1
|
Zheng M, Wang Z, Li M, Yang N, Lu H, Zhang Z, Dong Y, Chen Y, Zhu Z, Tong A, Yang H. A novel SLC3A2-targeting antibody-drug conjugate exerts potent antitumor efficacy in head and neck squamous cell cancer. Transl Oncol 2024; 45:101981. [PMID: 38703658 PMCID: PMC11088350 DOI: 10.1016/j.tranon.2024.101981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/03/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024] Open
Abstract
The development of innovative therapeutic strategies for head and neck squamous cell carcinoma (HNSCC) is a critical medical requirement. Antibody-drug conjugates (ADC) targeting tumor-specific surface antigens have demonstrated clinical effectiveness in treating hematologic and solid malignancies. Our investigation revealed high expression levels of SLC3A2 in HNSCC tissue and cell lines. This study aimed to develop a novel anti-SLC3A2 ADC and assess its antitumor effects on HNSCC both in vitro and in vivo. This study developed a potent anti-SLC3A2 ADC (19G4-MMAE) and systematically investigated its drug delivery potential and antitumor efficacy in preclinical models. This study revealed that 19G4-MMAE exhibited specific binding to SLC3A2 and effectively targeted lysosomes. Moreover, 19G4-MMAE induced a significant accumulation of reactive oxygen species (ROS) and apoptosis in SLC3A2-positive HNSCC cells. The compound demonstrated potent antitumor effects derived from MMAE against SLC3A2-expressing HNSCC in preclinical models, displaying a favorable safety profile. These findings suggest that targeting SLC3A2 with an anti-SLC3A2 ADC could be a promising therapeutic approach for treating HNSCC patients.
Collapse
Affiliation(s)
- Meijun Zheng
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Zeng Wang
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Mengyao Li
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Nian Yang
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Huaqing Lu
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Zongliang Zhang
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Yijun Dong
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Yongdong Chen
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Zhixiong Zhu
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Aiping Tong
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, PR China.
| | - Hui Yang
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, PR China.
| |
Collapse
|
2
|
Agrawal P, Chen S, de Pablos A, Jame-Chenarboo F, Miera Saenz de Vega E, Darvishian F, Osman I, Lujambio A, Mahal LK, Hernando E. Integrated in vivo functional screens and multi-omics analyses identify α-2,3-sialylation as essential for melanoma maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584072. [PMID: 38559078 PMCID: PMC10979837 DOI: 10.1101/2024.03.08.584072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Glycosylation is a hallmark of cancer biology, and altered glycosylation influences multiple facets of melanoma growth and progression. To identify glycosyltransferases, glycans, and glycoproteins essential for melanoma maintenance, we conducted an in vivo growth screen with a pooled shRNA library of glycosyltransferases, lectin microarray profiling of benign nevi and melanoma patient samples, and mass spectrometry-based glycoproteomics. We found that α-2,3 sialyltransferases ST3GAL1 and ST3GAL2 and corresponding α-2,3-linked sialosides are upregulated in melanoma compared to nevi and are essential for melanoma growth in vivo and in vitro. Glycoproteomics revealed that glycoprotein targets of ST3GAL1 and ST3GAL2 are enriched in transmembrane proteins involved in growth signaling, including the amino acid transporter Solute Carrier Family 3 Member 2 (SLC3A2/CD98hc). CD98hc suppression mimicked the effect of ST3GAL1 and ST3GAL2 silencing, inhibiting melanoma cell proliferation. We found that both CD98hc protein stability and its pro-survival effect in melanoma are dependent upon α-2,3 sialylation mediated by ST3GAL1 and ST3GAL2. In summary, our studies reveal that α-2,3-sialosides functionally contribute to melanoma maintenance, supporting ST3GAL1 and ST3GAL2 as novel therapeutic targets in these tumors.
Collapse
Affiliation(s)
- Praveen Agrawal
- Department of Pathology, NYU Grossman School of Medicine, New York
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Shuhui Chen
- Department of Chemistry, New York University
| | - Ana de Pablos
- Department of Pathology, NYU Grossman School of Medicine, New York
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health
- Centro Nacional de Investigaciones Oncologicas (CNIO), Madrid, Spain
| | | | | | | | - Iman Osman
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health
- Department of Dermatology, NYU Grossman School of Medicine, New York
| | | | - Lara K. Mahal
- Department of Chemistry, New York University
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Eva Hernando
- Department of Pathology, NYU Grossman School of Medicine, New York
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health
| |
Collapse
|
3
|
Xia P, Dubrovska A. CD98 heavy chain as a prognostic biomarker and target for cancer treatment. Front Oncol 2023; 13:1251100. [PMID: 37823053 PMCID: PMC10562705 DOI: 10.3389/fonc.2023.1251100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023] Open
Abstract
The SLC3A2 gene encodes for a cell-surface transmembrane protein CD98hc (4F2). CD98hc serves as a chaperone for LAT1 (SLC7A5), LAT2 (SLC7A8), y+LAT1 (SLC7A7), y+LAT2 (SLC7A6), xCT (SLC7A11) and Asc1 (SLC7A10) providing their recruitment to the plasma membrane. Together with the light subunits, it constitutes heterodimeric transmembrane amino acid transporters. CD98hc interacts with other surface molecules, such as extracellular matrix metalloproteinase inducer CD147 (EMMPRIN) and adhesion receptors integrins, and regulates glucose uptake. In this way, CD98hc connects the signaling pathways sustaining cell proliferation and migration, biosynthesis and antioxidant defense, energy production, and stem cell properties. This multifaceted role makes CD98hc one of the critical regulators of tumor growth, therapy resistance, and metastases. Indeed, the high expression levels of CD98hc were confirmed in various tumor tissues, including head and neck squamous cell carcinoma, glioblastoma, colon adenocarcinoma, pancreatic ductal adenocarcinoma, and others. A high expression of CD98hc has been linked to clinical prognosis and response to chemo- and radiotherapy in several types of cancer. In this mini-review, we discuss the physiological functions of CD98hc, its role in regulating tumor stemness, metastases, and therapy resistance, and the clinical significance of CD98hc as a tumor marker and therapeutic target.
Collapse
Affiliation(s)
- Pu Xia
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Anna Dubrovska
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| |
Collapse
|
4
|
Alessandrini L, Astolfi L, Daloiso A, Sbaraglia M, Mondello T, Zanoletti E, Franz L, Marioni G. Diagnostic, Prognostic, and Therapeutic Role for Angiogenesis Markers in Head and Neck Squamous Cell Carcinoma: A Narrative Review. Int J Mol Sci 2023; 24:10733. [PMID: 37445908 DOI: 10.3390/ijms241310733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/14/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Despite refinements to diagnostic and therapeutic approaches over the last two decades, the outcome of patients with head and neck squamous cell carcinoma (HNSCC) has not shown substantial improvements, especially regarding those with advanced-stage disease. Angiogenesis is believed to be a turning point in the development of solid tumors, being a premise for mass growth and potential distant dissemination. Cancer-induced angiogenesis is a result of increased expression of angiogenic factors, decreased expression of anti-angiogenic factors, or a combination of both. The assessment of angiogenesis has also emerged as a potentially useful biological prognostic and predictive factor in HNSCC. The aim of this review is to assess the level of current knowledge on the neo-angiogenesis markers involved in the biology, behavior, and prognosis of HNSCC. A search (between 1 January 2012 and 10 October 2022) was run in PubMed, Scopus, and Web of Science electronic databases. After full-text screening and application of inclusion/exclusion criteria, 84 articles are included. The current knowledge and debate on angiogenesis in HNSCC presented in the eligible articles are stratified as follows: (i) diagnostic markers; (ii) prognostic markers; (iii) predictive markers; and (iv) markers with a potential therapeutic role. Angiogenesis is a biological and pathological indicator of malignancies progression and has negative implications in prognosis of some solid tumors; several signals capable of tripping the "angiogenic switch" have also been identified in HNSCC. Although several studies suggested that antiangiogenic agents might be a valuable adjunct to conventional chemo-radiation of HNSCC, their long-term therapeutic value remains uncertain. Further investigations are required on combinations of antiangiogenic agents with conventional chemotherapeutic ones, immunotherapeutic and molecularly targeted agents in HNSCC. Additional data are necessary to pinpoint which patients could benefit most from these treatments.
Collapse
Affiliation(s)
- Lara Alessandrini
- Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University of Padova, 35100 Padova, Italy
| | - Laura Astolfi
- Bioacustic Research Laboratory, Department of Neuroscience (DNS), University of Padova, 35100 Padova, Italy
| | - Antonio Daloiso
- Otolaryngology Section, Department of Neuroscience (DNS), University of Padova, 35100 Padova, Italy
| | - Marta Sbaraglia
- Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University of Padova, 35100 Padova, Italy
| | - Tiziana Mondello
- Otolaryngology Section, Department of Neuroscience (DNS), University of Padova, 35100 Padova, Italy
| | - Elisabetta Zanoletti
- Otolaryngology Section, Department of Neuroscience (DNS), University of Padova, 35100 Padova, Italy
| | - Leonardo Franz
- Otolaryngology Section, Department of Neuroscience (DNS), University of Padova, 35100 Padova, Italy
- Phoniatrics and Audiology Unit, Department of Neuroscience (DNS), University of Padova, 31100 Treviso, Italy
- Artificial Intelligence in Medicine and Innovation in Clinical Research and Methodology (PhD Program), Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy
| | - Gino Marioni
- Phoniatrics and Audiology Unit, Department of Neuroscience (DNS), University of Padova, 31100 Treviso, Italy
| |
Collapse
|
5
|
Jiao W, Xu J, Wu D, Yu J, Zhang M, Liu L, Chen G. Anti-proliferation and anti-migration effects of Yishen Tongbi decoction in experimental rheumatoid arthritis by suppressing SLC3A2/integrin β3 signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154741. [PMID: 36990010 DOI: 10.1016/j.phymed.2023.154741] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Yishen Tongbi (YSTB) decoction is a patented herbal formula that is used in China to treat rheumatoid arthritis (RA); however, the exact mechanism of its anti-synovial hyperplasia efficacy has not been fully elucidated. PURPOSE Based on our previous proteomics study, we aimed to reveal whether YSTB inhibits the proliferation and migration of RA-FLSs through the SLC3A2/integrin β3 pathway in vivo and in vitro. STUDY DESIGN The study design consists of three parts, a comparison of the expression of SLC3A2 and integrin β3 in synovial tissues of RA and OA patients; an animal experiment to verify the pharmacodynamic effect of YSTB, and in vitro experiment to elucidate the specific mechanism of YSTB. METHODS The expression of SLC3A2 and integrin β3 in the synovial tissues of patients with RA and osteoarthritis (OA) patients were detected by immunohistochemistry (IHC). In vitro, firstly, the proliferation and migration abilities of HFLS (human fibroblast-like synoviocytes) and HFLS-RA (human fibroblast-like synoviocytes-RA) cells were compared by EdU staining and wound healing assays, respectively, and the differences in the expression and localization of SLC3A2, integrin β3, p-FAK and p-Src between HFLS and HFLS-RA cells were detected by IF and WB. In vivo, DBA/1 mice were injected with bovine collagen II to construct a CIA mouse model. Paw swelling, body weight and the arthritis index (AI) were used as basic treatment evaluation indicators for YSTB. Micro-CT and histopathological analyses of the knee and ankle joints were also performed. In addition, the expression of SLC3A2, integrin β3, p-FAK and p-Src in the synovial tissue of mice was detected by IHC. Subsequently, CCK-8 was used to screen for suitable concentrations of YSTB for use in HFLS-RA cells. EdU staining and transwell migration assays were performed to evaluate the inhibitory effect of YSTB on cell proliferation and migration, and WB was conducted to assess whether YSTB inhibited HFLS-RA migration through downregulation of the SLC3A2/integrin β3 pathways. RESULTS IHC showed that the expression of SLC3A2 and integrin β3 was higher in RA synovial tissues than in OA tissues. In vivo experiments showed that YSTB inhibited synovial hyperplasia, prevented bone destruction, and reduced the expression of SLC3A2, integrin β3, p-FAK and p-Src. In vitro experiments showed that YSTB inhibited HFLS-RA migration and proliferation by inhibiting the expression of SLC3A2/integrin β3 and downstream signaling molecules. CONCLUSION YSTB inhibits the proliferation and migration of synovial fibroblasts in RA by downregulating the SLC3A2/integrin β3 pathways.
Collapse
Affiliation(s)
- Wei Jiao
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia Xu
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danbin Wu
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiahui Yu
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingying Zhang
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lijuan Liu
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangxing Chen
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
6
|
An anti-CD98 antibody displaying pH-dependent Fc-mediated tumour-specific activity against multiple cancers in CD98-humanized mice. Nat Biomed Eng 2023; 7:8-23. [PMID: 36424464 DOI: 10.1038/s41551-022-00956-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/27/2022] [Indexed: 11/27/2022]
Abstract
The cell-surface glycoprotein CD98-a subunit of the LAT1/CD98 amino acid transporter-is an attractive target for cancer immunotherapies, but its widespread expression has hampered the development of CD98-targeting antibody therapeutics. Here we report that an anti-CD98 antibody, identified via the screening of phage-display libraries of CD98 single-chain variable fragments with mutated complementarity-determining regions, preserves the physiological function of CD98 and elicits broad-spectrum crystallizable-fragment (Fc)-mediated anti-tumour activity (requiring Fcγ receptors for immunoglobulins, macrophages, dendritic cells and CD8+ T cells, as well as other components of the innate and adaptive immune systems) in multiple xenograft and syngeneic tumour models established in CD98-humanized mice. We also show that a variant of the anti-CD98 antibody with pH-dependent binding, generated by solving the structure of the antibody-CD98 complex, displayed enhanced tumour-specific activity and pharmacokinetics. pH-dependent antibody variants targeting widely expressed antigens may lead to superior therapeutic outcomes.
Collapse
|
7
|
Patel U, Kannan S, Rane SU, Mittal N, Gera P, Patil A, Manna S, Shejwal V, Noronha V, Joshi A, Patil VM, Prabhash K, Mahimkar MB. Prognostic and predictive roles of cancer stem cell markers in head and neck squamous cell carcinoma patients receiving chemoradiotherapy with or without nimotuzumab. Br J Cancer 2022; 126:1439-1449. [PMID: 35140342 PMCID: PMC9091234 DOI: 10.1038/s41416-022-01730-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/07/2022] [Accepted: 01/28/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Anti-EGFR-based therapies have limited success in HNSCC patients. Predictive biomarkers are needed to identify the patients most likely to benefit from these therapies. Here, we present predictive and prognostic associations of different cancer stem cell markers in HPV-negative locally advanced (LA) HNSCC patients. METHODS Pretreatment tumour tissues of 404 HPV-negative LA-HNSCCs patients, a subset of-phase 3-randomised study comparing cisplatin-radiation(CRT) and nimotuzumab plus cisplatin-radiation(NCRT) were examined. The expression levels of CD44, CD44v6, CD98hc, ALDH1A1, SOX2 and OCT4A were evaluated using immunohistochemistry. Progression-free survival(PFS), loco-regional control(LRC),- and overall survival(OS) were estimated by Kaplan-Meier method. Hazard ratios were estimated by Cox proportional hazard models. RESULTS NCRT showed significantly improved OS with low membrane expression of CD44 compared to CRT [HR (95% CI) = 0.63 (0.46-0.88)]. Patients with low CD44v6 also showed better outcomes with NCRT [LRC: HR (95% CI) = 0.25 (0.10-0.62); OS: HR (95% CI) = 0.38 (0.19-0.74)]. No similar benefit with NCRT observed in patients with high CD44 or CD44v6 expression. Bootstrap resampling confirmed the predictive effect of CD44 (Interaction P = 0.015) and CD44v6 (Interaction P = 0.041) for OS. Multivariable Cox analysis revealed an independent negative prognostic role of CD98hc membrane expression for LRC [HR (95% CI) = 0.63(0.39-1.0)] and OS[HR (95% CI) = 0.62 (0.40-0.95)]. CONCLUSIONS CD44 and CD44v6 are potential predictive biomarkers for NCRT response. CD98hc emerged as an independent negative prognostic biomarker. CLINICAL TRIAL REGISTRATION Registered with the Clinical Trial Registry of India (Trial registration identifier-CTRI/2014/09/004980).
Collapse
Affiliation(s)
- Usha Patel
- grid.410871.b0000 0004 1769 5793Mahimkar Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India ,grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Sadhana Kannan
- grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India ,grid.410871.b0000 0004 1769 5793Biostatistician, Clinical Research Secretariat, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Swapnil U. Rane
- grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India ,grid.410871.b0000 0004 1769 5793Department of Pathology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Neha Mittal
- grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India ,grid.410871.b0000 0004 1769 5793Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Poonam Gera
- grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India ,grid.410871.b0000 0004 1769 5793Biorepository, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Asawari Patil
- grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India ,grid.410871.b0000 0004 1769 5793Department of Pathology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Subhakankha Manna
- grid.410871.b0000 0004 1769 5793Mahimkar Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Vishwayani Shejwal
- grid.410871.b0000 0004 1769 5793Mahimkar Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Vanita Noronha
- grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India ,grid.410871.b0000 0004 1769 5793Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Amit Joshi
- grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India ,grid.410871.b0000 0004 1769 5793Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Vijay M. Patil
- grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India ,grid.410871.b0000 0004 1769 5793Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Kumar Prabhash
- grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India ,grid.410871.b0000 0004 1769 5793Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Manoj B. Mahimkar
- grid.410871.b0000 0004 1769 5793Mahimkar Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India ,grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| |
Collapse
|
8
|
Zhao X, Sakamoto S, Maimaiti M, Anzai N, Ichikawa T. Contribution of LAT1-4F2hc in Urological Cancers via Toll-like Receptor and Other Vital Pathways. Cancers (Basel) 2022; 14:cancers14010229. [PMID: 35008399 PMCID: PMC8750950 DOI: 10.3390/cancers14010229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/28/2021] [Accepted: 01/02/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary LAT1-4F2hc complex is an important amino acid transporter. It mainly transports specific amino acids through the cell membrane, provides nutrition for cells, and participates in a variety of metabolic pathways. LAT1 plays a role in transporting essential amino acids including leucine, which regulates the mTOR signaling pathway. However, the importance of SLCs is still not well known in the field of urological cancer. Therefore, the purpose of this review is to report the role of the LAT1-4F2hc complex in urological cancers, as well as their clinical significance and application. Moreover, the inhibitor of LAT1-4F2hc complex is a promising direction as a targeted therapy to improve the treatment and prognosis of urological cancers. Abstract Tumor cells are known for their ability to proliferate. Nutrients are essential for rapidly growing tumor cells. In particular, essential amino acids are essential for tumor cell growth. Tumor cell growth nutrition requires the regulation of membrane transport proteins. Nutritional processes require amino acid uptake across the cell membrane. Leucine, one of the essential amino acids, has recently been found to be closely associated with cancer, which activate mTOR signaling pathway. The transport of leucine into cells requires an L-type amino acid transporter protein 1, LAT1 (SLC7A5), which requires the 4F2 cell surface antigen heavy chain (4F2hc, SLC3A2) to form a heterodimeric amino acid transporter protein complex. Recent evidence identified 4F2hc as a specific downstream target of the androgen receptor splice variant 7 (AR-V7). We stressed the importance of the LAT1-4F2hc complex as a diagnostic and therapeutic target in urological cancers in this review, which covered the recent achievements in research on the involvement of the LAT1-4F2hc complex in urinary system tumors. In addition, JPH203, which is a selective LAT1 inhibitor, has shown excellent inhibitory effects on the proliferation in a variety of tumor cells. The current phase I clinical trials of JPH203 in patients with biliary tract cancer have also achieved good results, which is the future research direction for LAT1 targeted therapy drugs.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (X.Z.); (T.I.)
- Department of Urology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Shinichi Sakamoto
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (X.Z.); (T.I.)
- Correspondence: ; Tel.: +81-43-226-2134; Fax: +81-43-226-2136
| | - Maihulan Maimaiti
- Department of Tumor Pathology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Naohiko Anzai
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Tomohiko Ichikawa
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (X.Z.); (T.I.)
| |
Collapse
|
9
|
Zhang C, Xu J, Xue S, Ye J. Prognostic Value of L-Type Amino Acid Transporter 1 (LAT1) in Various Cancers: A Meta-Analysis. Mol Diagn Ther 2021; 24:523-536. [PMID: 32410110 DOI: 10.1007/s40291-020-00470-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND OBJECTIVE The L-type amino acid transporter 1 (LAT1, SLC7A5) is overexpressed in various types of cancer and has been thought to assist cancer progression through its uptake of neutral amino acids. However, the prognostic role of LAT1 in human cancers remains uncharacterized. Therefore, we conducted this meta-analysis to determine the prognostic significance of LAT1 in various cancers. METHODS We systematically searched the PubMed, Web of Science, EMBASE, Chinese National Knowledge Infrastructure, and WanFang databases to collect relevant cohort studies investigating the prognostic value of LAT1 expression in patients with cancer. Hazard ratios (HRs) with corresponding 95% confidence intervals (CIs) were pooled to clarify the association between the LAT1 expression and the survival of patients with cancer. Odds ratios (ORs) with 95% CIs were calculated to appraise the correlation between LAT1 and the clinicopathological characteristics in patients with cancer. RESULTS A total of 32 eligible articles, including 34 cohorts and 6410 patients, were enrolled in this meta-analysis. Our results demonstrated that high LAT1 expression was significantly associated with poor overall survival (HR = 1.66, 95% CI 1.41-1.96, P < 0.001), cancer-specific survival (HR = 1.64, 95% CI 1.31-2.05, P < 0.001), disease-free survival (HR = 1.55, 95% CI 1.31-1.83, P < 0.001), and progression-free survival (HR = 1.18, 95% CI 1.02-1.37, P = 0.026) in patients with cancer. In addition, we found that the elevated expression level of LAT1 was significantly related to certain phenotypes of tumor aggressiveness, such as tumor size, clinical stage, T stage, lymphatic invasion, vascular invasion, tumor differentiation, Ki-67, CD34, CD98, p53, and system ASC amino acid transporter-2. CONCLUSIONS Elevated expression of LAT1 is associated with poor prognosis in human cancers and may serve as a potential prognostic marker and therapeutic target for patients with malignancies.
Collapse
Affiliation(s)
- Chuanmeng Zhang
- The Center for Translational Medicine, Taizhou People's Hospital, Affiliated 5 to Nantong University, Taizhou, 225300, Jiangsu Province, China
| | - Jie Xu
- The Center for Translational Medicine, Taizhou People's Hospital, Affiliated 5 to Nantong University, Taizhou, 225300, Jiangsu Province, China
| | - Shanshan Xue
- Department of Clinical Laboratory, Taizhou People's Hospital, Affiliated 5 to Nantong University, Taizhou, 225300, Jiangsu Province, China
| | - Jun Ye
- The Center for Translational Medicine, Taizhou People's Hospital, Affiliated 5 to Nantong University, Taizhou, 225300, Jiangsu Province, China.
| |
Collapse
|
10
|
Maimaiti M, Sakamoto S, Sugiura M, Kanesaka M, Fujimoto A, Matsusaka K, Xu M, Ando K, Saito S, Wakai K, Imamura Y, Nakayama K, Kanai Y, Kaneda A, Ikehara Y, Ikeda JI, Anzai N, Ichikawa T. The heavy chain of 4F2 antigen promote prostate cancer progression via SKP-2. Sci Rep 2021; 11:11478. [PMID: 34075107 PMCID: PMC8169706 DOI: 10.1038/s41598-021-90748-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/05/2021] [Indexed: 11/24/2022] Open
Abstract
The 4F2 cell-surface antigen heavy chain (4F2hc) forms a heterodimeric complex with L-type amino acid transporter 1 (LAT1) and transports large neutral essential amino acids. However, in contrast to the traditional role of LAT1 in various cancers, the role of 4F2hc has largely remained unknown. The role of 4F2hc in prostate cancer was studied. Treatment of C4-2 cells with si4F2hc was found to suppress cellular growth, migratory and invasive abilities, with this effect occurring through the cell cycle, with a significant decrease in S phase and a significant increase in G0/G1 phase, suggesting cell cycle arrest. In addition, it was proven by RNA seq that the key to 4F2hc's impact on cancer is SKP2. si4F2hc upregulates the protein expression of cyclin-dependent kinase inhibitors (P21cip1, P27kip1) through the downstream target SKP2. Furthermore, the expression of 4F2hc and LAT1 in prostate cancer cells suggests the importance of 4F2hc. Multivariate analysis showed that high 4F2hc expression was an independent prognostic factor for progression-free survival (HR 11.54, p = 0.0357). High 4F2hc was related to the clinical tumour stage (p = 0.0255) and Gleason score (p = 0.0035). Collectively, 4F2hc contributed significantly to prostate cancer (PC) progression. 4F2hc may be a novel marker and therapeutic target in PC.
Collapse
Affiliation(s)
- Maihulan Maimaiti
- Department of Urology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8670, Japan
- Department of Tumor Pathology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shinichi Sakamoto
- Department of Urology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8670, Japan.
| | - Masahiro Sugiura
- Department of Urology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8670, Japan
- Department of Molecular Oncology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Manato Kanesaka
- Department of Urology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8670, Japan
- Department of Molecular Oncology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Ayumi Fujimoto
- Department of Urology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8670, Japan
| | | | - Minhui Xu
- Bio-System Pharmacology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keisuke Ando
- Department of Urology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8670, Japan
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shinpei Saito
- Department of Urology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8670, Japan
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Ken Wakai
- Department of Urology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8670, Japan
- Department of Tumor Pathology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yusuke Imamura
- Department of Urology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8670, Japan
| | - Keiichi Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshikatsu Kanai
- Bio-System Pharmacology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yuzuru Ikehara
- Department of Tumor Pathology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Jun-Ichiro Ikeda
- Department of Diagnostic Pathology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naohiko Anzai
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8670, Japan
| |
Collapse
|
11
|
Prognostic Value of Microvessel Density in Head and Neck Squamous Cell Carcinoma: A Meta-Analysis. DISEASE MARKERS 2020; 2020:8842795. [PMID: 33062071 PMCID: PMC7539077 DOI: 10.1155/2020/8842795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 02/05/2023]
Abstract
The prognostic value of microvessel density (MVD) in head and neck squamous cell carcinoma (HNSCC) remains disputable. The purpose of this study was to comprehensively determine the prognostic value of MVD in HNSCC. Relevant literatures were identified using PubMed, Embase, and Cochrane Library. A meta-analysis was performed to clarify the prognostic role of MVD in HNSCC patients and different subgroups. A total of 14 eligible articles were included in this meta-analysis. The combined hazard ratio (HR) and 95% confidence interval (95% CI) for overall survival (OS) of 11 studies was 1.663 (1.236-2.237, P = 0.001), and the pooled HR and 95% CI for progression-free survival (PFS) of 7 studies was 2.069 (1.281-3.343, P = 0.003). Subgroup analyses were also performed on different issues, such as regional distribution of patients, age, tumor location, antibody, and treatment strategy. To conclude, high MVD is associated with worse OS and PFS in patients with HNSCC.
Collapse
|
12
|
Ichinoe M, Mikami T, Yanagisawa N, Yoshida T, Hana K, Endou H, Okayasu I, Sengoku N, Ogata H, Saegusa M, Shibuya K, Murakumo Y. Prognostic values of L-type amino acid transporter 1 and CD98hc expression in breast cancer. J Clin Pathol 2020; 74:589-595. [PMID: 32907912 PMCID: PMC8380907 DOI: 10.1136/jclinpath-2020-206457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/23/2020] [Accepted: 08/04/2020] [Indexed: 11/03/2022]
Abstract
AIMS L-type amino acid transporter 1 (LAT1) is a major Na+-independent neutral amino acid transporter, forming a complex with CD98hc. The aim of this study is to investigate the significance of LAT1 and CD98hc in invasive breast cancer. METHODS LAT1 and CD98hc expression was immunohistochemically assessed in 280 invasive breast cancers and analysed for association with clinicopathological features. RESULTS High levels of LAT1 and CD98hc were observed in triple-negative breast cancers (TNBCs) possessing negative immunoreactivity with oestrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, compared with non-TNBCs (NTNBCs), and were associated with lymph-node metastasis and higher nuclear grade. The high-LAT1-expression group showed a poor prognosis in NTNBC and TNBC, however, high-CD98hc-expression group showed a poor prognosis only in NTNBC. LAT1 and CD98hc expression could be the prognostic factors in univariate analyses, but not in multivariate analyses. Further, we found that invasive tumour components showed higher LAT1 and CD98hc expression than non-invasive tumour components. CONCLUSIONS LAT1 and CD98hc may possess prognostic values in invasive breast cancer. LAT1 may be linked with cancer cell activities and disease progression in breast cancer.
Collapse
Affiliation(s)
- Masaaki Ichinoe
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Tetuo Mikami
- Department of Pathology, Toho University School of Medicine, Ota-ku, Tokyo, Japan
| | - Nobuyuki Yanagisawa
- Department of Pathology, St. Marianna University School of Medicine Yokohama-City Seibu Hospital, Yokohama, Kanagawa, Japan
| | - Tsutomu Yoshida
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | | | | | - Isao Okayasu
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Norihiko Sengoku
- Department of Breast and Thyroid Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hideaki Ogata
- Department of Surgery, Toho University Omori Medical Center, Ota-ku, Tokyo, Japan
| | - Makoto Saegusa
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Kazutoshi Shibuya
- Department of Surgical Pathology, Toho University School of Medicine, Ota-ku, Tokyo, Japan
| | - Yoshiki Murakumo
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
13
|
Mass Spectrometric Comparison of HPV-Positive and HPV-Negative Oropharyngeal Cancer. Cancers (Basel) 2020; 12:cancers12061531. [PMID: 32545200 PMCID: PMC7352546 DOI: 10.3390/cancers12061531] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Squamous cell carcinoma of the head and neck (HNSCC) consist of two distinct biological entities. While the numbers of classical, tobacco-induced HNSCC are declining, tumors caused by human papillomavirus (HPV) infection are increasing in many countries. HPV-positive HNSCC mostly arise in the oropharynx and are characterized by an enhanced sensitivity towards radiotherapy and a favorable prognosis. To identify molecular differences between both entities on the protein level, we conducted a mass spectrometric comparison of eight HPV-positive and nine HPV-negative oropharyngeal tumors (OPSCC). Overall, we identified 2051 proteins, of which 31 were found to be differentially expressed. Seventeen of these can be assorted to three functional groups, namely DNA replication, nuclear architecture and cytoskeleton regulation, with the differences in the last group potentially reflecting an enhanced migratory and invasive capacity. Furthermore, a number of identified proteins have been described to directly impact on DNA double-strand break repair or radiation sensitivity (e.g., SLC3A2, cortactin, RBBP4, Numa1), offering explanations for the differential prognosis. The unequal expression of three proteins (SLC3A2, MCM2 and lamin B1) was confirmed by immunohistochemical staining using a tissue microarray containing 205 OPSCC samples. The expression levels of SLC3A2 and lamin B1 were found be of prognostic relevance in patients with HPV-positive and HPV-negative OPSCC, respectively.
Collapse
|
14
|
Gamble LD, Purgato S, Murray J, Xiao L, Yu DMT, Hanssen KM, Giorgi FM, Carter DR, Gifford AJ, Valli E, Milazzo G, Kamili A, Mayoh C, Liu B, Eden G, Sarraf S, Allan S, Di Giacomo S, Flemming CL, Russell AJ, Cheung BB, Oberthuer A, London WB, Fischer M, Trahair TN, Fletcher JI, Marshall GM, Ziegler DS, Hogarty MD, Burns MR, Perini G, Norris MD, Haber M. Inhibition of polyamine synthesis and uptake reduces tumor progression and prolongs survival in mouse models of neuroblastoma. Sci Transl Med 2020; 11:11/477/eaau1099. [PMID: 30700572 DOI: 10.1126/scitranslmed.aau1099] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 01/08/2019] [Indexed: 12/18/2022]
Abstract
Amplification of the MYCN oncogene is associated with an aggressive phenotype and poor outcome in childhood neuroblastoma. Polyamines are highly regulated essential cations that are frequently elevated in cancer cells, and the rate-limiting enzyme in polyamine synthesis, ornithine decarboxylase 1 (ODC1), is a direct transcriptional target of MYCN. Treatment of neuroblastoma cells with the ODC1 inhibitor difluoromethylornithine (DFMO), although a promising therapeutic strategy, is only partially effective at impeding neuroblastoma cell growth due to activation of compensatory mechanisms resulting in increased polyamine uptake from the surrounding microenvironment. In this study, we identified solute carrier family 3 member 2 (SLC3A2) as the key transporter involved in polyamine uptake in neuroblastoma. Knockdown of SLC3A2 in neuroblastoma cells reduced the uptake of the radiolabeled polyamine spermidine, and DFMO treatment increased SLC3A2 protein. In addition, MYCN directly increased polyamine synthesis and promoted neuroblastoma cell proliferation by regulating SLC3A2 and other regulatory components of the polyamine pathway. Inhibiting polyamine uptake with the small-molecule drug AMXT 1501, in combination with DFMO, prevented or delayed tumor development in neuroblastoma-prone mice and extended survival in rodent models of established tumors. Our findings suggest that combining AMXT 1501 and DFMO with standard chemotherapy might be an effective strategy for treating neuroblastoma.
Collapse
Affiliation(s)
- Laura D Gamble
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia
| | - Stefania Purgato
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Jayne Murray
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia
| | - Lin Xiao
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia
| | - Denise M T Yu
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia
| | - Kimberley M Hanssen
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia
| | - Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Daniel R Carter
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia.,School of Biomedical Engineering, University of Technology, Sydney, NSW 2007, Australia
| | - Andrew J Gifford
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia.,Department of Anatomical Pathology (SEALS), Prince of Wales Hospital, Randwick, NSW 2031, Australia
| | - Emanuele Valli
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia
| | - Giorgio Milazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Alvin Kamili
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia
| | - Bing Liu
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia
| | - Georgina Eden
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia
| | - Sara Sarraf
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia
| | - Sophie Allan
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia
| | - Simone Di Giacomo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Claudia L Flemming
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia
| | - Amanda J Russell
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Belamy B Cheung
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia
| | - Andre Oberthuer
- Children's Hospital, Department of Pediatric Oncology and Hematology, University of Cologne, Kerpener Strasse 62, D-50924 Cologne, Germany
| | - Wendy B London
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02215, USA
| | - Matthias Fischer
- Children's Hospital, Department of Pediatric Oncology and Hematology, University of Cologne, Kerpener Strasse 62, D-50924 Cologne, Germany
| | - Toby N Trahair
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia.,Kids Cancer Centre, Sydney Children's Hospital, High Street, Randwick, NSW 2031, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia
| | - Glenn M Marshall
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia.,Kids Cancer Centre, Sydney Children's Hospital, High Street, Randwick, NSW 2031, Australia
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia.,Kids Cancer Centre, Sydney Children's Hospital, High Street, Randwick, NSW 2031, Australia
| | - Michael D Hogarty
- Division of Oncology, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-4318, USA
| | - Mark R Burns
- Aminex Therapeutics, Aminex Therapeutics Inc., Kirkland, WA 98034, USA
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,University of New South Wales Centre for Childhood Cancer Research, Sydney, NSW 2052, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia. .,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia
| |
Collapse
|
15
|
Deuschle FC, Morath V, Schiefner A, Brandt C, Ballke S, Reder S, Steiger K, Schwaiger M, Weber W, Skerra A. Development of a high affinity Anticalin ® directed against human CD98hc for theranostic applications. Theranostics 2020; 10:2172-2187. [PMID: 32089738 PMCID: PMC7019167 DOI: 10.7150/thno.38968] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/07/2019] [Indexed: 01/10/2023] Open
Abstract
Enhanced amino acid supply and dysregulated integrin signaling constitute two hallmarks of cancer and are pivotal for metastatic transformation of cells. In line with its function at the crossroads of both processes, overexpression of CD98hc is clinically observed in various cancer malignancies, thus rendering it a promising tumor target. Methods: We describe the development of Anticalin proteins based on the lipocalin 2 (Lcn2) scaffold against the human CD98hc ectodomain (hCD98hcED) using directed evolution and protein design. X-ray structural analysis was performed to identify the epitope recognized by the lead Anticalin candidate. The Anticalin - with a tuned plasma half-life using PASylation® technology - was labeled with 89Zr and investigated by positron emission tomography (PET) of CD98-positive tumor xenograft mice. Results: The Anticalin P3D11 binds CD98hc with picomolar affinity and recognizes a protruding loop structure surrounded by several glycosylation sites within the solvent exposed membrane-distal part of the hCD98hcED. In vitro studies revealed specific binding activity of the Anticalin towards various CD98hc-expressing human tumor cell lines, suggesting broader applicability in cancer research. PET/CT imaging of mice bearing human prostate carcinoma xenografts using the optimized and 89Zr-labeled Anticalin demonstrated strong and specific tracer accumulation (8.6 ± 1.1 %ID/g) as well as a favorable tumor-to-blood ratio of 11.8. Conclusion: Our findings provide a first proof of concept to exploit CD98hc for non-invasive biomedical imaging. The novel Anticalin-based αhCD98hc radiopharmaceutical constitutes a promising tool for preclinical and, potentially, clinical applications in oncology.
Collapse
|
16
|
A novel therapeutic approach for anaplastic thyroid cancer through inhibition of LAT1. Sci Rep 2019; 9:14616. [PMID: 31601917 PMCID: PMC6787004 DOI: 10.1038/s41598-019-51144-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
A novel therapeutic approach is urgently needed for patients with anaplastic thyroid cancer (ATC) due to its fatal and rapid progress. We recently reported that ATC highly expressed MYC protein and blocking of MYC through its selective inhibitor, JQ1, decreased ATC growth and improved survival in preclinical models. One of the important roles of MYC is regulation of L-neutral amino acid transporter 1 (LAT1) protein and inhibition of LAT1 would provide similar anti-tumor effect. We first identified that while the human ATC expresses LAT1 protein, it is little or not detected in non-cancerous thyroidal tissue, further supporting LAT1 as a good target. Then we evaluated the efficacy of JPH203, a LAT1 inhibitor, against ATC by using the in vitro cell-based studies and in vivo xenograft model bearing human ATC cells. JPH203 markedly inhibited proliferation of three ATC cell lines through suppression of mTOR signals and blocked cell cycle progression from the G0/G1 phase to the S phase. The tumor growth inhibition and decrease in size by JPH203 via inhibition of mTOR signaling and G0/G1 cell cycle associated proteins were further confirmed in xenograft models. These preclinical findings suggest that LAT1 inhibitors are strong candidates to control ATC, for which current treatment options are highly limited.
Collapse
|
17
|
Peitzsch C, Nathansen J, Schniewind SI, Schwarz F, Dubrovska A. Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma: Identification, Characterization and Clinical Implications. Cancers (Basel) 2019; 11:cancers11050616. [PMID: 31052565 PMCID: PMC6562868 DOI: 10.3390/cancers11050616] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/21/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most commonly diagnosed cancer worldwide. Despite advances in the treatment management, locally advanced disease has a poor prognosis, with a 5-year survival rate of approximately 50%. The growth of HNSCC is maintained by a population of cancer stem cells (CSCs) which possess unlimited self-renewal potential and induce tumor regrowth if not completely eliminated by therapy. The population of CSCs is not only a promising target for tumor treatment, but also an important biomarker to identify the patients at risk for therapeutic failure and disease progression. This review aims to provide an overview of the recent pre-clinical and clinical studies on the biology and potential therapeutic implications of HNSCC stem cells.
Collapse
Affiliation(s)
- Claudia Peitzsch
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany.
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- German Cancer Consortium (DKTK), Partner site Dresden, 01307 Dresden, Germany.
| | - Jacqueline Nathansen
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Sebastian I Schniewind
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Franziska Schwarz
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- German Cancer Consortium (DKTK), Partner site Dresden, 01307 Dresden, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01307 Dresden, Germany.
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- German Cancer Consortium (DKTK), Partner site Dresden, 01307 Dresden, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01307 Dresden, Germany.
| |
Collapse
|
18
|
Han MK, Baker M, Zhang Y, Yang C, Zhang M, Garg P, Viennois E, Merlin D. Overexpression of CD98 in intestinal epithelium dysregulates miRNAs and their targeted proteins along the ileal villus-crypt axis. Sci Rep 2018; 8:16220. [PMID: 30385787 PMCID: PMC6212412 DOI: 10.1038/s41598-018-34474-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/07/2018] [Indexed: 01/19/2023] Open
Abstract
CD98 has been implicated in the experimental model of inflammatory bowel disease. We have previously shown that IEC-specific overexpression of CD98 mediates intestinal inflammation and intestinal epithelial barrier dysfunction. Mice overexpressing CD98 exhibited severe colitis and a greater susceptibility to CAC. Here we demonstrated CD98 overexpression to dysregulate homeostatic gradient profile of miRNA and protein expression along the ileal villus-crypt axis. Using miRNA-target gene prediction module, we observed differentially expressed miRNAs to target proteins of villus and crypt profoundly affected by CD98 overexpression. We have utilized online bioinformatics as methods to further scrutinize the biological meanings of miRNA-target data. We identified significant interactions among the differentially regulated proteins targeted by altered miRNAs in Tg mice. The biological processes affected by the predicted targets of miRNAs deviate from the homeostatic functions of the miRNA-gene-protein axis of the wildtype mice. Our results emphasize a dynamic perturbation of miRNA and protein expression in villus-crypt axis contributing to potential biological consequences of altering CD98 expression. Our findings also suggest the need for a consideration of arrays of interacting biological entities (i.e. miRNAs-mRNAs, protein-protein interaction) or a combination comparison for a better understanding of the disease pathology which is necessary for an effective therapeutic target development.
Collapse
Affiliation(s)
- Moon K Han
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, 30303, USA.
| | - Mark Baker
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, 30303, USA
| | - Yuchen Zhang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, 30303, USA
| | - Chunhua Yang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, 30303, USA
| | - Mingzhen Zhang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, 30303, USA
| | - Pallavi Garg
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, 30303, USA
| | - Emilie Viennois
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, 30303, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, 30303, USA.,Atlanta Veterans Affairs Medical Center, Decatur, 30033, USA
| |
Collapse
|
19
|
Kaira K, Kawashima O, Endoh H, Imaizumi K, Goto Y, Kamiyoshihara M, Sugano M, Yamamoto R, Osaki T, Tanaka S, Fujita A, Imai H, Kogure Y, Seki Y, Shimizu K, Mogi A, Shitara Y, Oyama T, Kanai Y, Asao T. Expression of amino acid transporter (LAT1 and 4F2hc) in pulmonary pleomorphic carcinoma. Hum Pathol 2018; 84:142-149. [PMID: 30300664 DOI: 10.1016/j.humpath.2018.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/26/2018] [Accepted: 09/29/2018] [Indexed: 10/28/2022]
Abstract
Amino acid transporters are necessary for tumor growth, metastasis, and survival of various neoplasms; however, the clinicopathological significance of L-type amino acid transporter 1 (LAT1) and 4F2 cell surface antigen (4F2hc) in patients with pulmonary pleomorphic carcinoma (PPC) remainsunknown. The aim of this study is to clarify the prognostic impact of these amino acid transporters in PPC. One hundred five patients with surgically resected PPC were assessed by immunohistochemistry. The expression of LAT1 and 4F2hc, and Ki-67 labeling index were investigated using specimens of the resected tumors. LAT1 and 4F2hc were highly expressed in 35% and 53% of all patients (n = 105, P < .01), 25% and 48% of patients with an adenocarcinoma component (n = 48, P = .02), and 44% and 58% of patients with a nonadenocarcinoma component (n = 57, P = .18), respectively. A high LAT1 expression was significantly related to advanced disease, lymphatic permeation, tumor cell proliferation, and 4F2hc expression. By multivariate analysis, LAT1 and 4F2hc were identified as significant independent markers for predicting a worse prognosis. LAT1 is highly expressed in PPC, and high LAT1 expression can serve as a significant predictor linked to a worse prognosis in patients with PPC.
Collapse
Affiliation(s)
- Kyoichi Kaira
- Department of Oncology Clinical Development, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan.
| | - Osamu Kawashima
- Department of Respiratory Surgery, Shibukawa Medical Center, Gunma 377-0280, Japan
| | - Hedeki Endoh
- Department of Thoracic Surgery, Saku Central Hospital Advanced Care Center, Nagano 385-0051, Japan
| | - Kazuyoshi Imaizumi
- Department of Respiratory Medicine, Fujita Health University, Aichi 470-1192, Japan
| | - Yasuhiro Goto
- Department of Respiratory Medicine, Fujita Health University, Aichi 470-1192, Japan
| | - Mitsuhiro Kamiyoshihara
- Department of Respiratory Surgery, Japanese Red Cross Maebashi Hospital, Gunma 371-0014, Japan
| | - Masayuki Sugano
- Department of Respiratory Surgery, Takasaki Medical Center, Gunma 370-0829, Japan
| | - Ryohei Yamamoto
- Department of Thoracic Surgery, Saku Central Hospital Advanced Care Center, Nagano 385-0051, Japan
| | - Takashi Osaki
- Department of Respiratory Medicine, Shibukawa Medical Center, Gunma 377-0280, Japan
| | - Shigefumi Tanaka
- Department of Respiratory Surgery, Isesaki Municipal Hospital, Gunma 372-0817, Japan
| | - Atsushi Fujita
- Department of Respiratory Surgery, Gunma Prefectural Cancer Center, Gunma 373-8550, Japan
| | - Hisao Imai
- Department of Respiratory Medicine, Gunma Prefectural Cancer Center, Gunma 373-8550, Japan
| | - Yoshihito Kogure
- Department of Respiratory Medicine, Nagoya Medical Center, Aichi 460-0001, Japan
| | - Yukio Seki
- Department of Thoracic Surgery, Nagoya Medical Center, Aichi 460-0001, Japan
| | - Kimihiro Shimizu
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Gunma 371-8511, Japan
| | - Akira Mogi
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Gunma 371-8511, Japan
| | - Yoshinori Shitara
- Department of Respiratory Surgery, Fujioka General Hospital, Gunma 375-0015, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Takayuki Asao
- Big Data Center for Integrative Analysis, Gunma University Initiative for Advance Research, Gunma 371-8511, Japan
| |
Collapse
|
20
|
El Ansari R, Craze ML, Diez-Rodriguez M, Nolan CC, Ellis IO, Rakha EA, Green AR. The multifunctional solute carrier 3A2 (SLC3A2) confers a poor prognosis in the highly proliferative breast cancer subtypes. Br J Cancer 2018; 118:1115-1122. [PMID: 29545595 PMCID: PMC5931111 DOI: 10.1038/s41416-018-0038-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 12/31/2022] Open
Abstract
Breast cancer (BC) is a heterogeneous disease characterised by variant biology, metabolic activity and patient outcome. This study aimed to evaluate the biological and prognostic value of the membrane solute carrier, SLC3A2 in BC with emphasis on the intrinsic molecular subtypes. SLC3A2 was assessed at the genomic level, using METABRIC data (n = 1980), and at the proteomic level, using immunohistochemistry on tissue microarray (TMA) sections constructed from a large well-characterised primary BC cohort (n = 2500). SLC3A2 expression was correlated with clinicopathological parameters, molecular subtypes and patient outcome. SLC3A2 mRNA and protein expression were strongly correlated with higher tumour grade and poor Nottingham prognostic index (NPI). High expression of SLC3A2 was observed in triple-negative (TN), HER2+ and ER+ high-proliferation subtypes. SLC3A2 mRNA and protein expression were significantly associated with the expression of c-MYC in all BC subtypes (p < 0.001). High expression of SLC3A2 protein was associated with poor patient outcome (p < 0.001), but only in the ER+ high-proliferation (p = 0.01) and TN (p = 0.04) subtypes. In multivariate analysis SLC3A2 protein was an independent risk factor for shorter BC-specific survival (p < 0.001). SLC3A2 appears to play a role in the aggressive BC subtypes driven by MYC and could act as a potential prognostic marker. Functional assessment is necessary to reveal its potential therapeutic value in the different BC subtypes.
Collapse
Affiliation(s)
- Rokaya El Ansari
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Madeleine L Craze
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Maria Diez-Rodriguez
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Christopher C Nolan
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Ian O Ellis
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
- Breast Institute, Nottingham University Hospitals NHS Trust, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Emad A Rakha
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
- Breast Institute, Nottingham University Hospitals NHS Trust, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Andrew R Green
- Academic Pathology, Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK.
| |
Collapse
|
21
|
Metabolic re-wiring of isogenic breast epithelial cell lines following epithelial to mesenchymal transition. Cancer Lett 2017; 396:117-129. [DOI: 10.1016/j.canlet.2017.03.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/03/2017] [Accepted: 03/12/2017] [Indexed: 12/22/2022]
|
22
|
Namikawa M, Kakizaki S, Kaira K, Tojima H, Yamazaki Y, Horiguchi N, Sato K, Oriuchi N, Tominaga H, Sunose Y, Nagamori S, Kanai Y, Oyama T, Takeyoshi I, Yamada M. Expression of amino acid transporters (LAT1, ASCT2 and xCT) as clinical significance in hepatocellular carcinoma. Hepatol Res 2015; 45:1014-1022. [PMID: 25297701 DOI: 10.1111/hepr.12431] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/30/2014] [Accepted: 10/04/2014] [Indexed: 12/13/2022]
Abstract
AIM Amino acid transporters play an important role in tumor progression and survival of cancer cells. However, the prognostic significance of L-type amino acid transporter 1 (LAT1), system ASC amino acid transporter-2 (ASCT2) and xCT expression in patients with hepatocellular carcinoma (HCC) remains unclear. The aim of this study is to investigate the clinicopathological significance of these amino acid transporters in patients with HCC. METHODS We examined 84 patients with surgically resected HCC. Tumor sections were stained by immunohistochemistry for LAT1, ASCT2, xCT, 4F2hc/CD98hc (4F2hc), Ki-67 and microvessel density (MVD) determined by CD34. RESULTS LAT1, 4F2hc, ASCT2 and xCT were positively expressed in 61% (50/84), 77% (65/84), 63% (53/84) and 65% (55/84), respectively. Positive LAT1 expression was significantly associated with 4F2hc expression, Ki-67 and the serum albumin. By univariate analysis, LAT1 expression, disease stage and albumin had a significant relationship with overall survival. Tumor size, disease stage, portal vein invasion, albumin and α-fetoprotein had a significant relationship with progression-free survival. Multivariate analysis confirmed that LAT1 expression is an independent and significant prognostic factor for predicting worse outcome after surgery. CONCLUSION LAT1 can serve as a significant prognostic marker for predicting negative prognosis after surgery.
Collapse
Affiliation(s)
- Masashi Namikawa
- Department of Medicine and Molecular Science, Gunma University, Gunma, Japan
- Department of Internal Medicine, Kiryu Kosei General Hospital, Kiryu, Japan
| | - Satoru Kakizaki
- Department of Medicine and Molecular Science, Gunma University, Gunma, Japan
| | - Kyoichi Kaira
- Department of Medicine and Molecular Science, Gunma University, Gunma, Japan
- Department of Oncology Clinical Development, Gunma University, Gunma, Japan
| | - Hiroki Tojima
- Department of Medicine and Molecular Science, Gunma University, Gunma, Japan
| | - Yuichi Yamazaki
- Department of Medicine and Molecular Science, Gunma University, Gunma, Japan
| | - Norio Horiguchi
- Department of Medicine and Molecular Science, Gunma University, Gunma, Japan
| | - Ken Sato
- Department of Medicine and Molecular Science, Gunma University, Gunma, Japan
| | - Noboru Oriuchi
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University, Gunma, Japan
| | - Hideyuki Tominaga
- Advanced Clinical Research Center, Fukushima Medical University, Fukushima, Japan
| | - Yutaka Sunose
- Department of Thoracic and Visceral Surgery, Gunma University, Gunma, Japan
| | - Shushi Nagamori
- Division of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshikatsu Kanai
- Division of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Izumi Takeyoshi
- Department of Thoracic and Visceral Surgery, Gunma University, Gunma, Japan
| | - Masanobu Yamada
- Department of Medicine and Molecular Science, Gunma University, Gunma, Japan
| |
Collapse
|
23
|
Schneider S, Thurnher D, Seemann R, Brunner M, Kadletz L, Ghanim B, Aumayr K, Heiduschka G, Lill C. The prognostic significance of β-catenin, cyclin D1 and PIN1 in minor salivary gland carcinoma: β-catenin predicts overall survival. Eur Arch Otorhinolaryngol 2015; 273:1283-92. [PMID: 25801951 DOI: 10.1007/s00405-015-3609-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 03/17/2015] [Indexed: 02/07/2023]
Abstract
Minor salivary gland carcinoma is a rare and heterogeneous type of cancer. Molecular prognostic and predictive markers are sparse. The aim of this study was to identify new prognostic and predictive markers in minor salivary gland carcinoma. 50 tissue samples of carcinomas of the minor salivary glands (adenoid cystic carcinoma n = 23, mucoepidermoid carcinoma n = 12, adenocarcinoma n = 10, carcinoma ex pleomorphic adenoma n = 2, salivary duct carcinoma n = 1, clear cell carcinoma n = 1, basal cell carcinoma n = 1) were immunohistochemically stained for β-catenin, cyclin D1 and PIN1. Expression patterns were analyzed and correlated to clinical outcome of 37 patients with complete clinical data. High expression of membranous β-catenin was linked to significantly better overall survival in patients with adenoid cystic carcinoma (log rank test, χ (2) = 13.3, p = .00397, Bonferroni corrected p = .024). PIN1 and cyclin D1 did not show any significant correlation to patients' clinical outcome. Expression of β-catenin in adenoid cystic carcinoma of the minor salivary glands significantly correlates with better overall survival. Hence, evaluation of β-catenin might serve as a clinical prognostic marker.
Collapse
Affiliation(s)
- Sven Schneider
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Dietmar Thurnher
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Rudolf Seemann
- Department of Cranio-, Maxillofacial and Oral Surgery, Medical University of Vienna, Vienna, Austria
| | - Markus Brunner
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Lorenz Kadletz
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Bahil Ghanim
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Klaus Aumayr
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Gregor Heiduschka
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Claudia Lill
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| |
Collapse
|