1
|
Wang TH, Shen YW, Chen HY, Chen CC, Lin NC, Shih YH, Hsia SM, Chiu KC, Shieh TM. Arecoline Induces ROS Accumulation, Transcription of Proinflammatory Factors, and Expression of KRT6 in Oral Epithelial Cells. Biomedicines 2024; 12:412. [PMID: 38398015 PMCID: PMC10887121 DOI: 10.3390/biomedicines12020412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Areca nut is a major contributor to the high prevalence of oral cancer in Asia. The precise mechanisms by which areca nut stimulates mucosal cells and contributes to the progression of oral cancer urgently require clarification. The current study aimed to assess the effects of arecoline on the normal human gingival epithelium cell line S-G. Cell viability, levels of reactive oxygen species (ROS), protein expression, cellular morphology, and gene expression were evaluated using the MTT test, flow cytometry, Western blot analysis, optical or confocal microscopy, and RT-qPCR. Keratin (KRT6) analysis involved matched normal and cancer tissues from clinical head and neck specimens. The results demonstrated that 12.5 µg/mL of arecoline induced ROS production, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) mRNA expression in S-G cells. This activation of the MAPK/ERK pathway increased KRT6 expression while limiting cell migration. In head and neck cancer tissues, KRT6B gene expression exceeded that of normal tissues. This study confirms that arecoline induces ROS accumulation in normal cells, leading to the secretion of proinflammatory factors and KRT6 expression. This impedes oral mucosal healing, thereby promoting the progression of oral cancer.
Collapse
Affiliation(s)
- Tong-Hong Wang
- Biobank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Yen-Wen Shen
- School of Dentistry, China Medical University, Taichung 404328, Taiwan
| | - Hsin-Ying Chen
- School of Dentistry, China Medical University, Taichung 404328, Taiwan
| | - Chih-Chieh Chen
- Department of Sports Medicine, China Medical University, Taichung 404328, Taiwan
| | - Nan-Chin Lin
- School of Dentistry, China Medical University, Taichung 404328, Taiwan
- Department of Oral and Maxillofacial Surgery, Show Chwan Memorial Hospital, Changhua 505029, Taiwan
- Department of Oral and Maxillofacial Surgery, Changhua Christian Hospital, Changhua 500011, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan
| | - Kuo-Chou Chiu
- Division of General Dentistry, Taichung Armed Forces General Hospital, Taichung 411228, Taiwan
| | - Tzong-Ming Shieh
- School of Dentistry, China Medical University, Taichung 404328, Taiwan
| |
Collapse
|
2
|
Gocol H, Zeng JH, Chang S, Koh BY, Nguyen H, Cirillo N. A Critical Interpretive Synthesis of the Role of Arecoline in Oral Carcinogenesis: Is the Local Cholinergic Axis a Missing Link in Disease Pathophysiology? Pharmaceuticals (Basel) 2023; 16:1684. [PMID: 38139811 PMCID: PMC10748297 DOI: 10.3390/ph16121684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Arecoline is the primary active carcinogen found in areca nut and has been implicated in the pathogenesis of oral squamous cell carcinoma (OSCC) and oral submucous fibrosis (OSF). For this study, we conducted a stepwise review process by combining iterative scoping reviews with a post hoc search, with the aim of identifying the specific mechanisms by which arecoline initiates and promotes oral carcinogenesis. Our initial search allowed us to define the current trends and patterns in the pathophysiology of arecoline-induced OSF and OSCC, which include the induction of cell proliferation, facilitation of invasion, adhesion, and migration, increased collagen deposition and fibrosis, imbalance in immune and inflammatory mechanisms, and genotoxicity. Key molecular pathways comprise the activation of NOTCH1, MYC, PRDX2, WNT, CYR61, EGFR/Pl3K, DDR1 signaling, and cytokine upregulation. Despite providing a comprehensive overview of potential pathogenic mechanisms of OSF, the involvement of molecules functioning as areca alkaloid receptors, namely, the muscarinic and nicotinic acetylcholine receptors (AChRs), was not elucidated with this approach. Accordingly, our search strategy was refined to reflect these evidence gaps. The results of the second round of reviews with the post hoc search highlighted that arecoline binds preferentially to muscarinic AChRs, which have been implicated in cancer. Consistently, AChRs activate the signaling pathways that partially overlap with those described in the context of arecoline-induced carcinogenesis. In summary, we used a theory-driven interpretive review methodology to inform, extend, and supplement the conventional systematic literature assessment workflow. On the one hand, the results of this critical interpretive synthesis highlighted the prevailing trends and enabled the consolidation of data pertaining to the molecular mechanisms involved in arecoline-induced carcinogenesis, and, on the other, brought up knowledge gaps related to the role of the local cholinergic axis in oral carcinogenesis, thus suggesting areas for further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia (B.Y.K.)
| |
Collapse
|
3
|
Bhatkar D, Ananda N, Lokhande KB, Khunteta K, Jain P, Hebale A, Sarode SC, Sharma NK. Organic Acids Derived from Saliva-amalgamated Betel Quid Filtrate Are Predicted as a Ten-eleven Translocation-2 Inhibitor. J Cancer Prev 2023; 28:115-130. [PMID: 37830116 PMCID: PMC10564634 DOI: 10.15430/jcp.2023.28.3.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/13/2023] [Accepted: 08/13/2023] [Indexed: 10/14/2023] Open
Abstract
There is a lack of evidence regarding the use of betel quid (BQ) and its potential contribution to oral cancer. Limited attention has been directed towards investigating the involvement of BQ-derived organic acids in the modulation of metabolic-epigenomic pathways associated with oral cancer initiation and progression. We employed novel protocol for preparing saliva-amalgamated BQ filtrate (SABFI) that mimics the oral cavity environment. SABFI and saliva control were further purified by an in-house developed vertical tube gel electrophoresis tool. The purified SABFI was then subjected to liquid chromatography-high resolution mass spectrometry analysis to identify the presence of organic acids. Profiling of SABFI showed a pool of prominent organic acids such as citric acid. malic acid, fumaric acid, 2-methylcitric acid, 2-hydroxyglutarate, cis-aconitic acid, succinic acid, 2-hydroxyglutaric acid lactone, tartaric acid and β-ketoglutaric acid. SABFI showed anti-proliferative and early apoptosis effects in oral cancer cells. Molecular docking and molecular dynamics simulations predicted that SABFI-derived organic acids as potential inhibitors of the epigenetic demethylase enzyme, Ten-Eleven Translocation-2 (TET2). By binding to the active site of α-ketoglutarate, a known substrate of TET2, these organic acids are likely to act as competitive inhibitors. This study reports a novel approach to study SABFI-derived organic acids that could mimic the chemical composition of BQ in the oral cavity. These SABFI-derived organic acids projected as inhibitors of TET2 and could be explored for their role oral cancer.
Collapse
Affiliation(s)
- Devyani Bhatkar
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Nistha Ananda
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Kiran Bharat Lokhande
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Kratika Khunteta
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Priyadarshini Jain
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Ameya Hebale
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Sachin C. Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| |
Collapse
|
4
|
Ko AMS, Tu HP, Ko YC. Systematic Review of Roles of Arecoline and Arecoline N-Oxide in Oral Cancer and Strategies to Block Carcinogenesis. Cells 2023; 12:1208. [PMID: 37190117 PMCID: PMC10137008 DOI: 10.3390/cells12081208] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Betel quid and areca nut are complex mixture carcinogens, but little is known about whether their derived single-agent arecoline or arecoline N-oxide (ANO) is carcinogenic, and the underlying mechanisms remain unclear. In this systematic review, we analyzed recent studies on the roles of arecoline and ANO in cancer and strategies to block carcinogenesis. In the oral cavity, flavin-containing monooxygenase 3 oxidizes arecoline to ANO, and both alkaloids conjugate with N-acetylcysteine to form mercapturic acid compounds, which are excreted in urine, reducing arecoline and ANO toxicity. However, detoxification may not be complete. Arecoline and ANO upregulated protein expression in oral cancer tissue from areca nut users compared to expression levels in adjacent normal tissue, suggesting a causal relationship between these compounds and oral cancer. Sublingual fibrosis, hyperplasia, and oral leukoplakia were diagnosed in mice subjected to oral mucosal smearing of ANO. ANO is more cytotoxic and genotoxic than arecoline. During carcinogenesis and metastasis, these compounds increase the expression of epithelial-mesenchymal transition (EMT) inducers such as reactive oxygen species, transforming growth factor-β1, Notch receptor-1, and inflammatory cytokines, and they activate EMT-related proteins. Arecoline-induced epigenetic markers such as sirtuin-1 hypermethylation, low protein expression of miR-22, and miR-886-3-p accelerate oral cancer progression. Antioxidants and targeted inhibitors of the EMT inducers used reduce the risk of oral cancer development and progression. Our review findings substantiate the association of arecoline and ANO with oral cancer. Both of these single compounds are likely carcinogenic to humans, and their mechanisms and pathways of carcinogenesis are useful indicators for cancer therapy and prognosis.
Collapse
Affiliation(s)
- Albert Min-Shan Ko
- Department of Biomedical Sciences, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Cardiovascular Department, Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
- Health Aging Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hung-Pin Tu
- Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Ying-Chin Ko
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 2 Yu-Der Road, Taichung 40447, Taiwan
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 106216, Taiwan
| |
Collapse
|
5
|
Molecular pathways of oral submucous fibrosis and its progression to malignancy. Arch Oral Biol 2023; 148:105644. [PMID: 36804642 DOI: 10.1016/j.archoralbio.2023.105644] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
OBJECTIVE The review aims to comprehend various factors engaged in the alteration of molecular events resulting in Oral submucous fibrosis (OSMF) and its malignant transformation. DESIGN Literature pertinent to pathways involved in OSMF were explored in databases such as PubMed, Scopus and Google Scholar. The relevant literature was reviewed and critically appraised in this narrative review. RESULTS Areca nut components influence myriad of cellular molecules such as cytokines, growth factors, myofibroblasts, non-coding RNAs and alter their expression. These aberrantly expressed molecules drive the progression of OSMF from localized inflammation to fibrosis of buccal mucosa. The oral tissue suffers from oxidative stress, hypoxia, autophagy, aberration of cell cycle and DNA damage. Apoptosis of epithelial layer results in its atrophy facilitating deeper penetration of areca nut elements. With the advance of disease, epithelial-mesenchymal transition eventuates and promotes dysplasia. The jeopardized expression of various cellular molecules, suppressed apoptosis, along with increased genetic alterations and neovascularization favors the malignant transformation. CONCLUSION OSMF is a progressive disorder with complex mechanism of pathogenesis initiated by inflammation of oral mucosa. Continuous habit of areca nut chewing and the resulting insult to the tissues prevents healing process and is destined to debilitating disease which affects the quality of life with a higher probability of progression to malignancy.
Collapse
|
6
|
Senevirathna K, Pradeep R, Jayasinghe YA, Jayawickrama SM, Illeperuma R, Warnakulasuriya S, Jayasinghe RD. Carcinogenic Effects of Areca Nut and Its Metabolites: A Review of the Experimental Evidence. Clin Pract 2023; 13:326-346. [PMID: 36961055 PMCID: PMC10037666 DOI: 10.3390/clinpract13020030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Oral cancers (OC) are among the most frequent malignancies encountered in Southeast Asia, primarily due to the prevalent habit of betel quid (BQ) and smokeless tobacco use in this region. Areca nut (AN), the primary ingredient in BQ, contains several alkaloids, including arecoline, arecaidine, guvacoline, and guvacine. These have been associated with both the AN abuse liability and carcinogenicity. Additionally, variations in AN alkaloid levels could lead to differences in the addictiveness and carcinogenic potential across various AN-containing products. Recent studies based on animal models and in vitro experiments show cellular and molecular effects induced by AN. These comprise promoting epithelial-mesenchymal transition, autophagy initiation, tissue hypoxia, genotoxicity, cytotoxicity, and cell death. Further, clinical research endorses these undesired harmful effects in humans. Oral submucosal fibrosis, a potentially malignant disease of the oral cavity, is predominantly reported from the geographical areas of the globe where AN is habitually chewed. OC in chronic AN users presents a more aggressive phenotype, such as resistance to anti-cancer drugs. The available evidence on the carcinogenicity of AN based on the findings reported in the recently published experimental studies is discussed in the present review.
Collapse
Affiliation(s)
- Kalpani Senevirathna
- Centre for Research in Oral Cancer (CROC), Faculty of Dental Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Roshan Pradeep
- Centre for Research in Oral Cancer (CROC), Faculty of Dental Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Yovanthi Anurangi Jayasinghe
- Centre for Research in Oral Cancer (CROC), Faculty of Dental Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Shalindu Malshan Jayawickrama
- Centre for Research in Oral Cancer (CROC), Faculty of Dental Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Rasika Illeperuma
- Centre for Research in Oral Cancer (CROC), Faculty of Dental Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Saman Warnakulasuriya
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College, London SE1 9RA, UK
| | - Ruwan Duminda Jayasinghe
- Centre for Research in Oral Cancer (CROC), Faculty of Dental Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Department of Oral Medicine and Periodontology, Faculty of Dental Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka
| |
Collapse
|
7
|
Das A, Giri S. A Review on Role of Arecoline and Its Metabolites in the Molecular Pathogenesis of Oral Lesions with an Insight into Current Status of Its Metabolomics. Prague Med Rep 2020; 121:209-235. [PMID: 33270010 DOI: 10.14712/23362936.2020.19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Areca nut consumption is a popular habit in Southeast Asian countries. One of the important biologically active alkaloids of areca nut is arecoline, which plays a role in mediating the development of several pathologies of the primary exposure site, the oral cavity. Studies on the metabolism of arecoline revealed the formation of several metabolites which themselves might be toxic. Moreover, polymorphisms in genes encoding enzymes involved in the metabolism of arecoline might predispose an organism towards the development of oral cancer. The present review tries to accumulate all the relevant existing literature and then elucidate the molecular mechanism by which arecoline plays a role in the development of oral submucous fibrosis and oral cancer. Existing information regarding arecoline metabolism, enzymes involved in the metabolic process and biological effects of the metabolites of arecoline have also been compiled and compared to study the toxicity of metabolites with its parent compound arecoline and whether they play any role in the pathogenesis of oral cancer mediated by areca nut consumption. A repertoire of molecular targets has come up in the discussion whose expression profile is perturbed by arecoline. Construction of induction cascade from existing literature has given an idea about the process of molecular pathogenesis. The summarized and analysed data can help to determine the molecular mechanism and drug targets, which in turn could be helpful in the prevention or treatment of these pathological conditions. It also brings into light areas where further research needs to be directed.
Collapse
Affiliation(s)
- Aparajita Das
- Laboratory of Molecular and Cell Biology, Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Sarbani Giri
- Laboratory of Molecular and Cell Biology, Department of Life Science and Bioinformatics, Assam University, Silchar, India.
| |
Collapse
|
8
|
Genetic Susceptibility and Protein Expression of Extracellular Matrix Turnover-Related Genes in Oral Submucous Fibrosis. Int J Mol Sci 2020; 21:ijms21218104. [PMID: 33143101 PMCID: PMC7663238 DOI: 10.3390/ijms21218104] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Betel quid (BQ) chewing increased the risk of oral cancer and oral submucous fibrosis (OSMF), an oral premalignant disorder (OPMD) with malignant transformation potential. BQ components such as areca nut (AN), trauma by coarse AN fiber, catechin, copper, alkaloids, stimulated reactive oxygen species (ROS), inflammation and cytotoxicity are suggested to be the contributing factors. They may induce tissue inflammation, proliferation of fibroblasts and collagen deposition, myofibroblast differentiation and contraction, collagen cross-links and inhibit collagen phagocytosis, finally leading to the development of OSMF and oral cancer. These events are mediated by BQ components-induced changes of extracellular matrix (ECM) turnover via regulation of TGF-β1, plasminogen activator inhibitor-1 (PAI-1), cystatin, lysyl oxidase (LOX) and tissue inhibitors of metalloproteinases (TIMPs) and metalloproteinases (MMPs). Genetic susceptibility is also involved in these disease processes. Further understanding the molecular mechanisms of BQ-induced OSMF and oral cancer can be helpful for future disease prevention and treatment.
Collapse
|
9
|
Salivary Proteomic Analysis of Betel Nut (Areca catechu) Consumers by Mass Spectrometry Revealed Primary Indication of Oral Malignancies. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09909-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Chang MC, Pan YH, Wu HL, Lu YJ, Liao WC, Yeh CY, Lee JJ, Jeng JH. Stimulation of MMP-9 of oral epithelial cells by areca nut extract is related to TGF-β/Smad2-dependent and -independent pathways and prevented by betel leaf extract, hydroxychavicol and melatonin. Aging (Albany NY) 2019; 11:11624-11639. [PMID: 31831717 PMCID: PMC6932916 DOI: 10.18632/aging.102565] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/20/2019] [Indexed: 04/13/2023]
Abstract
BACKGROUND There are 200-600 million betel quid (BQ) chewers in the world. BQ increases oral cancer risk. Matrix metalloproteinase-9 (MMP-9) is responsible for matrix degradation, cancer invasion and metastasis. Whether areca nut extract (ANE), a BQ component, stimulates MMP-9 secretion, and the related signaling pathways awaits investigation. RESULTS ANE (but not arecoline) stimulated MMP-9 production of gingival keratinocytes and SAS cancer epithelial cells. ANE stimulated TGF-β1, p-Smad2, and p-TAK1 protein expression. ANE-induced MMP-9 production/expression in SAS cells can be attenuated by SB431542 (ALK5/Smad2 inhibitor), 5Z-7-Oxozeaenol (TAK1 inhibitor), catalase, PD153035 (EGFR tyrosine kinase inhibitor), AG490 (JAK inhibitor), U0126 (MEK/ERK inhibitor), LY294002 (PI3K/Akt inhibitor), betel leaf (PBL) extract, and hydroxychavicol (HC, a PBL component), and melatonin, but not by aspirin. CONCLUSIONS AN components contribute to oral carcinogenesis by stimulating MMP-9 secretion, thus enhancing tumor invasion/metastasis. These events are related to reactive oxygen species, TGF-β1, Smad2-dependent and -independent signaling, but not COX. These signaling molecules can be biomarkers of BQ carcinogenesis. PBL, HC and melatonin and other targeting therapy can be used for oral cancer treatment. METHODS ANE-induced MMP-9 expression/secretion of oral epithelial cells and related TGF-β1, Smad-dependent and -independent signaling were studied by MTT assay, RT-PCR, western blotting, immunofluorescent staining, and ELISA.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Chang-Gung University of Science and Technology, Kwei-Shan, Taoyuan, Taiwan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yu-Hwa Pan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Hsyueh-Liang Wu
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Yi-Jie Lu
- Graduate Institute of Oral Biology, National Taiwan University Medical College, Taipei, Taiwan
| | - Wan-Chuen Liao
- School of Dentistry, National Taiwan University Medical College, and Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Yang Yeh
- School of Dentistry, National Taiwan University Medical College, and Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Jang-Jaer Lee
- School of Dentistry, National Taiwan University Medical College, and Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Jiiang-Huei Jeng
- School of Dentistry, National Taiwan University Medical College, and Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
11
|
Li YC, Cheng AJ, Lee LY, Huang YC, Chang JTC. Multifaceted Mechanisms of Areca Nuts in Oral Carcinogenesis: the Molecular Pathology from Precancerous Condition to Malignant Transformation. J Cancer 2019; 10:4054-4062. [PMID: 31417650 PMCID: PMC6692602 DOI: 10.7150/jca.29765] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
Oral cancer is one of the most frequent malignant diseases worldwide, and areca nut is a primary carcinogen causing this cancer in Southeast Asia. It has been widely reported that areca nut induced several cytotoxic effects in oral cells, including ROS generation, inflammation, tissue hypoxia, DNA damage, and cell invasion. Recently, through chronic exposure model, more extensive pathological effects due to areca nut have been found. These include the induction of autophagy, promotion of epithelial- mesenchymal transition, and facilitation of cancer stemness conversion. Clinical findings support these adverse effects. Oral submucosal fibrosis, a premalignant condition, is prevalent in the area with habitual chewing of areca nuts. Consistently, oral cancer patients with habitual chewing areca nut exhibit more aggressive phenotypes, including resistance to chemo-radiotherapy. In this review, we comprehensively discuss and concisely summarize the up-to-date molecular and cellular mechanisms by which areca nuts contribute to malignant transformation. This review may provide critical information regarding clinical applications in risk assessment, disease prevention, diagnosis, and personalized therapeutics for areca nut-induced oral malignancy.
Collapse
Affiliation(s)
- Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Ann-Joy Cheng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.,Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
| | - Li-Yu Lee
- Department of Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
| | - Yu-Chen Huang
- Department of Oral Maxillofacial Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
| | - Joseph Tung-Chieh Chang
- Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan.,Department of Radiation Oncology, Xiamen Chang Gung Memorial Hospital, Xiamen, Fujian, China
| |
Collapse
|
12
|
Uehara O, Takimoto K, Morikawa T, Harada F, Takai R, Adhikari BR, Itatsu R, Nakamura T, Yoshida K, Matsuoka H, Nagayasu H, Saito I, Muthumala M, Chiba I, Abiko Y. Upregulated expression of MMP-9 in gingival epithelial cells induced by prolonged stimulation with arecoline. Oncol Lett 2017; 14:1186-1192. [PMID: 28693294 DOI: 10.3892/ol.2017.6194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 03/23/2017] [Indexed: 01/03/2023] Open
Abstract
Betel quid chewing is implicated in the high prevalence of oral cancer in Southeast Asian countries. One of the major components of betel quid is arecoline. In the present study, in order to characterize the association between chronic arecoline stimulation and carcinogenesis the expression level of matrix metalloproteinase (MMP)-2, MMP-9, tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 mRNA in human gingival epithelial progenitor cells (HGEPs) stimulated with arecoline was assessed. The HGEPs were alternated between 3 days of incubation with arecoline (50 µg/ml), and 3 days without arecoline, for up to 30 days. The expression levels of the MMPs and TIMPs in the cells stimulated with arecoline were evaluated by reverse transcription-quantitative polymerase chain reaction at 18 and 30 days. The expression of MMP-9 mRNA in the experimental group was significantly increased compared with in the control group (P<0.01). No significant differences in the expression of MMP-2, TIMP-1 or TIMP-2 mRNA were observed between the experimental and control groups. Using an MMP-9 activity assay, the levels of MMP-9 activity in the experimental group were demonstrated to be significantly higher than in the control group (P<0.05). To investigate associated cellular signaling pathways, PDTC [a nuclear factor (NF)-κB/inhibitor of NF-κB (IκB) inhibitor], PD98059 [a mitogen-activated protein kinase kinase (MAPKK)1 and MAPKK2 inhibitor], SB203580 (a p38 MAPK inhibitor) and 5,15-DPP [a signal transduction and activator of transcription (STAT) 3 inhibitor] were used. All inhibitors decreased the extent of MMP-9 upregulation induced by stimulation with arecoline. Based on the data, it is hypothesized that MMP-9 activity may be involved in the pathological alterations of oral epithelium induced by betel quid chewing, and that the NF-κB/IκB, MAPK, p38 MAPK and STAT3 signaling pathways may be involved in the production of MMP-9 induced by betel quid chewing.
Collapse
Affiliation(s)
- Osamu Uehara
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Kousuke Takimoto
- Division of Oral and Maxillofacial Surgery, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Tetsuro Morikawa
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Fumiya Harada
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Rie Takai
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Bhoj Raj Adhikari
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Ryoko Itatsu
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Tomohisa Nakamura
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Koki Yoshida
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Hirofumi Matsuoka
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Hiroki Nagayasu
- Division of Oral and Maxillofacial Surgery, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Ichiro Saito
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, Kanagawa 230-8501, Japan
| | - Malsantha Muthumala
- Department of Oral and Maxillofacial Surgery, Army Hospital, Colombo, Sri Lanka
| | - Itsuo Chiba
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Yoshihiro Abiko
- Division of Oral and Maxillofacial Surgery, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| |
Collapse
|
13
|
Chang MC, Chang HH, Lin PS, Huang YA, Chan CP, Tsai YL, Lee SY, Jeng PY, Kuo HY, Yeung SY, Jeng JH. Effects of TGF-β1 on plasminogen activation in human dental pulp cells: Role of ALK5/Smad2, TAK1 and MEK/ERK signalling. J Tissue Eng Regen Med 2017; 12:854-863. [PMID: 27723266 DOI: 10.1002/term.2339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 07/30/2016] [Accepted: 09/26/2016] [Indexed: 11/07/2022]
Abstract
Transforming growth factor-β1 (TGF-β1) plays an important role in the pulpal repair and dentinogenesis. Plasminogen activation (PA) system regulates extracellular matrix turnover. In this study, we investigated the effects of TGF-β1 on PA system of dental pulp cells and its signalling pathways. Dental pulp cells were treated with different concentrations of TGF-β1. MTT assay, reverse transcription-polymerase chain reaction, Western blotting and enzyme-linked immunosorbant assay (ELISA) were used to detect the effect of TGF-β1 on cell viability, mRNA and protein expression of urokinase-type plasminogen activator (uPA), uPA receptor (uPAR), plasminogen activator inhibitor-1 (PAI-1) as well as their secretion. The phosphorylation of Smad2 and TAK1 was analysed by Pathscan ELISA or Western blotting. Cells were pretreated with SB431542 (ALK5/Smad2/3 inhibitor), 5z-7-oxozeaenol (TAK1 inhibitor) and U0126 (MEK/ERK inhibitor) for examining the related signalling. TGF-β1 slightly inhibited cell growth that was reversed by SB431542. TGF-β1 upregulated both RNA and protein expression of PAI-1 and uPAR, whereas it downregulated uPA expression. Accordingly, TGF-β1 stimulated PAI-1 and soluble uPAR (suPAR) secretion of pulp cells, whereas uPA secretion was inhibited. TGF-β1 induced the phosphorylation of Smad2 and TAK1. In addition, SB431542, 5z-7-oxozeaenol and U0126 attenuated the TGF-β1-induced secretion of PAI-1 and suPAR. These results indicate that TGF-β1 is possibly involved in the repair/regeneration and inflammatory processes of dental pulp via regulation of PAI-1, uPA and uPAR. These effects of TGF-β1 are related to activation of ALK5/Smad2, TAK1 and MEK/ERK signalling pathways. Clarifying the signal transduction for the effects of TGF-β1 is helpful for pulpo-dentin regeneration and tissue engineering. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Biomedical Science Team and Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kwei-Shan, Taoyuan City, Taiwan.,Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Hsiao-Hua Chang
- Laboratory of Dental Pharmacology, Toxicology & Material Biocompatibility, Graduate Institute of Clinical Dentistry and Department of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| | - Po-Shuan Lin
- Laboratory of Dental Pharmacology, Toxicology & Material Biocompatibility, Graduate Institute of Clinical Dentistry and Department of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| | - Yu-An Huang
- Laboratory of Dental Pharmacology, Toxicology & Material Biocompatibility, Graduate Institute of Clinical Dentistry and Department of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| | - Chiu-Po Chan
- Department of Dentistry and School of Dentistry, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ling Tsai
- Laboratory of Dental Pharmacology, Toxicology & Material Biocompatibility, Graduate Institute of Clinical Dentistry and Department of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| | - Shen-Yang Lee
- Department of Dentistry and School of Dentistry, Taipei Medical University, Taipei, Taiwan
| | - Po-Yuan Jeng
- School of Dentistry, University CEU, Cardenal Herrera, Valencia, Spain
| | - Han-Yueh Kuo
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Taiwan
| | - Sin-Yuet Yeung
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Jiiang-Huei Jeng
- Laboratory of Dental Pharmacology, Toxicology & Material Biocompatibility, Graduate Institute of Clinical Dentistry and Department of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| |
Collapse
|
14
|
Chang MC, Chan CP, Chen YJ, Hsien HC, Chang YC, Yeung SY, Jeng PY, Cheng RH, Hahn LJ, Jeng JH. Areca nut components stimulate ADAM17, IL-1α, PGE2 and 8-isoprostane production in oral keratinocyte: role of reactive oxygen species, EGF and JAK signaling. Oncotarget 2016; 7:16879-94. [PMID: 26919242 PMCID: PMC4941357 DOI: 10.18632/oncotarget.7621] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/09/2016] [Indexed: 11/25/2022] Open
Abstract
Betel quid (BQ) chewing is an etiologic factor of oral submucous fibrosis (OSF) and oral cancer. There are 600 million BQ chewers worldwide. The mechanisms for the toxic and inflammatory responses of BQ are unclear. In this study, both areca nut (AN) extract (ANE) and arecoline stimulated epidermal growth factor (EGF) and interleukin-1α (IL-1α) production of gingival keratinocytes (GKs), whereas only ANE can stimulate a disintegrin and metalloproteinase 17 (ADAM17), prostaglandin E2 (PGE2) and 8-isoprostane production. ANE-induced EGF production was inhibited by catalase. Addition of anti-EGF neutralizing antibody attenuated ANE-induced cyclooxygenase-2 (COX-2), mature ADAM9 expression and PGE2 and 8-isoprostane production. ANE-induced IL-1α production was inhibited by catalase, anti-EGF antibody, PD153035 (EGF receptor antagonist) and U0126 (MEK inhibitor) but not by α-naphthoflavone (cytochrome p450-1A1 inhibitor). ANE-induced ADAM17 production was inhibited by pp2 (Src inhibitor), U0126, α-naphthoflavone and aspirin. AG490 (JAK inhibitor) prevented ANE-stimulated ADAM17, IL-1α, PGE2 production, COX-2 expression, ADAM9 maturation, and the ANE-induced decline in keratin 5 and 14, but showed little effect on cdc2 expression and EGF production. Moreover, ANE-induced 8-isoprostane production by GKs was inhibited by catalase, anti-EGF antibody, AG490, pp2, U0126, α-naphthoflavone, Zinc protoporphyrin (ZnPP) and aspirin. These results indicate that AN components may involve in BQ-induced oral cancer by induction of reactive oxygen species, EGF/EGFR, IL-1α, ADAMs, JAK, Src, MEK/ERK, CYP1A1, and COX signaling pathways, and the aberration of cell cycle and differentiation. Various blockers against ROS, EGF, IL-1α, ADAM, JAK, Src, MEK, CYP1A1, and COX can be used for prevention or treatment of BQ chewing-related diseases.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Team of Biomedical Science, Chang-Gung University of Science and Technology, Kwei-Shan, Taoyuan City, Taiwan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Chiu-Po Chan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yi-Jane Chen
- Laboratory of Pharmacology, Toxicology and Chemical Carcinogenesis, School of Dentistry and Department of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| | - Hsiang-Chi Hsien
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Ya-Ching Chang
- Department of Dentistry, Mackay Memorial Hospial, and Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Sin-Yuet Yeung
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Po-Yuan Jeng
- School of Dentistry, University of Cardenal Herrera, CEU, Valencia, Spain
| | - Ru-Hsiu Cheng
- Laboratory of Pharmacology, Toxicology and Chemical Carcinogenesis, School of Dentistry and Department of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| | - Liang-Jiunn Hahn
- Laboratory of Pharmacology, Toxicology and Chemical Carcinogenesis, School of Dentistry and Department of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| | - Jiiang-Huei Jeng
- Laboratory of Pharmacology, Toxicology and Chemical Carcinogenesis, School of Dentistry and Department of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| |
Collapse
|
15
|
Cytotoxicity and transformation of C3H10T1/2 cells induced by areca nut components. J Formos Med Assoc 2016; 115:108-12. [DOI: 10.1016/j.jfma.2015.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 11/02/2014] [Accepted: 01/06/2015] [Indexed: 01/18/2023] Open
|
16
|
Li YC, Chang JT, Chiu C, Lu YC, Li YL, Chiang CH, You GR, Lee LY, Cheng AJ. Areca nut contributes to oral malignancy through facilitating the conversion of cancer stem cells. Mol Carcinog 2015; 55:1012-23. [PMID: 26087469 DOI: 10.1002/mc.22344] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/08/2015] [Accepted: 05/13/2015] [Indexed: 01/06/2023]
Abstract
Oral cancer is one of the most frequent malignant diseases worldwide, and areca nut is a primary carcinogen causing this cancer in Southeast Asia. Previous studies to examine the effects of this carcinogen often used short-term and high-dose treatment of area nut extract as a research model, which do not recapitulate the conditions of patients with long-term and habitual use of this substance. To approach authentic mechanism of areca nut-induced oral carcinogenesis that occurs in human, we established four isogenic sublines of oral cells which were chronic exposed to areca nut extract. Without eliciting cytotoxicity or senescence, these four sublines cells exhibited significant increase in invasive ability, along with epithelial-mesenchymal transition. These cells also showed resistance to chemotherapeutic drug and irradiation, accompanying with the augmentation of ABCG2 protein efflux and increased ROS clearance. Moreover, these sublines possessed the characteristics of cancer stemness, as demonstrated by enriched CD24-/CD44+ and CD133+ sub-populations, enhanced spheroid cell formation, and induced expressions of pluripotent stemness regulators, including Gp96, Grp78, Slug, Sox9, Snail, and Foxc2. These stemness regulators were further shown up-regulations in oral cancer patients with areca nut-chewing habit, and were statistically correlated with CD44 expression, a stemness marker. In conclusion, our findings suggested that areca nut contributes to oral malignancy through facilitating the conversion of cancer stem cells. This study may further contribute to clinical applications in disease prevention, risk assessment or molecular therapeutics on areca nut- associated diseases.
Collapse
Affiliation(s)
- Yi-Chen Li
- Department of Medical Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Joseph T Chang
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Crystal Chiu
- Department of Medical Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Ching Lu
- Department of Medical Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yan-Liang Li
- Department of Medical Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chang-Hsu Chiang
- Department of Medical Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Guo-Rung You
- Department of Medical Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li-Yu Lee
- Department of Pathology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ann-Joy Cheng
- Department of Medical Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
17
|
Role of ALK5/Smad2/3 and MEK1/ERK Signaling in Transforming Growth Factor Beta 1-modulated Growth, Collagen Turnover, and Differentiation of Stem Cells from Apical Papilla of Human Tooth. J Endod 2015; 41:1272-80. [PMID: 26001858 DOI: 10.1016/j.joen.2015.03.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 03/13/2015] [Accepted: 03/29/2015] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Transforming growth factor β1 (TGF-β1) plays an important role in cell proliferation, matrix formation, and odontogenesis. This study investigated the effects of TGF-β1 on stem cells from apical papilla (SCAPs) and its signaling by MEK/ERK and Smad2. METHODS SCAPs were exposed to TGF-β1 with/without pretreatment and coincubation by SB431542 (an ALK5/Smad 2/3 inhibitor) or U0126 (a MEK/ERK inhibitor). Cell growth was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide assay or direct counting of viable cells. Collagen content was determined by using the Sircol collagen assay (Biocolor Ltd, Newtownabbey, Northern Ireland). Cell differentiation was evaluated by measuring alkaline phosphatase (ALP) activity. Smad2 and ERK1/2 phosphorylation was analyzed by Western blotting or PathScan phospho-enzyme-linked immunosorbent assay (Cell Signaling Technology Inc, Danvers, MA). RESULTS TGF-β1 stimulated the growth and collagen content of cultured SCAPs. TGF-β1 stimulated ERK1/2 and Smad2 phosphorylation within 60 minutes of exposure. Pretreatment by U0126 and SB431542 effectively prevented the TGF-β1-induced cell growth and collagen content in SCAPs. TGF-β1 stimulated ALP activity at lower concentrations (0.1-1 ng/mL) but down-regulated ALP at higher concentrations (>5 ng/mL). U0126 prevented 0.5 ng/mL TGF-β1-induced ALP activity but showed little effect on 10 ng/mL TGF-β1-induced decline of ALP in SCAPs. Interestingly, SB431542 attenuated both the stimulatory and inhibitory effects on ALP by TGF-β1. CONCLUSIONS TGF-β1 may affect the proliferation, collagen turnover, and differentiation of SCAPs via differential activation of ALK5/Smad2 and MEK/ERK signaling. These results highlight the future use of TGF-β1 and SCAP for engineering of pulpal regeneration and apexogenesis.
Collapse
|
18
|
Dai JP, Zhu DX, Sheng JT, Chen XX, Li WZ, Wang GF, Li KS, Su Y. Inhibition of Tanshinone IIA, salvianolic acid A and salvianolic acid B on Areca nut extract-induced oral submucous fibrosis in vitro. Molecules 2015; 20:6794-807. [PMID: 25884554 PMCID: PMC6272768 DOI: 10.3390/molecules20046794] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/27/2015] [Accepted: 04/08/2015] [Indexed: 02/05/2023] Open
Abstract
Salvia miltiorrhiza Bunge has been reported to possess excellent antifibrotic activity. In this study, we have investigated the effect and mechanism of tanshinone IIA (Tan-IIA), salvianolic acid A (Sal-A) and salvianolic acid B (Sal-B), the important active compounds of Salvia miltiorrhiza Bunge, on areca nut extract (ANE)-induced oral submucous fibrosis (OSF) in vitro. Through human procollagen gene promoter luciferase reporter plasmid assay, hydroxyproline assay, gelatin zymography assay, qRT-PCR, ELISA and Western blot assay, the influence of these three compounds on ANE-stimulated cell viability, collagen accumulation, procollagen gene transcription, MMP-2/-9 activity, MMP-1/-13 and TIMP-1/-2 expression, cytokine secretion and the activation of PI3K/AKT, ERK/JNK/p38 MAPK and TGF-β/Smads pathways were detected. The results showed that Tan-IIA, Sal-A and Sal-B could significantly inhibit the ANE-stimulated abnormal viability and collagen accumulation of mice oral mucosal fibroblasts (MOMFs), inhibit the transcription of procollagen gene COL1A1 and COL3A1, increase MMP-2/-9 activity, decrease TIMP-1/-2 expression and inhibit the transcription and release of CTGF, TGF-β1, IL-6 and TNF-α; Tan-IIA, Sal-A and Sal-B also inhibited the ANE-induced activation of AKT and ERK MAPK pathways in MOMFs and the activation of TGF-β/Smads pathway in HaCaT cells. In conclusion, Tan-IIA, Sal-A and Sal-B possess excellent antifibrotic activity in vitro and can possibly be used to promote the rehabilitation of OSF patients.
Collapse
Affiliation(s)
- Jian-Ping Dai
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Dan-Xia Zhu
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Jiang-Tao Sheng
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Xiao-Xuan Chen
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Wei-Zhong Li
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA.
| | - Ge-Fei Wang
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Kang-Sheng Li
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Yun Su
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
19
|
Chang MC, Chen YJ, Chang HH, Chan CP, Yeh CY, Wang YL, Cheng RH, Hahn LJ, Jeng JH. Areca nut components affect COX-2, cyclin B1/cdc25C and keratin expression, PGE2 production in keratinocyte is related to reactive oxygen species, CYP1A1, Src, EGFR and Ras signaling. PLoS One 2014; 9:e101959. [PMID: 25051199 PMCID: PMC4106785 DOI: 10.1371/journal.pone.0101959] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/12/2014] [Indexed: 12/21/2022] Open
Abstract
AIMS Chewing of betel quid (BQ) increases the risk of oral cancer and oral submucous fibrosis (OSF), possibly by BQ-induced toxicity and induction of inflammatory response in oral mucosa. METHODS Primary gingival keratinocytes (GK cells) were exposed to areca nut (AN) components with/without inhibitors. Cytotoxicity was measured by 3-(4,5-dimethyl- thiazol- 2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. mRNA and protein expression was evaluated by reverse transcriptase-polymerase chain reaction (RT-PCR) and western blotting. PGE2/PGF2α production was measured by enzyme-linked immunosorbent assays. RESULTS Areca nut extract (ANE) stimulated PGE2/PGF2α production, and upregulated the expression of cyclooxygenase-2 (COX-2), cytochrome P450 1A1 (CYP1A1) and hemeoxygenase-1 (HO-1), but inhibited expression of keratin 5/14, cyclinB1 and cdc25C in GK cells. ANE also activated epidermal growth factor receptor (EGFR), Src and Ras signaling pathways. ANE-induced COX-2, keratin 5, keratin 14 and cdc25C expression as well as PGE2 production were differentially regulated by α-naphthoflavone (a CYP 1A1/1A2 inhibitor), PD153035 (EGFR inhibitor), pp2 (Src inhibitor), and manumycin A (a Ras inhibitor). ANE-induced PGE2 production was suppressed by piper betle leaf (PBL) extract and hydroxychavicol (two major BQ components), dicoumarol (a NAD(P)H Quinone Oxidoreductase--NQO1 inhibitor) and curcumin. ANE-induced cytotoxicity was inhibited by catalase and enhanced by dicoumarol, suggesting that AN components may contribute to the pathogenesis of OSF and oral cancer via induction of aberrant differentiation, cytotoxicity, COX-2 expression, and PGE2/PGF2α production. CONCLUSIONS CYP4501A1, reactive oxygen species (ROS), EGFR, Src and Ras signaling pathways could all play a role in ANE-induced pathogenesis of oral cancer. Addition of PBL into BQ and curcumin consumption could inhibit the ANE-induced inflammatory response.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Team of Biomedical Science, Chang-Gung University of Science and Technology, Kwei-Shan, Taoyuan, Taiwan
| | - Yi-Jane Chen
- Laboratory of Pharmacology, Toxicology and Chemical Carcinogenesis, School of Dentistry and Department of Dentistry, National Taiwan University Hospital; and National Taiwan University Medical College, Taipei, Taiwan
| | - Hsiao-Hua Chang
- Laboratory of Pharmacology, Toxicology and Chemical Carcinogenesis, School of Dentistry and Department of Dentistry, National Taiwan University Hospital; and National Taiwan University Medical College, Taipei, Taiwan
| | - Chiu-Po Chan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Chien-Yang Yeh
- Laboratory of Pharmacology, Toxicology and Chemical Carcinogenesis, School of Dentistry and Department of Dentistry, National Taiwan University Hospital; and National Taiwan University Medical College, Taipei, Taiwan
| | - Yin-Lin Wang
- Laboratory of Pharmacology, Toxicology and Chemical Carcinogenesis, School of Dentistry and Department of Dentistry, National Taiwan University Hospital; and National Taiwan University Medical College, Taipei, Taiwan
| | - Ru-Hsiu Cheng
- Team of Biomedical Science, Chang-Gung University of Science and Technology, Kwei-Shan, Taoyuan, Taiwan
| | - Liang-Jiunn Hahn
- Laboratory of Pharmacology, Toxicology and Chemical Carcinogenesis, School of Dentistry and Department of Dentistry, National Taiwan University Hospital; and National Taiwan University Medical College, Taipei, Taiwan
| | - Jiiang-Huei Jeng
- Laboratory of Pharmacology, Toxicology and Chemical Carcinogenesis, School of Dentistry and Department of Dentistry, National Taiwan University Hospital; and National Taiwan University Medical College, Taipei, Taiwan
| |
Collapse
|
20
|
Effect of interleukin-1β on ICAM-1 expression of dental pulp cells: role of PI3K/Akt, MEK/ERK, and cyclooxygenase. Clin Oral Investig 2014; 19:117-26. [DOI: 10.1007/s00784-014-1227-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 03/07/2014] [Indexed: 01/27/2023]
|