1
|
Sedighin F. Tensor Methods in Biomedical Image Analysis. JOURNAL OF MEDICAL SIGNALS & SENSORS 2024; 14:16. [PMID: 39100745 PMCID: PMC11296571 DOI: 10.4103/jmss.jmss_55_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 08/06/2024]
Abstract
In the past decade, tensors have become increasingly attractive in different aspects of signal and image processing areas. The main reason is the inefficiency of matrices in representing and analyzing multimodal and multidimensional datasets. Matrices cannot preserve the multidimensional correlation of elements in higher-order datasets and this highly reduces the effectiveness of matrix-based approaches in analyzing multidimensional datasets. Besides this, tensor-based approaches have demonstrated promising performances. These together, encouraged researchers to move from matrices to tensors. Among different signal and image processing applications, analyzing biomedical signals and images is of particular importance. This is due to the need for extracting accurate information from biomedical datasets which directly affects patient's health. In addition, in many cases, several datasets have been recorded simultaneously from a patient. A common example is recording electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) of a patient with schizophrenia. In such a situation, tensors seem to be among the most effective methods for the simultaneous exploitation of two (or more) datasets. Therefore, several tensor-based methods have been developed for analyzing biomedical datasets. Considering this reality, in this paper, we aim to have a comprehensive review on tensor-based methods in biomedical image analysis. The presented study and classification between different methods and applications can show the importance of tensors in biomedical image enhancement and open new ways for future studies.
Collapse
Affiliation(s)
- Farnaz Sedighin
- Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Belyaeva I, Gabrielson B, Wang YP, Wilson TW, Calhoun VD, Stephen JM, Adali T. Learning Spatiotemporal Brain Dynamics in Adolescents via Multimodal MEG and fMRI Data Fusion Using Joint Tensor/Matrix Decomposition. IEEE Trans Biomed Eng 2024; 71:2189-2200. [PMID: 38345949 PMCID: PMC11240882 DOI: 10.1109/tbme.2024.3364704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
OBJECTIVE Brain function is understood to be regulated by complex spatiotemporal dynamics, and can be characterized by a combination of observed brain response patterns in time and space. Magnetoencephalography (MEG), with its high temporal resolution, and functional magnetic resonance imaging (fMRI), with its high spatial resolution, are complementary imaging techniques with great potential to reveal information about spatiotemporal brain dynamics. Hence, the complementary nature of these imaging techniques holds much promise to study brain function in time and space, especially when the two data types are allowed to fully interact. METHODS We employed coupled tensor/matrix factorization (CMTF) to extract joint latent components in the form of unique spatiotemporal brain patterns that can be used to study brain development and function on a millisecond scale. RESULTS Using the CMTF model, we extracted distinct brain patterns that revealed fine-grained spatiotemporal brain dynamics and typical sensory processing pathways informative of high-level cognitive functions in healthy adolescents. The components extracted from multimodal tensor fusion possessed better discriminative ability between high- and low-performance subjects than single-modality data-driven models. CONCLUSION Multimodal tensor fusion successfully identified spatiotemporal brain dynamics of brain function and produced unique components with high discriminatory power. SIGNIFICANCE The CMTF model is a promising tool for high-order, multimodal data fusion that exploits the functional resolution of MEG and fMRI, and provides a comprehensive picture of the developing brain in time and space.
Collapse
|
3
|
Desfossés-Vallée S, Leclerc JB, Blanchet P, O’Connor KP, Lavoie ME. Comparing the 'When' and the 'Where' of Electrocortical Activity in Patients with Tourette Syndrome, Body-Focused Repetitive Behaviors, and Obsessive Compulsive Disorder. J Clin Med 2024; 13:2489. [PMID: 38731020 PMCID: PMC11084402 DOI: 10.3390/jcm13092489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
Background/Objectives: Tourette Syndrome (TS), Obsessive Compulsive Disorder (OCD), and Body-Focused Repetitive Behaviors (BFRB) are three disorders that share many similarities in terms of phenomenology, neuroanatomy, and functionality. However, despite the literature pointing toward a plausible spectrum of these disorders, only a few studies have compared them. Studying the neurocognitive processes using Event-Related Potentials (ERPs) offers the advantage of assessing brain activity with excellent temporal resolution. The ERP components can then reflect specific processes known to be potentially affected by these disorders. Our first goal is to characterize 'when' in the processing stream group differences are the most prominent. The second goal is to identify 'where' in the brain the group discrepancies could be. Methods: Participants with TS (n = 24), OCD (n = 18), and BFRB (n = 16) were matched to a control group (n = 59) and were recorded with 58 EEG electrodes during a visual counting oddball task. Three ERP components were extracted (i.e., P200, N200, and P300), and generating sources were modelized with Standardized Low-Resolution Electromagnetic Tomography. Results: We showed no group differences for the P200 and N200 when controlling for anxiety and depressive symptoms, suggesting that the early cognitive processes reflected by these components are relatively intact in these populations. Our results also showed a decrease in the later anterior P300 oddball effect for the TS and OCD groups, whereas an intact oddball effect was observed for the BFRB group. Source localization analyses with sLORETA revealed activations in the lingual and middle occipital gyrus for the OCD group, distinguishing it from the other two clinical groups and the controls. Conclusions: It seems that both TS and OCD groups share deficits in anterior P300 activation but reflect distinct brain-generating source activations.
Collapse
Affiliation(s)
- Sarah Desfossés-Vallée
- Laboratoire de Psychophysiologie Cognitive et Sociale, Montréal, QC H1N 3J4, Canada;
- Centre de Recherche de l’Institut Universitaire en Santé Mentale de Montréal, Montréal, QC H1N 3J4, Canada; (J.B.L.); (P.B.); (K.P.O.)
- Département de Psychologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Julie B. Leclerc
- Centre de Recherche de l’Institut Universitaire en Santé Mentale de Montréal, Montréal, QC H1N 3J4, Canada; (J.B.L.); (P.B.); (K.P.O.)
- Département de Psychologie, Université du Québec à Montréal, Montréal, QC H2X 3P2, Canada
- Centre de Recherche CIUSSS du Nord-de-l’île-de-Montréal, Montréal, QC H4J 1C5, Canada
| | - Pierre Blanchet
- Centre de Recherche de l’Institut Universitaire en Santé Mentale de Montréal, Montréal, QC H1N 3J4, Canada; (J.B.L.); (P.B.); (K.P.O.)
- Faculté de Médecine Dentaire, Département de Stomatologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Kieron P. O’Connor
- Centre de Recherche de l’Institut Universitaire en Santé Mentale de Montréal, Montréal, QC H1N 3J4, Canada; (J.B.L.); (P.B.); (K.P.O.)
- Département de Psychiatrie et Addictologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Marc E. Lavoie
- Laboratoire de Psychophysiologie Cognitive et Sociale, Montréal, QC H1N 3J4, Canada;
- Centre de Recherche de l’Institut Universitaire en Santé Mentale de Montréal, Montréal, QC H1N 3J4, Canada; (J.B.L.); (P.B.); (K.P.O.)
- Département de Sciences Humaines, Lettres et Communication, Université TÉLUQ, Quebec City, QC G1K 9H6, Canada
| |
Collapse
|
4
|
Wang J, Gao X, Xiang Z, Sun F, Yang Y. Evaluation of consciousness rehabilitation via neuroimaging methods. Front Hum Neurosci 2023; 17:1233499. [PMID: 37780959 PMCID: PMC10537959 DOI: 10.3389/fnhum.2023.1233499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Accurate evaluation of patients with disorders of consciousness (DoC) is crucial for personalized treatment. However, misdiagnosis remains a serious issue. Neuroimaging methods could observe the conscious activity in patients who have no evidence of consciousness in behavior, and provide objective and quantitative indexes to assist doctors in their diagnosis. In the review, we discussed the current research based on the evaluation of consciousness rehabilitation after DoC using EEG, fMRI, PET, and fNIRS, as well as the advantages and limitations of each method. Nowadays single-modal neuroimaging can no longer meet the researchers` demand. Considering both spatial and temporal resolution, recent studies have attempted to focus on the multi-modal method which can enhance the capability of neuroimaging methods in the evaluation of DoC. As neuroimaging devices become wireless, integrated, and portable, multi-modal neuroimaging methods will drive new advancements in brain science research.
Collapse
Affiliation(s)
| | | | | | - Fangfang Sun
- College of Automation, Hangzhou Dianzi University, Hangzhou, China
| | | |
Collapse
|
5
|
Liu Y, Zhang Y, Jiang Z, Kong W, Zou L. Exploring Neural Mechanisms of Reward Processing Using Coupled Matrix Tensor Factorization: A Simultaneous EEG-fMRI Investigation. Brain Sci 2023; 13:485. [PMID: 36979295 PMCID: PMC10046863 DOI: 10.3390/brainsci13030485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND It is crucial to understand the neural feedback mechanisms and the cognitive decision-making of the brain during the processing of rewards. Here, we report the first attempt for a simultaneous electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) study in a gambling task by utilizing tensor decomposition. METHODS First, the single-subject EEG data are represented as a third-order spectrogram tensor to extract frequency features. Next, the EEG and fMRI data are jointly decomposed into a superposition of multiple sources characterized by space-time-frequency profiles using coupled matrix tensor factorization (CMTF). Finally, graph-structured clustering is used to select the most appropriate model according to four quantitative indices. RESULTS The results clearly show that not only are the regions of interest (ROIs) found in other literature activated, but also the olfactory cortex and fusiform gyrus which are usually ignored. It is found that regions including the orbitofrontal cortex and insula are activated for both winning and losing stimuli. Meanwhile, regions such as the superior orbital frontal gyrus and anterior cingulate cortex are activated upon winning stimuli, whereas the inferior frontal gyrus, cingulate cortex, and medial superior frontal gyrus are activated upon losing stimuli. CONCLUSION This work sheds light on the reward-processing progress, provides a deeper understanding of brain function, and opens a new avenue in the investigation of neurovascular coupling via CMTF.
Collapse
Affiliation(s)
- Yuchao Liu
- School of Computer and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| | - Yin Zhang
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China
| | - Zhongyi Jiang
- School of Computer and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| | - Wanzeng Kong
- College of Computer Science, Hangzhou Dianzi University, Hangzhou 310018, China
- Key Laboratory of Brain Machine Collaborative Intelligence Foundation of Zhejiang Province, Hangzhou 310018, China
| | - Ling Zou
- School of Computer and Artificial Intelligence, Changzhou University, Changzhou 213164, China
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Brain Machine Collaborative Intelligence Foundation of Zhejiang Province, Hangzhou 310018, China
| |
Collapse
|
6
|
Kuang LD, He ZM, Zhang J, Li F. Coupled canonical polyadic decomposition of multi-group fMRI data with spatial reference and orthonormality constraints. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Multi-Subject Analysis for Brain Developmental Patterns Discovery via Tensor Decomposition of MEG Data. Neuroinformatics 2023; 21:115-141. [PMID: 36001238 DOI: 10.1007/s12021-022-09599-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 01/18/2023]
Abstract
Identification of informative signatures from electrophysiological signals is important for understanding brain developmental patterns, where techniques such as magnetoencephalography (MEG) are particularly useful. However, less attention has been given to fully utilizing the multidimensional nature of MEG data for extracting components that describe these patterns. Tensor factorizations of MEG yield components that encapsulate the data's multidimensional nature, providing parsimonious models identifying latent brain patterns for meaningful summarization of neural processes. To address the need for meaningful MEG signatures for studies of pediatric cohorts, we propose a tensor-based approach for extracting developmental signatures of multi-subject MEG data. We employ the canonical polyadic (CP) decomposition for estimating latent spatiotemporal components of the data, and use these components for group level statistical inference. Using CP decomposition along with hierarchical clustering, we were able to extract typical early and late latency event-related field (ERF) components that were discriminative of high and low performance groups ([Formula: see text]) and significantly correlated with major cognitive domains such as attention, episodic memory, executive function, and language comprehension. We demonstrate that tensor-based group level statistical inference of MEG can produce signatures descriptive of the multidimensional MEG data. Furthermore, these features can be used to study group differences in brain patterns and cognitive function of healthy children. We provide an effective tool that may be useful for assessing child developmental status and brain function directly from electrophysiological measurements and facilitate the prospective assessment of cognitive processes.
Collapse
|
8
|
Ke H, Wang F, Ma H, He Z. ADHD identification and its interpretation of functional connectivity using deep self-attention factorization. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.109082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Acar E, Roald M, Hossain KM, Calhoun VD, Adali T. Tracing Evolving Networks Using Tensor Factorizations vs. ICA-Based Approaches. Front Neurosci 2022; 16:861402. [PMID: 35546891 PMCID: PMC9081795 DOI: 10.3389/fnins.2022.861402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Analysis of time-evolving data is crucial to understand the functioning of dynamic systems such as the brain. For instance, analysis of functional magnetic resonance imaging (fMRI) data collected during a task may reveal spatial regions of interest, and how they evolve during the task. However, capturing underlying spatial patterns as well as their change in time is challenging. The traditional approach in fMRI data analysis is to assume that underlying spatial regions of interest are static. In this article, using fractional amplitude of low-frequency fluctuations (fALFF) as an effective way to summarize the variability in fMRI data collected during a task, we arrange time-evolving fMRI data as a subjects by voxels by time windows tensor, and analyze the tensor using a tensor factorization-based approach called a PARAFAC2 model to reveal spatial dynamics. The PARAFAC2 model jointly analyzes data from multiple time windows revealing subject-mode patterns, evolving spatial regions (also referred to as networks) and temporal patterns. We compare the PARAFAC2 model with matrix factorization-based approaches relying on independent components, namely, joint independent component analysis (ICA) and independent vector analysis (IVA), commonly used in neuroimaging data analysis. We assess the performance of the methods in terms of capturing evolving networks through extensive numerical experiments demonstrating their modeling assumptions. In particular, we show that (i) PARAFAC2 provides a compact representation in all modes, i.e., subjects, time, and voxels, revealing temporal patterns as well as evolving spatial networks, (ii) joint ICA is as effective as PARAFAC2 in terms of revealing evolving networks but does not reveal temporal patterns, (iii) IVA's performance depends on sample size, data distribution and covariance structure of underlying networks. When these assumptions are satisfied, IVA is as accurate as the other methods, (iv) when subject-mode patterns differ from one time window to another, IVA is the most accurate. Furthermore, we analyze real fMRI data collected during a sensory motor task, and demonstrate that a component indicating statistically significant group difference between patients with schizophrenia and healthy controls is captured, which includes primary and secondary motor regions, cerebellum, and temporal lobe, revealing a meaningful spatial map and its temporal change.
Collapse
Affiliation(s)
- Evrim Acar
- Simula Metropolitan Center for Digital Engineering, Oslo, Norway
| | - Marie Roald
- Simula Metropolitan Center for Digital Engineering, Oslo, Norway.,Oslo Metropolitan University, Oslo, Norway
| | - Khondoker M Hossain
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Vince D Calhoun
- Department of Psychology, Georgia State University, Atlanta, GA, United States
| | - Tülay Adali
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD, United States
| |
Collapse
|