for the detection of hemispheric dominance for steady-state auditory evoked fields in normal hearing. J Chin Med Assoc 2023; 86:1015-1019. [PMID: 37713316 DOI: 10.1097/jcma.0000000000000995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Steady-state auditory evoked responses (SSAERs) are promising indicators of major auditory function. The improvement in accessibility in the clinical setting depends on the standardization and definition of the characteristics of SSAERs. There have been some insights into the changes in the interhemispheric dominance of SSAERs in some clinical entities. However, the hemispheric asymmetry of SSAERs in healthy controls remains inconclusive. METHODS Twelve right-handed healthy volunteers with normal hearing were recruited. Steady-state auditory evoked fields (SSAEFs) were measured binaurally using magnetoencephalography (MEG) under pure-tone auditory stimuli at 1000 Hz with an amplitude modulation frequency of 43 Hz. The laterality index, based on the ratio of SSAEF strength over the right hemisphere to that over the left hemisphere, was also analyzed. RESULTS The SSAEFs source was localized bilaterally on the superior temporal plane, with an orientation centripetal to the auditory cortex. The laterality index ranged from 1.1 to 2.3, and there were no sex differences. In all subjects, the strength of the SSAEFs was significantly weaker in the left hemisphere than in the right hemisphere ( p = 0.014). CONCLUSION Right-sided dominance of the SSAEFs was verified in subjects with normal hearing. Acoustic sources clinically available in audiometric tests were used as stimuli. Such a simplification of parameters would be helpful for the standardization of precise production and the definition of the characteristics of SSAERs. Because MEG is still not easily accessible clinically, further studies using electroencephalography with larger sample sizes are necessary to address these issues.
Collapse
Affiliation(s)
- Mao-Che Wang
- Department of Otolaryngology Head Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Otolaryngology Head Neck Surgery, Taipei City Hospital, Taipei, Taiwan, ROC
| | - Tai-Shih Chi
- Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC
| | - An-Suey Shiao
- Department of Otolaryngology, Cheng Hsin General Hospital, Taipei, Taiwan, ROC
| | - Lieber Po-Hung Li
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Otolaryngology, Cheng Hsin General Hospital, Taipei, Taiwan, ROC
- Institute of Brain Science, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, ROC
- Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Jen-Chuen Hsieh
- Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC
- Center for Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
7
|
Schuler AL, Brkić D, Ferrazzi G, Arcara G, Marinazzo D, Pellegrino G. Auditory white noise exposure results in intrinsic cortical excitability changes. iScience 2023; 26:107387. [PMID: 37575186 PMCID: PMC10415920 DOI: 10.1016/j.isci.2023.107387] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/23/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Cortical excitability is commonly measured by applying magnetic stimulation in combination with measuring behavioral response. This measure has, however, some shortcomings including spatial limitation to the primary motor cortex and not accounting for intrinsic excitability fluctuations. Here, we use a measure for intrinsic excitability based on phase synchronization previously validated for epilepsy. We apply this measure in 30 healthy participants' magnetoencephalography (MEG) recordings during the exposure of auditory white noise, a stimulus that has been suggested to modify cortical excitability. Using cortical parcellation of the MEG source data, we could find a specific pattern of increased and decreased excitability while participants are exposed to white noise vs. silence. Specifically, excitability during white noise exposure decreases in the frontal lobe and increases in the temporal lobe. This study thus adds to the understanding of cortical excitability changes due to specific environmental stimuli as well as the spatial extent of these effects.
Collapse
Affiliation(s)
- Anna-Lisa Schuler
- IRCCS San Camillo Hospital, Venice, Italy
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | | | | | - Daniele Marinazzo
- Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Giovanni Pellegrino
- Epilepsy Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
8
|
Hirosawa T, Soma D, Miyagishi Y, Furutani N, Yoshimura Y, Kameya M, Yamaguchi Y, Yaoi K, Sano M, Kitamura K, Takahashi T, Kikuchi M. Effect of transcranial direct current stimulation on the functionality of 40 Hz auditory steady state response brain network: graph theory approach. Front Psychiatry 2023; 14:1156617. [PMID: 37363170 PMCID: PMC10288104 DOI: 10.3389/fpsyt.2023.1156617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Measuring whole-brain networks of the 40 Hz auditory steady state response (ASSR) is a promising approach to describe the after-effects of transcranial direct current stimulation (tDCS). The main objective of this study was to evaluate the effect of tDCS on the brain network of 40 Hz ASSR in healthy adult males using graph theory. The second objective was to identify a population in which tDCS effectively modulates the brain network of 40 Hz ASSR. Methods This study used a randomized, sham-controlled, double-blinded crossover approach. Twenty-five adult males (20-24 years old) completed two sessions at least 1 month apart. The participants underwent cathodal or sham tDCS of the dorsolateral prefrontal cortex, after which 40 Hz ASSR was measured using magnetoencephalography. After the signal sources were mapped onto the Desikan-Killiany brain atlas, the statistical relationships between localized activities were evaluated in terms of the debiased weighted phase lag index (dbWPLI). Weighted and undirected graphs were constructed for the tDCS and sham conditions based on the dbWPLI. Weighted characteristic path lengths and clustering coefficients were then measured and compared between the tDCS and sham conditions using mixed linear models. Results The characteristic path length was significantly lower post-tDCS simulation (p = 0.04) than after sham stimulation. This indicates that after tDCS simulation, the whole-brain networks of 40 Hz ASSR show a significant functional integration. Simple linear regression showed a higher characteristic path length at baseline, which was associated with a larger reduction in characteristic path length after tDCS. Hence, a pronounced effect of tDCS is expected for those who have a less functionally integrated network of 40 Hz ASSR. Discussion Given that the healthy brain is functionally integrated, we conclude that tDCS could effectively normalize less functionally integrated brain networks rather than enhance functional integration.
Collapse
Affiliation(s)
- Tetsu Hirosawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Daiki Soma
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yoshiaki Miyagishi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Naoki Furutani
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Faculty of Education, Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Masafumi Kameya
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yohei Yamaguchi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Ken Yaoi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Masuhiko Sano
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Koji Kitamura
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Tetsuya Takahashi
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
9
|
Pinardi M, Schuler AL, Arcara G, Ferreri F, Marinazzo D, Di Pino G, Pellegrino G. Reduced connectivity of primary auditory and motor cortices during exposure to auditory white noise. Neurosci Lett 2023; 804:137212. [PMID: 36966962 DOI: 10.1016/j.neulet.2023.137212] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/27/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Auditory white noise (WN) is widely used in daily life for inducing sleep, and in neuroscience to mask unwanted environmental noise and cues. However, WN was recently reported to influence corticospinal excitability and behavioral performance. Here, we expand previous preliminary findings on the influence of WN exposure on cortical functioning, and we hypothesize that it may modulate cortical connectivity. We tested our hypothesis by performing magnetoencephalography in 20 healthy subjects. WN reduces cortical connectivity of the primary auditory and motor regions with very distant cortical areas, showing a right lateralized connectivity reduction for primary motor cortex. The present results, together with previous finding concerning WN impact on corticospinal excitability and behavioral performance, further support the role of WN as a modulator of cortical function. This suggest avoiding its unrestricted use as a masking tool, while purposely designed and controlled WN application could be exploited to harness brain function and to treat neuropsychiatric conditions.
Collapse
|
10
|
Colenbier N, Sareen E, Del-Aguila Puntas T, Griffa A, Pellegrino G, Mantini D, Marinazzo D, Arcara G, Amico E. Task matters: Individual MEG signatures from naturalistic and neurophysiological brain states. Neuroimage 2023; 271:120021. [PMID: 36918139 DOI: 10.1016/j.neuroimage.2023.120021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
The discovery that human brain connectivity data can be used as a "fingerprint" to identify a given individual from a population, has become a burgeoning research area in the neuroscience field. Recent studies have identified the possibility to extract these brain signatures from the temporal rich dynamics of resting-state magneto encephalography (MEG) recordings. Nevertheless, it is still uncertain to what extent MEG signatures can serve as an indicator of human identifiability during task-related conduct. Here, using MEG data from naturalistic and neurophysiological tasks, we show that identification improves in tasks relative to resting-state, providing compelling evidence for a task dependent axis of MEG signatures. Notably, improvements in identifiability were more prominent in strictly controlled tasks. Lastly, the brain regions contributing most towards individual identification were also modified when engaged in task activities. We hope that this investigation advances our understanding of the driving factors behind brain identification from MEG signals.
Collapse
Affiliation(s)
| | - Ekansh Sareen
- Medical Image Processing Laboratory, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Tamara Del-Aguila Puntas
- Laboratorio de Psicobiologia, Departmento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Spain
| | - Alessandra Griffa
- Medical Image Processing Laboratory, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Switzerland; Leenaards Memory Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, KU Leuven, Belgium
| | - Daniele Marinazzo
- Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | | | - Enrico Amico
- Medical Image Processing Laboratory, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Switzerland.
| |
Collapse
|
11
|
Arutiunian V, Arcara G, Buyanova I, Davydova E, Pereverzeva D, Sorokin A, Tyushkevich S, Mamokhina U, Danilina K, Dragoy O. Neuromagnetic 40 Hz Auditory Steady-State Response in the left auditory cortex is related to language comprehension in children with Autism Spectrum Disorder. Prog Neuropsychopharmacol Biol Psychiatry 2023; 122:110690. [PMID: 36470421 DOI: 10.1016/j.pnpbp.2022.110690] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/06/2022] [Accepted: 11/29/2022] [Indexed: 12/08/2022]
Abstract
Language impairment is comorbid in most children with Autism Spectrum Disorder (ASD), but its neural mechanisms are still poorly understood. Some studies hypothesize that the atypical low-level sensory perception in the auditory cortex accounts for the abnormal language development in these children. One of the potential non-invasive measures of such low-level perception can be the cortical gamma-band oscillations registered with magnetoencephalography (MEG), and 40 Hz Auditory Steady-State Response (40 Hz ASSR) is a reliable paradigm for eliciting auditory gamma response. Although there is research in children with and without ASD using 40 Hz ASSR, nothing is known about the relationship between this auditory response in children with ASD and their language abilities measured directly in formal assessment. In the present study, we used MEG and individual brain models to investigate 40 Hz ASSR in primary-school-aged children with and without ASD. It was also used to assess how the strength of the auditory response is related to language abilities of children with ASD, their non-verbal IQ, and social functioning. A total of 40 children were included in the study. The results demonstrated that 40 Hz ASSR was reduced in the right auditory cortex in children with ASD when comparing them to typically developing controls. Importantly, our study provides the first evidence of the association between 40 Hz ASSR in the language-dominant left auditory cortex and language comprehension in children with ASD. This link was domain-specific because the other brain-behavior correlations were non-significant.
Collapse
Affiliation(s)
| | | | - Irina Buyanova
- Center for Language and Brain, HSE University, Moscow, Russia
| | - Elizaveta Davydova
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia; Chair of Differential Psychology and Psychophysiology, Moscow State University of Psychology and Education, Moscow, Russia
| | - Darya Pereverzeva
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
| | - Alexander Sorokin
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia; Haskins Laboratories, New Haven, CT, United States of America
| | - Svetlana Tyushkevich
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
| | - Uliana Mamokhina
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
| | - Kamilla Danilina
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
| | - Olga Dragoy
- Center for Language and Brain, HSE University, Moscow, Russia; Institute of Linguistics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Wang Y, Zhang Y, Hou P, Dong G, Shi L, Li W, Wei R, Li X. Excitability changes induced in the human auditory cortex by transcranial alternating current stimulation. Neurosci Lett 2023; 792:136960. [PMID: 36372094 DOI: 10.1016/j.neulet.2022.136960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Transcranial alternating current stimulation (tACS) has been widely studied for its ability to regulate motor, perceptual, and cognitive functions. Given the unique frequency specificity of tACS, it is expected to directly target rhythmic activity in the typical electroencephalogram (EEG) range. After tACS stimulation, changes in stimulation-induced and evoked activities can be inspected. Detecting changes in auditory evoked activity after different frequencies of tACS stimulation will be helpful for further revealing the influence of tACS on the excitation/inhibition of γ activity in the auditory cortex. Using a randomized repeated measures design, this study assessed the effects of alpha(α)-tACS and gamma(γ)-tACS on the auditory steady-state response (ASSR) in 11 normal-hearing participants. Participants attended four sessions held at least one week apart, receiving tACS or sham treatment. The results indicated that α-tACS had an inhibitory effect on 40-Hz ASSR compared to both γ-tACS and sham tACS, which occurred 30 min after stimulation. Taken together, these findings contribute to the understanding of tACS-induced excitability changes in the human auditory cortex, helping reveal the neurophysiological changes after tACS.
Collapse
Affiliation(s)
- Yao Wang
- Department of Biomedical Engineering, School of Life Sciences, Tiangong University, Tianjin 300387, China; School of Precision Instruments and Optoelectronics Engineering Tianjin University, Tianjin University, Tianjin 300072, China
| | - Yue Zhang
- Department of Biomedical Engineering, School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Peiyun Hou
- Department of Biomedical Engineering, School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Gaoyuan Dong
- School of Electrical and Electronic Engineering, Tiangong University, Tianjin 300387, China
| | - Limeng Shi
- Department of Biomedical Engineering, School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Weiming Li
- Department of Biomedical Engineering, School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Ran Wei
- Department of Biomedical Engineering, School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Xiaojie Li
- Department of Biomedical Engineering, School of Life Sciences, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
13
|
Rahimi V, Mohammadkhani G, Alaghband Rad J, Mousavi SZ, Khalili ME. Modulation of auditory temporal processing, speech in noise perception, auditory-verbal memory, and reading efficiency by anodal tDCS in children with dyslexia. Neuropsychologia 2022; 177:108427. [PMID: 36410540 DOI: 10.1016/j.neuropsychologia.2022.108427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/30/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Dyslexia is a neurodevelopmental disorder that is prevalent in children. It is estimated that 30-50% of individuals diagnosed with dyslexia also manifest an auditory perceptual deficit characteristic of auditory processing disorder (APD). Some studies suggest that defects in basic auditory processing can lead to phonological defects as the most prominent cause of dyslexia. Thus, in some cases, there may be interrelationships between dyslexia and some of the aspects of central auditory processing. In recent years, transcranial direct current stimulation (tDCS) has been used as a safe method for the modulation of central auditory processing aspects in healthy adults and reading skills in children with dyslexia. Therefore, the objectives of our study were to investigate the effect of tDCS on the modulation of different aspects of central auditory processing, aspects of reading, and the relationship between these two domains in dyslexic children with APD. A within-subjects design was employed to investigate the effect of two electrode arrays (the anode on the left STG (AC)/cathode on the right shoulder and anode on the left STG/cathode on the right STG) on auditory temporal processing; speech-in-noise perception, short-term auditory memory; and high-frequency word, low-frequency word, pseudoword, and text reading. The results of this clinical trial showed the modulation of the studied variables in central auditory processing and the accuracy and speed of reading variables compared to the control and sham statuses in both electrode arrays. Our results also showed that the improvement of the accuracy and speed of text reading, as well as the accuracy of pseudoword reading were related to the improvement of speech in noise perception and temporal processing. The results of this research can be effective in clarifying the basis of the neurobiology of dyslexia and, in particular, the hypothesis of the role of basic auditory processing and subsequently the role of the auditory cortex in dyslexia. These results might provide a framework to facilitate behavioral rehabilitation in dyslexic children with APD.
Collapse
Affiliation(s)
- Vida Rahimi
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Science, Tehran, Iran
| | - Ghassem Mohammadkhani
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Science, Tehran, Iran.
| | - Javad Alaghband Rad
- Department of Psychiatry, Tehran University of Medical Sciences, Roozbeh Hospital, Tehran, Iran
| | - Seyyedeh Zohre Mousavi
- Department of Speech Therapy, School of Rehabilitation, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Ehsan Khalili
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
14
|
de la Salle S, Shah U, Hyde M, Baysarowich R, Aidelbaum R, Choueiry J, Knott V. Synchronized Auditory Gamma Response to Frontal Transcranial Direct Current Stimulation (tDCS) and its Inter-Individual Variation in Healthy Humans. Clin EEG Neurosci 2022; 53:472-483. [PMID: 35491558 DOI: 10.1177/15500594221098285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In schizophrenia, a disorder associated with N-methyl-D-aspartate receptor (NMDAR) hypofunction, auditory cortical plasticity deficits have been indexed by the synchronized electroencephalographic (EEG) auditory steady-state gamma-band (40-Hz) response (ASSR) and the early auditory evoked gamma-band response (aeGBR), both considered to be target engagement biomarkers for NMDAR function, and potentially amenable to treatment by NMDAR modulators. As transcranial direct current stimulation (tDCS) is likely dependent on NMDAR neurotransmission, this preliminary study, conducted in 30 healthy volunteers, assessed the off-line effects of prefrontal anodal tDCS and sham (placebo) treatment on 40-Hz ASSR and aeGBR. Anodal tDCS failed to alter aeGBR but increased both 40-Hz ASSR power, as measured by event-related spectral perturbations (ERSP), and phase locking, as measured by inter-trial phase consistency (ITPC). Inter-individual differences in tDCS-induced increases in ERSP were negatively related to baseline ERSPs. These findings provide tentative support for further study of tDCS as a potential NMDAR neuromodulatory intervention for synchronized auditory gamma response deficits.
Collapse
Affiliation(s)
- Sara de la Salle
- 580059The Royal's Institute of Mental Health Research, Ottawa, ON, Canada
| | - Urusa Shah
- Neuroscience, 6339Carleton University, Ottawa, ON, Canada
| | - Molly Hyde
- Department of Cellular and Molecular Medicine, 6363University of Ottawa, Ottawa, ON, Canada
| | - Renee Baysarowich
- Department of Cellular and Molecular Medicine, 6363University of Ottawa, Ottawa, ON, Canada
| | - Robert Aidelbaum
- School of Psychology, 6339Carleton University, Ottawa, ON, Canada
| | - Joëlle Choueiry
- 580059The Royal's Institute of Mental Health Research, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, 6363University of Ottawa, Ottawa, ON, Canada
| | - Verner Knott
- 580059The Royal's Institute of Mental Health Research, Ottawa, ON, Canada.,Neuroscience, 6339Carleton University, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, 6363University of Ottawa, Ottawa, ON, Canada.,School of Psychology, 6339Carleton University, Ottawa, ON, Canada
| |
Collapse
|
15
|
Masina F, Montemurro S, Marino M, Manzo N, Pellegrino G, Arcara G. State-dependent tDCS modulation of the somatomotor network: A MEG study. Clin Neurophysiol 2022; 142:133-142. [PMID: 36037749 DOI: 10.1016/j.clinph.2022.07.508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/13/2022] [Accepted: 07/30/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Transcranial direct current stimulation (tDCS) is a non-invasive technique widely used to investigate brain excitability and activity. However, the variability in both brain and behavioral responses to tDCS limits its application for clinical purposes. This study aims to shed light on state-dependency, a phenomenon that contributes to the variability of tDCS. METHODS To this aim, we investigated changes in spectral activity and functional connectivity in somatomotor regions after Real and Sham tDCS using generalized additive mixed models (GAMMs), which allowed us to investigate how modulation depends on the initial state of the brain. RESULTS Results showed that changes in spectral activity, but not connectivity, in the somatomotor regions depend on the initial state of the brain, confirming state-dependent effects. Specifically, we found a non-linear interaction between stimulation conditions (Real vs Sham) and initial state: a reduction of alpha and beta power was observed only in participants that had higher alpha and beta power before Real tDCS. CONCLUSIONS This study highlights the importance of considering state-dependency to tDCS and shows how it can be taken into account with appropriate statistical models. SIGNIFICANCE Our findings bear insight into tDCS mechanisms, potentially leading to discriminate between tDCS responders and non-responders.
Collapse
Affiliation(s)
| | | | - Marco Marino
- IRCCS San Camillo Hospital, Venice, Italy; Department of Movement Sciences, Research Center for Motor Control and Neuroplasticity, KU Leuven, Belgium.
| | - Nicoletta Manzo
- IRCCS San Camillo Hospital, Venice, Italy; Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy.
| | | | | |
Collapse
|
16
|
Stimulation with acoustic white noise enhances motor excitability and sensorimotor integration. Sci Rep 2022; 12:13108. [PMID: 35907889 PMCID: PMC9338990 DOI: 10.1038/s41598-022-17055-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
Auditory white noise (WN) is widely used in neuroscience to mask unwanted environmental noise and cues, e.g. TMS clicks. However, to date there is no research on the influence of WN on corticospinal excitability and potentially associated sensorimotor integration itself. Here we tested the hypothesis, if WN induces M1 excitability changes and improves sensorimotor performance. M1 excitability (spTMS, SICI, ICF, I/O curve) and sensorimotor reaction-time performance were quantified before, during and after WN stimulation in a set of experiments performed in a cohort of 61 healthy subjects. WN enhanced M1 corticospinal excitability, not just during exposure, but also during silence periods intermingled with WN, and up to several minutes after the end of exposure. Two independent behavioural experiments highlighted that WN improved multimodal sensorimotor performance. The enduring excitability modulation combined with the effects on behaviour suggest that WN might induce neural plasticity. WN is thus a relevant modulator of corticospinal function; its neurobiological effects should not be neglected and could in fact be exploited in research applications.
Collapse
|
17
|
Schuler AL, Ferrazzi G, Colenbier N, Arcara G, Piccione F, Ferreri F, Marinazzo D, Pellegrino G. Auditory driven gamma synchrony is associated with cortical thickness in widespread cortical areas. Neuroimage 2022; 255:119175. [PMID: 35390460 PMCID: PMC9168448 DOI: 10.1016/j.neuroimage.2022.119175] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/20/2022] [Accepted: 04/02/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Gamma synchrony is a fundamental functional property of the cerebral cortex, impaired in multiple neuropsychiatric conditions (i.e. schizophrenia, Alzheimer's disease, stroke etc.). Auditory stimulation in the gamma range allows to drive gamma synchrony of the entire cortical mantle and to estimate the efficiency of the mechanisms sustaining it. As gamma synchrony depends strongly on the interplay between parvalbumin-positive interneurons and pyramidal neurons, we hypothesize an association between cortical thickness and gamma synchrony. To test this hypothesis, we employed a combined magnetoencephalography (MEG) - Magnetic Resonance Imaging (MRI) study. METHODS Cortical thickness was estimated from anatomical MRI scans. MEG measurements related to exposure of 40 Hz amplitude modulated tones were projected onto the cortical surface. Two measures of cortical synchrony were considered: (a) inter-trial phase consistency at 40 Hz, providing a vertex-wise estimation of gamma synchronization, and (b) phase-locking values between primary auditory cortices and whole cortical mantle, providing a measure of long-range cortical synchrony. A correlation between cortical thickness and synchronization measures was then calculated for 72 MRI-MEG scans. RESULTS Both inter-trial phase consistency and phase locking values showed a significant positive correlation with cortical thickness. For inter-trial phase consistency, clusters of strong associations were found in the temporal and frontal lobes, especially in the bilateral auditory and pre-motor cortices. Higher phase-locking values corresponded to higher cortical thickness in the frontal, temporal, occipital and parietal lobes. DISCUSSION AND CONCLUSIONS In healthy subjects, a thicker cortex corresponds to higher gamma synchrony and connectivity in the primary auditory cortex and beyond, likely reflecting underlying cell density involved in gamma circuitries. This result hints towards an involvement of gamma synchrony together with underlying brain structure in brain areas for higher order cognitive functions. This study contributes to the understanding of inherent cortical functional and structural brain properties, which might in turn constitute the basis for the definition of useful biomarkers in patients showing aberrant gamma synchronization.
Collapse
Affiliation(s)
| | - Giulio Ferrazzi
- IRCCS San Camillo Hospital, Via Alberoni 70, Venice 30126, Italy
| | - Nigel Colenbier
- IRCCS San Camillo Hospital, Via Alberoni 70, Venice 30126, Italy
| | - Giorgio Arcara
- IRCCS San Camillo Hospital, Via Alberoni 70, Venice 30126, Italy
| | | | - Florinda Ferreri
- Unit of Neurology, Unit of Clinical Neurophysiology, Study Center of Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua, Italy; Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Daniele Marinazzo
- Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University
| | | |
Collapse
|
18
|
Arutiunian V, Arcara G, Buyanova I, Gomozova M, Dragoy O. The age-related changes in 40 Hz Auditory Steady-State Response and sustained Event-Related Fields to the same amplitude-modulated tones in typically developing children: A magnetoencephalography study. Hum Brain Mapp 2022; 43:5370-5383. [PMID: 35833318 PMCID: PMC9812253 DOI: 10.1002/hbm.26013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 01/15/2023] Open
Abstract
Recent studies have revealed that gamma-band oscillatory and transient evoked potentials may change with age during childhood. It is hypothesized that these changes can be associated with a maturation of GABAergic neurotransmission and, subsequently, the age-related changes of excitation-inhibition balance in the neural circuits. One of the reliable paradigms for investigating these effects in the auditory cortex is 40 Hz Auditory Steady-State Response (ASSR), where participants are presented with the periodic auditory stimuli. It is known that such stimuli evoke two types of responses in magnetoencephalography (MEG)-40 Hz steady-state gamma response (or 40 Hz ASSR) and auditory evoked response called sustained Event-Related Field (ERF). Although several studies have been conducted in children, focusing on the changes of 40 Hz ASSR with age, almost nothing is known about the age-related changes of the sustained ERF to the same periodic stimuli and their relationships with changes in the gamma strength. Using MEG, we investigated the association between 40 Hz steady-state gamma response and sustained ERF response to the same stimuli and also their age-related changes in the group of 30 typically developing 7-to-12-year-old children. The results revealed a tight relationship between 40 Hz ASSR and ERF, indicating that the age-related increase in strength of 40 Hz ASSR was associated with the age-related decrease of the amplitude of ERF. These effects were discussed in the light of the maturation of the GABAergic system and excitation-inhibition balance development, which may contribute to the changes in ASSR and ERF.
Collapse
Affiliation(s)
| | | | | | | | - Olga Dragoy
- Center for Language and BrainHSE UniversityMoscowRussia,Institute of LinguisticsRussian Academy of SciencesMoscowRussia
| |
Collapse
|
19
|
Resting state network connectivity is attenuated by fMRI acoustic noise. Neuroimage 2021; 247:118791. [PMID: 34920084 DOI: 10.1016/j.neuroimage.2021.118791] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/21/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION During the past decades there has been an increasing interest in tracking brain network fluctuations in health and disease by means of resting state functional magnetic resonance imaging (rs-fMRI). Rs-fMRI however does not provide the ideal environmental setting, as participants are continuously exposed to noise generated by MRI coils during acquisition of Echo Planar Imaging (EPI). We investigated the effect of EPI noise on resting state activity and connectivity using magnetoencephalography (MEG), by reproducing the acoustic characteristics of rs-fMRI environment during the recordings. As compared to fMRI, MEG has little sensitivity to brain activity generated in deep brain structures, but has the advantage to capture both the dynamic of cortical magnetic oscillations with high temporal resolution and the slow magnetic fluctuations highly correlated with BOLD signal. METHODS Thirty healthy subjects were enrolled in a counterbalanced design study including three conditions: a) silent resting state (Silence), b) resting state upon EPI noise (fMRI), and c) resting state upon white noise (White). White noise was employed to test the specificity of fMRI noise effect. The amplitude envelope correlation (AEC) in alpha band measured the connectivity of seven Resting State Networks (RSN) of interest (default mode network, dorsal attention network, language, left and right auditory and left and right sensory-motor). Vigilance dynamic was estimated from power spectral activity. RESULTS fMRI and White acoustic noise consistently reduced connectivity of cortical networks. The effects were widespread, but noise and network specificities were also present. For fMRI noise, decreased connectivity was found in the right auditory and sensory-motor networks. Progressive increase of slow theta-delta activity related to drowsiness was found in all conditions, but was significantly higher for fMRI . Theta-delta significantly and positively correlated with variations of cortical connectivity. DISCUSSION rs-fMRI connectivity is biased by unavoidable environmental factors during scanning, which warrant more careful control and improved experimental designs. MEG is free from acoustic noise and allows a sensitive estimation of resting state connectivity in cortical areas. Although underutilized, MEG could overcome issues related to noise during fMRI, in particular when investigation of motor and auditory networks is needed.
Collapse
|
20
|
Cortese AM, Cacciante L, Schuler AL, Turolla A, Pellegrino G. Cortical Thickness of Brain Areas Beyond Stroke Lesions and Sensory-Motor Recovery: A Systematic Review. Front Neurosci 2021; 15:764671. [PMID: 34803596 PMCID: PMC8595399 DOI: 10.3389/fnins.2021.764671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The clinical outcome of patients suffering from stroke is dependent on multiple factors. The features of the lesion itself play an important role but clinical recovery is remarkably influenced by the plasticity mechanisms triggered by the stroke and occurring at a distance from the lesion. The latter translate into functional and structural changes of which cortical thickness might be easy to quantify one of the main players. However, studies on the changes of cortical thickness in brain areas beyond stroke lesion and their relationship to sensory-motor recovery are sparse. Objectives: To evaluate the effects of cerebral stroke on cortical thickness (CT) beyond the stroke lesion and its association with sensory-motor recovery. Materials and Methods: Five electronic databases (PubMed, Embase, Web of Science, Scopus and the Cochrane Library) were searched. Methodological quality of the included studies was assessed with the Newcastle-Ottawa Scale for non-randomized controlled trials and the Risk of Bias Cochrane tool for randomized controlled trials. Results: The search strategy retrieved 821 records, 12 studies were included and risk of bias assessed. In most of the included studies, cortical thinning was seen at the ipsilesional motor area (M1). Cortical thinning can occur beyond the stroke lesion, typically in regions anatomically connected because of anterograde degeneration. Nonetheless, studies also reported cortical thickening of regions of the unaffected hemisphere, likely related to compensatory plasticity. Some studies revealed a significant correlation between changes in cortical thickness of M1 or somatosensory (S1) cortical areas and motor function recovery. Discussion and Conclusions: Following a stroke, changes in cortical thickness occur both in regions directly connected to the stroke lesion and in contralateral hemisphere areas as well as in the cerebellum. The underlying mechanisms leading to these changes in cortical thickness are still to be fully understood and further research in the field is needed. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020200539; PROSPERO 2020, identifier: CRD42020200539.
Collapse
Affiliation(s)
- Anna Maria Cortese
- Laboratory of Rehabilitation Technologies, San Camillo Istituto di Ricovero e Cura a Carattere Scientifico, Venice, Italy
| | - Luisa Cacciante
- Laboratory of Rehabilitation Technologies, San Camillo Istituto di Ricovero e Cura a Carattere Scientifico, Venice, Italy
| | - Anna-Lisa Schuler
- Laboratory of Clinical Imaging and Stimulation, San Camillo Istituto di Ricovero e Cura a Carattere Scientifico, Venice, Italy
| | - Andrea Turolla
- Laboratory of Rehabilitation Technologies, San Camillo Istituto di Ricovero e Cura a Carattere Scientifico, Venice, Italy
| | - Giovanni Pellegrino
- Laboratory of Clinical Imaging and Stimulation, San Camillo Istituto di Ricovero e Cura a Carattere Scientifico, Venice, Italy
| |
Collapse
|
21
|
Pellegrino G, Hedrich T, Sziklas V, Lina J, Grova C, Kobayashi E. How cerebral cortex protects itself from interictal spikes: The alpha/beta inhibition mechanism. Hum Brain Mapp 2021; 42:3352-3365. [PMID: 34002916 PMCID: PMC8249896 DOI: 10.1002/hbm.25422] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/05/2021] [Indexed: 11/10/2022] Open
Abstract
Interactions between interictal epileptiform discharges (IEDs) and distant cortical regions subserve potential effects on cognition of patients with focal epilepsy. We hypothesize that "healthy" brain areas at a distance from the epileptic focus may respond to the interference of IEDs by generating inhibitory alpha and beta oscillations. We predict that more prominent alpha-beta oscillations can be found in patients with less impaired neurocognitive profile. We performed a source imaging magnetoencephalography study, including 41 focal epilepsy patients: 21 with frontal lobe epilepsy (FLE) and 20 with mesial temporal lobe epilepsy. We investigated the effect of anterior (i.e., frontal and temporal) IEDs on the oscillatory pattern over posterior head regions. We compared cortical oscillations (5-80 Hz) temporally linked to 3,749 IEDs (1,945 frontal and 1,803 temporal) versus an equal number of IED-free segments. We correlated results from IED triggered oscillations to global neurocognitive performance. Only frontal IEDs triggered alpha-beta oscillations over posterior head regions. IEDs with higher amplitude triggered alpha-beta oscillations of higher magnitude. The intensity of posterior head region alpha-beta oscillations significantly correlated with a better neuropsychological profile. Our study demonstrated that cerebral cortex protects itself from IEDs with generation of inhibitory alpha-beta oscillations at distant cortical regions. The association of more prominent oscillations with a better cognitive status suggests that this mechanism might play a role in determining the cognitive resilience in patients with FLE.
Collapse
Affiliation(s)
- Giovanni Pellegrino
- Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | - Tanguy Hedrich
- Department of Biomedical Engineering, Multimodal Functional Imaging LabMcGill UniversityMontrealQuebecCanada
| | - Viviane Sziklas
- Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | - Jean‐Marc Lina
- Departement de Genie ElectriqueEcole de Technologie SuperieureMontrealQuebecCanada
- Centre De Recherches En MathematiquesMontrealQuebecCanada
| | - Christophe Grova
- Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
- Department of Biomedical Engineering, Multimodal Functional Imaging LabMcGill UniversityMontrealQuebecCanada
- Centre De Recherches En MathematiquesMontrealQuebecCanada
- Department of Physics and PERFORM CentreConcordia UniversityMontrealQuebecCanada
| | - Eliane Kobayashi
- Department of Neurology and Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
22
|
Masina F, Arcara G, Galletti E, Cinque I, Gamberini L, Mapelli D. Neurophysiological and behavioural effects of conventional and high definition tDCS. Sci Rep 2021; 11:7659. [PMID: 33828202 PMCID: PMC8027218 DOI: 10.1038/s41598-021-87371-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/26/2021] [Indexed: 11/09/2022] Open
Abstract
High-definition transcranial direct current stimulation (HD-tDCS) seems to overcome a drawback of traditional bipolar tDCS: the wide-spread diffusion of the electric field. Nevertheless, most of the differences that characterise the two techniques are based on mathematical simulations and not on real, behavioural and neurophysiological, data. The study aims to compare a widespread tDCS montage (i.e., a Conventional bipolar montage with extracephalic return electrode) and HD-tDCS, investigating differences both at a behavioural level, in terms of dexterity performance, and a neurophysiological level, as modifications of alpha and beta power as measured with EEG. Thirty participants took part in three sessions, one for each montage: Conventional tDCS, HD-tDCS, and sham. In all the conditions, the anode was placed over C4, while the cathode/s placed according to the montage. At baseline, during, and after each stimulation condition, dexterity was assessed with a Finger Tapping Task. In addition, resting-state EEG was recorded at baseline and after the stimulation. Power spectrum density was calculated, selecting two frequency bands: alpha (8-12 Hz) and beta (18-22 Hz). Linear mixed effect models (LMMs) were used to analyse the modulation induced by tDCS. To evaluate differences among the montages and consider state-dependency phenomenon, the post-stimulation measurements were covariate-adjusted for baseline levels. We observed that HD-tDCS induced an alpha power reduction in participants with lower alpha at baseline. Conversely, Conventional tDCS induced a beta power reduction in participants with higher beta at baseline. Furthermore, data showed a trend towards a behavioural effect of HD-tDCS in participants with lower beta at baseline showing faster response times. Conventional and HD-tDCS distinctively modulated cortical activity. The study highlights the importance of considering state-dependency to determine the effects of tDCS on individuals.
Collapse
Affiliation(s)
- Fabio Masina
- IRCCS San Camillo Hospital, Venice, Italy. .,Human Inspired Technologies Research Center, University of Padova, Padua, Italy.
| | | | - Eleonora Galletti
- Department of General Psychology, University of Padova, Padua, Italy
| | - Isabella Cinque
- Department of General Psychology, University of Padova, Padua, Italy
| | - Luciano Gamberini
- Human Inspired Technologies Research Center, University of Padova, Padua, Italy.,Department of General Psychology, University of Padova, Padua, Italy
| | - Daniela Mapelli
- Human Inspired Technologies Research Center, University of Padova, Padua, Italy.,Department of General Psychology, University of Padova, Padua, Italy
| |
Collapse
|
23
|
Kierońska S, Świtońska M, Meder G, Piotrowska M, Sokal P. Tractography Alterations in the Arcuate and Uncinate Fasciculi in Post-Stroke Aphasia. Brain Sci 2021; 11:brainsci11010053. [PMID: 33466403 PMCID: PMC7824889 DOI: 10.3390/brainsci11010053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 01/01/2023] Open
Abstract
Fiber tractography based on diffuse tensor imaging (DTI) can reveal three-dimensional white matter connectivity of the human brain. Tractography is a non-invasive method of visualizing cerebral white matter structures in vivo, including neural pathways surrounding the ischemic area. DTI may be useful for elucidating alterations in brain connectivity resulting from neuroplasticity after stroke. We present a case of a male patient who developed significant mixed aphasia following ischemic stroke. The patient had been treated by mechanical thrombectomy followed by an early rehabilitation, in conjunction with transcranial direct current stimulation (tDCS). DTI was used to examine the arcuate fasciculus and uncinate fasciculus upon admission and again at three months post-stroke. Results showed an improvement in the patient’s symptoms of aphasia, which was associated with changes in the volume and numbers of tracts in the uncinate fasciculus and the arcuate fasciculus.
Collapse
Affiliation(s)
- Sara Kierońska
- Department of Neurosurgery and Neurology, Jan Biziel University Hospital No. 2, Collegium Medicum, Nicolaus Copernicus University, 85-168 Bydgoszcz, Poland; (S.K.); (M.Ś.); (M.P.)
| | - Milena Świtońska
- Department of Neurosurgery and Neurology, Jan Biziel University Hospital No. 2, Collegium Medicum, Nicolaus Copernicus University, 85-168 Bydgoszcz, Poland; (S.K.); (M.Ś.); (M.P.)
- Faculty of Health Science, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland
| | - Grzegorz Meder
- Department of Interventional Radiology, Jan Biziel University Hospital No. 2, 85-168 Bydgoszcz, Poland;
| | - Magdalena Piotrowska
- Department of Neurosurgery and Neurology, Jan Biziel University Hospital No. 2, Collegium Medicum, Nicolaus Copernicus University, 85-168 Bydgoszcz, Poland; (S.K.); (M.Ś.); (M.P.)
| | - Paweł Sokal
- Department of Neurosurgery and Neurology, Jan Biziel University Hospital No. 2, Collegium Medicum, Nicolaus Copernicus University, 85-168 Bydgoszcz, Poland; (S.K.); (M.Ś.); (M.P.)
- Faculty of Health Science, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland
- Correspondence: ; Tel.: +48-600954415
| |
Collapse
|
24
|
Wang Y, Dong G, Shi L, Yang T, Chen R, Wang H, Han G. Depression of auditory cortex excitability by transcranial alternating current stimulation. Neurosci Lett 2020; 742:135559. [PMID: 33359048 DOI: 10.1016/j.neulet.2020.135559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 11/27/2022]
Abstract
Transcranial alternating current stimulation (tACS) is a type of noninvasive brain stimulation technique that has been shown to modulate motor, cognitive and memory function. Direct electrophysiological evidence of an interaction between tACS and the auditory cortex excitability has rarely been reported. Different stimulation parameters and areas of tACS may have different influence on the regulatory results. In this study, 11-Hz tACS was applied to the auditory cortex of 12 subjects with normal hearing in order to explore its effects on the auditory steady-state response (ASSR). The results indicate that tACS has an inhibitory effect on 40-Hz ASSR. In addition, EEG source analysis shows that 11-Hz tACS may enhance the activity of the middle temporal gyrus under both sham and real conditions, while the estimated source activity of the posterior cingulate gyrus may be reduced under real condition. The results reveal that tACS applied to the temporal lobe of humans will make the 40-Hz ASSR a tendency to decrease, and help improve the understanding of modulation of tACS-induced auditory cortex excitability changes in humans.
Collapse
Affiliation(s)
- Yao Wang
- School of Electronics & Information Engineering, Tiangong University, Tianjin, 300387, China; Department of Biomedical Engineering, School of Life Sciences, Tiangong University, Tianjin, 300387, China; School of Precision Instruments and Optoelectronics Engineering Tianjin University, Tianjin University, Tianjin, 300072, China
| | - Gaoyuan Dong
- School of Electronics & Information Engineering, Tiangong University, Tianjin, 300387, China
| | - Limeng Shi
- Department of Biomedical Engineering, School of Life Sciences, Tiangong University, Tianjin, 300387, China
| | - Tianshun Yang
- School of Electronics & Information Engineering, Tiangong University, Tianjin, 300387, China
| | - Ruijuan Chen
- School of Electronics & Information Engineering, Tiangong University, Tianjin, 300387, China; Department of Biomedical Engineering, School of Life Sciences, Tiangong University, Tianjin, 300387, China
| | - Huiquan Wang
- School of Electronics & Information Engineering, Tiangong University, Tianjin, 300387, China; Department of Biomedical Engineering, School of Life Sciences, Tiangong University, Tianjin, 300387, China; School of Precision Instruments and Optoelectronics Engineering Tianjin University, Tianjin University, Tianjin, 300072, China
| | - Guang Han
- School of Electronics & Information Engineering, Tiangong University, Tianjin, 300387, China; Department of Biomedical Engineering, School of Life Sciences, Tiangong University, Tianjin, 300387, China; School of Precision Instruments and Optoelectronics Engineering Tianjin University, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
25
|
Effects of Transcranial Electrical Stimulation on Human Auditory Processing and Behavior-A Review. Brain Sci 2020; 10:brainsci10080531. [PMID: 32784358 PMCID: PMC7464917 DOI: 10.3390/brainsci10080531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 01/11/2023] Open
Abstract
Transcranial electrical stimulation (tES) can adjust the membrane potential by applying a weak current on the scalp to change the related nerve activity. In recent years, tES has proven its value in studying the neural processes involved in human behavior. The study of central auditory processes focuses on the analysis of behavioral phenomena, including sound localization, auditory pattern recognition, and auditory discrimination. To our knowledge, studies on the application of tES in the field of hearing and the electrophysiological effects are limited. Therefore, we reviewed the neuromodulatory effect of tES on auditory processing, behavior, and cognitive function and have summarized the physiological effects of tES on the auditory cortex.
Collapse
|
26
|
Griskova-Bulanova I, Sveistyte K, Bjekic J. Neuromodulation of Gamma-Range Auditory Steady-State Responses: A Scoping Review of Brain Stimulation Studies. Front Syst Neurosci 2020; 14:41. [PMID: 32714158 PMCID: PMC7344212 DOI: 10.3389/fnsys.2020.00041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/02/2020] [Indexed: 11/29/2022] Open
Abstract
Neural oscillations represent a fundamental mechanism that enables coordinated action during normal brain functioning. Auditory steady-state responses (ASSRs) are used to test the ability to generate gamma-range activity. Different non-invasive brain stimulation (NIBS) techniques have the potential to modulate neural activation patterns that are aberrant in a variety of neuropsychiatric disorders. Here, we summarize the current state of knowledge on how different methods of NIBS (transcranial altering current stimulation—tACS, transcranial direct current stimulation—tDCS, transcranial random noise stimulation—tRNS, paired associative stimulation—PAS, repetitive transcranial magnetic stimulation—rTMS) affect the gamma-range ASSRs in both healthy and clinical populations. We show that the current research has been far from systematic and methodologically heterogeneous. Nevertheless, some brain stimulation techniques, especially tACS and rTMS show strong potential for further exploration. We outline the main findings and provide directions for further research into neuromodulation of ASSRs as a promising biomarker of different psychopathological conditions such as schizophrenia, bipolar disorder, attention deficit hyperactivity disorder (ADHD), autism.
Collapse
Affiliation(s)
| | - Kristina Sveistyte
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Jovana Bjekic
- Human Neuroscience Group, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
27
|
Pellegrino G, Xu M, Alkuwaiti A, Porras-Bettancourt M, Abbas G, Lina JM, Grova C, Kobayashi E. Effects of Independent Component Analysis on Magnetoencephalography Source Localization in Pre-surgical Frontal Lobe Epilepsy Patients. Front Neurol 2020; 11:479. [PMID: 32582009 PMCID: PMC7280485 DOI: 10.3389/fneur.2020.00479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/01/2020] [Indexed: 01/18/2023] Open
Abstract
Objective: Magnetoencephalography source imaging (MSI) of interictal epileptiform discharges (IED) is a useful presurgical tool in the evaluation of drug-resistant frontal lobe epilepsy (FLE) patients. Yet, failures in MSI can arise related to artifacts and to interference of background activity. Independent component analysis (ICA) is a popular denoising procedure but its clinical application remains challenging, as the selection of multiple independent components (IC) is controversial, operator dependent, and time consuming. We evaluated whether selecting only one IC of interest based on its similarity with the average IED field improves MSI in FLE. Methods: MSI was performed with the equivalent current dipole (ECD) technique and two distributed magnetic source imaging (dMSI) approaches: minimum norm estimate (MNE) and coherent Maximum Entropy on the Mean (cMEM). MSI accuracy was evaluated under three conditions: (1) ICA of continuous data (Cont_ICA), (2) ICA at the time of IED (IED_ICA), and (3) without ICA (No_ICA). Localization performance was quantitatively measured as actual distance of the source maximum in relation to the focus (Dmin), and spatial dispersion (SD) for dMSI. Results: After ICA, ECD Dmin did not change significantly (p > 0.200). For both dMSI techniques, ICA application worsened the source localization accuracy. We observed a worsening of both MNE Dmin (p < 0.05, consistently) and MNE SD (p < 0.001, consistently) for both ICA approaches. A similar behaviour was observed for cMEM, for which, however, Cont_ICA seemed less detrimental. Conclusion: We demonstrated that a simplified ICA approach selecting one IC of interest in combination with distributed magnetic source imaging can be detrimental. More complex approaches may provide better results but would be rather difficult to apply in real-world clinical setting. In a broader perspective, caution should be taken in applying ICA for source localization of interictal activity. To ensure optimal and useful results, effort should focus on acquiring good quality data, minimizing artifacts, and determining optimal candidacy for MEG, rather than counting on data cleaning techniques.
Collapse
Affiliation(s)
- Giovanni Pellegrino
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Min Xu
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Abdulla Alkuwaiti
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Manuel Porras-Bettancourt
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Ghada Abbas
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jean-Marc Lina
- Multimodal Functional Imaging Laboratory, Biomedical Engineering Department, McGill University, Montreal, QC, Canada.,Département de Génie Électrique, École de Technologie Supérieure, Montreal, QC, Canada.,Centre de Recherches Mathematiques, Univeristé de Montréal, Montreal, QC, Canada
| | - Christophe Grova
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Multimodal Functional Imaging Laboratory, Biomedical Engineering Department, McGill University, Montreal, QC, Canada.,Département de Génie Électrique, École de Technologie Supérieure, Montreal, QC, Canada.,Physics Department and PERFORM Centre, Concordia University, Montreal, QC, Canada
| | - Eliane Kobayashi
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
28
|
Pellegrino G, Hedrich T, Porras-Bettancourt M, Lina JM, Aydin Ü, Hall J, Grova C, Kobayashi E. Accuracy and spatial properties of distributed magnetic source imaging techniques in the investigation of focal epilepsy patients. Hum Brain Mapp 2020; 41:3019-3033. [PMID: 32386115 PMCID: PMC7336148 DOI: 10.1002/hbm.24994] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/18/2020] [Accepted: 03/11/2020] [Indexed: 02/03/2023] Open
Abstract
Source localization of interictal epileptiform discharges (IEDs) is clinically useful in the presurgical workup of epilepsy patients. We aimed to compare the performance of four different distributed magnetic source imaging (dMSI) approaches: Minimum norm estimate (MNE), dynamic statistical parametric mapping (dSPM), standardized low-resolution electromagnetic tomography (sLORETA), and coherent maximum entropy on the mean (cMEM). We also evaluated whether a simple average of maps obtained from multiple inverse solutions (Ave) can improve localization accuracy. We analyzed dMSI of 206 IEDs derived from magnetoencephalography recordings in 28 focal epilepsy patients who had a well-defined focus determined through intracranial EEG (iEEG), epileptogenic MRI lesions or surgical resection. dMSI accuracy and spatial properties were quantitatively estimated as: (a) distance from the epilepsy focus, (b) reproducibility, (c) spatial dispersion (SD), (d) map extension, and (e) effect of thresholding on map properties. Clinical performance was excellent for all methods (median distance from the focus MNE = 2.4 mm; sLORETA = 3.5 mm; cMEM = 3.5 mm; dSPM = 6.8 mm, Ave = 0 mm). Ave showed the lowest distance between the map maximum and epilepsy focus (Dmin lower than cMEM, MNE, and dSPM, p = .021, p = .008, p < .001, respectively). cMEM showed the best spatial features, with lowest SD outside the focus (SD lower than all other methods, p < .001 consistently) and high contrast between the generator and surrounding regions. The average map Ave provided the best localization accuracy, whereas cMEM exhibited the lowest amount of spurious distant activity. dMSI techniques have the potential to significantly improve identification of iEEG targets and to guide surgical planning, especially when multiple methods are combined.
Collapse
Affiliation(s)
- Giovanni Pellegrino
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,IRCCS Fondazione San Camillo Hospital, Venice, Italy.,Department of Multimodal Functional Imaging Lab, Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Tanguy Hedrich
- Department of Multimodal Functional Imaging Lab, Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Manuel Porras-Bettancourt
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jean-Marc Lina
- Departement de Genie Electrique, Ecole de Technologie Superieure, Montreal, Quebec, Canada.,Centre de Recherches Mathematiques, Montréal, Quebec, Canada
| | - Ümit Aydin
- Physics Department and PERFORM Centre, Concordia University, Montreal, Quebec, Canada
| | - Jeffery Hall
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Christophe Grova
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Department of Multimodal Functional Imaging Lab, Biomedical Engineering, McGill University, Montreal, Quebec, Canada.,Centre de Recherches Mathematiques, Montréal, Quebec, Canada.,Physics Department and PERFORM Centre, Concordia University, Montreal, Quebec, Canada
| | - Eliane Kobayashi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Cona G, Chiossi F, Di Tomasso S, Pellegrino G, Piccione F, Bisiacchi P, Arcara G. Theta and alpha oscillations as signatures of internal and external attention to delayed intentions: A magnetoencephalography (MEG) study. Neuroimage 2020; 205:116295. [DOI: 10.1016/j.neuroimage.2019.116295] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/17/2019] [Accepted: 10/16/2019] [Indexed: 01/16/2023] Open
|
30
|
Cortical gamma-synchrony measured with magnetoencephalography is a marker of clinical status and predicts clinical outcome in stroke survivors. NEUROIMAGE-CLINICAL 2019; 24:102092. [PMID: 31795062 PMCID: PMC6978213 DOI: 10.1016/j.nicl.2019.102092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 11/21/2022]
Abstract
The outcome of stroke survivors is difficult to anticipate. Gamma synchrony is a reliable measure of brain function and reserve. Gamma synchrony is measured with MEG in stroke survivors undergoing rehab. Auditory-entrained gamma synchrony correlates with clinical status and outcome.
Background The outcome of stroke survivors is difficult to anticipate. While the extent of the anatomical brain lesion is only poorly correlated with the prognosis, functional measures of cortical synchrony, brain networks and cortical plasticity seem to be good predictors of clinical recovery. In this field, gamma (>30 Hz) cortical synchrony is an ideal marker of brain function, as it plays a crucial role for the integration of information, it is an indirect marker of Glutamate/GABA balance and it directly estimates the reserve of parvalbulin-positive neurons, key players in synaptic plasticity. In this study we measured gamma synchronization driven by external auditory stimulation with magnetoencephalography and tested whether it was predictive of the clinical outcome in stroke survivors undergoing intensive rehabilitation in a tertiary rehabilitation center. Material and methods Eleven stroke survivors undergoing intensive rehabilitation were prospectively recruited. Gamma synchrony was measured non-invasively within one month from stroke onset with magnetoencephalography, both at rest and during entrainment with external 40 Hz amplitude modulated binaural sounds. Lesion location and volume were quantitatively assessed through a high-resolution anatomical MRI. Barthel index (BI) and Functional Independence Measure (FIM) scales were measured at the beginning and at the end of the admission to the rehabilitation unit. Results The spatial distribution of cortical gamma synchrony was altered, and the physiological right hemispheric dominance observed in healthy controls was attenuated or lost. Entrained gamma synchronization (but not resting state gamma synchrony) showed a very high correlation with the clinical status at both admission and discharge (both BI and FIM). Neither clinical status nor gamma synchrony showed a correlation with lesion volume. Conclusions Cortical gamma synchrony related to auditory entrainment can be reliably measured in stroke patients. Gamma synchrony is strongly associated with the clinical outcome of stroke survivors undergoing rehabilitation.
Collapse
|
31
|
Investigating and Modulating Physiological and Pathological Brain Oscillations: The Role of Oscillatory Activity in Neural Plasticity. Neural Plast 2019; 2019:9403195. [PMID: 31885538 PMCID: PMC6899309 DOI: 10.1155/2019/9403195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/02/2022] Open
|
32
|
Steady-state auditory evoked fields reflect long-term effects of repetitive transcranial magnetic stimulation in tinnitus. Clin Neurophysiol 2019; 130:1665-1672. [DOI: 10.1016/j.clinph.2019.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/02/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
|
33
|
Pellegrino G, Arcara G, Di Pino G, Turco C, Maran M, Weis L, Piccione F, Siebner HR. Transcranial direct current stimulation over the sensory-motor regions inhibits gamma synchrony. Hum Brain Mapp 2019; 40:2736-2746. [PMID: 30854728 DOI: 10.1002/hbm.24556] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/27/2019] [Accepted: 02/20/2019] [Indexed: 12/16/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique able to induce plasticity phenomena. Although tDCS application has been spreading over a variety of neuroscience domains, the mechanisms by which the stimulation acts are largely unknown. We investigated tDCS effects on cortical gamma synchrony, which is a crucial player in cortical function. We performed a randomized, sham-controlled, double-blind study on healthy subjects, combining tDCS and magnetoencephalography. By driving brain activity via 40 Hz auditory stimulation during magnetoencephalography, we experimentally tuned cortical gamma synchrony and measured it before and after bilateral tDCS of the primary sensory-motor hand regions (anode left, cathode right). We demonstrated that the stimulation induces a remarkable decrease of gamma synchrony (13 out of 15 subjects), as measured by gamma phase at 40 Hz. tDCS has strong remote effects, as the cortical region mostly affected was located far away from the stimulation site and covered a large area of the right centro-temporal cortex. No significant differences between stimulations were found for baseline gamma synchrony, as well as early transient auditory responses. This suggests a specific tDCS effect on externally driven gamma synchronization. This study sheds new light on the effect of tDCS on cortical function showing that the net effect of the stimulation on cortical gamma synchronization is an inhibition.
Collapse
Affiliation(s)
- Giovanni Pellegrino
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Giorgio Arcara
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Giovanni Di Pino
- Department of Neurology, NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University, Rome, Italy
| | - Cristina Turco
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Matteo Maran
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Luca Weis
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Francesco Piccione
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Neurology, Copenhagen University Hospital, Bispebjerg, Denmark
| |
Collapse
|