1
|
Schulte F, Reiter JT, Bauer T, Taube J, Bitzer F, Witt J, Piper R, Thanabalasingam A, von Wrede R, Racz A, Baumgartner T, Borger V, Specht‐Riemenschneider L, Vatter H, Hattingen E, Deichmann R, Helmstaedter C, Radbruch A, Friedman A, Surges R, Rüber T. Interictal blood-brain barrier dysfunction in piriform cortex of people with epilepsy. Ann Clin Transl Neurol 2024; 11:2623-2632. [PMID: 39190772 PMCID: PMC11514923 DOI: 10.1002/acn3.52176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
OBJECTIVE The piriform cortex is considered to be highly epileptogenic. Its resection during epilepsy surgery is a predictor for postoperative seizure freedom in temporal lobe epilepsy. Epilepsy is associated with a dysfunction of the blood-brain barrier. We investigated blood-brain barrier dysfunction in the piriform cortex of people with temporal lobe epilepsy using quantitative T1-relaxometry. METHODS Gadolinium-based contrast agent was administered ictally and interictally in 37 individuals before undergoing quantitative T1-relaxometry. Postictal and interictal images were co-registered, and subtraction maps were created as biomarkers for peri-ictal (∆qT1interictal-postictal) and interictal (∆qT1noncontrast-interictal) blood-brain barrier dysfunction. Values were extracted for the piriform cortex, hippocampus, amygdala, and the whole cortex. RESULTS In temporal lobe epilepsy (n = 14), ∆qT1noncontrast-interictal was significantly higher in the piriform cortex than in the whole cortex (p = 0.02). In extratemporal lobe epilepsy (n = 23), ∆qT1noncontrast-interictal was higher in the hippocampus than in the whole cortex (p = 0.05). Across all individuals (n = 37), duration of epilepsy was correlated with ∆qT1noncontrast-interictal (ß = 0.001, p < 0.001) in all regions, while the association was strongest in the piriform cortex. Impaired verbal memory was associated with ∆qT1noncontrast-interictal only in the piriform cortex (p = 0.04). ∆qT1interictal-postictal did not show differences in any region. INTERPRETATION Interictal blood-brain barrier dysfunction occurs in the piriform cortex in temporal lobe epilepsy. This dysfunction is linked to longer disease duration and worse cognitive deficits, emphasizing the central role of the piriform cortex in the epileptogenic network of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Freya Schulte
- Department of NeuroradiologyUniversity Hospital BonnBonnGermany
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | - Johannes T. Reiter
- Department of NeuroradiologyUniversity Hospital BonnBonnGermany
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | - Tobias Bauer
- Department of NeuroradiologyUniversity Hospital BonnBonnGermany
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | - Julia Taube
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | - Felix Bitzer
- Department of NeuroradiologyUniversity Hospital BonnBonnGermany
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | | | - Rory Piper
- Developmental NeurosciencesUCL Great Ormond Street Institute of Child HealthLondonUK
| | | | - Randi von Wrede
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | - Attila Racz
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | | | - Valeri Borger
- Department of NeurosurgeryUniversity Hospital BonnBonnGermany
| | | | - Hartmut Vatter
- Department of NeurosurgeryUniversity Hospital BonnBonnGermany
| | - Elke Hattingen
- Department of NeuroradiologyClinics of Johann Wolfgang‐Goethe UniversityFrankfurt am MainGermany
- Brain Imaging CenterGoethe‐Universität FrankfurtFrankfurt am MainGermany
| | - Ralf Deichmann
- Brain Imaging CenterGoethe‐Universität FrankfurtFrankfurt am MainGermany
| | | | - Alexander Radbruch
- Department of NeuroradiologyUniversity Hospital BonnBonnGermany
- Center for Medical Data Usability and TranslationBonnGermany
- German Center for Neurodegenerative DiseasesBonnGermany
| | - Alon Friedman
- Department of Brain and Cognitive SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
- Department of Medical NeuroscienceDalhousie UniversityHalifaxCanada
| | - Rainer Surges
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | - Theodor Rüber
- Department of NeuroradiologyUniversity Hospital BonnBonnGermany
- Department of EpileptologyUniversity Hospital BonnBonnGermany
- Center for Medical Data Usability and TranslationBonnGermany
| |
Collapse
|
2
|
Zahnert F, Kleinholdermann U, Belke M, Keil B, Menzler K, Pedrosa DJ, Timmermann L, Kircher T, Nenadić I, Knake S. The connectivity-based architecture of the human piriform cortex. Neuroimage 2024; 297:120747. [PMID: 39033790 DOI: 10.1016/j.neuroimage.2024.120747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024] Open
Abstract
The anatomy of the human piriform cortex (PC) is poorly understood. We used a bimodal connectivity-based-parcellation approach to investigate subregions of the PC and its connectional differentiation from the amygdala. One hundred (55 % female) genetically unrelated subjects from the Human Connectome Project were included. A region of interest (ROI) was delineated bilaterally covering PC and amygdala, and functional and structural connectivity of this ROI with the whole gray matter was computed. Spectral clustering was performed to obtain bilateral parcellations at granularities of k = 2-10 clusters and combined bimodal parcellations were computed. Validity of parcellations was assessed via their mean individual-to-group similarity per adjusted rand index (ARI). Individual-to-group similarity was higher than chance in both modalities and in all clustering solutions. The amygdala was clearly distinguished from PC in structural parcellations, and olfactory amygdala was connectionally more similar to amygdala than to PC. At higher granularities, an anterior and ventrotemporal and a posterior frontal cluster emerged within PC, as well as an additional temporal cluster at their boundary. Functional parcellations also showed a frontal piriform cluster, and similar temporal clusters were observed with less consistency. Results from bimodal parcellations were similar to the structural parcellations. Consistent results were obtained in a validation cohort. Distinction of the human PC from the amygdala, including its olfactory subregions, is possible based on its structural connectivity alone. The canonical fronto-temporal boundary within PC was reproduced in both modalities and with consistency. All obtained parcellations are freely available.
Collapse
Affiliation(s)
- F Zahnert
- Epilepsy Center Hesse, Department of Neurology, University Hospital Marburg, Philipps-University Marburg, Germany.
| | - U Kleinholdermann
- Department of Neurology, University Hospital Marburg, Philipps University Marburg, Germany; Department of Psychiatry and Psychotherapy, University Hospital Marburg, Philipps University Marburg, Germany
| | - M Belke
- Epilepsy Center Hesse, Department of Neurology, University Hospital Marburg, Philipps-University Marburg, Germany; Center for Personalized Translational Epilepsy Research, Goethe University Frankfurt, Germany
| | - B Keil
- Institute of Medical Physics and Radiation Protection, Mittelhessen University of Applied Sciences, Giessen, Germany; Department of Diagnostic and Interventional Radiology, University Hospital Marburg, Philipps University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior, Philipps University Marburg, Germany
| | - K Menzler
- Epilepsy Center Hesse, Department of Neurology, University Hospital Marburg, Philipps-University Marburg, Germany; Center for Mind, Brain and Behavior, Philipps University Marburg, Germany
| | - D J Pedrosa
- Department of Neurology, University Hospital Marburg, Philipps University Marburg, Germany
| | - L Timmermann
- Department of Neurology, University Hospital Marburg, Philipps University Marburg, Germany; Center for Mind, Brain and Behavior, Philipps University Marburg, Germany
| | - T Kircher
- Department of Psychiatry and Psychotherapy, University Hospital Marburg, Philipps University Marburg, Germany; Center for Mind, Brain and Behavior, Philipps University Marburg, Germany
| | - I Nenadić
- Department of Psychiatry and Psychotherapy, University Hospital Marburg, Philipps University Marburg, Germany; Center for Mind, Brain and Behavior, Philipps University Marburg, Germany
| | - S Knake
- Epilepsy Center Hesse, Department of Neurology, University Hospital Marburg, Philipps-University Marburg, Germany; Center for Personalized Translational Epilepsy Research, Goethe University Frankfurt, Germany; Center for Mind, Brain and Behavior, Philipps University Marburg, Germany; Core Facility Brain Imaging, Philipps University Marburg, Germany
| |
Collapse
|
3
|
Lucas A, Jaskir M, Sinha N, Pattnaik A, Mouchtaris S, Josyula M, Petillo N, Roth RW, Dikecligil GN, Bonilha L, Gottfried J, Gleichgerrcht E, Das S, Stein JM, Gugger JJ, Davis KA. Connectivity of the Piriform Cortex and its Implications in Temporal Lobe Epilepsy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.21.24310778. [PMID: 39108505 PMCID: PMC11302608 DOI: 10.1101/2024.07.21.24310778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Background The piriform cortex has been implicated in the initiation, spread and termination of epileptic seizures. This understanding has extended to surgical management of epilepsy, where it has been shown that resection or ablation of the piriform cortex can result in better outcomes. How and why the piriform cortex may play such a crucial role in seizure networks is not well understood. To answer these questions, we investigated the functional and structural connectivity of the piriform cortex in both healthy controls and temporal lobe epilepsy (TLE) patients. Methods We studied a retrospective cohort of 55 drug-resistant unilateral TLE patients and 26 healthy controls who received structural and functional neuroimaging. Using seed-to-voxel connectivity we compared the normative whole-brain connectivity of the piriform to that of the hippocampus, a region commonly involved in epilepsy, to understand the differential contribution of the piriform to the epileptogenic network. We subsequently measured the inter-piriform coupling (IPC) to quantify similarities in the inter-hemispheric cortical functional connectivity profile between the two piriform cortices. We related differences in IPC in TLE back to aberrations in normative piriform connectivity, whole brain functional properties, and structural connectivity. Results We find that relative to the hippocampus, the piriform is functionally connected to the anterior insula and the rest of the salience ventral attention network (SAN). We also find that low IPC is a sensitive metric of poor surgical outcome (sensitivity: 85.71%, 95% CI: [19.12%, 99.64%]); and differences in IPC within TLE were related to disconnectivity and hyperconnectivity to the anterior insula and the SAN. More globally, we find that low IPC is associated with whole-brain functional and structural segregation, marked by decreased functional small-worldness and fractional anisotropy. Conclusions Our study presents novel insights into the functional and structural neural network alterations associated with this structure, laying the foundation for future work to carefully consider its connectivity during the presurgical management of epilepsy.
Collapse
Affiliation(s)
- Alfredo Lucas
- Perelman School of Medicine, University of Pennsylvania
- Department of Bioengineering, University of Pennsylvania
| | - Marc Jaskir
- Neuroscience Graduate Group, University of Pennsylvania
| | | | - Akash Pattnaik
- Department of Bioengineering, University of Pennsylvania
| | | | | | - Nina Petillo
- Department of Neurology, University of Pennsylvania
| | | | | | | | | | | | - Sandhitsu Das
- Department of Neurology, University of South Carolina
| | | | | | | |
Collapse
|
4
|
Liu AA, Barr WB. Overlapping and distinct phenotypic profiles in Alzheimer's disease and late onset epilepsy: a biologically-based approach. Front Neurol 2024; 14:1260523. [PMID: 38545454 PMCID: PMC10965692 DOI: 10.3389/fneur.2023.1260523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/18/2023] [Indexed: 04/05/2024] Open
Abstract
Due to shared hippocampal dysfunction, patients with Alzheimer's dementia and late-onset epilepsy (LOE) report memory decline. Multiple studies have described the epidemiological, pathological, neurophysiological, and behavioral overlap between Alzheimer's Disease and LOE, implying a bi-directional relationship. We describe the neurobiological decline occurring at different spatial in AD and LOE patients, which may explain why their phenotypes overlap and differ. We provide suggestions for clinical recognition of dual presentation and novel approaches for behavioral testing that reflect an "inside-out," or biologically-based approach to testing memory. New memory and language assessments could detect-and treat-memory impairment in AD and LOE at an earlier, actionable stage.
Collapse
Affiliation(s)
- Anli A. Liu
- Langone Medical Center, New York University, New York, NY, United States
- Department of Neurology, School of Medicine, New York University, New York, NY, United States
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, United States
| | - William B. Barr
- Department of Neurology, School of Medicine, New York University, New York, NY, United States
| |
Collapse
|
5
|
Ficiarà E, Stura I, Vernone A, Silvagno F, Cavalli R, Guiot C. Iron Overload in Brain: Transport Mismatches, Microbleeding Events, and How Nanochelating Therapies May Counteract Their Effects. Int J Mol Sci 2024; 25:2337. [PMID: 38397013 PMCID: PMC10889007 DOI: 10.3390/ijms25042337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Iron overload in many brain regions is a common feature of aging and most neurodegenerative diseases. In this review, the causes, mechanisms, mathematical models, and possible therapies are summarized. Indeed, physiological and pathological conditions can be investigated using compartmental models mimicking iron trafficking across the blood-brain barrier and the Cerebrospinal Fluid-Brain exchange membranes located in the choroid plexus. In silico models can investigate the alteration of iron homeostasis and simulate iron concentration in the brain environment, as well as the effects of intracerebral iron chelation, determining potential doses and timing to recover the physiological state. Novel formulations of non-toxic nanovectors with chelating capacity are already tested in organotypic brain models and could be available to move from in silico to in vivo experiments.
Collapse
Affiliation(s)
- Eleonora Ficiarà
- School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy;
| | - Ilaria Stura
- Department of Neurosciences, Università degli Studi di Torino, 10125 Torino, TO, Italy; (A.V.); (C.G.)
| | - Annamaria Vernone
- Department of Neurosciences, Università degli Studi di Torino, 10125 Torino, TO, Italy; (A.V.); (C.G.)
| | - Francesca Silvagno
- Department of Oncology, Università degli Studi di Torino, 10126 Torino, TO, Italy;
| | - Roberta Cavalli
- Department of Drug Science and Technology, Università degli Studi di Torino, 10125 Torino, TO, Italy;
| | - Caterina Guiot
- Department of Neurosciences, Università degli Studi di Torino, 10125 Torino, TO, Italy; (A.V.); (C.G.)
| |
Collapse
|
6
|
Xu M, Liu J, Liu Q, Gong Y, Li Y, Zhang J, Shi S, Shi Y. Preliminary study on early diagnosis of Alzheimer's disease in APP/PS1 transgenic mice using multimodal magnetic resonance imaging. Front Aging Neurosci 2024; 16:1326394. [PMID: 38419647 PMCID: PMC10899441 DOI: 10.3389/fnagi.2024.1326394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
Alzheimer's disease (AD) has an insidious onset and lacks clear early diagnostic markers, and by the time overt dementia symptoms appear, the disease is already in the mid-to-late stages. The search for early diagnostic markers of AD may open a critical window for Alzheimer's treatment and facilitate early intervention to slow the progression of AD. In this study, we aimed to explore the imaging markers for early diagnosis of AD through the combined application of structural magnetic resonance imaging (sMRI), resting-state functional magnetic resonance imaging (rs-fMRI), and 1H-magnetic resonance spectroscopy (1H-MRS) multimodal magnetic resonance imaging (MRI) techniques at the animal experimental level, with the aim to provide a certain reference for early clinical diagnosis of AD. First, sMRI scans were performed on 4-month-old amyloid beta precursor protein/presenilin 1 (APP/PS1) transgenic AD model mice and wild type mice of the same litter using a 7.0 T animal MRI scanner to analyze the differential brain regions with structural changes in the gray matter of the brain by voxel-based morphometry (VBM). Next, rs-fMRI scans were performed to analyze the differential brain regions between groups for local spontaneous brain activity and functional connectivity (FC) between brain regions. Finally, 1H-MRS scans were performed to quantify and analyze intergroup differences in the relative concentrations of different metabolites within regions of interest (cortex and hippocampus). Compared with wild type mice, the volume of the left hippocampus, and right olfactory bulb of APP/PS1 transgenic AD model mice were reduced, the functional activity of the bilateral hippocampus, right piriform cortex and right caudate putamen was reduced, the functional network connectivity of the hippocampus was impaired, and the relative content of N-acetylaspartate (NAA)in the hippocampus was decreased. In addition, this study found that imaging changes in olfactory-related brain regions were closely associated with AD diagnosis, and these findings may provide some reference for the early diagnosis of AD.
Collapse
Affiliation(s)
- Meng Xu
- Department of Tuina, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jipeng Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Qingguo Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Gong
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yinyin Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
- Department Shenzhen Hospital (Longgang), Beijing University of Chinese Medicine, Shenzhen, China
| | - Jing Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Shufeng Shi
- Department of Tuina, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Yuanyuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
- Shenzhen Cell Valley Biopharmaceuticals Co., Ltd., Shenzhen, China
| |
Collapse
|
7
|
Byun JY, Lee MK, Jung SL. Diagnostic Performance Using a Combination of MRI Findings for Evaluating Cognitive Decline. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2024; 85:184-196. [PMID: 38362402 PMCID: PMC10864162 DOI: 10.3348/jksr.2023.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 02/17/2024]
Abstract
Purpose We investigated potentially promising imaging findings and their combinations in the evaluation of cognitive decline. Materials and Methods This retrospective study included 138 patients with subjective cognitive impairments, who underwent brain MRI. We classified the same group of patients into Alzheimer's disease (AD) and non-AD groups, based on the neuropsychiatric evaluation. We analyzed imaging findings, including white matter hyperintensity (WMH) and cerebral microbleeds (CMBs), using the Kruskal-Wallis test for group comparison, and receiver operating characteristic (ROC) curve analysis for assessing the diagnostic performance of imaging findings. Results CMBs in the lobar or deep locations demonstrated higher prevalence in the patients with AD compared to those in the non-AD group. The presence of lobar CMBs combined with periventricular WMH (area under the ROC curve [AUC] = 0.702 [95% confidence interval: 0.599-0.806], p < 0.001) showed the highest performance in differentiation of AD from non-AD group. Conclusion Combinations of imaging findings can serve as useful additive diagnostic tools in the assessment of cognitive decline.
Collapse
|
8
|
Lehmann LM, Barker-Haliski M. Loss of normal Alzheimer's disease-associated Presenilin 2 function alters antiseizure medicine potency and tolerability in the 6-Hz focal seizure model. Front Neurol 2023; 14:1223472. [PMID: 37592944 PMCID: PMC10427874 DOI: 10.3389/fneur.2023.1223472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/14/2023] [Indexed: 08/19/2023] Open
Abstract
Introduction Patients with early-onset Alzheimer's disease (EOAD) experience seizures and subclinical epileptiform activity, which may accelerate cognitive and functional decline. Antiseizure medicines (ASMs) may be a tractable disease-modifying strategy; numerous ASMs are marketed with well-established safety. However, little information is available to guide ASM selection as few studies have rigorously quantified ASM potency and tolerability in traditional seizure models in rodents with EOAD-associated risk factors. Presenilin 2 (PSEN2) variants evoke EOAD, and these patients experience seizures. This study thus established the anticonvulsant profile of mechanistically distinct ASMs in the frontline 6-Hz limbic seizure test evoked in PSEN2-knockout (KO) mice to better inform seizure management in EOAD. Methods The median effective dose (ED50) of prototype ASMs was quantified in the 6-Hz test in male and female PSEN2-KO and wild-type (WT) C57BL/6J mice (3-4 months old). Minimal motor impairment (MMI) was assessed to estimate a protective index (PI). Immunohistological detection of cFos established the extent to which 6-Hz stimulation activates discrete brain regions in KO vs. WT mice. Results There were significant genotype-related differences in the potency and tolerability of several ASMs. Valproic acid and levetiracetam were significantly more potent in male KO than in WT mice. Additionally, high doses of valproic acid significantly worsened MMI in KO mice. Conversely, carbamazepine was significantly less potent in female KO vs. WT mice. In both male and female KO mice vs. WTs, perampanel and lamotrigine were equally potent. However, there were marked genotype-related shifts in PI of both carbamazepine and perampanel, with KO mice exhibiting less MMI at the highest doses tested. Gabapentin was ineffective against 6-Hz seizures in KO mice vs. WTs without MMI changes. Neuronal activation 90 min following 6-Hz stimulation was significantly increased in the posterior parietal association cortex overlying CA1 and in the piriform cortex of WT mice, while stimulation-induced increases in cFos immunoreactivity were absent in KO mice. Discussion Acute ASM potency and tolerability in the high-throughput 6-Hz test may be significantly altered with loss of normal PSEN2 function. Seizures in discrete EOAD populations may benefit from precisely selected medicines optimized for primary ASM pharmacological mechanisms.
Collapse
Affiliation(s)
| | - Melissa Barker-Haliski
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, United States
| |
Collapse
|