1
|
Xu T, Feng Y, Hong H, Xu Y, Chen J, Qiu X, Ding J, Huang C, Li L, Chen C, Fei Z. Biological target volume based on fluorine-18-fluorode-oxyglucose positron emission tomography/computed tomography imaging: a spurious proposition? Radiat Oncol 2023; 18:32. [PMID: 36810119 PMCID: PMC9942280 DOI: 10.1186/s13014-023-02225-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/12/2023] [Indexed: 02/23/2023] Open
Abstract
PURPOSE To assess whether the high metabolic region of fluorine-18-fluorode-oxyglucose (18F-FDG) in the primary lesion is the crux for recurrence in patients with nasopharyngeal carcinoma (NPC), to assess the feasibility and rationale for use of biological target volume (BTV) based on 18F-FDG positron emission tomography/computed tomography (18F-FDG-PET/CT). METHODS The retrospective study included 33 patients with NPC who underwent 18F-FDG-PET/CT at the time of initial diagnosis as well as the time of diagnosis of local recurrence. Paired 18F-FDG-PET/CT images for primary and recurrent lesion were matched by deformation coregistration method to determine the cross-failure rate between two lesions. RESULTS The median volume of the Vpri (primary tumor volume using the SUV thresholds of 2.5), the Vhigh (the volume of high FDG uptake using the SUV50%max isocontour), and the Vrecur (the recurrent tumor volume using the SUV thresholds of 2.5) were 22.85, 5.57, and 9.98 cm3, respectively. The cross-failure rate of Vrecur∩high showed that 82.82% (27/33) of local recurrent lesions had < 50% overlap volume with the region of high FDG uptake. The cross-failure rate of Vrecur∩pri showed that 96.97% (32/33) of local recurrent lesions had > 20% overlap volume with the primary tumor lesions and the median cross rate was up to 71.74%. CONCLUSION 18F-FDG-PET/CT may be a powerful tool for automatic target volume delineation, but it may not be the optimal imaging modality for dose escalation radiotherapy based on applicable isocontour. The combination of other functional imaging could delineate the BTV more accurately.
Collapse
Affiliation(s)
- Ting Xu
- grid.415110.00000 0004 0605 1140Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| | - Ye Feng
- grid.415110.00000 0004 0605 1140Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| | - Huiling Hong
- grid.415110.00000 0004 0605 1140Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| | - Yiying Xu
- grid.415110.00000 0004 0605 1140Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| | - Jiawei Chen
- grid.415110.00000 0004 0605 1140Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| | - Xiufang Qiu
- grid.415110.00000 0004 0605 1140Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| | - Jianming Ding
- grid.415110.00000 0004 0605 1140Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| | - Chaoxiong Huang
- grid.415110.00000 0004 0605 1140Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| | - Li Li
- grid.415110.00000 0004 0605 1140Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| | - Chuanben Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road, Fuzhou, 350014, Fujian, People's Republic of China.
| | - Zhaodong Fei
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road, Fuzhou, 350014, Fujian, People's Republic of China.
| |
Collapse
|
2
|
Soman C, Alghamdi SRM, Alazemi FNM, Alghamdi AAA. Cyberknife Radiosurgery for the Treatment of Head and Neck Cancer: A Systematic Review. Eur J Dent 2021; 16:266-273. [PMID: 34891184 PMCID: PMC9339918 DOI: 10.1055/s-0041-1736330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cyberknife radiosurgery is a frameless stereotactic robotic radiosurgery which has shown to deliver better treatment outcomes in the treatment of advanced head and neck (H&N) carcinomas, especially in previously irradiated and recurrent cases. The aim of the study was to perform a systematic review of the available data on the outcomes of Cyberknife radiosurgery for treatment of head and neck cancer and to evaluate its collective outcomes. This systematic review was registered with the university with the registration no. FRP/2019/63 and was approved by the Institutional Review Board (RC/IRB/2019/132). Literature search was performed in the following: PubMed, Science direct, SciELO, MyScienceWork, Microsoft Academ EMBASE, Directory of Open Access Journals, and Cochrane databases with the keywords “Cyberknife,” “oral cancer,” “oropharyngeal cancer,” and “head and neck cancer” and data was extracted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The records identified were 147 manuscripts. Excluded articles included 5 duplicate articles, 33 abstracts, 101 full text articles due to being off-topic, case reports, review, non-English, 1 survey, and 2 other articles containing data extracted from a main study which was already included. A total of 5 articles were evaluated for qualitative synthesis. The mean dose of Cyberknife radiosurgery delivered for previously irradiated recurrent H&N carcinoma patients was 34.57 Gy, with a mean sample size of 5 studied during the period of 2000 to 2016. The available evidence from the systematic review indicates that Cyberknife can be an efficacious treatment option for recurrent previously irradiated H&N carcinoma, especially for nonresectable tumors. There is paucity of homogenous data and studies in this arena; hence, meta-analysis could not be performed. Further standardized studies are essential, especially where the treatment of H&N carcinoma is considered.
Collapse
Affiliation(s)
- Cristalle Soman
- Department of Oral Medicine and Maxillofacial Radiology, Riyadh Elm University, Riyadh, Saudi Arabia
| | | | | | | |
Collapse
|
3
|
Tamal M. Intensity threshold based solid tumour segmentation method for Positron Emission Tomography (PET) images: A review. Heliyon 2020; 6:e05267. [PMID: 33163642 PMCID: PMC7610228 DOI: 10.1016/j.heliyon.2020.e05267] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 05/14/2020] [Accepted: 10/12/2020] [Indexed: 12/02/2022] Open
Abstract
Accurate, robust and reproducible delineation of tumour in Positron Emission Tomography (PET) is essential for diagnosis, treatment planning and response assessment. Since standardized uptake value (SUV) – a normalized semiquantitative parameter used in PET is represented by the intensity of the PET images and related to the radiotracer uptake, a SUV based threshold method is a natural choice to delineate the tumour. However, determination of an optimum threshold value is a challenging task due to low spatial resolution, and signal-to-noise ratio (SNR) along with finite image sampling constraint. The aim of the review is to summarize different fixed and adaptive threshold-based PET image segmentation approaches under a common mathematical framework Advantages and disadvantages of different threshold based methods are also highlighted from the perspectives of diagnosis, treatment planning and response assessment. Several fixed threshold values (30%–70% of the maximum SUV of the tumour (SUVmaxT)) have been investigated. It has been reported that the fixed threshold-based method is very much dependent on the SNR, tumour to background ratio (TBR) and the size of the tumour. Adaptive threshold-based method, an alternative to fixed threshold, can minimize these dependencies by accounting for tumour to background ratio (TBR) and tumour size. However, the parameters for the adaptive methods need to be calibrated for each PET camera system (e.g., scanner geometry, image acquisition protocol, reconstruction algorithm etc.) and it is not straight forward to implement the same procedure to other PET systems to obtain similar results. It has been reported that the performance of the adaptive methods is also not optimum for smaller volumes with lower TBR and SNR. Statistical analysis carried out on the NEMA thorax phantom images also indicates that regions segmented by the fixed threshold method are significantly different for all cases. On the other hand, the adaptive method provides significantly different segmented regions only for low TBR with different SNR. From this viewpoint, a robust threshold based segmentation method that will be less sensitive to SUVmaxT, SNR, TBR and volume needs to be developed. It was really challenging to compare the performance of different threshold-based methods because the performance of each method was tested on dissimilar data set with different data acquisition and reconstruction protocols along with different TBR, SNR and volumes. To avoid such difficulties, it will be desirable to have a common database of clinical PET images acquired with different image acquisition protocols and different PET cameras to compare the performance of automatic segmentation methods. It is also suggested to report the changes in SNR and TBR while reporting the response using threshold based methods.
Collapse
Affiliation(s)
- Mahbubunnabi Tamal
- Department of Biomedical Engineering, Imam Abdulrahman Bin Faisal University, PO Box 1982, Dammam, 31441, Saudi Arabia
| |
Collapse
|
4
|
Molecular Imaging-Guided Radiotherapy for the Treatment of Head-and-Neck Squamous Cell Carcinoma: Does it Fulfill the Promises? Semin Radiat Oncol 2018; 28:35-45. [PMID: 29173754 DOI: 10.1016/j.semradonc.2017.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
With the routine use of intensity modulated radiation therapy for the treatment of head-and-neck squamous cell carcinoma allowing highly conformed dose distribution, there is an increasing need for refining both the selection and the delineation of gross tumor volumes (GTV). In this framework, molecular imaging with positron emission tomography and magnetic resonance imaging offers the opportunity to improve diagnostic accuracy and to integrate tumor biology mainly related to the assessment of tumor cell density, tumor hypoxia, and tumor proliferation into the treatment planning equation. Such integration, however, requires a deep comprehension of the technical and methodological issues related to image acquisition, reconstruction, and segmentation. Until now, molecular imaging has had a limited value for the selection of nodal GTV, but there are increasing evidences that both FDG positron emission tomography and diffusion-weighted magnetic resonance imaging has a potential value for the delineation of the primary tumor GTV, effecting on dose distribution. With the apprehension of the heterogeneity in tumor biology through molecular imaging, growing evidences have been collected over the years to support the concept of dose escalation/dose redistribution using a planned heterogeneous dose prescription, the so-called "dose painting" approach. Validation trials are ongoing, and in the coming years, one may expect to position the dose painting approach in the armamentarium for the treatment of patients with head-and-neck squamous cell carcinoma.
Collapse
|
5
|
|
6
|
Matsuura T, Nishimura Y, Nakamatsu K, Kanamori S, Ishikawa K, Tachibana I, Hosono M, Shibata T. Clinical outcomes of IMRT planned with or without PET/CT simulation for patients with pharyngeal cancers. Int J Clin Oncol 2016; 22:52-58. [DOI: 10.1007/s10147-016-1034-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/23/2016] [Indexed: 10/21/2022]
|
7
|
Nishimura Y. Biological imaging in clinical oncology-introduction. Int J Clin Oncol 2016; 21:617-618. [PMID: 27300172 DOI: 10.1007/s10147-016-0999-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 05/29/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Yasumasa Nishimura
- Department of Radiation Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan.
| |
Collapse
|
8
|
18F-FDG PET/CT quantification in head and neck squamous cell cancer: principles, technical issues and clinical applications. Eur J Nucl Med Mol Imaging 2016; 43:1360-75. [DOI: 10.1007/s00259-015-3294-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/14/2015] [Indexed: 01/28/2023]
|
9
|
Awan MJ, Siddiqui F, Schwartz D, Yuan J, Machtay M, Yao M. Application of positron emission tomography/computed tomography in radiation treatment planning for head and neck cancers. World J Radiol 2015; 7:382-393. [PMID: 26644824 PMCID: PMC4663377 DOI: 10.4329/wjr.v7.i11.382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/08/2015] [Accepted: 09/18/2015] [Indexed: 02/06/2023] Open
Abstract
18-fluorodeoxygluocose positron emission tomography/computed tomography (18FDG-PET/CT) provides significant information in multiple settings in the management of head and neck cancers (HNC). This article seeks to define the additional benefit of PET/CT as related to radiation treatment planning for squamous cell carcinomas (SCCs) of the head and neck through a review of relevant literature. By helping further define both primary and nodal volumes, radiation treatment planning can be improved using PET/CT. Special attention is paid to the independent benefit of PET/CT in targeting mucosal primaries as well as in detecting nodal metastases. The utility of PET/CT is also explored for treatment planning in the setting of SCC of unknown primary as PET/CT may help define a mucosal target volume by guiding biopsies for examination under anesthesia thus changing the treatment paradigm and limiting the extent of therapy. Implications of the use of PET/CT for proper target delineation in patients with artifact from dental procedures are discussed and the impact of dental artifact on CT-based PET attenuation correction is assessed. Finally, comment is made upon the role of PET/CT in the high-risk post-operative setting, particularly in the context of radiation dose escalation. Real case examples are used in these settings to elucidate the practical benefits of PET/CT as related to radiation treatment planning in HNCs.
Collapse
|
10
|
Grégoire V, Langendijk JA, Nuyts S. Advances in Radiotherapy for Head and Neck Cancer. J Clin Oncol 2015; 33:3277-84. [PMID: 26351354 DOI: 10.1200/jco.2015.61.2994] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the last few decades, significant improvements have been made in the radiotherapy (RT) treatment of head and neck malignancies. The progressive introduction of intensity-modulated RT and the use of multimodality imaging for target volume and organs at risk delineation, together with the use of altered fractionation regimens and concomitant administration of chemotherapy or targeted agents, have accompanied efficacy improvements in RT. Altogether, such improvements have translated into improvement in locoregional control and overall survival probability, with a decrease in the long-term adverse effects of RT and an improvement in quality of life. Further progress in the treatment of head and neck malignancies may come from a better integration of molecular imaging to identify tumor subvolumes that may require additional radiation doses (ie, dose painting) and from treatment adaptation tracing changes in patient anatomy during treatment. Proton therapy generates even more exquisite dose distribution in some patients, thus potentially further improving patient outcomes. However, the clinical benefit of these approaches, although promising, for patients with head and neck cancer need to be demonstrated in prospective randomized studies. In this context, our article will review some of these advances, with special emphasis on target volume and organ-at-risk delineation, use of molecular imaging for tumor delineation, dose painting for dose escalation, dose adaptation throughout treatment, and potential benefit of proton therapy.
Collapse
Affiliation(s)
- Vincent Grégoire
- Vincent Grégoire, Institut de Recherche Clinique, Université Catholique de Louvain, St-Luc University Hospital, Brussels; Sandra Nuyts, Katholieke Universiteit Leuven-University of Leuven, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium; and Johannes A. Langendijk, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Johannes A Langendijk
- Vincent Grégoire, Institut de Recherche Clinique, Université Catholique de Louvain, St-Luc University Hospital, Brussels; Sandra Nuyts, Katholieke Universiteit Leuven-University of Leuven, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium; and Johannes A. Langendijk, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sandra Nuyts
- Vincent Grégoire, Institut de Recherche Clinique, Université Catholique de Louvain, St-Luc University Hospital, Brussels; Sandra Nuyts, Katholieke Universiteit Leuven-University of Leuven, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium; and Johannes A. Langendijk, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
11
|
Preclinical Assessment of Efficacy of Radiation Dose Painting Based on Intratumoral FDG-PET Uptake. Clin Cancer Res 2015; 21:5511-8. [DOI: 10.1158/1078-0432.ccr-15-0290] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 08/03/2015] [Indexed: 11/16/2022]
|
12
|
Davis CA, Thomas C, Abdolell M, Day A, Hollenhorst H, Rajaraman M, Mulroy L, Bowes D, Cwajna S, Rheaume D, Patil N, Burrell S, Wilke D. Investigating the Impact of Positron Emission Tomography–Computed Tomography Versus Computed Tomography Alone for High-risk Volume Selection in Head and Neck and Lung Patients Undergoing Radiotherapy: Interim Findings. J Med Imaging Radiat Sci 2015; 46:148-155. [DOI: 10.1016/j.jmir.2015.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 02/13/2015] [Accepted: 02/16/2015] [Indexed: 10/23/2022]
|
13
|
Effectiveness of PET/CT with (18)F-fluorothymidine in the staging of patients with squamous cell head and neck carcinomas before radiotherapy. Rep Pract Oncol Radiother 2015; 20:210-6. [PMID: 25949225 DOI: 10.1016/j.rpor.2015.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/25/2014] [Accepted: 01/28/2015] [Indexed: 02/05/2023] Open
Abstract
AIM The aim of our study was to compare the staging of the disease declared before anticancer treatment was begun with the staging that was found after the planning PET/CT scanning with (18)F-FLT was performed. BACKGROUND PET/CT in radiotherapy planning of head and neck cancers can facilitate the contouring of the primary tumour and the definition of metastatic lymph nodes. MATERIALS AND METHODS Between November 2010 and November 2013, 26 patients suffering from head and neck carcinomas underwent planning PET/CT examination with (18)F-FLT. We compared the staging of the disease and the treatment strategy declared before and after (18)F-FLT-PET/CT was performed. RESULTS The findings from (18)FLT-PET/CT led in 22 patients to a change of staging: in 19 patients it led to upstaging of the disease and in 3 patients it led to downstaging of the disease. In one patient, a secondary malignancy was found. CONCLUSIONS We have confirmed in this study that the use of (18)F-FLT-PET/CT scanning in radiotherapy planning of squamous cell head and neck carcinomas has a great potential in the precise evaluation of disease staging and consequently in the precise determination of target volumes.
Collapse
|
14
|
Towards multidimensional radiotherapy: key challenges for treatment individualisation. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:934380. [PMID: 25834635 PMCID: PMC4365339 DOI: 10.1155/2015/934380] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/03/2014] [Indexed: 12/03/2022]
Abstract
Functional and molecular imaging of tumours have offered the possibility of redefining the target in cancer therapy and individualising the treatment with a multidimensional approach that aims to target the adverse processes known to impact negatively upon treatment result. Following the first theoretical attempts to include imaging information into treatment planning, it became clear that the biological features of interest for targeting exhibit considerable heterogeneity with respect to magnitude, spatial, and temporal distribution, both within one patient and between patients, which require more advanced solutions for the way the treatment is planned and adapted. Combining multiparameter information from imaging with predictive information from biopsies and molecular analyses as well as in treatment monitoring of tumour responsiveness appears to be the key approach to maximise the individualisation of treatment. This review paper aims to discuss some of the key challenges for incorporating into treatment planning and optimisation the radiobiological features of the tumour derived from pretreatment PET imaging of tumour metabolism, proliferation, and hypoxia and combining them with intreatment monitoring of responsiveness and other predictive factors with the ultimate aim of individualising the treatment towards the maximisation of response.
Collapse
|
15
|
The role of PET-CT in radiotherapy planning of solid tumours. Radiol Oncol 2015; 49:1-9. [PMID: 25810695 PMCID: PMC4362600 DOI: 10.2478/raon-2013-0071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/05/2013] [Indexed: 01/30/2023] Open
Abstract
Background PET-CT is becoming more and more important in various aspects of oncology. Until recently it was used mainly as part of diagnostic procedures and for evaluation of treatment results. With development of personalized radiotherapy, volumetric and radiobiological characteristics of individual tumour have become integrated in the multistep radiotherapy (RT) planning process. Standard anatomical imaging used to select and delineate RT target volumes can be enriched by the information on tumour biology gained by PET-CT. In this review we explore the current and possible future role of PET-CT in radiotherapy treatment planning. After general explanation, we assess its role in radiotherapy of those solid tumours for which PET-CT is being used most. Conclusions In the nearby future PET-CT will be an integral part of the most radiotherapy treatment planning procedures in an every-day clinical practice. Apart from a clear role in radiation planning of lung cancer, with forthcoming clinical trials, we will get more evidence of the optimal use of PET-CT in radiotherapy planning of other solid tumours.
Collapse
|
16
|
Abstract
In this review, we review the literature on the use of PET in radiation treatment planning, with an emphasis on describing our institutional methodology (where applicable). This discussion is intended to provide other radiation oncologists with methodological details on the use of PET imaging for treatment planning in radiation oncology, or other oncologists with an introduction to the use of PET in planning radiation therapy.
Collapse
|
17
|
Siddiqui F, Yao M. Application of fluorodeoxyglucose positron emission tomography in the management of head and neck cancers. World J Radiol 2014; 6:238-251. [PMID: 24976927 PMCID: PMC4072811 DOI: 10.4329/wjr.v6.i6.238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/16/2014] [Accepted: 03/14/2014] [Indexed: 02/06/2023] Open
Abstract
The use of fluorodeoxyglucose positron emission tomography (FDG PET) scan technology in the management of head and neck cancers continues to increase. We discuss the biology of FDG uptake in malignant lesions and also discuss the physics of PET imaging. The various parameters described to quantify FDG uptake in cancers including standardized uptake value, metabolic tumor volume and total lesion glycolysis are presented. PET scans have found a significant role in the diagnosis and staging of head and neck cancers. They are also being increasingly used in radiation therapy treatment planning. Many groups have also used PET derived values to serve as prognostic indicators of outcomes including loco-regional control and overall survival. FDG PET scans are also proving very useful in assessing the efficacy of treatment and management and follow-up of head and neck cancer patients. This review article focuses on the role of FDG-PET computed tomography scans in these areas for squamous cell carcinoma of the head and neck. We present the current state of the art and speculate on the future applications of this technology including protocol development, newer imaging methods such as combined magnetic resonance and PET imaging and novel radiopharmaceuticals that can be used to further study tumor biology.
Collapse
|
18
|
Kumar R, Nadig MR, Chauhan A. Positron emission tomography: clinical applications in oncology. Part 1. Expert Rev Anticancer Ther 2014; 5:1079-94. [PMID: 16336099 DOI: 10.1586/14737140.5.6.1079] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Positron emission tomography is a functional diagnostic imaging technique, which can accurately measure in vivo distribution of a radiopharmaceutical with high resolution. The ability of positron emission tomography to study various biologic processes opens up new possibilities for both research and day-to-day clinical use. Positron emission tomography has progressed rapidly from being a research technique in laboratories to a routine clinical imaging modality becoming part of armamentarium for the medical profession. The most widely used radiotracer in positron emission tomography is 18F-fluoro-2-deoxy-D-glucose (FDG), which is an analog of glucose. FDG uptake in cells is directly proportional to glucose metabolism of cells. Since glucose metabolism is increased many fold in malignant tumors, positron emission tomography has a high sensitivity and high negative predictive value. Positron emission tomography with FDG is now the standard of care in initial staging, monitoring the response to therapy and management of lung cancer, colorectal cancer, lymphoma, melanoma, esophageal cancer, head and neck cancer and breast cancer. The aim of this article is to review the clinical applications of positron emission tomography in oncology.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, E-62, Ansari Nagar (East), New Delhi, 110029, India.
| | | | | |
Collapse
|
19
|
Paganelli C, Peroni M, Baroni G, Riboldi M. Quantification of organ motion based on an adaptive image-based scale invariant feature method. Med Phys 2013; 40:111701. [DOI: 10.1118/1.4822486] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
20
|
Hoeben BAW, Bussink J, Troost EGC, Oyen WJG, Kaanders JHAM. Molecular PET imaging for biology-guided adaptive radiotherapy of head and neck cancer. Acta Oncol 2013; 52:1257-71. [PMID: 24003853 DOI: 10.3109/0284186x.2013.812799] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Integration of molecular imaging PET techniques into therapy selection strategies and radiation treatment planning for head and neck squamous cell carcinoma (HNSCC) can serve several purposes. First, pre-treatment assessments can steer decisions about radiotherapy modifications or combinations with other modalities. Second, biology-based objective functions can be introduced to the radiation treatment planning process by co-registration of molecular imaging with planning computed tomography (CT) scans. Thus, customized heterogeneous dose distributions can be generated with escalated doses to tumor areas where radiotherapy resistance mechanisms are most prevalent. Third, monitoring of temporal and spatial variations in these radiotherapy resistance mechanisms early during the course of treatment can discriminate responders from non-responders. With such information available shortly after the start of treatment, modifications can be implemented or the radiation treatment plan can be adapted tailing the biological response pattern. Currently, these strategies are in various phases of clinical testing, mostly in single-center studies. Further validation in multicenter set-up is needed. Ultimately, this should result in availability for routine clinical practice requiring stable production and accessibility of tracers, reproducibility and standardization of imaging and analysis methods, as well as general availability of knowledge and expertise. Small studies employing adaptive radiotherapy based on functional dynamics and early response mechanisms demonstrate promising results. In this context, we focus this review on the widely used PET tracer (18)F-FDG and PET tracers depicting hypoxia and proliferation; two well-known radiation resistance mechanisms.
Collapse
Affiliation(s)
- Bianca A W Hoeben
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre , Nijmegen , The Netherlands
| | | | | | | | | |
Collapse
|
21
|
Kajitani C, Asakawa I, Uto F, Katayama E, Inoue K, Tamamoto T, Shirone N, Okamoto H, Kirita T, Hasegawa M. Efficacy of FDG-PET for defining gross tumor volume of head and neck cancer. JOURNAL OF RADIATION RESEARCH 2013; 54:671-678. [PMID: 23287772 PMCID: PMC3709660 DOI: 10.1093/jrr/rrs131] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 11/14/2012] [Accepted: 12/03/2012] [Indexed: 06/01/2023]
Abstract
We analyzed the data for 53 patients with histologically proven primary squamous cell carcinoma of the head and neck treated with radiotherapy between February 2006 and August 2009. All patients underwent contrast-enhanced (CE)-CT and (18)F-fluorodeoxyglucose (FDG)-PET before radiation therapy planning (RTP) to define the gross tumor volume (GTV). The PET-based GTV (PET-GTV) for RTP was defined using both CE-CT images and FDG-PET images. The CE-CT tumor volume corresponding to a FDG-PET image was regarded as the PET-GTV. The CE-CT-based GTV (CT-GTV) for RTP was defined using CE-CT images alone. Additionally, CT-GTV delineation and PET-GTV delineation were performed by four radiation oncologists independently in 19 cases. All four oncologists did both methods. Of these, PET-GTV delineation was successfully performed in all 19 cases, but CT-GTV delineation was not performed in 4 cases. In the other 15 cases, the mean CT-GTV was larger than the PET-GTV in 10 cases, and the standard deviation of the CT-GTV was larger than that of the PET-GTV in 10 cases. Sensitivity of PET-GTV for identifying the primary tumor was 96%, but that of CT-GTV was 81% (P < 0.01). In patients with oropharyngeal cancer and tongue cancer, the sensitivity of CT-GTV was 63% and 71%, respectively. When both the primary lesions and the lymph nodes were evaluated for RTP, PET-GTV differed from CT-GTV in 19 cases (36%). These results suggested that FDG-PET is effective for defining GTV in RTP for squamous cell carcinoma of the head and neck, and PET-GTV evaluated by both CE-CT and FDG-PET images is preferable to CT-GTV by CE-CT alone.
Collapse
Affiliation(s)
- Chikae Kajitani
- Department of Radiation Oncology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
- Department of Radiology, Yao Tokushukai General Hospital, 1-17 Wakakusa-cho, Yao 581-0011, Japan
| | - Isao Asakawa
- Department of Radiation Oncology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| | - Fumiaki Uto
- Department of Radiology, Takai Hospital, 461-2 Kuranosho-cho, Tenri, Nara 632-0006, Japan
| | - Emiko Katayama
- Department of Radiation Oncology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| | - Kazuya Inoue
- Department of Radiation Oncology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| | - Tetsuro Tamamoto
- Department of Radiation Oncology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| | - Norihisa Shirone
- Department of Radiology, Takai Hospital, 461-2 Kuranosho-cho, Tenri, Nara 632-0006, Japan
| | - Hideyuki Okamoto
- Department of Otorhinolaryngology–Head and Neck, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| | - Tadaaki Kirita
- Department of Oral and Maxillofacial Surgery, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| | - Masatoshi Hasegawa
- Department of Radiation Oncology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| |
Collapse
|
22
|
Randall EK, Kraft SL, Yoshikawa H, LaRue SM. Evaluation of 18F-FDG PET/CT as a diagnostic imaging and staging tool for feline oral squamous cell carcinoma. Vet Comp Oncol 2013; 14:28-38. [DOI: 10.1111/vco.12047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/03/2013] [Accepted: 05/14/2013] [Indexed: 11/29/2022]
Affiliation(s)
- E. K. Randall
- Department of Environmental and Radiological Health Sciences; Colorado State University; Fort Collins CO USA
| | - S. L. Kraft
- Department of Environmental and Radiological Health Sciences; Colorado State University; Fort Collins CO USA
| | - H. Yoshikawa
- Department of Environmental and Radiological Health Sciences; Colorado State University; Fort Collins CO USA
| | - S. M. LaRue
- Department of Environmental and Radiological Health Sciences; Colorado State University; Fort Collins CO USA
| |
Collapse
|
23
|
Paganelli C, Peroni M, Riboldi M, Sharp GC, Ciardo D, Alterio D, Orecchia R, Baroni G. Scale invariant feature transform in adaptive radiation therapy: a tool for deformable image registration assessment and re-planning indication. Phys Med Biol 2012; 58:287-99. [DOI: 10.1088/0031-9155/58/2/287] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Chatterjee S, Frew J, Mott J, McCallum H, Stevenson P, Maxwell R, Wilsdon J, Kelly C. Variation in Radiotherapy Target Volume Definition, Dose to Organs at Risk and Clinical Target Volumes using Anatomic (Computed Tomography) versus Combined Anatomic and Molecular Imaging (Positron Emission Tomography/Computed Tomography): Intensity-modulated Radiotherapy Delivered using a Tomotherapy Hi Art Machine: Final Results of the VortigERN Study. Clin Oncol (R Coll Radiol) 2012; 24:e173-9. [DOI: 10.1016/j.clon.2012.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 09/03/2012] [Accepted: 09/05/2012] [Indexed: 10/27/2022]
|
25
|
Pan T, Zaidi H. Attenuation Correction Strategies for Positron Emission Tomography/Computed Tomography and 4-Dimensional Positron Emission Tomography/Computed Tomography. PET Clin 2012; 8:37-50. [PMID: 27157814 DOI: 10.1016/j.cpet.2012.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This article discusses attenuation correction strategies in positron emission tomography/computed tomography (PET/CT) and 4-dimensional PET/CT imaging. Average CT scan derived from averaging the high temporal resolution CT images is effective in improving the registration of the CT and the PET images and quantification of the PET data. It underscores list-mode data acquisition in 4-dimensional PET, and introduces 4-dimensional CT, popular in thoracic treatment planning, to 4-dimensional PET/CT.
Collapse
Affiliation(s)
- Tinsu Pan
- Department of Imaging Physics, MD Anderson Cancer Center, The University of Texas, Unit 1352, 1515 Holcome Boulevard, Houston, TX 77030, USA.
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland; Geneva Neuroscience Center, Geneva University, CH-1211 Geneva, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, Netherlands
| |
Collapse
|
26
|
|
27
|
Bhatt R, Adjouadi M, Goryawala M, Gulec SA, McGoron AJ. An algorithm for PET tumor volume and activity quantification: without specifying camera's point spread function (PSF). Med Phys 2012; 39:4187-202. [PMID: 22830752 DOI: 10.1118/1.4728219] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE The authors have developed an algorithm for segmentation and removal of the partial volume effect (PVE) of tumors in positron emission tomography (PET) images. The algorithm accurately measures functional volume (FV) and activity concentration (AC) of tumors independent of the camera's full width half maximum (FWHM). METHODS A novel iterative histogram thresholding (HT) algorithm is developed to segment the tumors in PET images, which have low resolution and suffer from inherent noise in the image. The algorithm is initiated by manually drawing a region of interest (ROI). The segmented tumors are subjected to the iterative deconvolution thresholding segmentation (IDTS) algorithm, where the Van-Cittert's method of deconvolution is used for correcting PVE. The IDTS algorithm is fully automated and accurately measures the FV and AC, and stops once it reaches convergence. The convergence criteria or stopping conditions are developed in such a way that the algorithm does not rely on estimating the FWHM of the point spread function (PSF) to perform the deconvolution process. The algorithm described here was tested in phantom studies, where hollow spheres (0.5-16 ml) were used to represent tumors with a homogeneous activity distribution, and an irregular shaped volume was used to represent a tumor with a heterogeneous activity distribution. The phantom studies were performed with different signal to background ratios (SBR) and with different acquisition times (1 min, 3 min, and 5 min). The parameters in the algorithm were also changed (FWHM and matrix size of the Gaussian function) to check the accuracy of the algorithm. Simulated data were also used to test the algorithm with tumors having heterogeneous activity distribution. RESULTS The results show that changing the size and shape of the ROI during initiation of the algorithm had no significant impact on the FV. An average FV overestimation of 30% and an average AC underestimation of 35% were observed for the smallest tumor (0.5 ml) over the entire range of noise and SBR level. The difference in average FV and AC estimations from the actual volumes were less than 5% as the tumor size increased to 16 ml. For tumors with heterogeneous activity profile, the overall volume error was less than 10%. The average overestimation of FV was less than 10% and classification error was around 11%. CONCLUSIONS The algorithm developed herein was extensively tested and is not dependent on accurately quantifying the camera's PSF. This feature demonstrates the robustness of the algorithm and enables it to be applied on a wide range of noise and SBR within an image. The ultimate goal of the algorithm is to be able to be operated independent of the camera type used and the reconstruction algorithm deployed.
Collapse
Affiliation(s)
- Ruchir Bhatt
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | | | | | | | | |
Collapse
|
28
|
Fried D, Lawrence M, Khandani AH, Rosenman J, Cullip T, Chera BS. Is image registration of fluorodeoxyglucose-positron emission tomography/computed tomography for head-and-neck cancer treatment planning necessary? Int J Radiat Oncol Biol Phys 2012; 84:748-54. [PMID: 22414285 DOI: 10.1016/j.ijrobp.2011.12.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/26/2011] [Accepted: 12/20/2011] [Indexed: 11/13/2022]
Abstract
PURPOSE To evaluate dosimetry and patterns of failure related to fluorodeoxyglucose-positron emission tomography (FDG-PET)-defined biological tumor volumes (BTVs) for head-and-neck squamous cell carcinoma (HNSCC) treated with definitive radiotherapy (RT). METHODS AND MATERIALS We conducted a retrospective study of 91 HNSCC patients who received pretreatment PET/CT scans that were not formally used for target delineation. The median follow-up was 34.5 months. Image registration was performed for PET, planning CT, and post-RT failure CT scans. Previously defined primary (CT(PRIMARY)) and nodal (CT(NODE)) gross tumor volumes (GTV) were used. The primary BTV (BTV(PRIMARY)) and nodal BTV (BTV(NODE)) were defined visually (PET(vis)). The BTV(PRIMARY) was also contoured using 40% and 50% peak PET activity (PET(40,) PET(50)). The recurrent GTVs were contoured on post-RT CT scans. Dosimetry was evaluated on the planning-CT and pretreatment PET scan. PET and CT dosimetric/volumetric data was compared for those with and without local-regional failure (LRF). RESULTS In all, 29 of 91 (32%) patients experienced LRF: 10 local alone, 7 regional alone, and 12 local and regional. BTVs and CT volumes had less than complete overlap. BTVs were smaller than CT-defined targets. Dosimetric coverage was similar between failed and controlled groups as well as between BTVs and CT-defined volumes. CONCLUSIONS PET and CT-defined tumor volumes received similar RT doses despite having less than complete overlap and the inaccuracies of image registration. LRF correlated with both CT and PET-defined volumes. The dosimetry for PET- and/or CT-based tumor volumes was not significantly inferior in patients with LRF. CT-based delineation alone may be sufficient for treatment planning in patients with HNSCC. Image registration of FDG-PET may not be necessary.
Collapse
Affiliation(s)
- David Fried
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | | | | | | | | | | |
Collapse
|
29
|
Yaromina A, Krause M, Baumann M. Individualization of cancer treatment from radiotherapy perspective. Mol Oncol 2012; 6:211-21. [PMID: 22381063 DOI: 10.1016/j.molonc.2012.01.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 01/21/2012] [Accepted: 01/23/2012] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy is today used in about 50% of all cancer patients, often in multidisciplinary approaches. With major advance in radiotherapy techniques, increasing knowledge on tumor genetics and biology and the continuous introduction of specifically targeted drugs into combined radio-oncological treatment schedules, individualization of radiotherapy is of high priority to further improve treatment outcomes, i.e. to increase long-term tumor cure and/or to reduce chronic treatment toxicity. This review gives an overview on the importance of predictive biomarkers for the field of radiation oncology. The current status of knowledge on potential biomarkers of tumor hypoxia, tumor cell metabolism, DNA repair, cancer stem cells and biomarkers for combining radiotherapy with inhibition of the epidermal growth factor receptor using monoclonal antibodies is described.
Collapse
Affiliation(s)
- Ala Yaromina
- Department of Radiation Oncology, OncoRay-National Center for Radiation Research in Oncology, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Germany
| | | | | |
Collapse
|
30
|
Evaluation of a metal artifact reduction technique in tonsillar cancer delineation. Pract Radiat Oncol 2011; 2:27-34. [PMID: 24674033 DOI: 10.1016/j.prro.2011.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 05/27/2011] [Accepted: 06/01/2011] [Indexed: 11/23/2022]
Abstract
PURPOSE Metal artifacts can degrade computed tomographic (CT) simulation imaging and impair accurate delineation of tumors for radiation treatment planning purposes. We investigated a Digital Imaging and Communications in Medicine-based metal artifact reduction technique in tonsillar cancer delineation. METHODS AND MATERIALS Eight patients with significant artifact and tonsil cancer were evaluated. Each patient had a positron emission tomography (PET)-CT and a contrast-enhanced CT obtained at the same setting during radiotherapy simulation. The CTs were corrected for artifact using the metal deletion technique (MDT). Two radiation oncologists independently delineated primary gross tumor volumes (GTVs) for each patient on native (CTnonMDT), metal corrected (CTMDT), and reference standard (CTPET/nonMDT) imaging, 1 week apart. Mixed effects models were used to determine if differences among GTVs were statistically significant. Two diagnostic radiologists and 2 radiation oncologists independently qualitatively evaluated CTs for each patient. Ratings were on an ordinal scale from -3 to +3, denoting that CTMDT was markedly, moderately, or slightly worse or better than CTnonMDT. Scores were compared with a Wilcoxon signed-rank test. RESULTS The GTVPET/nonMDT were significantly smaller than GTVnonMDT (P = .004) and trended to be smaller than GTVMDT (P = .084). The GTVnonMDT and GTVMDT were not significantly different (P = .93). There was no significant difference in the extent to which GTVnonMDT or GTVMDT encompassed GTVPET/nonMDT (P = .33). In the subjective assessment of image quality, CTMDT did not significantly outperform CTnonMDT. In the majority of cases, the observer rated the CTMDT equivalent to (53%) or slightly superior (41%) to the corresponding CTnonMDT. CONCLUSIONS The MTD modified images did not produce GTVMDT that more closely reproduced GTVPET/nonMDT than did GTVnonMDT. Moreover, the MTD modified images were not judged to be significantly superior when compared to the uncorrected images in terms of subjective ability to visualize the tonsilar tumors. This study failed to demonstrate value of the adjunctive use of a CT corrected for artifacts in the tumor delineation process. Artifacts do make tumor delineation challenging, and further investigation of other body sites is warranted.
Collapse
|
31
|
Metwally H, Courbon F, David I, Filleron T, Blouet A, Rives M, Izar F, Zerdoud S, Plat G, Vial J, Robert A, Laprie A. Coregistration of Prechemotherapy PET-CT for Planning Pediatric Hodgkin's Disease Radiotherapy Significantly Diminishes Interobserver Variability of Clinical Target Volume Definition. Int J Radiat Oncol Biol Phys 2011; 80:793-9. [DOI: 10.1016/j.ijrobp.2010.02.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 02/10/2010] [Accepted: 02/17/2010] [Indexed: 11/26/2022]
|
32
|
|
33
|
Woods C, Sohn J, Yao M. The Application of PET in Radiation Treatment Planning for Head and Neck Cancer. PET Clin 2011; 6:149-63. [DOI: 10.1016/j.cpet.2011.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
34
|
|
35
|
Terezakis SA, Yahalom J. PET–Computed Tomography for Radiation Treatment Planning of Lymphoma and Hematologic Malignancies. PET Clin 2011; 6:165-75. [DOI: 10.1016/j.cpet.2011.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Price PM, Green MM. Positron emission tomography imaging approaches for external beam radiation therapies: current status and future developments. Br J Radiol 2011; 84 Spec No 1:S19-34. [PMID: 21427180 DOI: 10.1259/bjr/21263014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In an era in which it is possible to deliver radiation with high precision, there is a heightened need for enhanced imaging capabilities to improve tumour localisation for diagnostic, planning and delivery purposes. This is necessary to increase the accuracy and overall efficacy of all types of external beam radiotherapy (RT), including particle therapies. Positron emission tomography (PET) has the potential to fulfil this need by imaging fundamental aspects of tumour biology. The key areas in which PET may support the RT process include improving disease diagnosis and staging; assisting tumour volume delineation; defining tumour phenotype or biological tumour volume; assessment of treatment response; and in-beam monitoring of radiation dosimetry. The role of PET and its current developmental status in these key areas are overviewed in this review, highlighting the advantages and drawbacks.
Collapse
Affiliation(s)
- P M Price
- Department of Academic Radiation Oncology, The University of Manchester, The Christie Hospital NHS Foundation Trust, Manchester, UK.
| | | |
Collapse
|
37
|
Hanna GG, Hounsell AR, O'Sullivan JM. Geometrical analysis of radiotherapy target volume delineation: a systematic review of reported comparison methods. Clin Oncol (R Coll Radiol) 2010; 22:515-25. [PMID: 20554168 DOI: 10.1016/j.clon.2010.05.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 03/16/2010] [Accepted: 05/04/2010] [Indexed: 01/08/2023]
Abstract
Radiotherapy target volume definition is a critical step in the radiotherapy treatment planning process for all tumour sites. New technology may improve the identification of tumour from normal tissue for the purposes of target volume definition. In assessing the proffered benefits of new technologies, rigorous methods of comparison are necessary. A review of published studies was conducted using PubMed (National Library of Medicine) between 1 January 1995 and 1 January 2009 using predefined search terms. The frequency of usage of the various methods of geometrical comparison (simple volume assessment, centre of mass analysis, concordance index and volume edge analysis) was recorded. Sixty-three studies were identified, across a range of primary tumour sites. The most common method of target volume analysis was simple volume measurement; this was described in 84% of the papers analysed. The concordance index type analysis was described in 30%, the centre of mass analysis in 9.5% and the volume edge analysis in 4.8%. In reporting geometrical differences between target volumes no standard exists. However, to optimally describe geometrical changes in target volumes, simple volume change and a measure of positional change should be assessed.
Collapse
Affiliation(s)
- G G Hanna
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, UK.
| | | | | |
Collapse
|
38
|
Troost EG, Schinagl DA, Bussink J, Oyen WJ, Kaanders JH. Clinical evidence on PET–CT for radiation therapy planning in head and neck tumours. Radiother Oncol 2010; 96:328-34. [DOI: 10.1016/j.radonc.2010.07.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Revised: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 11/29/2022]
|
39
|
Troost EGC, Bussink J, Hoffmann AL, Boerman OC, Oyen WJG, Kaanders JHAM. 18F-FLT PET/CT for early response monitoring and dose escalation in oropharyngeal tumors. J Nucl Med 2010; 51:866-74. [PMID: 20484426 DOI: 10.2967/jnumed.109.069310] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Accelerated tumor cell proliferation is an important mechanism adversely affecting therapeutic outcome in head and neck cancer. 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) is a PET tracer to noninvasively image tumor cell proliferation. The aims of this study were to monitor early tumor response based on repetitive (18)F-FLT PET/CT scans and to identify subvolumes with high proliferative activity eligible for dose escalation. METHODS Ten patients with oropharyngeal tumors underwent an (18)F-FLT PET/CT scan before and twice during radiotherapy. The primary tumor and metastatic lymph nodes (gross tumor volume, or GTV) were delineated on CT (GTV(CT)) and after segmentation of the PET signal using the 50% isocontour of the maximum signal intensity or an adaptive threshold based on the signal-to-background ratio (GTV(SBR)). GTVs were calculated, and similarity between GTV(CT) and GTV(SBR) was assessed. Within GTV(SBR), the maximum and mean standardized uptake value (SUV(max) and SUV(mean), respectively) was calculated. Within GTV(CT), tumor subvolumes with high proliferative activity based on the 80% isocontour (GTV(80%)) were identified for radiotherapy planning with dose escalation. RESULTS The GTV(CT) decreased significantly in the fourth week but not in the initial phase of treatment. SUV(max) and SUV(mean) decreased significantly as early as 1 wk after therapy initiation and even further before the fourth week of treatment. For the primary tumor, the average (+/-SD) SUV(mean) of the GTV(SBR) was 4.7 +/- 1.6, 2.0 +/- 0.9, and 1.3 +/- 0.2 for the consecutive scans (P < 0.0001). The similarity between GTV(CT) and GTV(SBR) decreased during treatment, indicating an enlargement of GTV(SBR) outside GTV(CT) caused by the increasing difficulty of segmenting tracer uptake in the tumor from the background and by proliferative activity in the nearby tonsillar tissue. GTV(80%) was successfully identified in all primary tumors and metastatic lymph nodes, and dose escalation based on the GTV(80%) was demonstrated to be technically feasible. CONCLUSION (18)F-FLT is a promising PET tracer for imaging tumor cell proliferation in head and neck carcinomas. Signal changes in (18)F-FLT PET precede volumetric tumor response and are therefore suitable for early response assessment. Definition of tumor subvolumes with high proliferative activity and dose escalation to these regions are technically feasible.
Collapse
Affiliation(s)
- Esther G C Troost
- Department of Radiation Oncology, Institute of Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
40
|
Wiant D, Gersh JA, Bennett M, Bourland JD. Evaluation of the spatial dependence of the point spread function in 2D PET image reconstruction using LOR-OSEM. Med Phys 2010; 37:1169-82. [PMID: 20384254 PMCID: PMC2837729 DOI: 10.1118/1.3310381] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The use of positron emission tomography (PET) imaging has proved beneficial in the staging and diagnosis of several cancer disease sites. Additional applications of PET imaging in treatment planning and the evaluation of treatment response are limited by the relatively low spatial resolution of PET images. Including point spread function (PSF) information in the system matrix (SM) of iterative reconstruction techniques has been shown to produce improved spatial resolution in PET images. METHODS In this study, the authors sampled the spatially variant PSF at over 6000 locations in the field of view for a General Electric Discovery ST PET/CT (General Electric Healthcare, Waukesha, WI) scanner in 2D acquisition mode. The authors developed PSF blurred SMs based on different combinations of the radial, depth, and azimuthal spatial dependencies to test the overall spatial dependence of the PSF on image quality. The PSF blurred SMs were included in a LOR-OSEM reconstruction algorithm and used for image reconstruction of geometric phantoms. The authors also examined the effect of sampling density on PSF characterization to design a more efficient sampling scheme. RESULTS The authors found that depth dependent change in the amplitude of the detector response was the most important factor affecting image quality. A SM created from a PSF that introduced r (perpendicular to the LOR), d (parallel to the LOR), or r and d dependent blurring across the radial lines of response led to visually identifiable improvements in spatial resolution and contrast in reconstructed images compared to images reconstructed with a purely geometric SM with no PSF blurring. Images reconstructed using a SM with r and d dependent blurring across the radial lines of response showed improved spatial resolution and contrast-noise ratios compared to images reconstructed with a SM that had only r dependent blurring. Additionally, the authors determined that the PSF could be adequately characterized with roughly 85% fewer samples through the use of a better optimized sampling scheme. CONCLUSIONS PET image reconstruction using a SM made from an accurately characterized PSF that accounts for r and d dependencies results in improved spatial resolution and contrast-noise relations, which may aid in lesion boundary detection for treatment planning or quantitative assessment of treatment response.
Collapse
Affiliation(s)
- D Wiant
- Department of Radiation Oncology, School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27157, USA.
| | | | | | | |
Collapse
|
41
|
Troost EGC, Schinagl DAX, Bussink J, Boerman OC, van der Kogel AJ, Oyen WJG, Kaanders JHAM. Innovations in radiotherapy planning of head and neck cancers: role of PET. J Nucl Med 2009; 51:66-76. [PMID: 20009000 DOI: 10.2967/jnumed.108.061499] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Modern radiotherapy techniques heavily rely on high-quality medical imaging. PET provides biologic information about the tumor, complementary to anatomic imaging. Integrated PET/CT has found its way into the practice of radiation oncology, and (18)F-FDG PET is being introduced for radiotherapy planning. The functional information possibly augments accurate delineation and treatment of the tumor and its extensions while reducing the dose to surrounding healthy tissues. In addition to (18)F-FDG, other PET tracers are available for imaging specific biologic tumor characteristics determining radiation resistance. For head and neck cancer, the potential gains of PET are increasingly being recognized. This review describes the current role of PET and perspectives on its future use for selection and delineation of radiotherapy target volumes and for biologic characterization of this tumor entity. Furthermore, the potential role of PET for early response monitoring, treatment modification, and patient selection is addressed in this review.
Collapse
Affiliation(s)
- Esther G C Troost
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
42
|
Pantvaidya GH, Agarwal JP, Deshpande MS, Rangarajan V, Singh V, Kakade A, D'Cruz AK. PET-CT in recurrent head neck cancers: a study to evaluate impact on patient management. J Surg Oncol 2009; 100:401-3. [PMID: 19235784 DOI: 10.1002/jso.21257] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND AND OBJECTIVES PET-CT has shown promise in the management of head neck cancers. However, there have been only few studies evaluating its impact on management of patients with recurrent cancers in the presence of available clinicoradiologic methods of assessment. We conducted this study to assess the same in patients with suspected recurrent head and neck cancer. METHODS Case histories were presented to two oncologists, who were blinded to PET-CT reports. Treatment plans were made by these oncologists based on clinical findings and other conventional imaging. These plans were then compared to the actual treatment received by patients after PET-CT. Any change was recorded as "change in management." RESULTS Forty-nine patients with suspected recurrent head and neck cancer were evaluated in the study. Overall, there was a 38.7% change in management because of the addition of PET-CT to conventional methods of assessment. Eight patients (16.3%) had a major change in therapy while in 11 patients (22.4%), diagnostic procedures like endoscopies, biopsies and examination under anesthesia were avoided. CONCLUSION In our study, PET-CT had a significant impact on the management of patients with suspected recurrent head neck cancer.
Collapse
Affiliation(s)
- G H Pantvaidya
- Department of Head and Neck Surgery, Tata Memorial Hospital, Mumbai, India
| | | | | | | | | | | | | |
Collapse
|
43
|
Ford EC, Herman J, Yorke E, Wahl RL. 18F-FDG PET/CT for image-guided and intensity-modulated radiotherapy. J Nucl Med 2009; 50:1655-65. [PMID: 19759099 PMCID: PMC2899678 DOI: 10.2967/jnumed.108.055780] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Advances in technology have allowed extremely precise control of radiation dose delivery and localization within a patient. The ability to confidently delineate target tumor boundaries, however, has lagged behind. (18)F-FDG PET/CT, with its ability to distinguish metabolically active disease from normal tissue, may provide a partial solution to this problem. Here we review the current applications of (18)F-FDG PET/CT in a variety of disease sites, including non-small cell lung cancer, head and neck cancer, and pancreatic adenocarcinoma. This review focuses on the use of (18)F-FDG PET/CT to aid in planning radiotherapy and the associated benefits and challenges. We also briefly consider novel radiopharmaceuticals that are beginning to be used in the context of radiotherapy planning.
Collapse
Affiliation(s)
- Eric C Ford
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland 21231, USA.
| | | | | | | |
Collapse
|
44
|
Zaidi H, Vees H, Wissmeyer M. Molecular PET/CT imaging-guided radiation therapy treatment planning. Acad Radiol 2009; 16:1108-33. [PMID: 19427800 DOI: 10.1016/j.acra.2009.02.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/11/2009] [Accepted: 02/19/2009] [Indexed: 01/01/2023]
Abstract
The role of positron emission tomography (PET) during the past decade has evolved rapidly from that of a pure research tool to a methodology of enormous clinical potential. (18)F-fluorodeoxyglucose (FDG)-PET is currently the most widely used probe in the diagnosis, staging, assessment of tumor response to treatment, and radiation therapy planning because metabolic changes generally precede the more conventionally measured parameter of change in tumor size. Data accumulated rapidly during the last decade, thus validating the efficacy of FDG imaging and many other tracers in a wide variety of malignant tumors with sensitivities and specificities often in the high 90 percentile range. As a result, PET/computed tomography (CT) had a significant impact on the management of patients because it obviated the need for further evaluation, guided further diagnostic procedures, and assisted in planning therapy for a considerable number of patients. On the other hand, the progress in radiation therapy technology has been enormous during the last two decades, now offering the possibility to plan highly conformal radiation dose distributions through the use of sophisticated beam targeting techniques such as intensity-modulated radiation therapy (IMRT) using tomotherapy, volumetric modulated arc therapy, and many other promising technologies for sculpted three-dimensional (3D) dose distribution. The foundation of molecular imaging-guided radiation therapy lies in the use of advanced imaging technology for improved definition of tumor target volumes, thus relating the absorbed dose information to image-based patient representations. This review documents technological advancements in the field concentrating on the conceptual role of molecular PET/CT imaging in radiation therapy treatment planning and related image processing issues with special emphasis on segmentation of medical images for the purpose of defining target volumes. There is still much more work to be done and many of the techniques reviewed are themselves not yet widely implemented in clinical settings.
Collapse
|
45
|
Simon E, Fox TH, Lee D, Waller AF, Pantalone P, Jani AB. PET Lesion Segmentation Using Automated Iso-intensity Contouring in Head and Neck Cancer. Technol Cancer Res Treat 2009; 8:249-55. [DOI: 10.1177/153303460900800401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To improve the objectivity of the integration of positron emission tomography (PET), we used the conformality index (CI) to measure the goodness of fit of a given PET iso-SUV (standardized uptake value) level with the GTV defined on PET (GTVPET) and CT (GTVCT). Twenty-two datasets involving 20 head and neck cancer patients were identified. GTVPET and GTVCT were delineated manually. An iso-intensity method was developed to automatically segment GTVPET-ISO using (a) SUV and (b) maximum intensity thresholding (%Max), over a range of intensities. For each intensity, GTVPET-ISO was compared to GTVPET using the conformality index CIPET (and, similarly, to GTVCT using CICT). Comparing GTVPET to GTVPET-ISO vs comparing GTVCT to GTVPET-ISO, the average peak CI was 0.68 ± 0.09 vs 0.49 ± 0.12 (p<0.001), the optimum iso-SUV was 2.7 ± 0.7 vs 2.9 ± 1.0 (p=0. 253), and the %Max SUV was 21.8% ± 7.6% vs 23.8% ± 8.6% (p=0. 310), respectively. The radiation oncologist's volumes corresponded to a lower iso-SUV (3.02 ± 0.58 vs 4.36 ± 0.77, p < 0.001) and lower %Max SUV (24.1 ± 9.1% vs 34.3 ± 11.2%, p<0.001) than those drawn by the nuclear medicine physician. Though manual editing may still be necessary, PET iso-contouring is one method to improve the objectivity of GTV definition in head and neck cancer patients. Iso-SUV's can also be used to study the differences between PET's role as a nuclear medicine diagnostic test versus a radiation oncology treatment planning tool.
Collapse
Affiliation(s)
- Edmund Simon
- Departments of Radiation Oncology and Nuclear Medicine, Emory University, Department of Radiation Oncology 1365 Clifton Road, NE, Suite A1300 Atlanta, GA 30322
| | - Timothy H. Fox
- Departments of Radiation Oncology and Nuclear Medicine, Emory University, Department of Radiation Oncology 1365 Clifton Road, NE, Suite A1300 Atlanta, GA 30322
| | - Daniel Lee
- Departments of Radiation Oncology and Nuclear Medicine, Emory University, Department of Radiation Oncology 1365 Clifton Road, NE, Suite A1300 Atlanta, GA 30322
| | - Anthony F. Waller
- Departments of Radiation Oncology and Nuclear Medicine, Emory University, Department of Radiation Oncology 1365 Clifton Road, NE, Suite A1300 Atlanta, GA 30322
| | - Paul Pantalone
- Departments of Radiation Oncology and Nuclear Medicine, Emory University, Department of Radiation Oncology 1365 Clifton Road, NE, Suite A1300 Atlanta, GA 30322
| | - Ashesh B. Jani
- Departments of Radiation Oncology and Nuclear Medicine, Emory University, Department of Radiation Oncology 1365 Clifton Road, NE, Suite A1300 Atlanta, GA 30322
| |
Collapse
|
46
|
Recent advances in image-guided radiotherapy for head and neck carcinoma. JOURNAL OF ONCOLOGY 2009; 2009:752135. [PMID: 19644564 PMCID: PMC2717698 DOI: 10.1155/2009/752135] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/29/2009] [Accepted: 06/03/2009] [Indexed: 11/17/2022]
Abstract
Radiotherapy has a well-established role in the management of head and neck cancers. Over the past decade, a variety of new imaging modalities have been incorporated into the radiotherapy planning and delivery process. These technologies are collectively referred to as image-guided radiotherapy and may lead to significant gains in tumor control and radiation side effect profiles. In the following review, these techniques as they are applied to head and neck cancer patients are described, and clinical studies analyzing their use in target delineation, patient positioning, and adaptive radiotherapy are highlighted. Finally, we conclude with a brief discussion of potential areas of further radiotherapy advancement.
Collapse
|
47
|
Sinkó D, Klinkó T, Weisz C, Nemeskéri C, Fekésházy A, Tóth V, Tóth Z, Mayer Á. PET/CT based radiotherapy treatment planning in head and neck cancers. Orv Hetil 2009; 150:1403-6. [DOI: 10.1556/oh.2009.28653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A vizsgálat célja a Fővárosi Onkoradiológiai Központban a PET/CT alapú besugárzástervezéssel szerzett eddigi tapasztalatok értékelése fej-nyak tumoros betegeknél. 2008. március és 2009. február között 11 betegnél történt PET/CT alapú 3D konformális besugárzás fej-nyaki régióban. A PET/CT vizsgálatot követően a kezelési terv 11-ből 6 betegnél módosult, mivel a vizsgálat kóros nyaki nyirokcsomót mutatott. Ez tette szükségessé a kezelés kombinálását egyidejű kemoterápiával, esetenként a klinikai céltérfogat (CTV) és a tervezési céltérfogat (PTV) változtatását is. Mindezek alapján egyértelmű, hogy a fej-nyak tumoros betegeknél a PET/CT vizsgálatnak nagy jelentősége van a komplex kezelési terv felállításában és a besugárzástervezésben is.
Collapse
Affiliation(s)
- Dániel Sinkó
- 1 Fővárosi Önkormányzat Uzsoki Utcai Kórház Onkoradiológiai Központ Budapest Uzsoki u. 29. 1145
| | - Tímea Klinkó
- 1 Fővárosi Önkormányzat Uzsoki Utcai Kórház Onkoradiológiai Központ Budapest Uzsoki u. 29. 1145
| | - Csaba Weisz
- 1 Fővárosi Önkormányzat Uzsoki Utcai Kórház Onkoradiológiai Központ Budapest Uzsoki u. 29. 1145
| | - Csaba Nemeskéri
- 1 Fővárosi Önkormányzat Uzsoki Utcai Kórház Onkoradiológiai Központ Budapest Uzsoki u. 29. 1145
| | - Attila Fekésházy
- 2 PET-CT Orvosi Diagnosztikai Kft., OITI PET-CT Központ Budapest
| | - Viktória Tóth
- 2 PET-CT Orvosi Diagnosztikai Kft., OITI PET-CT Központ Budapest
| | - Zoltán Tóth
- 2 PET-CT Orvosi Diagnosztikai Kft., OITI PET-CT Központ Budapest
| | - Árpád Mayer
- 1 Fővárosi Önkormányzat Uzsoki Utcai Kórház Onkoradiológiai Központ Budapest Uzsoki u. 29. 1145
| |
Collapse
|
48
|
Dirix P, Vandecaveye V, De Keyzer F, Op de Beeck K, Poorten VV, Delaere P, Verbeken E, Hermans R, Nuyts S. Diffusion-weighted MRI for nodal staging of head and neck squamous cell carcinoma: impact on radiotherapy planning. Int J Radiat Oncol Biol Phys 2009; 76:761-6. [PMID: 19540069 DOI: 10.1016/j.ijrobp.2009.02.068] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 12/15/2008] [Accepted: 02/26/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE To evaluate the use of diffusion-weighted magnetic resonance imaging (DW-MRI) for nodal staging and its impact on radiotherapy (RT) planning. METHODS AND MATERIALS Twenty-two patients with locally advanced head and neck squamous cell carcinoma underwent contrast-enhanced computed tomography (CT), as well as MRI (with routine and DW sequences) prior to neck dissection. After topographic correlation, lymph nodes were evaluated microscopically with prekeratin immunostaining. Pathology results were correlated with imaging findings and an RT planning study was performed for these surgically treated patients. One set of target volumes was based on conventional imaging only, and another set was based on the corresponding DW-MRI images. A third reference set was contoured based solely on pathology results. RESULTS A sensitivity of 89% and a specificity of 97% per lymph node were found for DW-MRI. Nodal staging agreement between imaging and pathology was significantly stronger for DW-MRI (kappa = 0.97; 95% confidence interval [CI], 0.84-1.00) than for conventional imaging (kappa = 0.56; 95% CI, 0.16-0.96; p = 0.019, by McNemar's test). For both imaging modalities, the absolute differences between RT volumes and those obtained by pathology were calculated. Using an exact paired Wilcoxon test, the observed difference was significantly larger for conventional imaging than for DW-MRI for nodal gross tumor volume (p = 0.0013), as well as for nodal clinical target volume (p = 0.0415) delineation. CONCLUSIONS These results suggest that DW-MRI is superior to conventional imaging for preradiotherapy nodal staging of head and neck squamous cell carcinoma, and provides a potential impact on organsparing and tumor control.
Collapse
Affiliation(s)
- Piet Dirix
- Department of Radiation Oncology, Leuvens Kankerinstituut (LKI), University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Dirix P, Vandecaveye V, De Keyzer F, Stroobants S, Hermans R, Nuyts S. Dose Painting in Radiotherapy for Head and Neck Squamous Cell Carcinoma: Value of Repeated Functional Imaging with 18F-FDG PET, 18F-Fluoromisonidazole PET, Diffusion-Weighted MRI, and Dynamic Contrast-Enhanced MRI. J Nucl Med 2009; 50:1020-7. [DOI: 10.2967/jnumed.109.062638] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
50
|
Kruser TJ, Bradley KA, Bentzen SM, Anderson BM, Gondi V, Khuntia D, Perlman SB, Tome WA, Chappell RJ, Walker WL, Mehta MP. The Impact of Hybrid PET-CT Scan on Overall Oncologic Management, with a Focus on Radiotherapy Planning: A Prospective, Blinded Study. Technol Cancer Res Treat 2009; 8:149-58. [DOI: 10.1177/153303460900800208] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Functional imaging using fluorodeoxyglucose positron-emission tomography (FDG-PET) has been increasing incorporated into radiotherapy planning in conjunction with computed tomography (CT). Hybrid FDG-PET/CT scanners allow these images to be obtained in very close temporal proximity without the need for repositioning patients, thereby minimizing imprecision when overlying these images. To prospectively examine the impact of hybrid PET/CT imaging on overall oncologic impact, with a focus on radiotherapy planning, we performed a prospective, blinded trial in 111 patients. Patients with lung cancer (n=38), head-and-neck squamous cell carcinoma (n=23), breast (n=8), cervix (n=15), esophageal (n=9), and lymphoma (n=18) underwent hybrid PET/CT imaging at the time of radiation therapy planning. A physician blinded to the PET dataset designed a treatment plan using all clinical information and the CT dataset. The treating physician subsequently designed a second treatment plan using the hybrid PET/CT dataset. The two treatment plans were compared to determine if a major alteration in overall oncologic management occured. In patients receiving potentially curative radiotherapy the concordance between CT-based and PET/CT-based GTVs was quantified using an index of conformality (CI). In 76/111 (68%) of patients, the PET/CT data resulted in a change in one or more of the following: GTV volume, regional/local extension, prescribed dose, or treatment modality selection. In 35 of these 76 cases (46%; 31.5% of the entire cohort) the change resulted in a major alteration in the oncologic management (dose, field design, or modality change). Thus, nearly a third of all cases had a major alteration in oncologic management as a result of the PET/CT data, and 29 of 105 patients (27.6%) who underwent potentially curative radiotherapy had major alterations in either dose or field design. Hybrid PET/CT imaging at the time of treatment planning may be highly informative and an economical manner in which to obtain PET imaging, with the dual goals of staging and treatment planning.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Richard J. Chappell
- Dept. of Biostatistics and Medical Informatics University of Wisconsin School of Medicine and Public Health Madison, WI, USA
| | | | | |
Collapse
|