2
|
Zanao TA, Luethi MS, Goerigk S, Suen P, Diaz AP, Soares JC, Brunoni AR. White matter predicts tDCS antidepressant effects in a sham-controlled clinical trial study. Eur Arch Psychiatry Clin Neurosci 2023; 273:1421-1431. [PMID: 36336757 DOI: 10.1007/s00406-022-01504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
Transcranial direct current stimulation (tDCS) has been used as treatment for depression, but its effects are heterogeneous. We investigated, in a subsample of the clinical trial Escitalopram versus Electrical Direct Current Therapy for Depression Study (ELECTTDCS), whether white matter areas associated with depression disorder were associated with tDCS response. Baseline diffusion tensor imaging data were analyzed from 49 patients (34 females, mean age 41.9) randomized to escitalopram 20 mg/day, tDCS (2 mA, 30 min, 22 sessions), or placebo. Antidepressant outcomes were assessed by Hamilton Depression Rating Scale-17 (HDRS) after 10-week treatment. We used whole-brain tractography for extracting white matter measures for anterior corpus callosum, and bilaterally for cingulum bundle, striato-frontal, inferior occipito-frontal fasciculus and uncinate. For the rostral body, tDCS group showed higher MD associated with antidepressant effects (estimate = -5.13 ± 1.64, p = 0.002), and tDCS significantly differed from the placebo and the escitalopram group. The left striato-frontal tract showed higher FA associated with antidepressant effects (estimate = -2.14 ± 0.72, p = 0.003), and tDCS differed only from the placebo group. For the right uncinate, the tDCS group lower AD values were associated with higher HDRS decrease (estimate = -1.45 ± 0.67, p = 0.031). Abnormalities in white matter MDD-related areas are associated with tDCS antidepressant effects. Suggested better white matter microstructure of the left prefrontal cortex was associated with tDCS antidepressant effects. Future studies should investigate whether these findings are driven by electric field diffusion and density in these areas.
Collapse
Affiliation(s)
- Tamires A Zanao
- Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Matthias S Luethi
- Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Stephan Goerigk
- Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, Laboratory of Neurosciences LIM-27), São Paulo, Brazil
- Department of Psychological Methodology and Assessment, LMU Munich, Munich, Germany
| | - Paulo Suen
- Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Alexandre P Diaz
- Hochschule Fresenius, University of Applied Sciences, Munich, Germany
| | - Jair C Soares
- Hochschule Fresenius, University of Applied Sciences, Munich, Germany
| | - Andre R Brunoni
- Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
- Hospital Universitário, Departamento de Clínica Médica, Faculdade de Medicina da USP, São Paulo, Brazil.
| |
Collapse
|
4
|
Klooster DCW, Ferguson MA, Boon PAJM, Baeken C. Personalizing Repetitive Transcranial Magnetic Stimulation Parameters for Depression Treatment Using Multimodal Neuroimaging. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:536-545. [PMID: 34800726 DOI: 10.1016/j.bpsc.2021.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/24/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a tool that can be used to administer treatment for neuropsychiatric disorders such as major depressive disorder, although the clinical efficacy is still rather modest. Overly general stimulation protocols that consider neither patient-specific depression symptomology nor individualized brain characteristics, such as anatomy or structural and functional connections, may be the cause of the high inter- and intraindividual variability in rTMS clinical responses. Multimodal neuroimaging can provide the necessary insights into individual brain characteristics and can therefore be used to personalize rTMS parameters. Optimal coil positioning should include a three-step process: 1) identify the optimal (indirect) target area based on the exact symptom pattern of the patient; 2) derive the cortical (direct) target location based on functional and/or structural connectomes derived from functional and diffusion magnetic resonance imaging data; and 3) determine the ideal coil position by computational modeling, such that the electric field distribution overlaps with the cortical target. These TMS-induced electric field simulations, derived from anatomical and diffusion magnetic resonance imaging data, can be further applied to compute optimal stimulation intensities. In addition to magnetic resonance imaging, electroencephalography can provide complementary information regarding the ongoing brain oscillations. This information can be used to determine the optimal timing and frequency of the stimuli. The heightened benefits of these personalized stimulation approaches are logically reasoned, but speculative. Randomized clinical trials will be required to compare clinical responses from standard rTMS protocols to personalized protocols. Ultimately, an optimized clinical response may result from precision protocols derived from combinations of personalized stimulation parameters.
Collapse
Affiliation(s)
- Deborah C W Klooster
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; 4Brain, Department of Head and Skin, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium.
| | - Michael A Ferguson
- Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Paul A J M Boon
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; 4Brain, Department of Head and Skin, Ghent University, Ghent, Belgium; Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Chris Baeken
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Ghent Experimental Psychiatry Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital Brussels, Jette, Belgium
| |
Collapse
|
5
|
Harita S, Momi D, Mazza F, Griffiths JD. Mapping Inter-individual Functional Connectivity Variability in TMS Targets for Major Depressive Disorder. Front Psychiatry 2022; 13:902089. [PMID: 35815008 PMCID: PMC9260048 DOI: 10.3389/fpsyt.2022.902089] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is an emerging alternative to existing treatments for major depressive disorder (MDD). The effects of TMS on both brain physiology and therapeutic outcomes are known to be highly variable from subject to subject, however. Proposed reasons for this variability include individual differences in neurophysiology, in cortical geometry, and in brain connectivity. Standard approaches to TMS target site definition tend to focus on coordinates or landmarks within the individual brain regions implicated in MDD, such as the dorsolateral prefrontal cortex (dlPFC) and orbitofrontal cortex (OFC). Additionally considering the network connectivity of these sites (i.e., the wider set of brain regions that may be mono- or poly-synaptically activated by TMS stimulation) has the potential to improve subject-specificity of TMS targeting and, in turn, improve treatment outcomes. In this study, we looked at the functional connectivity (FC) of dlPFC and OFC TMS targets, based on induced electrical field (E-field) maps, estimated using the SimNIBS library. We hypothesized that individual differences in spontaneous functional brain dynamics would contribute more to downstream network engagement than individual differences in cortical geometry (i.e., E-field variability). We generated individualized E-field maps on the cortical surface for 121 subjects (67 female) from the Human Connectome Project database using tetrahedral head models generated from T1- and T2-weighted MR images. F3 and Fp1 electrode positions were used to target the left dlPFC and left OFC, respectively. We analyzed inter-subject variability in the shape and location of these TMS target E-field patterns, their FC, and the major functional networks to which they belong. Our results revealed the key differences in TMS target FC between the dlPFC and OFC, and also how this connectivity varies across subjects. Three major functional networks were targeted across the dlPFC and OFC: the ventral attention, fronto-parietal and default-mode networks in the dlPFC, and the fronto-parietal and default mode networks in the OFC. Inter-subject variability in cortical geometry and in FC was high. Our analyses showed that the use of normative neuroimaging reference data (group-average or representative FC and subject E-field) allows prediction of which networks are targeted, but fails to accurately quantify the relative loading of TMS targeting on each of the principal networks. Our results characterize the FC patterns of canonical therapeutic TMS targets, and the key dimensions of their variability across subjects. The high inter-individual variability in cortical geometry and FC, leading to high variability in distributions of targeted brain networks, may account for the high levels of variability in physiological and therapeutic TMS outcomes. These insights should, we hope, prove useful as part of the broader effort by the psychiatry, neurology, and neuroimaging communities to help improve and refine TMS therapy, through a better understanding of the technology and its neurophysiological effects.
Collapse
Affiliation(s)
- Shreyas Harita
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Davide Momi
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Frank Mazza
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - John D Griffiths
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Tsuchida A, Laurent A, Crivello F, Petit L, Joliot M, Pepe A, Beguedou N, Gueye MF, Verrecchia V, Nozais V, Zago L, Mellet E, Debette S, Tzourio C, Mazoyer B. The MRi-Share database: brain imaging in a cross-sectional cohort of 1870 university students. Brain Struct Funct 2021; 226:2057-2085. [PMID: 34283296 DOI: 10.1007/s00429-021-02334-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/11/2021] [Indexed: 01/04/2023]
Abstract
We report on MRi-Share, a multi-modal brain MRI database acquired in a unique sample of 1870 young healthy adults, aged 18-35 years, while undergoing university-level education. MRi-Share contains structural (T1 and FLAIR), diffusion (multispectral), susceptibility-weighted (SWI), and resting-state functional imaging modalities. Here, we described the contents of these different neuroimaging datasets and the processing pipelines used to derive brain phenotypes, as well as how quality control was assessed. In addition, we present preliminary results on associations of some of these brain image-derived phenotypes at the whole brain level with both age and sex, in the subsample of 1722 individuals aged less than 26 years. We demonstrate that the post-adolescence period is characterized by changes in both structural and microstructural brain phenotypes. Grey matter cortical thickness, surface area and volume were found to decrease with age, while white matter volume shows increase. Diffusivity, either radial or axial, was found to robustly decrease with age whereas fractional anisotropy only slightly increased. As for the neurite orientation dispersion and densities, both were found to increase with age. The isotropic volume fraction also showed a slight increase with age. These preliminary findings emphasize the complexity of changes in brain structure and function occurring in this critical period at the interface of late maturation and early ageing.
Collapse
Affiliation(s)
- Ami Tsuchida
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France
| | - Alexandre Laurent
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France
| | - Fabrice Crivello
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France
| | - Laurent Petit
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France
| | - Marc Joliot
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France.,Ginesislab, Fealinx and Université de Bordeaux, Bordeaux, France
| | - Antonietta Pepe
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France
| | - Naka Beguedou
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France
| | - Marie-Fateye Gueye
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France.,Ginesislab, Fealinx and Université de Bordeaux, Bordeaux, France
| | - Violaine Verrecchia
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France.,Ginesislab, Fealinx and Université de Bordeaux, Bordeaux, France
| | - Victor Nozais
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France.,Ginesislab, Fealinx and Université de Bordeaux, Bordeaux, France
| | - Laure Zago
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France
| | - Emmanuel Mellet
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France
| | - Stéphanie Debette
- Université de Bordeaux, INSERM, Bordeaux Population Health Research Center, U1219, CHU Bordeaux, Bordeaux, France.,Centre Hospitalier Universitaire Pellegrin, Bordeaux, France
| | - Christophe Tzourio
- Université de Bordeaux, INSERM, Bordeaux Population Health Research Center, U1219, CHU Bordeaux, Bordeaux, France.,Centre Hospitalier Universitaire Pellegrin, Bordeaux, France
| | - Bernard Mazoyer
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France. .,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France. .,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France. .,Ginesislab, Fealinx and Université de Bordeaux, Bordeaux, France. .,Centre Hospitalier Universitaire Pellegrin, Bordeaux, France.
| |
Collapse
|