1
|
Liu W, Zhang X. Using independent component analysis to extract a cross-modality and individual-specific brain baseline pattern. Neuroimage 2024; 303:120925. [PMID: 39542069 DOI: 10.1016/j.neuroimage.2024.120925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024] Open
Abstract
The ongoing brain activity serves as a baseline that supports both internal and external cognitive processes. However, its precise nature remains unclear. Considering that people display various patterns of brain activity even when engaging in the same task, it is reasonable to believe that individuals possess their unique brain baseline pattern. Using spatial independent component analysis on a large sample of fMRI data from the Human Connectome Project (HCP), we found an individual-specific component which can be consistently extracted from either resting-state or different task states and is reliable over months. Compared to functional connectome fingerprinting, it is much more stable across different fMRI modalities. Its stability is closely related to high explained variance and is minimally influenced by factors such as noise, scan duration, and scan interval. We propose that this component underlying the ongoing activity represents an individual-specific baseline pattern of brain activity.
Collapse
Affiliation(s)
- Wei Liu
- Beijing Key Laboratory of Applied Experimental Psychology. National Demonstration Center for Experimental Psychology Education (Beijing Normal University). Faculty of Psychology, Beijing Normal University, Beijing, People's Republic of China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
| | - Xuemin Zhang
- Beijing Key Laboratory of Applied Experimental Psychology. National Demonstration Center for Experimental Psychology Education (Beijing Normal University). Faculty of Psychology, Beijing Normal University, Beijing, People's Republic of China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China.
| |
Collapse
|
2
|
Ramduny J, Kelly C. Connectome-based fingerprinting: reproducibility, precision, and behavioral prediction. Neuropsychopharmacology 2024; 50:114-123. [PMID: 39147868 PMCID: PMC11525788 DOI: 10.1038/s41386-024-01962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Functional magnetic resonance imaging-based functional connectivity enables the non-invasive mapping of individual differences in brain functional organization to individual differences in a vast array of behavioral phenotypes. This flexibility has renewed the search for neuroimaging-based biomarkers that exhibit reproducibility, prediction, and precision. Functional connectivity-based measures that share these three characteristics are key to achieving this goal. Here, we review the functional connectome fingerprinting approach and discuss its value, not only as a simple and intuitive conceptualization of the "functional connectome" that provides new insights into how the connectome is altered in association with psychiatric symptoms, but also as a straightforward and interpretable method for indexing the reproducibility of functional connectivity-based measures. We discuss how these advantages provide new avenues for strengthening reproducibility, precision, and behavioral prediction for functional connectomics and we consider new directions toward discovering better biomarkers for neuropsychiatric conditions.
Collapse
Affiliation(s)
- Jivesh Ramduny
- Department of Psychology, Yale University, New Haven, CT, USA.
- Kavli Institute for Neuroscience, Yale University, New Haven, CT, USA.
| | - Clare Kelly
- School of Psychology, Trinity College Dublin, Dublin, Ireland.
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland.
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Sipes BS, Nagarajan SS, Raj A. Integrative, segregative, and degenerate harmonics of the structural connectome. Commun Biol 2024; 7:986. [PMID: 39143303 PMCID: PMC11324790 DOI: 10.1038/s42003-024-06669-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
Unifying integration and segregation in the brain has been a fundamental puzzle in neuroscience ever since the conception of the "binding problem." Here, we introduce a framework that places integration and segregation within a continuum based on a fundamental property of the brain-its structural connectivity graph Laplacian harmonics and a new feature we term the gap-spectrum. This framework organizes harmonics into three regimes-integrative, segregative, and degenerate-that together account for various group-level properties. Integrative and segregative harmonics occupy the ends of the continuum, and they share properties such as reproducibility across individuals, stability to perturbation, and involve "bottom-up" sensory networks. Degenerate harmonics are in the middle of the continuum, and they are subject-specific, flexible, and involve "top-down" networks. The proposed framework accommodates inter-subject variation, sensitivity to changes, and structure-function coupling in ways that offer promising avenues for studying cognition and consciousness in the brain.
Collapse
Affiliation(s)
- Benjamin S Sipes
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Ashish Raj
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
4
|
Mandino F, Horien C, Shen X, Desrosiers-Gregoire G, Luo W, Markicevic M, Constable RX, Papademetris X, Chakravarty MM, Betzel RF, Lake EMR. Multimodal identification of the mouse brain using simultaneous Ca 2+ imaging and fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.594620. [PMID: 38826324 PMCID: PMC11142213 DOI: 10.1101/2024.05.24.594620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Individual differences in neuroimaging are of interest to clinical and cognitive neuroscientists based on their potential for guiding the personalized treatment of various heterogeneous neurological conditions and diseases. Despite many advantages, the workhorse in this arena, BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI) suffers from low spatiotemporal resolution and specificity as well as a propensity for noise and spurious signal corruption. To better understand individual differences in BOLD-fMRI data, we can use animal models where fMRI, alongside complementary but more invasive contrasts, can be accessed. Here, we apply simultaneous wide-field fluorescence calcium imaging and BOLD-fMRI in mice to interrogate individual differences using a connectome-based identification framework adopted from the human fMRI literature. This approach yields high spatiotemporal resolution cell-type specific signals (here, from glia, excitatory, as well as inhibitory interneurons) from the whole cortex. We found mouse multimodal connectome- based identification to be successful and explored various features of these data.
Collapse
|
5
|
Ambrosanio M, Troisi Lopez E, Polverino A, Minino R, Cipriano L, Vettoliere A, Granata C, Mandolesi L, Curcio G, Sorrentino G, Sorrentino P. The Effect of Sleep Deprivation on Brain Fingerprint Stability: A Magnetoencephalography Validation Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:2301. [PMID: 38610512 PMCID: PMC11014248 DOI: 10.3390/s24072301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
This study examined the stability of the functional connectome (FC) over time using fingerprint analysis in healthy subjects. Additionally, it investigated how a specific stressor, namely sleep deprivation, affects individuals' differentiation. To this aim, 23 healthy young adults underwent magnetoencephalography (MEG) recording at three equally spaced time points within 24 h: 9 a.m., 9 p.m., and 9 a.m. of the following day after a night of sleep deprivation. The findings indicate that the differentiation was stable from morning to evening in all frequency bands, except in the delta band. However, after a night of sleep deprivation, the stability of the FCs was reduced. Consistent with this observation, the reduced differentiation following sleep deprivation was found to be negatively correlated with the effort perceived by participants in completing the cognitive task during sleep deprivation. This correlation suggests that individuals with less stable connectomes following sleep deprivation experienced greater difficulty in performing cognitive tasks, reflecting increased effort.
Collapse
Affiliation(s)
- Michele Ambrosanio
- Department of Economics, Law, Cybersecurity and Sports Sciences (DiSEGIM), University of Naples “Parthenope”, 80035 Nola, Italy
| | - Emahnuel Troisi Lopez
- Institute of Applied Sciences and Intelligent Systems, National Research Council, 80078 Pozzuoli, Italy
| | - Arianna Polverino
- Institute of Diagnosis and Treatment Hermitage Capodimonte, 80145 Naples, Italy
| | - Roberta Minino
- Department of Medical, Movement and Wellness Sciences (DiSMMEB), University of Naples “Parthenope”, 80133 Naples, Italy
| | - Lorenzo Cipriano
- Department of Medical, Movement and Wellness Sciences (DiSMMEB), University of Naples “Parthenope”, 80133 Naples, Italy
| | - Antonio Vettoliere
- Institute of Applied Sciences and Intelligent Systems, National Research Council, 80078 Pozzuoli, Italy
| | - Carmine Granata
- Institute of Applied Sciences and Intelligent Systems, National Research Council, 80078 Pozzuoli, Italy
| | - Laura Mandolesi
- Department of Humanities, University of Naples Federico II, 80133 Naples, Italy
| | - Giuseppe Curcio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Giuseppe Sorrentino
- Institute of Applied Sciences and Intelligent Systems, National Research Council, 80078 Pozzuoli, Italy
- Institute of Diagnosis and Treatment Hermitage Capodimonte, 80145 Naples, Italy
- Department of Medical, Movement and Wellness Sciences (DiSMMEB), University of Naples “Parthenope”, 80133 Naples, Italy
| | - Pierpaolo Sorrentino
- Institute of Applied Sciences and Intelligent Systems, National Research Council, 80078 Pozzuoli, Italy
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, 13005 Marseille, France
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
6
|
Hannum A, Lopez MA, Blanco SA, Betzel RF. High-accuracy machine learning techniques for functional connectome fingerprinting and cognitive state decoding. Hum Brain Mapp 2023; 44:5294-5308. [PMID: 37498048 PMCID: PMC10543109 DOI: 10.1002/hbm.26423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/26/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023] Open
Abstract
The human brain is a complex network comprised of functionally and anatomically interconnected brain regions. A growing number of studies have suggested that empirical estimates of brain networks may be useful for discovery of biomarkers of disease and cognitive state. A prerequisite for realizing this aim, however, is that brain networks also serve as reliable markers of an individual. Here, using Human Connectome Project data, we build upon recent studies examining brain-based fingerprints of individual subjects and cognitive states based on cognitively demanding tasks that assess, for example, working memory, theory of mind, and motor function. Our approach achieves accuracy of up to 99% for both identification of the subject of an fMRI scan, and for classification of the cognitive state of a previously unseen subject in a scan. More broadly, we explore the accuracy and reliability of five different machine learning techniques on subject fingerprinting and cognitive state decoding objectives, using functional connectivity data from fMRI scans of a high number of subjects (865) across a number of cognitive states (8). These results represent an advance on existing techniques for functional connectivity-based brain fingerprinting and state decoding. Additionally, 16 different functional connectome (FC) matrix construction pipelines are compared in order to characterize the effects of different aspects of the production of FCs on the accuracy of subject and task classification, and to identify possible confounds.
Collapse
Affiliation(s)
- Andrew Hannum
- Department of Computer ScienceUniversity of DenverDenverColoradoUSA
| | - Mario A. Lopez
- Department of Computer ScienceUniversity of DenverDenverColoradoUSA
| | - Saúl A. Blanco
- Department of Computer ScienceIndiana UniversityBloomingtonIndianaUSA
| | - Richard F. Betzel
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndianaUSA
| |
Collapse
|
7
|
St-Onge F, Javanray M, Pichet Binette A, Strikwerda-Brown C, Remz J, Spreng RN, Shafiei G, Misic B, Vachon-Presseau É, Villeneuve S. Functional connectome fingerprinting across the lifespan. Netw Neurosci 2023; 7:1206-1227. [PMID: 37781144 PMCID: PMC10473304 DOI: 10.1162/netn_a_00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/24/2023] [Indexed: 10/03/2023] Open
Abstract
Systematic changes have been observed in the functional architecture of the human brain with advancing age. However, functional connectivity (FC) is also a powerful feature to detect unique "connectome fingerprints," allowing identification of individuals among their peers. Although fingerprinting has been robustly observed in samples of young adults, the reliability of this approach has not been demonstrated across the lifespan. We applied the fingerprinting framework to the Cambridge Centre for Ageing and Neuroscience cohort (n = 483 aged 18 to 89 years). We found that individuals are "fingerprintable" (i.e., identifiable) across independent functional MRI scans throughout the lifespan. We observed a U-shape distribution in the strength of "self-identifiability" (within-individual correlation across modalities), and "others-identifiability" (between-individual correlation across modalities), with a decrease from early adulthood into middle age, before improving in older age. FC edges contributing to self-identifiability were not restricted to specific brain networks and were different between individuals across the lifespan sample. Self-identifiability was additionally associated with regional brain volume. These findings indicate that individual participant-level identification is preserved across the lifespan despite the fact that its components are changing nonlinearly.
Collapse
Affiliation(s)
- Frédéric St-Onge
- Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, Canada
- Research Center of the Douglas Mental Health University Institute, Montreal, Canada
| | - Mohammadali Javanray
- Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, Canada
- Research Center of the Douglas Mental Health University Institute, Montreal, Canada
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | | | - Jordana Remz
- Research Center of the Douglas Mental Health University Institute, Montreal, Canada
| | - R. Nathan Spreng
- Research Center of the Douglas Mental Health University Institute, Montreal, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Golia Shafiei
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Étienne Vachon-Presseau
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
- Department of Anesthesia, Faculty of Medicine, McGill University, Montreal, Canada
- Alan Edwards Centre for Research on Pain (AECRP), McGill University, Montreal, Canada
| | - Sylvia Villeneuve
- Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, Canada
- Research Center of the Douglas Mental Health University Institute, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
8
|
Mantwill M, Asseyer S, Chien C, Kuchling J, Schmitz-Hübsch T, Brandt AU, Haynes JD, Paul F, Finke C. Functional connectome fingerprinting and stability in multiple sclerosis. Mult Scler J Exp Transl Clin 2023; 9:20552173231195879. [PMID: 37641618 PMCID: PMC10460476 DOI: 10.1177/20552173231195879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Background Functional connectome fingerprinting can identify individuals based on their functional connectome. Previous studies relied mostly on short intervals between fMRI acquisitions. Objective This cohort study aimed to determine the stability of connectome-based identification and their underlying signatures in patients with multiple sclerosis and healthy individuals with long follow-up intervals. Methods We acquired resting-state fMRI in 70 patients with multiple sclerosis and 273 healthy individuals with long follow-up times (up to 4 and 9 years, respectively). Using functional connectome fingerprinting, we examined the stability of the connectome and additionally investigated which regions, connections and networks supported individual identification. Finally, we predicted cognitive and behavioural outcome based on functional connectivity. Results Multiple sclerosis patients showed connectome stability and identification accuracies similar to healthy individuals, with longer time delays between imaging sessions being associated with accuracies dropping from 89% to 76%. Lesion load, brain atrophy or cognitive impairment did not affect identification accuracies within the range of disease severity studied. Connections from the fronto-parietal and default mode network were consistently most distinctive, i.e., informative of identity. The functional connectivity also allowed the prediction of individual cognitive performances. Conclusion Our results demonstrate that discriminatory signatures in the functional connectome are stable over extended periods of time in multiple sclerosis, resulting in similar identification accuracies and distinctive long-lasting functional connectome fingerprinting signatures in patients and healthy individuals.
Collapse
Affiliation(s)
- Maron Mantwill
- Maron Mantwill, Hertzbergstraße 12, 12055 Berlin, Germany.
| | - Susanna Asseyer
- A cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin, Experimental and Clinical Research Center, Berlin, Germany
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Claudia Chien
- A cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin, Experimental and Clinical Research Center, Berlin, Germany
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, Charitéplatz, Berlin, Germany
| | - Joseph Kuchling
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- A cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin, Experimental and Clinical Research Center, Berlin, Germany
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Tanja Schmitz-Hübsch
- A cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin, Experimental and Clinical Research Center, Berlin, Germany
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Alexander U Brandt
- A cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin, Experimental and Clinical Research Center, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Neurology, University of California, Irvine, CA, USA
| | - John-Dylan Haynes
- Faculty of Philosophy, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Center for Advanced Neuroimaging, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | |
Collapse
|
9
|
Bukhari H, Su C, Dhamala E, Gu Z, Jamison K, Kuceyeski A. Graph-matching distance between individuals' functional connectomes varies with relatedness, age, and cognitive score. Hum Brain Mapp 2023; 44:3541-3554. [PMID: 37042411 PMCID: PMC10203814 DOI: 10.1002/hbm.26296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023] Open
Abstract
Functional connectomes (FCs), represented by networks or graphs that summarize coactivation patterns between pairs of brain regions, have been related at a population level to age, sex, cognitive/behavioral scores, life experience, genetics, and disease/disorders. However, quantifying FC differences between individuals also provides a rich source of information with which to map to differences in those individuals' biology, experience, genetics or behavior. In this study, graph matching is used to create a novel inter-individual FC metric, called swap distance, that quantifies the distance between pairs of individuals' partial FCs, with a smaller swap distance indicating the individuals have more similar FC. We apply graph matching to align FCs between individuals from the the Human Connectome ProjectN = 997 and find that swap distance (i) increases with increasing familial distance, (ii) increases with subjects' ages, (iii) is smaller for pairs of females compared to pairs of males, and (iv) is larger for females with lower cognitive scores compared to females with larger cognitive scores. Regions that contributed most to individuals' swap distances were in higher-order networks, that is, default-mode and fronto-parietal, that underlie executive function and memory. These higher-order networks' regions also had swap frequencies that varied monotonically with familial relatedness of the individuals in question. We posit that the proposed graph matching technique provides a novel way to study inter-subject differences in FC and enables quantification of how FC may vary with age, relatedness, sex, and behavior.
Collapse
Affiliation(s)
- Hussain Bukhari
- Department of NeuroscienceWeill Cornell MedicineNew YorkNew YorkUSA
| | - Chang Su
- Department of BiostatisticsYale UniversityNew HavenConnecticutUSA
| | - Elvisha Dhamala
- Department of PsychologyYale UniversityNew HavenConnecticutUSA
| | - Zijin Gu
- Department of Electrical and Computer EngineeringCornell UniversityIthacaNew YorkUSA
| | - Keith Jamison
- Department of RadiologyWeill Cornell MedicineNew YorkNew YorkUSA
| | - Amy Kuceyeski
- Department of RadiologyWeill Cornell MedicineNew YorkNew YorkUSA
| |
Collapse
|
10
|
Horien C, Greene AS, Shen X, Fortes D, Brennan-Wydra E, Banarjee C, Foster R, Donthireddy V, Butler M, Powell K, Vernetti A, Mandino F, O’Connor D, Lake EMR, McPartland JC, Volkmar FR, Chun M, Chawarska K, Rosenberg MD, Scheinost D, Constable RT. A generalizable connectome-based marker of in-scan sustained attention in neurodiverse youth. Cereb Cortex 2023; 33:6320-6334. [PMID: 36573438 PMCID: PMC10183743 DOI: 10.1093/cercor/bhac506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 12/29/2022] Open
Abstract
Difficulty with attention is an important symptom in many conditions in psychiatry, including neurodiverse conditions such as autism. There is a need to better understand the neurobiological correlates of attention and leverage these findings in healthcare settings. Nevertheless, it remains unclear if it is possible to build dimensional predictive models of attentional state in a sample that includes participants with neurodiverse conditions. Here, we use 5 datasets to identify and validate functional connectome-based markers of attention. In dataset 1, we use connectome-based predictive modeling and observe successful prediction of performance on an in-scan sustained attention task in a sample of youth, including participants with a neurodiverse condition. The predictions are not driven by confounds, such as head motion. In dataset 2, we find that the attention network model defined in dataset 1 generalizes to predict in-scan attention in a separate sample of neurotypical participants performing the same attention task. In datasets 3-5, we use connectome-based identification and longitudinal scans to probe the stability of the attention network across months to years in individual participants. Our results help elucidate the brain correlates of attentional state in youth and support the further development of predictive dimensional models of other clinically relevant phenotypes.
Collapse
Affiliation(s)
- Corey Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States
- MD-PhD Program, Yale School of Medicine, New Haven, CT, United States
| | - Abigail S Greene
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States
- MD-PhD Program, Yale School of Medicine, New Haven, CT, United States
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Diogo Fortes
- Yale Child Study Center, New Haven, CT, United States
| | | | | | - Rachel Foster
- Yale Child Study Center, New Haven, CT, United States
| | | | | | - Kelly Powell
- Yale Child Study Center, New Haven, CT, United States
| | | | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - David O’Connor
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - James C McPartland
- Yale Child Study Center, New Haven, CT, United States
- Department of Psychology, Yale University, New Haven, CT, United States
| | - Fred R Volkmar
- Yale Child Study Center, New Haven, CT, United States
- Department of Psychology, Yale University, New Haven, CT, United States
| | - Marvin Chun
- Department of Psychology, Yale University, New Haven, CT, United States
| | - Katarzyna Chawarska
- Yale Child Study Center, New Haven, CT, United States
- Department of Statistics and Data Science, Yale University, New Haven, CT, United States
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, United States
| | - Monica D Rosenberg
- Department of Psychology, University of Chicago, Chicago, IL, United States
- Neuroscience Institute, University of Chicago, Chicago, IL, United States
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
- Yale Child Study Center, New Haven, CT, United States
- Department of Statistics and Data Science, Yale University, New Haven, CT, United States
| | - R Todd Constable
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
11
|
Cutts SA, Faskowitz J, Betzel RF, Sporns O. Uncovering individual differences in fine-scale dynamics of functional connectivity. Cereb Cortex 2023; 33:2375-2394. [PMID: 35690591 DOI: 10.1093/cercor/bhac214] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 01/01/2023] Open
Abstract
Functional connectivity (FC) profiles contain subject-specific features that are conserved across time and have potential to capture brain-behavior relationships. Most prior work has focused on spatial features (nodes and systems) of these FC fingerprints, computed over entire imaging sessions. We propose a method for temporally filtering FC, which allows selecting specific moments in time while also maintaining the spatial pattern of node-based activity. To this end, we leverage a recently proposed decomposition of FC into edge time series (eTS). We systematically analyze functional magnetic resonance imaging frames to define features that enhance identifiability across multiple fingerprinting metrics, similarity metrics, and data sets. Results show that these metrics characteristically vary with eTS cofluctuation amplitude, similarity of frames within a run, transition velocity, and expression of functional systems. We further show that data-driven optimization of features that maximize fingerprinting metrics isolates multiple spatial patterns of system expression at specific moments in time. Selecting just 10% of the data can yield stronger fingerprints than are obtained from the full data set. Our findings support the idea that FC fingerprints are differentially expressed across time and suggest that multiple distinct fingerprints can be identified when spatial and temporal characteristics are considered simultaneously.
Collapse
Affiliation(s)
- Sarah A Cutts
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States.,Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States.,Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States
| | - Richard F Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States.,Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States.,Network Science Institute, Indiana University, Bloomington, IN 47408, United States.,Cognitive Science Program, Indiana University, Bloomington, IN 47405, United States
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States.,Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States.,Network Science Institute, Indiana University, Bloomington, IN 47408, United States.,Cognitive Science Program, Indiana University, Bloomington, IN 47405, United States
| |
Collapse
|
12
|
King G, Truzzi A, Cusack R. The confound of head position in within-session connectome fingerprinting in infants. Neuroimage 2023; 265:119808. [PMID: 36513291 PMCID: PMC9878437 DOI: 10.1016/j.neuroimage.2022.119808] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/14/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Individuals differ in their functional connectome, which can be demonstrated using a "fingerprinting" analysis in which the connectome from an individual in one dataset is used to identify the same person from an independent dataset. Recently, the origin of these fingerprints has been studied by examining if they are present in infants. The results have varied considerably, with identification rates from 10 to 90%. When fingerprinting has been performed by splitting a single imaging session into two split-sessions (within session), identification rates were higher than when two full-sessions (between sessions) were compared. This study examined whether a methodological difference could account for this variation. It was hypothesized that the infant's exact head position in the head coil may affect the measured connectome, due to the gradual inhomogeneity of signal-to-noise in phased-array coils and the breadth of possible positions for a small infant head in a head coil. This study examined the impact of this using resting state functional MRI data from the Developing Human Connectome Project second release. Using functional timeseries, fingerprinting identification was high (84-91%) within a session while between sessions it was low (7%).Using N = 416 infants' head positions, a map of the average signal-to-noise across the physical volume of the head coil was calculated and was used (independent group of 44 infants with two scan sessions) to demonstrate a significant relationship between head position in the head coil and functional connectivity. Using only the head positions (signal-to-noise values extrapolated from the group average map) of the independent group of 44 infants, high identification success was achieved across split-sessions (within session) but not full-sessions (between sessions). Using a model examining factors influencing the stability of the functional connectome, head position was seen as the strongest of the explanatory variables. We conclude within-session fingerprinting is affected by head position and future infant functional fingerprint analyses must use a different strategy or account for this impact.
Collapse
Affiliation(s)
- Graham King
- Trinity College Institute of Neuroscience and School of Psychology, Rm 3.22 Lloyd Building, Trinity College Dublin, Dublin 2, Ireland; Neonatology Department, The Rotunda Hospital, Parnell Square, Dublin 1, Ireland.
| | - Anna Truzzi
- Trinity College Institute of Neuroscience and School of Psychology, Rm 3.22 Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Rhodri Cusack
- Trinity College Institute of Neuroscience and School of Psychology, Rm 3.22 Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
13
|
Fu Z, Salman MS, Liu J, Calhoun VD. Functional Connectivity Stability: A Signature of Neurocognitive Development and Psychiatric Problems in Children. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:251-254. [PMID: 36085708 DOI: 10.1109/embc48229.2022.9871390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Brain functional connectivity has been shown to provide a type of fingerprint for adult subjects. However, most studies tend to focus on the connectivity strength rather than its stability across scans. In this study, we performed for the first time a large-scale analysis of within-individual stability of functional connectivity (FC) using 9071 children from the Adolescent Brain Cognitive Development database. Functional network connectivity (FNC) was extracted via a fully automated independent component analysis framework. We found that children's FNC is robust and stable with high similarity across scans and serves as a fingerprint that can identify an individual child from a large group. The robustness of this finding is supported by replicating the identification in the two-year follow-up session and between longitudinal sessions. More interestingly, we discovered that the within-individual FNC stability was predictive of cognitive performance and psychiatric problems in children, with higher FNC stability correlating with better cognitive performance and fewer dimensional psychopathology. The overall results indicate that the FNC of children also shows reliable within-individual stability, acting as a fingerprint for distinguishing participants, regardless of significant growth and development in the children's brain. FC stability can be a valuable imaging marker to predict early cognitive and psychiatric behaviors in children. Clinical Relevance---The stability of functional connectivity can be used to identify children from a large group and to draw inferences on early-age cognitive and psychiatric behaviors.
Collapse
|
14
|
Graff K, Tansey R, Rai S, Ip A, Rohr C, Dimond D, Dewey D, Bray S. Functional connectomes become more longitudinally self-stable, but not more distinct from others, across early childhood. Neuroimage 2022; 258:119367. [PMID: 35716841 DOI: 10.1016/j.neuroimage.2022.119367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Functional connectomes, as measured with functional magnetic resonance imaging (fMRI), are highly individualized, and evidence suggests this individualization may increase across childhood. A connectome can become more individualized either by increasing self-stability or decreasing between-subject-similarity. Here we used a longitudinal early childhood dataset to investigate age associations with connectome self-stability, between-subject-similarity, and developmental individualization, defined as an individual's self-stability across a 12-month interval relative to their between-subject-similarity. fMRI data were collected during an 18-minute passive viewing scan from 73 typically developing children aged 4-7 years, at baseline and 12-month follow-up. We found that young children had highly individualized connectomes, with sufficient self-stability across 12-months for 98% identification accuracy. Linear models showed a significant relationship between age and developmental individualization across the whole brain and in most networks. This association appeared to be largely driven by an increase in self-stability with age, with only weak evidence for relationships between age and similarity across participants. Together our findings suggest that children's connectomes become more individualized across early childhood, and that this effect is driven by increasing self-stability rather than decreasing between-subject-similarity.
Collapse
Affiliation(s)
- Kirk Graff
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Neuroscience, University of Calgary, Calgary, AB, Canada.
| | - Ryann Tansey
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Shefali Rai
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Amanda Ip
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Christiane Rohr
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Dennis Dimond
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Deborah Dewey
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Department of Pediatrics, University of Calgary, Calgary, AB, Canada; Community Health Science, University of Calgary, Calgary, AB, Canada
| | - Signe Bray
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
15
|
A longitudinal study of functional connectome uniqueness and its association with psychological distress in adolescence. Neuroimage 2022; 258:119358. [PMID: 35700948 DOI: 10.1016/j.neuroimage.2022.119358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Each human brain has a unique functional synchronisation pattern (functional connectome) analogous to a fingerprint that underpins brain functions and related behaviours. Here we examine functional connectome (whole-brain and 13 networks) maturation by measuring its uniqueness in adolescents who underwent brain scans longitudinally from 12 years of age every four months. The uniqueness of a functional connectome is defined as its ratio of self-similarity (from the same subject at a different time point) to the maximal similarity-to-others (from a given subject and any others at a different time point). We found that the unique whole brain connectome exists in 12 years old adolescents, with 92% individuals having a whole brain uniqueness value greater than one. The cingulo-opercular network (CON; a long-acting 'brain control network' configuring information processing) demonstrated marginal uniqueness in early adolescence with 56% of individuals showing uniqueness greater than one (i.e., more similar to her/his own CON four months later than those from any other subjects) and this increased longitudinally. Notably, the low uniqueness of the CON correlates (β = -18.6, FDR-Q < < 0.001) with K10 levels at the subsequent time point. This association suggests that the individualisation of CON network is related to psychological distress levels. Our findings highlight the potential of longitudinal neuroimaging to capture mental health problems in young people who are undergoing profound neuroplasticity and environment sensitivity period.
Collapse
|
16
|
Jun S, Alderson TH, Altmann A, Sadaghiani S. Dynamic trajectories of connectome state transitions are heritable. Neuroimage 2022; 256:119274. [PMID: 35504564 PMCID: PMC9223440 DOI: 10.1016/j.neuroimage.2022.119274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/23/2022] [Accepted: 04/29/2022] [Indexed: 11/09/2022] Open
Abstract
The brain’s functional connectome is dynamic, constantly reconfiguring in an individual-specific manner. However, which characteristics of such reconfigurations are subject to genetic effects, and to what extent, is largely unknown. Here, we identified heritable dynamic features, quantified their heritability, and determined their association with cognitive phenotypes. In resting-state fMRI, we obtained multivariate features, each describing a temporal or spatial characteristic of connectome dynamics jointly over a set of connectome states. We found strong evidence for heritability of temporal features, particularly, Fractional Occupancy (FO) and Transition Probability (TP), representing the duration spent in each connectivity configuration and the frequency of shifting between configurations, respectively. These effects were robust against methodological choices of number of states and global signal regression. Genetic effects explained a substantial proportion of phenotypic variance of these features (h2 = 0.39, 95% CI = [.24,.54] for FO; h2 = 0. 43, 95% CI = [.29,.57] for TP). Moreover, these temporal phenotypes were associated with cognitive performance. Contrarily, we found no robust evidence for heritability of spatial features of the dynamic states (i.e., states’ Modularity and connectivity pattern). Genetic effects may therefore primarily contribute to how the connectome transitions across states, rather than the precise spatial instantiation of the states in individuals. In sum, genetic effects impact the dynamic trajectory of state transitions (captured by FO and TP), and such temporal features may act as endophenotypes for cognitive abilities.
Collapse
Affiliation(s)
- Suhnyoung Jun
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 618201; Psychology Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Thomas H Alderson
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 618201
| | - Andre Altmann
- Centre for Medical Image Computing (CMIC), Department of Medical Physics, University College London, London, UK
| | - Sepideh Sadaghiani
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 618201; Psychology Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.
| |
Collapse
|
17
|
Cai B, Zhou Z, Zhang A, Zhang G, Xiao L, Stephen JM, Wilson TW, Calhoun VD, Wang YP. Functional connectomes incorporating phase synchronization for the characterization and prediction of individual differences. J Neurosci Methods 2022; 372:109539. [PMID: 35219769 PMCID: PMC11550892 DOI: 10.1016/j.jneumeth.2022.109539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Functional connectomes have been proven to be able to predict an individual's traits, acting as a fingerprint. A majority of studies use the amplitude information of fMRI signals to construct the connectivity but it remains unknown whether phase synchronization can be incorporated for improved prediction of individual cognitive behaviors. METHODS In this paper, we address the issue by extracting phase information from the fMRI time series with a phase locking approach, followed by the construction of functional connectomes. RESULTS We first examine the identification and prediction performance using phase-based profiles in comparison with amplitude-based connectomes. We then combine both phase-based and amplitude-based connectivity to extract subject-specific information enabled by the phase synchronization. Results show that high individual identification rates (from 82.7% to 92.6%) can be achieved by phase-based connectomes. Phase-based connectivity offers unique information complementary to amplitude-based signals. Intra-network phase-locking appears more informative for individual prediction. In addition, phase synchronization can be used to predict cognitive behaviors. COMPARISON WITH EXISTING METHOD The amplitude-based connectivity cannot capture the subject-specific information due to neural synchronization. The comparison with other phase-based methods has been involved in the discussion session. CONCLUSIONS Our findings suggest that neural synchronization carries subject-specific information, which can be captured by phase locking value. The incorporation of phase information into connectomes presents a promising approach to understand each individual brain's uniqueness.
Collapse
Affiliation(s)
- Biao Cai
- Biomedical Engineering Department, Tulane University, New Orleans, LA, USA
| | - Zhongxing Zhou
- Biomedical Engineering Department, Tulane University, New Orleans, LA, USA; School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Aiying Zhang
- Columbia University Department of Psychiatry and New York State Psychiatric Institute, New York, NY, USA
| | - Gemeng Zhang
- Biomedical Engineering Department, Tulane University, New Orleans, LA, USA
| | - Li Xiao
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | | | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)(Georgia State University, Georgia Institute of Technology, Emory University), Atlanta, GA 30030, USA
| | - Yu-Ping Wang
- Biomedical Engineering Department, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
18
|
Graff K, Tansey R, Ip A, Rohr C, Dimond D, Dewey D, Bray S. Benchmarking common preprocessing strategies in early childhood functional connectivity and intersubject correlation fMRI. Dev Cogn Neurosci 2022; 54:101087. [PMID: 35196611 PMCID: PMC8866685 DOI: 10.1016/j.dcn.2022.101087] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 01/02/2023] Open
Abstract
Preprocessing choices present a particular challenge for researchers working with functional magnetic resonance imaging (fMRI) data from young children. Steps which have been shown to be important for mitigating head motion, such as censoring and global signal regression (GSR), remain controversial, and benchmarking studies comparing preprocessing pipelines have been conducted using resting data from older participants who tend to move less than young children. Here, we conducted benchmarking of fMRI preprocessing steps in a population with high head-motion, children aged 4-8 years, leveraging a unique longitudinal, passive viewing fMRI dataset. We systematically investigated combinations of global signal regression (GSR), volume censoring, and ICA-AROMA. Pipelines were compared using previously established metrics of noise removal as well as metrics sensitive to recovery of individual differences (i.e., connectome fingerprinting), and stimulus-evoked responses (i.e., intersubject correlations; ISC). We found that: 1) the most efficacious pipeline for both noise removal and information recovery included censoring, GSR, bandpass filtering, and head motion parameter (HMP) regression, 2) ICA-AROMA performed similarly to HMP regression and did not obviate the need for censoring, 3) GSR had a minimal impact on connectome fingerprinting but improved ISC, and 4) the strictest censoring approaches reduced motion correlated edges but negatively impacted identifiability.
Collapse
Affiliation(s)
- Kirk Graff
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Neuroscience, University of Calgary, Calgary, AB, Canada.
| | - Ryann Tansey
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Amanda Ip
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Christiane Rohr
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Dennis Dimond
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Deborah Dewey
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Department of Pediatrics, University of Calgary, Calgary, AB, Canada; Community Health Science, University of Calgary, Calgary, AB, Canada
| | - Signe Bray
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
19
|
Brain connectivity fingerprinting and behavioural prediction rest on distinct functional systems of the human connectome. Commun Biol 2022; 5:261. [PMID: 35332230 PMCID: PMC8948277 DOI: 10.1038/s42003-022-03185-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
The prediction of inter-individual behavioural differences from neuroimaging data is a rapidly evolving field of research focusing on individualised methods to describe human brain organisation on the single-subject level. One method that harnesses such individual signatures is functional connectome fingerprinting, which can reliably identify individuals from large study populations. However, the precise relationship between functional signatures underlying fingerprinting and behavioural prediction remains unclear. Expanding on previous reports, here we systematically investigate the link between discrimination and prediction on different levels of brain network organisation (individual connections, network interactions, topographical organisation, and connection variability). Our analysis revealed a substantial divergence between discriminatory and predictive connectivity signatures on all levels of network organisation. Across different brain parcellations, thresholds, and prediction algorithms, we find discriminatory connections in higher-order multimodal association cortices, while neural correlates of behaviour display more variable distributions. Furthermore, we find the standard deviation of connections between participants to be significantly higher in fingerprinting than in prediction, making inter-individual connection variability a possible separating marker. These results demonstrate that participant identification and behavioural prediction involve highly distinct functional systems of the human connectome. The present study thus calls into question the direct functional relevance of connectome fingerprints. Mantwill et al. analysed the relationship between functional connectivity markers that are specific to individuals (i.e. brain fingerprints) and those predictive of behaviour. They reveal that these markers are unrelated and suggest an alternative perspective on the basis of individual signatures.
Collapse
|
20
|
Sato JR, Biazoli CE, Zugman A, Pan PM, Bueno APA, Moura LM, Gadelha A, Picon FA, Amaro E, Salum GA, Miguel EC, Rohde LA, Bressan RA, Jackowski AP. Long-term stability of the cortical volumetric profile and the functional human connectome throughout childhood and adolescence. Eur J Neurosci 2021; 54:6187-6201. [PMID: 34460993 DOI: 10.1111/ejn.15435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/18/2021] [Accepted: 08/28/2021] [Indexed: 11/26/2022]
Abstract
There is compelling evidence showing that between-subject variability in several functional and structural brain features is sufficient for unique identification in adults. However, individuation of brain functional connectomes depends on the stabilization of neurodevelopmental processes during childhood and adolescence. Here, we aimed to (1) evaluate the intra-subject functional connectome stability over time for the whole brain and for large scale functional networks and (2) determine the long-term identification accuracy or 'fingerprinting' for the cortical volumetric profile and the functional connectome. For these purposes, we analysed a longitudinal cohort of 239 children and adolescents scanned in two sessions with an interval of approximately 3 years (age range 6-15 years at baseline and 9-18 years at follow-up). Corroborating previous results using short between-scan intervals in children and adolescents, we observed a moderate identification accuracy (38%) for the whole functional profile. In contrast, identification accuracy using cortical volumetric profile was 95%. Among the large-scale networks, the default-mode (26.8%), the frontoparietal (23.4%) and the dorsal-attention (27.6%) networks were the most discriminative. Our results provide further evidence for a protracted development of specific individual structural and functional connectivity profiles.
Collapse
Affiliation(s)
- João Ricardo Sato
- Center of Mathematics, Computing, and Cognition, Universidade Federal do ABC, Santo André, Brazil.,Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| | - Claudinei Eduardo Biazoli
- Center of Mathematics, Computing, and Cognition, Universidade Federal do ABC, Santo André, Brazil.,Department of Biological and Experimental Psychology, Queen Mary University of London, London, UK
| | - André Zugman
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| | - Pedro Mario Pan
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| | - Ana Paula Arantes Bueno
- Center of Mathematics, Computing, and Cognition, Universidade Federal do ABC, Santo André, Brazil
| | - Luciana Monteiro Moura
- Center of Mathematics, Computing, and Cognition, Universidade Federal do ABC, Santo André, Brazil.,Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| | - Ary Gadelha
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| | - Felipe Almeida Picon
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil.,ADHD Outpatient Program & Developmental Psychiatry Program, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Edson Amaro
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil.,Department of Radiology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Giovanni Abrahão Salum
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil.,ADHD Outpatient Program & Developmental Psychiatry Program, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Euripedes Constantino Miguel
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil.,Department of Psychiatry, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Luis Augusto Rohde
- National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil.,ADHD Outpatient Program & Developmental Psychiatry Program, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Rodrigo Affonseca Bressan
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| | - Andrea Parolin Jackowski
- Interdisciplinary Lab for Clinical Neurosciences (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents (CNPq), São Paulo, Brazil
| |
Collapse
|
21
|
Zhang S, Spoletini LJ, Gold BP, Morgan VL, Rogers BP, Chang C. Interindividual Signatures of fMRI Temporal Fluctuations. Cereb Cortex 2021; 31:4450-4463. [PMID: 33903915 PMCID: PMC8408464 DOI: 10.1093/cercor/bhab099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/28/2021] [Accepted: 03/26/2021] [Indexed: 11/13/2022] Open
Abstract
The complexity and variability of human brain activity, such as quantified from Functional Magnetic Resonance Imaging (fMRI) time series, have been widely studied as potential markers of healthy and pathological states. However, the extent to which fMRI temporal features exhibit stable markers of inter-individual differences in brain function across healthy young adults is currently an open question. In this study, we draw upon two widely used time-series measures-a nonlinear complexity measure (sample entropy; SampEn) and a spectral measure of low-frequency content (fALFF)-to capture dynamic properties of resting-state fMRI in a large sample of young adults from the Human Connectome Project. We observe that these two measures are closely related, and that both generate reproducible patterns across brain regions over four different fMRI runs, with intra-class correlations of up to 0.8. Moreover, we find that both metrics can uniquely differentiate subjects with high identification rates (ca. 89%). Canonical correlation analysis revealed a significant relationship between multivariate brain temporal features and behavioral measures. Overall, these findings suggest that regional profiles of fMRI temporal characteristics may provide stable markers of individual differences, and motivate future studies to further probe relationships between fMRI time series metrics and behavior.
Collapse
Affiliation(s)
- Shengchao Zhang
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37212, USA
| | - Liam J Spoletini
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Benjamin P Gold
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37212, USA
- Vanderbilt University, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Victoria L Morgan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Vanderbilt University, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Baxter P Rogers
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Vanderbilt University, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Catie Chang
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37212, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Vanderbilt University, Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
22
|
Ribeiro FL, Dos Santos FRC, Sato JR, Pinaya WHL, Biazoli CE. Inferring the heritability of large-scale functional networks with a multivariate ACE modeling approach. Netw Neurosci 2021; 5:527-548. [PMID: 34189376 PMCID: PMC8233119 DOI: 10.1162/netn_a_00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/10/2021] [Indexed: 11/06/2022] Open
Abstract
Recent evidence suggests that the human functional connectome is stable at different timescales and is unique. These characteristics posit the functional connectome not only as an individual marker but also as a powerful discriminatory measure characterized by high intersubject variability. Among distinct sources of intersubject variability, the long-term sources include functional patterns that emerge from genetic factors. Here, we sought to investigate the contribution of additive genetic factors to the variability of functional networks by determining the heritability of the connectivity strength in a multivariate fashion. First, we reproduced and extended the connectome fingerprinting analysis to the identification of twin pairs. Then, we estimated the heritability of functional networks by a multivariate ACE modeling approach with bootstrapping. Twin pairs were identified above chance level using connectome fingerprinting, with monozygotic twin identification accuracy equal to 57.2% on average for whole-brain connectome. Additionally, we found that a visual (0.37), the medial frontal (0.31), and the motor (0.30) functional networks were the most influenced by additive genetic factors. Our findings suggest that genetic factors not only partially determine intersubject variability of the functional connectome, such that twins can be identified using connectome fingerprinting, but also differentially influence connectivity strength in large-scale functional networks. The functional connectome is a unique representation of the functional organization of the human brain. As such, it has been extensively used as an individual marker, a “fingerprint,” because of its high intersubject variability. Here, we sought to investigate the influence of genetic factors on intersubject variability of functional networks. Therefore, we extended the connectome fingerprinting analysis to the identification of twin pairs, and we estimated the heritability of functional networks by a multivariate ACE modeling approach with bootstrapping. We found that genetic factors not only partially determine intersubject variability of the functional connectome, such that monozygotic twin identification accuracy achieved 57.2% on average using whole-brain connectome in the fingerprinting analysis, but also differentially influence connectivity strength in large-scale functional networks.
Collapse
Affiliation(s)
- Fernanda L Ribeiro
- Center of Mathematics, Computing, and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | | | - João R Sato
- Center of Mathematics, Computing, and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Walter H L Pinaya
- Center of Mathematics, Computing, and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Claudinei E Biazoli
- Center of Mathematics, Computing, and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| |
Collapse
|
23
|
Finn ES, Rosenberg MD. Beyond fingerprinting: Choosing predictive connectomes over reliable connectomes. Neuroimage 2021; 239:118254. [PMID: 34118397 DOI: 10.1016/j.neuroimage.2021.118254] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
Recent years have seen a surge of research on variability in functional brain connectivity within and between individuals, with encouraging progress toward understanding the consequences of this variability for cognition and behavior. At the same time, well-founded concerns over rigor and reproducibility in psychology and neuroscience have led many to question whether functional connectivity is sufficiently reliable, and call for methods to improve its reliability. The thesis of this opinion piece is that when studying variability in functional connectivity-both across individuals and within individuals over time-we should use behavior prediction as our benchmark rather than optimize reliability for its own sake. We discuss theoretical and empirical evidence to compel this perspective, both when the goal is to study stable, trait-level differences between people, as well as when the goal is to study state-related changes within individuals. We hope that this piece will be useful to the neuroimaging community as we continue efforts to characterize inter- and intra-subject variability in brain function and build predictive models with an eye toward eventual real-world applications.
Collapse
Affiliation(s)
- Emily S Finn
- Department of Psychological and Brain Sciences, Dartmouth College, United States.
| | - Monica D Rosenberg
- Department of Psychology, University of Chicago, United States; Neuroscience Institute, University of Chicago, United States.
| |
Collapse
|
24
|
Oberman LM, Hynd M, Nielson DM, Towbin KE, Lisanby SH, Stringaris A. Repetitive Transcranial Magnetic Stimulation for Adolescent Major Depressive Disorder: A Focus on Neurodevelopment. Front Psychiatry 2021; 12:642847. [PMID: 33927653 PMCID: PMC8076574 DOI: 10.3389/fpsyt.2021.642847] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/18/2021] [Indexed: 12/31/2022] Open
Abstract
Adolescent depression is a potentially lethal condition and a leading cause of disability for this age group. There is an urgent need for novel efficacious treatments since half of adolescents with depression fail to respond to current therapies and up to 70% of those who respond will relapse within 5 years. Repetitive transcranial magnetic stimulation (rTMS) has emerged as a promising treatment for major depressive disorder (MDD) in adults who do not respond to pharmacological or behavioral interventions. In contrast, rTMS has not demonstrated the same degree of efficacy in adolescent MDD. We argue that this is due, in part, to conceptual and methodological shortcomings in the existing literature. In our review, we first provide a neurodevelopmentally focused overview of adolescent depression. We then summarize the rTMS literature in adult and adolescent MDD focusing on both the putative mechanisms of action and neurodevelopmental factors that may influence efficacy in adolescents. We then identify limitations in the existing adolescent MDD rTMS literature and propose specific parameters and approaches that may be used to optimize efficacy in this uniquely vulnerable age group. Specifically, we suggest ways in which future studies reduce clinical and neural heterogeneity, optimize neuronavigation by drawing from functional brain imaging, apply current knowledge of rTMS parameters and neurodevelopment, and employ an experimental therapeutics platform to identify neural targets and biomarkers for response. We conclude that rTMS is worthy of further investigation. Furthermore, we suggest that following these recommendations in future studies will offer a more rigorous test of rTMS as an effective treatment for adolescent depression.
Collapse
|
25
|
Cai B, Zhang G, Zhang A, Xiao L, Hu W, Stephen JM, Wilson TW, Calhoun VD, Wang YP. Functional connectome fingerprinting: Identifying individuals and predicting cognitive functions via autoencoder. Hum Brain Mapp 2021; 42:2691-2705. [PMID: 33835637 PMCID: PMC8127140 DOI: 10.1002/hbm.25394] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 12/29/2022] Open
Abstract
Functional network connectivity has been widely acknowledged to characterize brain functions, which can be regarded as “brain fingerprinting” to identify an individual from a pool of subjects. Both common and unique information has been shown to exist in the connectomes across individuals. However, very little is known about whether and how this information can be used to predict the individual variability of the brain. In this paper, we propose to enhance the uniqueness of individual connectome based on an autoencoder network. Specifically, we hypothesize that the common neural activities shared across individuals may reduce the individual identification. By removing contributions from shared activities, inter‐subject variability can be enhanced. Our experimental results on HCP data show that the refined connectomes obtained by utilizing autoencoder with sparse dictionary learning can distinguish an individual from the remaining participants with high accuracy (up to 99.5% for the rest–rest pair). Furthermore, high‐level cognitive behaviors (e.g., fluid intelligence, executive function, and language comprehension) can also be better predicted with the obtained refined connectomes. We also find that high‐order association cortices contribute more to both individual discrimination and behavior prediction. In summary, our proposed framework provides a promising way to leverage functional connectivity networks for cognition and behavior study, in addition to a better understanding of brain functions.
Collapse
Affiliation(s)
- Biao Cai
- Biomedical Engineering Department, Tulane University, New Orleans, Louisiana, USA
| | - Gemeng Zhang
- Biomedical Engineering Department, Tulane University, New Orleans, Louisiana, USA
| | - Aiying Zhang
- Biomedical Engineering Department, Tulane University, New Orleans, Louisiana, USA
| | - Li Xiao
- Biomedical Engineering Department, Tulane University, New Orleans, Louisiana, USA
| | - Wenxing Hu
- Biomedical Engineering Department, Tulane University, New Orleans, Louisiana, USA
| | | | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - Yu-Ping Wang
- Biomedical Engineering Department, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|