1
|
Li Y, Wang Y, Xu F, Jiang T, Wang X. Combination of magnetoencephalographic and clinical features to identify atypical self-limited epilepsy with centrotemporal spikes. Epilepsy Behav 2024; 161:110095. [PMID: 39471684 DOI: 10.1016/j.yebeh.2024.110095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/01/2024]
Abstract
INTRODUCTION Our aim was to use magnetoencephalography (MEG) and clinical features to early identify self-limited epilepsy with centrotemporal spikes (SeLECTS) patients who evolve into atypical SeLECTS (AS). METHODS The baseline clinical and MEG data of 28 AS and 33 typical SeLECTS (TS) patients were collected. Based on the triple-network model, MEG analysis included power spectral density representing spectral power and corrected amplitude envelope correlation representing functional connectivity (FC). Based on the clinical and MEG features of AS patients, the linear support vector machine (SVM) classifier was used to construct the prediction model. RESULTS The spectral power transferred from the alpha band to the delta band in the bilateral posterior cingulate cortex, and the inactivation of the beta band in both the right anterior cingulate cortex and left middle frontal gyrus were distinctive features of the AS group. The FC network in the AS group was characterized by attenuated intrinsic FC within the salience network in the alpha band, as well as attenuated FC interactions between the salience network and both the default mode network and central executive network in the beta band. The prediction model that integrated MEG and clinical features had a high prediction efficiency, with an accuracy of 0.80 and an AUC of 0.84. CONCLUSION The triple-network model of early AS patients has band-dependent MEG alterations. These MEG features combined with clinical features can efficiently predict AS at an early stage.
Collapse
Affiliation(s)
- Yihan Li
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 Jiangsu, China; Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029 Jiangsu, China
| | - Yingfan Wang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029 Jiangsu, China
| | - Fengyuan Xu
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029 Jiangsu, China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 Jiangsu, China.
| | - Xiaoshan Wang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029 Jiangsu, China.
| |
Collapse
|
2
|
Liu X, Han J, Zhang X, Zhou Q, Huang Z, Wang Y, Zhang J, Lin Y. Dynamic evolution of frontal-temporal network connectivity in temporal lobe epilepsy: A magnetoencephalography study. Hum Brain Mapp 2024; 45:e70033. [PMID: 39319686 PMCID: PMC11423264 DOI: 10.1002/hbm.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
Temporal lobe epilepsy (TLE) frequently involves an intricate, extensive epileptic frontal-temporal network. This study aimed to investigate the interactions between temporal and frontal regions and the dynamic patterns of the frontal-temporal network in TLE patients with different disease durations. The magnetoencephalography data of 36 postoperative seizure-free patients with long-term follow-up of at least 1 year, and 21 age- and sex-matched healthy subjects were included in this study. Patients were initially divided into LONG-TERM (n = 18, DURATION >10 years) and SHORT-TERM (n = 18, DURATION ≤10 years) groups based on 10-year disease duration. For reliability, supplementary analyses were conducted with alternative cutoffs, creating three groups: 0 < DURATION ≤7 years (n = 11), 7 < DURATION ≤14 years (n = 11), and DURATION >14 years (n = 14). This study examined the intraregional phase-amplitude coupling (PAC) between theta phase and alpha amplitude across the whole brain. The interregional directed phase transfer entropy (dPTE) between frontal and temporal regions in the alpha and theta bands, and the interregional cross-frequency directionality (CFD) between temporal and frontal regions from the theta phase to the alpha amplitude were further computed and compared among groups. Partial correlation analysis was conducted to investigate correlations between intraregional PAC, interregional dPTE connectivity, interregional CFD, and disease duration. Whole-brain intraregional PAC analyses revealed enhanced theta phase-alpha amplitude coupling within the ipsilateral temporal and frontal regions in TLE patients, and the ipsilateral temporal PAC was positively correlated with disease duration (r = 0.38, p <.05). Interregional dPTE analyses demonstrated a gradual increase in frontal-to-temporal connectivity within the alpha band, while the direction of theta-band connectivity reversed from frontal-to-temporal to temporal-to-frontal as the disease duration increased. Interregional CFD analyses revealed that the inhibitory effect of frontal regions on temporal regions gradually increased with prolonged disease duration (r = -0.36, p <.05). This study clarified the intrinsic reciprocal connectivity between temporal and frontal regions with TLE duration. We propose a dynamically reorganized triple-stage network that transitions from balanced networks to constrained networks and further develops into imbalanced networks as the disease duration increases.
Collapse
Affiliation(s)
- Xinyan Liu
- School of Biological Science and Medical EngineeringBeihang UniversityBeijingChina
- Beijing Advanced Innovation Center for Big Data‐Based Precision MedicineBeihang UniversityBeijingChina
- Beijing Advanced Innovation Centre for Biomedical EngineeringBeihang UniversityBeijingChina
| | - Jiaqi Han
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xiating Zhang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Department of Neurologythe First Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Qilin Zhou
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Zhaoyang Huang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Department of Neurologythe First Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Yuping Wang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Department of Neurologythe First Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Beijing Key Laboratory of NeuromodulationXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Jicong Zhang
- School of Biological Science and Medical EngineeringBeihang UniversityBeijingChina
- Beijing Advanced Innovation Center for Big Data‐Based Precision MedicineBeihang UniversityBeijingChina
- Beijing Advanced Innovation Centre for Biomedical EngineeringBeihang UniversityBeijingChina
- Hefei Innovation Research InstituteBeihang UniversityBeijingChina
| | - Yicong Lin
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Department of Neurologythe First Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Beijing Key Laboratory of NeuromodulationXuanwu Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
3
|
Pourmotabbed H, Clarke DF, Chang C, Babajani-Feremi A. Genetic fingerprinting with heritable phenotypes of the resting-state brain network topology. Commun Biol 2024; 7:1221. [PMID: 39349968 PMCID: PMC11443053 DOI: 10.1038/s42003-024-06807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Cognitive, behavioral, and disease traits are influenced by both genetic and environmental factors. Individual differences in these traits have been associated with graph theoretical properties of resting-state networks, indicating that variations in connectome topology may be driven by genetics. In this study, we establish the heritability of global and local graph properties of resting-state networks derived from functional MRI (fMRI) and magnetoencephalography (MEG) using a large sample of twins and non-twin siblings from the Human Connectome Project. We examine the heritability of MEG in the source space, providing a more accurate estimate of genetic influences on electrophysiological networks. Our findings show that most graph measures are more heritable for MEG compared to fMRI and the heritability for MEG is greater for amplitude compared to phase synchrony in the delta, high beta, and gamma frequency bands. This suggests that the fast neuronal dynamics in MEG offer unique insights into the genetic basis of brain network organization. Furthermore, we demonstrate that brain network features can serve as genetic fingerprints to accurately identify pairs of identical twins within a cohort. These results highlight novel opportunities to relate individual connectome signatures to genetic mechanisms underlying brain function.
Collapse
Affiliation(s)
- Haatef Pourmotabbed
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Dave F Clarke
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Catie Chang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Abbas Babajani-Feremi
- Magnetoencephalography (MEG) Lab, The Norman Fixel Institute of Neurological Diseases, Gainesville, FL, USA.
- Department of Neurology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
4
|
Stam CJ. Hub overload and failure as a final common pathway in neurological brain network disorders. Netw Neurosci 2024; 8:1-23. [PMID: 38562292 PMCID: PMC10861166 DOI: 10.1162/netn_a_00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/26/2023] [Indexed: 04/04/2024] Open
Abstract
Understanding the concept of network hubs and their role in brain disease is now rapidly becoming important for clinical neurology. Hub nodes in brain networks are areas highly connected to the rest of the brain, which handle a large part of all the network traffic. They also show high levels of neural activity and metabolism, which makes them vulnerable to many different types of pathology. The present review examines recent evidence for the prevalence and nature of hub involvement in a variety of neurological disorders, emphasizing common themes across different types of pathology. In focal epilepsy, pathological hubs may play a role in spreading of seizure activity, and removal of such hub nodes is associated with improved outcome. In stroke, damage to hubs is associated with impaired cognitive recovery. Breakdown of optimal brain network organization in multiple sclerosis is accompanied by cognitive dysfunction. In Alzheimer's disease, hyperactive hub nodes are directly associated with amyloid-beta and tau pathology. Early and reliable detection of hub pathology and disturbed connectivity in Alzheimer's disease with imaging and neurophysiological techniques opens up opportunities to detect patients with a network hyperexcitability profile, who could benefit from treatment with anti-epileptic drugs.
Collapse
Affiliation(s)
- Cornelis Jan Stam
- Clinical Neurophysiology and MEG Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Owen TW, Schroeder GM, Janiukstyte V, Hall GR, McEvoy A, Miserocchi A, de Tisi J, Duncan JS, Rugg‐Gunn F, Wang Y, Taylor PN. MEG abnormalities and mechanisms of surgical failure in neocortical epilepsy. Epilepsia 2023; 64:692-704. [PMID: 36617392 PMCID: PMC10952279 DOI: 10.1111/epi.17503] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Epilepsy surgery fails to achieve seizure freedom in 30%-40% of cases. It is not fully understood why some surgeries are unsuccessful. By comparing interictal magnetoencephalography (MEG) band power from patient data to normative maps, which describe healthy spatial and population variability, we identify patient-specific abnormalities relating to surgical failure. We propose three mechanisms contributing to poor surgical outcome: (1) not resecting the epileptogenic abnormalities (mislocalization), (2) failing to remove all epileptogenic abnormalities (partial resection), and (3) insufficiently impacting the overall cortical abnormality. Herein we develop markers of these mechanisms, validating them against patient outcomes. METHODS Resting-state MEG recordings were acquired for 70 healthy controls and 32 patients with refractory neocortical epilepsy. Relative band-power spatial maps were computed using source-localized recordings. Patient and region-specific band-power abnormalities were estimated as the maximum absolute z-score across five frequency bands using healthy data as a baseline. Resected regions were identified using postoperative magnetic resonance imaging (MRI). We hypothesized that our mechanistically interpretable markers would discriminate patients with and without postoperative seizure freedom. RESULTS Our markers discriminated surgical outcome groups (abnormalities not targeted: area under the curve [AUC] = 0.80, p = .003; partial resection of epileptogenic zone: AUC = 0.68, p = .053; and insufficient cortical abnormality impact: AUC = 0.64, p = .096). Furthermore, 95% of those patients who were not seizure-free had markers of surgical failure for at least one of the three proposed mechanisms. In contrast, of those patients without markers for any mechanism, 80% were ultimately seizure-free. SIGNIFICANCE The mapping of abnormalities across the brain is important for a wide range of neurological conditions. Here we have demonstrated that interictal MEG band-power mapping has merit for the localization of pathology and improving our mechanistic understanding of epilepsy. Our markers for mechanisms of surgical failure could be used in the future to construct predictive models of surgical outcome, aiding clinical teams during patient pre-surgical evaluations.
Collapse
Affiliation(s)
- Thomas W. Owen
- Computational Neurology, Neuroscience & Psychiatry Lab, ICOS Group, School of ComputingNewcastle UniversityNewcastle upon TyneUK
| | - Gabrielle M. Schroeder
- Computational Neurology, Neuroscience & Psychiatry Lab, ICOS Group, School of ComputingNewcastle UniversityNewcastle upon TyneUK
| | - Vytene Janiukstyte
- Computational Neurology, Neuroscience & Psychiatry Lab, ICOS Group, School of ComputingNewcastle UniversityNewcastle upon TyneUK
| | - Gerard R. Hall
- Computational Neurology, Neuroscience & Psychiatry Lab, ICOS Group, School of ComputingNewcastle UniversityNewcastle upon TyneUK
| | | | | | | | | | | | - Yujiang Wang
- Computational Neurology, Neuroscience & Psychiatry Lab, ICOS Group, School of ComputingNewcastle UniversityNewcastle upon TyneUK
- UCL Queen Square Institute of NeurologyLondonUK
- Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Peter N. Taylor
- Computational Neurology, Neuroscience & Psychiatry Lab, ICOS Group, School of ComputingNewcastle UniversityNewcastle upon TyneUK
- UCL Queen Square Institute of NeurologyLondonUK
- Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
6
|
Rampp S, Kaltenhäuser M, Müller-Voggel N, Doerfler A, Kasper BS, Hamer HM, Brandner S, Buchfelder M. MEG Node Degree for Focus Localization: Comparison with Invasive EEG. Biomedicines 2023; 11:biomedicines11020438. [PMID: 36830974 PMCID: PMC9953213 DOI: 10.3390/biomedicines11020438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Epilepsy surgery is a viable therapy option for patients with pharmacoresistant focal epilepsies. A prerequisite for postoperative seizure freedom is the localization of the epileptogenic zone, e.g., using electro- and magnetoencephalography (EEG/MEG). Evidence shows that resting state MEG contains subtle alterations, which may add information to the workup of epilepsy surgery. Here, we investigate node degree (ND), a graph-theoretical parameter of functional connectivity, in relation to the seizure onset zone (SOZ) determined by invasive EEG (iEEG) in a consecutive series of 50 adult patients. Resting state data were subjected to whole brain, all-to-all connectivity analysis using the imaginary part of coherence. Graphs were described using parcellated ND. SOZ localization was investigated on a lobar and sublobar level. On a lobar level, all frequency bands except alpha showed significantly higher maximal ND (mND) values inside the SOZ compared to outside (ratios 1.11-1.20, alpha 1.02). Area-under-the-curve (AUC) was 0.67-0.78 for all expected alpha (0.44, ns). On a sublobar level, mND inside the SOZ was higher for all frequency bands (1.13-1.38, AUC 0.58-0.78) except gamma (1.02). MEG ND is significantly related to SOZ in delta, theta and beta bands. ND may provide new localization tools for presurgical evaluation of epilepsy surgery.
Collapse
Affiliation(s)
- Stefan Rampp
- Department of Neurosurgery, University Hospital Erlangen, 91054 Erlangen, Germany
- Department of Neurosurgery, University Hospital Halle (Saale), 06120 Halle (Saale), Germany
- Correspondence: ; Tel.: +49-9131-85-46921; Fax: +49-9131-85-34476
| | - Martin Kaltenhäuser
- Department of Neurosurgery, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Nadia Müller-Voggel
- Department of Neurosurgery, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Burkhard S. Kasper
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Hajo M. Hamer
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Sebastian Brandner
- Department of Neurosurgery, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Michael Buchfelder
- Department of Neurosurgery, University Hospital Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
7
|
Royer J, Bernhardt BC, Larivière S, Gleichgerrcht E, Vorderwülbecke BJ, Vulliémoz S, Bonilha L. Epilepsy and brain network hubs. Epilepsia 2022; 63:537-550. [DOI: 10.1111/epi.17171] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Affiliation(s)
- Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory Montreal Neurological Institute and Hospital McGill University Montreal Quebec Canada
| | - Boris C. Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory Montreal Neurological Institute and Hospital McGill University Montreal Quebec Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory Montreal Neurological Institute and Hospital McGill University Montreal Quebec Canada
| | - Ezequiel Gleichgerrcht
- Department of Neurology Medical University of South Carolina Charleston South Carolina USA
| | - Bernd J. Vorderwülbecke
- EEG and Epilepsy Unit University Hospitals and Faculty of Medicine Geneva Geneva Switzerland
- Department of Neurology Epilepsy Center Berlin‐Brandenburg Charité–Universitätsmedizin Berlin Berlin Germany
| | - Serge Vulliémoz
- EEG and Epilepsy Unit University Hospitals and Faculty of Medicine Geneva Geneva Switzerland
| | | |
Collapse
|
8
|
Pourmotabbed H, de Jongh Curry AL, Clarke DF, Tyler-Kabara EC, Babajani-Feremi A. Reproducibility of graph measures derived from resting-state MEG functional connectivity metrics in sensor and source spaces. Hum Brain Mapp 2022; 43:1342-1357. [PMID: 35019189 PMCID: PMC8837594 DOI: 10.1002/hbm.25726] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/29/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022] Open
Abstract
Prior studies have used graph analysis of resting‐state magnetoencephalography (MEG) to characterize abnormal brain networks in neurological disorders. However, a present challenge for researchers is the lack of guidance on which network construction strategies to employ. The reproducibility of graph measures is important for their use as clinical biomarkers. Furthermore, global graph measures should ideally not depend on whether the analysis was performed in the sensor or source space. Therefore, MEG data of the 89 healthy subjects of the Human Connectome Project were used to investigate test–retest reliability and sensor versus source association of global graph measures. Atlas‐based beamforming was used for source reconstruction, and functional connectivity (FC) was estimated for both sensor and source signals in six frequency bands using the debiased weighted phase lag index (dwPLI), amplitude envelope correlation (AEC), and leakage‐corrected AEC. Reliability was examined over multiple network density levels achieved with proportional weight and orthogonal minimum spanning tree thresholding. At a 100% density, graph measures for most FC metrics and frequency bands had fair to excellent reliability and significant sensor versus source association. The greatest reliability and sensor versus source association was obtained when using amplitude metrics. Reliability was similar between sensor and source spaces when using amplitude metrics but greater for the source than the sensor space in higher frequency bands when using the dwPLI. These results suggest that graph measures are useful biomarkers, particularly for investigating functional networks based on amplitude synchrony.
Collapse
Affiliation(s)
- Haatef Pourmotabbed
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, USA.,Magnetoencephalography Laboratory, Dell Children's Medical Center, Austin, Texas, USA.,Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, USA
| | - Amy L de Jongh Curry
- Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, USA
| | - Dave F Clarke
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
| | - Elizabeth C Tyler-Kabara
- Department of Neurosurgery, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
| | - Abbas Babajani-Feremi
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, USA.,Magnetoencephalography Laboratory, Dell Children's Medical Center, Austin, Texas, USA.,Department of Neurosurgery, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
9
|
Sollee J, Tang L, Igiraneza AB, Xiao B, Bai HX, Yang L. Artificial Intelligence for Medical Image Analysis in Epilepsy. Epilepsy Res 2022; 182:106861. [DOI: 10.1016/j.eplepsyres.2022.106861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/18/2021] [Accepted: 01/16/2022] [Indexed: 11/16/2022]
|
10
|
Slinger G, Otte WM, Braun KPJ, van Diessen E. An updated systematic review and meta-analysis of brain network organization in focal epilepsy: Looking back and forth. Neurosci Biobehav Rev 2021; 132:211-223. [PMID: 34813826 DOI: 10.1016/j.neubiorev.2021.11.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/23/2021] [Accepted: 11/17/2021] [Indexed: 01/10/2023]
Abstract
Abnormalities of the brain network organization in focal epilepsy have been extensively quantified. However, the extent and directionality of abnormalities are highly variable and subtype insensitive. We conducted meta-analyses to obtain a more accurate and epilepsy type-specific quantification of the interictal global brain network organization in focal epilepsy. By using random-effects models, we estimated differences in average clustering coefficient, average path length, and modularity between patients with focal epilepsy and controls, based on 45 studies with a total sample size of 1,468 patients and 1,021 controls. Structural networks had a significant lower level of integration in patients with epilepsy as compared to controls, with a standardized mean difference of -0.334 (95 % confidence interval -0.631 to -0.038; p-value 0.027). Functional networks did not differ between patients and controls, except for the beta band clustering coefficient. Our meta-analyses show that differences in the brain network organization are not as well defined as individual studies often propose. We discuss potential pitfalls and suggestions to enhance the yield and clinical value of network studies.
Collapse
Affiliation(s)
- Geertruida Slinger
- Department of Child Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.
| | - Willem M Otte
- Department of Child Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands; Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Kees P J Braun
- Department of Child Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Eric van Diessen
- Department of Child Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
11
|
Xu N, Shan W, Qi J, Wu J, Wang Q. Presurgical Evaluation of Epilepsy Using Resting-State MEG Functional Connectivity. Front Hum Neurosci 2021; 15:649074. [PMID: 34276321 PMCID: PMC8283278 DOI: 10.3389/fnhum.2021.649074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022] Open
Abstract
Epilepsy is caused by abnormal electrical discharges (clinically identified by electrophysiological recording) in a specific part of the brain [originating in only one part of the brain, namely, the epileptogenic zone (EZ)]. Epilepsy is now defined as an archetypical hyperexcited neural network disorder. It can be investigated through the network analysis of interictal discharges, ictal discharges, and resting-state functional connectivity. Currently, there is an increasing interest in embedding resting-state connectivity analysis into the preoperative evaluation of epilepsy. Among the various neuroimaging technologies employed to achieve brain functional networks, magnetoencephalography (MEG) with the excellent temporal resolution is an ideal tool for estimating the resting-state connectivity between brain regions, which can reveal network abnormalities in epilepsy. What value does MEG resting-state functional connectivity offer for epileptic presurgical evaluation? Regarding this topic, this paper introduced the origin of MEG and the workflow of constructing source-space functional connectivity based on MEG signals. Resting-state functional connectivity abnormalities correlate with epileptogenic networks, which are defined by the brain regions involved in the production and propagation of epileptic activities. This paper reviewed the evidence of altered epileptic connectivity based on low- or high-frequency oscillations (HFOs) and the evidence of the advantage of using simultaneous MEG and intracranial electroencephalography (iEEG) recordings. More importantly, this review highlighted that MEG-based resting-state functional connectivity has the potential to predict postsurgical outcomes. In conclusion, resting-state MEG functional connectivity has made a substantial progress toward serving as a candidate biomarker included in epileptic presurgical evaluations.
Collapse
Affiliation(s)
- Na Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Shan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing Qi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianping Wu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
| |
Collapse
|
12
|
Otsubo H, Ogawa H, Pang E, Wong SM, Ibrahim GM, Widjaja E. A review of magnetoencephalography use in pediatric epilepsy: an update on best practice. Expert Rev Neurother 2021; 21:1225-1240. [PMID: 33780318 DOI: 10.1080/14737175.2021.1910024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Magnetoencephalography (MEG) is a noninvasive technique that is used for presurgical evaluation of children with drug-resistant epilepsy (DRE).Areas covered: The contributions of MEG for localizing the epileptogenic zone are discussed, in particular in extra-temporal lobe epilepsy and focal cortical dysplasia, which are common in children, as well as in difficult to localize epilepsy such as operculo-insular epilepsy. Further, the authors review current evidence on MEG for mapping eloquent cortex, its performance, application in clinical practice, and potential challenges.Expert opinion: MEG could change the clinical management of children with DRE by directing placement of intracranial electrodes thereby enhancing their yield. With improved identification of a circumscribed epileptogenic zone, MEG could render more patients as suitable candidates for epilepsy surgery and increase utilization of surgery.
Collapse
Affiliation(s)
- Hiroshi Otsubo
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
| | - Hiroshi Ogawa
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
| | - Elizabeth Pang
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada.,Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Simeon M Wong
- Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - George M Ibrahim
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Canada.,Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
| | - Elysa Widjaja
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada.,Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada.,Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
13
|
Kim JA, Davis KD. Magnetoencephalography: physics, techniques, and applications in the basic and clinical neurosciences. J Neurophysiol 2021; 125:938-956. [PMID: 33567968 DOI: 10.1152/jn.00530.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Magnetoencephalography (MEG) is a technique used to measure the magnetic fields generated from neuronal activity in the brain. MEG has a high temporal resolution on the order of milliseconds and provides a more direct measure of brain activity when compared with hemodynamic-based neuroimaging methods such as magnetic resonance imaging and positron emission tomography. The current review focuses on basic features of MEG such as the instrumentation and the physics that are integral to the signals that can be measured, and the principles of source localization techniques, particularly the physics of beamforming and the techniques that are used to localize the signal of interest. In addition, we review several metrics that can be used to assess functional coupling in MEG and describe the advantages and disadvantages of each approach. Lastly, we discuss the current and future applications of MEG.
Collapse
Affiliation(s)
- Junseok A Kim
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Karen D Davis
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Chen X, Tao X, Wang FL, Xie H. Global research on artificial intelligence-enhanced human electroencephalogram analysis. Neural Comput Appl 2021. [DOI: 10.1007/s00521-020-05588-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Sakai K, Goto K, Watanabe R, Tanabe J, Amimoto K, Kumai K, Shibata K, Morikawa K, Ikeda Y. Immediate effects of visual-motor illusion on resting-state functional connectivity. Brain Cogn 2020; 146:105632. [PMID: 33129054 DOI: 10.1016/j.bandc.2020.105632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/02/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022]
Abstract
Visual-motor illusion (VMI) is to evoke a kinesthetic sensation by viewing images of oneself performing physical exercise while the body is at rest. Previous studies demonstrated that VMI activates the motor association brain areas; however, it is unclear whether VMI immediately alters the resting-state functional connectivity (RSFC). This study is aimed to verify whether the VMI induction changed the RSFC using functional near-infrared spectroscopy (fNIRS). The right hands of 13 healthy adults underwent illusion and observation conditions for 20 min each. Before and after each condition, RSFC was measured using fNIRS. After each condition, degree of kinesthetic illusion and a sense of body ownership measured using the Likert scale. Our results indicated that, compared with the observation condition, the degree of kinesthetic illusion and the sense of body ownership were significantly higher after the illusion condition. Compared with the observation condition, RSFC after the illusion condition significantly increased brain areas associated with kinesthetic illusion, a sense of body ownership, and motor execution. In conclusion, RSFC has become a biomarker that shows changes in brain function occurring due to VMI. VMI may be applied to the treatment of patients with stroke or orthopedic diseases.
Collapse
Affiliation(s)
- Katsuya Sakai
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Japan; Faculty of Healthcare Sciences, Chiba Prefectural University of Health Sciences, Japan.
| | - Keisuke Goto
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Japan.
| | - Rui Watanabe
- Department of Psychiatry and Behavioral Science, Tokyo Medical and Dental University, Japan; Department of Frontier Health Science, Tokyo Metropolitan University, Japan.
| | - Junpei Tanabe
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Japan.
| | - Kazu Amimoto
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Japan.
| | - Ken Kumai
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Japan.
| | - Keiichiro Shibata
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Japan.
| | - Kenji Morikawa
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Japan.
| | - Yumi Ikeda
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Japan.
| |
Collapse
|
16
|
Pourmotabbed H, Wheless JW, Babajani-Feremi A. Lateralization of epilepsy using intra-hemispheric brain networks based on resting-state MEG data. Hum Brain Mapp 2020; 41:2964-2979. [PMID: 32400923 PMCID: PMC7336137 DOI: 10.1002/hbm.24990] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/31/2022] Open
Abstract
Focal epilepsy originates within networks in one hemisphere. However, previous studies have investigated network topologies for the entire brain. In this study, magnetoencephalography (MEG) was used to investigate functional intra‐hemispheric networks of healthy controls (HCs) and patients with left‐ or right‐hemispheric temporal lobe or temporal plus extra‐temporal lobe epilepsy. 22 HCs, 25 left patients (LPs), and 16 right patients (RPs) were enrolled. The debiased weighted phase lag index was used to calculate functional connectivity between 246 brain regions in six frequency bands. Global efficiency, characteristic path length, and transitivity were computed for left and right intra‐hemispheric networks. The right global graph measures (GGMs) in the theta band were significantly different (p < .005) between RPs and both LPs and HCs. Right and left GGMs in higher frequency bands were significantly different (p < .05) between HCs and the patients. Right GGMs were used as input features of a Naïve‐Bayes classifier to classify LPs and RPs (78.0% accuracy) and all three groups (75.5% accuracy). The complete theta band brain networks were compared between LPs and RPs with network‐based statistics (NBS) and with the clustering coefficient (CC), nodal efficiency (NE), betweenness centrality (BC), and eigenvector centrality (EVC). NBS identified a subnetwork primarily composed of right intra‐hemispheric connections. Significantly different (p < .05) nodes were primarily in the right hemisphere for the CC and NE and primarily in the left hemisphere for the BC and EVC. These results indicate that intra‐hemispheric MEG networks may be incorporated in the diagnosis and lateralization of focal epilepsy.
Collapse
Affiliation(s)
- Haatef Pourmotabbed
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, USA.,Department of Pediatrics, Division of Pediatric Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Neuroscience Institute & Le Bonheur Comprehensive Epilepsy Program, Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| | - James W Wheless
- Department of Pediatrics, Division of Pediatric Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Neuroscience Institute & Le Bonheur Comprehensive Epilepsy Program, Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| | - Abbas Babajani-Feremi
- Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, USA.,Department of Pediatrics, Division of Pediatric Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Neuroscience Institute & Le Bonheur Comprehensive Epilepsy Program, Le Bonheur Children's Hospital, Memphis, Tennessee, USA.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|