1
|
Ashmore-Harris C, Antonopoulou E, Finney SM, Vieira MR, Hennessy MG, Muench A, Lu WY, Gadd VL, El Haj AJ, Forbes SJ, Waters SL. Exploiting in silico modelling to enhance translation of liver cell therapies from bench to bedside. NPJ Regen Med 2024; 9:19. [PMID: 38724586 PMCID: PMC11081951 DOI: 10.1038/s41536-024-00361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Cell therapies are emerging as promising treatments for a range of liver diseases but translational bottlenecks still remain including: securing and assessing the safe and effective delivery of cells to the disease site; ensuring successful cell engraftment and function; and preventing immunogenic responses. Here we highlight three therapies, each utilising a different cell type, at different stages in their clinical translation journey: transplantation of multipotent mesenchymal stromal/signalling cells, hepatocytes and macrophages. To overcome bottlenecks impeding clinical progression, we advocate for wider use of mechanistic in silico modelling approaches. We discuss how in silico approaches, alongside complementary experimental approaches, can enhance our understanding of the mechanisms underlying successful cell delivery and engraftment. Furthermore, such combined theoretical-experimental approaches can be exploited to develop novel therapies, address safety and efficacy challenges, bridge the gap between in vitro and in vivo model systems, and compensate for the inherent differences between animal model systems and humans. We also highlight how in silico model development can result in fewer and more targeted in vivo experiments, thereby reducing preclinical costs and experimental animal numbers and potentially accelerating translation to the clinic. The development of biologically-accurate in silico models that capture the mechanisms underpinning the behaviour of these complex systems must be reinforced by quantitative methods to assess cell survival post-transplant, and we argue that non-invasive in vivo imaging strategies should be routinely integrated into transplant studies.
Collapse
Affiliation(s)
- Candice Ashmore-Harris
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | | | - Simon M Finney
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
| | - Melissa R Vieira
- Healthcare Technologies Institute (HTI), Institute of Translational Medicine, University of Birmingham, Birmingham, B15 2TH, UK
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, B15 2TH, UK
| | - Matthew G Hennessy
- Department of Engineering Mathematics, University of Bristol, BS8 1TW, Bristol, UK
| | - Andreas Muench
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
| | - Wei-Yu Lu
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Victoria L Gadd
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Alicia J El Haj
- Healthcare Technologies Institute (HTI), Institute of Translational Medicine, University of Birmingham, Birmingham, B15 2TH, UK
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, B15 2TH, UK
| | - Stuart J Forbes
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sarah L Waters
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK.
| |
Collapse
|
2
|
Unraveling the effect of intra- and intercellular processes on acetaminophen-induced liver injury. NPJ Syst Biol Appl 2022; 8:27. [PMID: 35933513 PMCID: PMC9357019 DOI: 10.1038/s41540-022-00238-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
In high dosages, acetaminophen (APAP) can cause severe liver damage, but susceptibility to liver failure varies across individuals and is influenced by factors such as health status. Because APAP-induced liver injury and recovery is regulated by an intricate system of intra- and extracellular molecular signaling, we here aim to quantify the importance of specific modules in determining the outcome after an APAP insult and of potential targets for therapies that mitigate adversity. For this purpose, we integrated hepatocellular acetaminophen metabolism, DNA damage response induction and cell fate into a multiscale mechanistic liver lobule model which involves various cell types, such as hepatocytes, residential Kupffer cells and macrophages. Our model simulations show that zonal differences in metabolism and detoxification efficiency are essential determinants of necrotic damage. Moreover, the extent of senescence, which is regulated by intracellular processes and triggered by extracellular signaling, influences the potential to recover. In silico therapies at early and late time points after APAP insult indicated that prevention of necrotic damage is most beneficial for recovery, whereas interference with regulation of senescence promotes regeneration in a less pronounced way.
Collapse
|
3
|
Paulusma CC, Lamers W, Broer S, van de Graaf SFJ. Amino acid metabolism, transport and signalling in the liver revisited. Biochem Pharmacol 2022; 201:115074. [PMID: 35568239 DOI: 10.1016/j.bcp.2022.115074] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/02/2022]
Abstract
The liver controls the systemic exposure of amino acids entering via the gastro-intestinal tract. For most amino acids except branched chain amino acids, hepatic uptake is very efficient. This implies that the liver orchestrates amino acid metabolism and also controls systemic amino acid exposure. Although many amino acid transporters have been identified, cloned and investigated with respect to substrate specificity, transport mechanism, and zonal distribution, which of these players are involved in hepatocellular amino acid transport remains unclear. Here, we aim to provide a review of current insight into the molecular machinery of hepatic amino acid transport. Furthermore, we place this information in a comprehensive overview of amino acid transport, signalling and metabolism.
Collapse
Affiliation(s)
- Coen C Paulusma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Wouter Lamers
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Stefan Broer
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Research School of Biology, Australian National University, Canberra, Australia
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands; Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
4
|
Wild SL, Elghajiji A, Grimaldos Rodriguez C, Weston SD, Burke ZD, Tosh D. The Canonical Wnt Pathway as a Key Regulator in Liver Development, Differentiation and Homeostatic Renewal. Genes (Basel) 2020; 11:genes11101163. [PMID: 33008122 PMCID: PMC7599793 DOI: 10.3390/genes11101163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
The canonical Wnt (Wnt/β-catenin) signalling pathway is highly conserved and plays a critical role in regulating cellular processes both during development and in adult tissue homeostasis. The Wnt/β-catenin signalling pathway is vital for correct body patterning and is involved in fate specification of the gut tube, the primitive precursor of liver. In adults, the Wnt/β-catenin pathway is increasingly recognised as an important regulator of metabolic zonation, homeostatic renewal and regeneration in response to injury throughout the liver. Herein, we review recent developments relating to the key role of the pathway in the patterning and fate specification of the liver, in the directed differentiation of pluripotent stem cells into hepatocytes and in governing proliferation and zonation in the adult liver. We pay particular attention to recent contributions to the controversy surrounding homeostatic renewal and proliferation in response to injury. Furthermore, we discuss how crosstalk between the Wnt/β-catenin and Hedgehog (Hh) and hypoxia inducible factor (HIF) pathways works to maintain liver homeostasis. Advancing our understanding of this pathway will benefit our ability to model disease, screen drugs and generate tissue and organ replacements for regenerative medicine.
Collapse
|
5
|
Mak KM, Png CYM. The Hepatic Central Vein: Structure, Fibrosis, and Role in Liver Biology. Anat Rec (Hoboken) 2019; 303:1747-1767. [PMID: 31581357 DOI: 10.1002/ar.24273] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/11/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022]
Abstract
The hepatic central vein is a primary source of Wnt2, Wnt9b, and R-spondin3. These angiocrines activate ß-catenin signaling to regulate hepatic metabolic zonation and perivenous gene expression in mice. Little is known about the central vein ultrastructure. Here, we describe the morphological-functional correlates of the central vein and its draining and branching patterns. Central vein fibrosis occurs in liver disease and is often accompanied by perivenous perisinusoidal fibrosis, which may affect perivenous gene expression. We review the biological properties of perivenous hepatocytes and glutamine synthetase that serve as a biomarker of perivenous hepatocytes. Glutamine synthetase and P4502E1 are indicators of ß-catenin activity in centrilobular liver injury and regeneration. The Wnt/ß-catenin pathway is the master regulator of hepatic metabolic zonation and perivenous gene expression and is modulated by the R-spondin-LGR4/5-ZNRF3/RNF43 module. We examined the structures of the molecules of these pathways and their involvements in liver biology. Central vein-derived Wnts and R-spondin3 participate in the cellular-molecular circuitry of the Wnt/ß-catenin and R-spondin-LGR4/5-ZNRF3/RNF43 module. The transport and secretion of lipidated Wnts in Wnt-producing cells require Wntless protein. Secreted Wnts are carried on exosomes in the extracellular matrix to responder cells. The modes of release of Wnts and R-spondin3 from central veins and their transit in the venular wall toward perivenous hepatocytes are unknown. We hypothesize that central vein fibrosis may impact perivenous gene expression. The proposal that the central vein constitutes an anatomical niche of perivenous stem cells that subserve homeostatic hepatic renewal still needs studies using additional mouse models for validation. Anat Rec, 2019. © 2019 American Association for Anatomy Anat Rec, 303:1747-1767, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Ki M Mak
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - C Y Maximilian Png
- Division of Vascular Surgery, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
6
|
Kruepunga N, Hakvoort TB, Hikspoors JP, Köhler SE, Lamers WH. Anatomy of rodent and human livers: What are the differences? Biochim Biophys Acta Mol Basis Dis 2019; 1865:869-878. [DOI: 10.1016/j.bbadis.2018.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/30/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022]
|
7
|
Hakvoort TBM, He Y, Kulik W, Vermeulen JLM, Duijst S, Ruijter JM, Runge JH, Deutz NEP, Koehler SE, Lamers WH. Pivotal role of glutamine synthetase in ammonia detoxification. Hepatology 2017; 65:281-293. [PMID: 27641632 DOI: 10.1002/hep.28852] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/18/2016] [Accepted: 09/01/2016] [Indexed: 02/06/2023]
Abstract
UNLABELLED Glutamine synthetase (GS) catalyzes condensation of ammonia with glutamate to glutamine. Glutamine serves, with alanine, as a major nontoxic interorgan ammonia carrier. Elimination of hepatic GS expression in mice causes only mild hyperammonemia and hypoglutaminemia but a pronounced decrease in the whole-body muscle-to-fat ratio with increased myostatin expression in muscle. Using GS-knockout/liver and control mice and stepwise increments of enterally infused ammonia, we show that ∼35% of this ammonia is detoxified by hepatic GS and ∼35% by urea-cycle enzymes, while ∼30% is not cleared by the liver, independent of portal ammonia concentrations ≤2 mmol/L. Using both genetic (GS-knockout/liver and GS-knockout/muscle) and pharmacological (methionine sulfoximine and dexamethasone) approaches to modulate GS activity, we further show that detoxification of stepwise increments of intravenously (jugular vein) infused ammonia is almost totally dependent on GS activity. Maximal ammonia-detoxifying capacity through either the enteral or the intravenous route is ∼160 μmol/hour in control mice. Using stable isotopes, we show that disposal of glutamine-bound ammonia to urea (through mitochondrial glutaminase and carbamoylphosphate synthetase) depends on the rate of glutamine synthesis and increases from ∼7% in methionine sulfoximine-treated mice to ∼500% in dexamethasone-treated mice (control mice, 100%), without difference in total urea synthesis. CONCLUSIONS Hepatic GS contributes to both enteral and systemic ammonia detoxification. Glutamine synthesis in the periphery (including that in pericentral hepatocytes) and glutamine catabolism in (periportal) hepatocytes represents the high-affinity ammonia-detoxifying system of the body. The dependence of glutamine-bound ammonia disposal to urea on the rate of glutamine synthesis suggests that enhancing peripheral glutamine synthesis is a promising strategy to treat hyperammonemia. Because total urea synthesis does not depend on glutamine synthesis, we hypothesize that glutamate dehydrogenase complements mitochondrial ammonia production. (Hepatology 2017;65:281-293).
Collapse
Affiliation(s)
- Theodorus B M Hakvoort
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Youji He
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Wim Kulik
- Department of Genetic Metabolic Disease, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jacqueline L M Vermeulen
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Suzanne Duijst
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan M Ruijter
- Heart Failure Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jurgen H Runge
- Department of Radiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicolaas E P Deutz
- Department of General Surgery, Maastricht University, Maastricht, The Netherlands
| | - S Eleonore Koehler
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Wouter H Lamers
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
8
|
Long live the liver: immunohistochemical and stereological study of hepatocytes, liver sinusoidal endothelial cells, Kupffer cells and hepatic stellate cells of male and female rats throughout ageing. Cell Tissue Res 2016; 366:639-649. [DOI: 10.1007/s00441-016-2490-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 08/03/2016] [Indexed: 01/23/2023]
|
9
|
Hedgehog signalling pathway in adult liver: a major new player in hepatocyte metabolism and zonation? Med Hypotheses 2013; 80:589-94. [PMID: 23433827 DOI: 10.1016/j.mehy.2013.01.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 01/27/2013] [Indexed: 12/13/2022]
Abstract
Metabolic Zonation, i.e. the heterogeneous distribution of different metabolic pathways in different zones of the lobules, forms the basis of proper function of the liver in metabolic homeostasis and its regulation. According to recent results, Metabolic Zonation is controlled by the Wnt/β-catenin signalling pathway. Here, we hypothesize that hedgehog signalling via Indian hedgehog ligands plays an equal share in this control although, up to now, hedgehog signalling is considered not to be active in healthy adult hepatocytes. We provide broad evidence taken mainly by analogy from other mature organs that hedgehog signalling in adult hepatocytes may particularly control liver lipid and cholesterol metabolism as well as certain aspects of hormone biosynthesis. Like Wnt/β-catenin signalling, it seems to act on a very low level forming a porto-central gradient in the lobules opposite to that of Wnt/β-catenin signalling with which it is interacting by mutual inhibition. Consequently, modulation of hedgehog signalling by endogenous and exogenous agents may considerably impact on liver lipid metabolism and beyond. If functioning improperly, it may possibly contribute to diseases like non-alcoholic fatty liver disease (NAFLD) and other diseases such as lipodystrophy.
Collapse
|
10
|
Chieco P, Jonker A, De Boer BA, Ruijter JM, Van Noorden CJ. Image Cytometry: Protocols for 2D and 3D Quantification in Microscopic Images. ACTA ACUST UNITED AC 2013; 47:211-333. [DOI: 10.1016/j.proghi.2012.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Gebhardt R, Hovhannisyan A. Organ patterning in the adult stage: the role of Wnt/beta-catenin signaling in liver zonation and beyond. Dev Dyn 2010; 239:45-55. [PMID: 19705440 DOI: 10.1002/dvdy.22041] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Wnt/beta-catenin signaling has been found to play key roles in metabolic zonation of adult liver, regeneration, and hepatocellular carcinogenesis. In this review, recent progress in this field is summarized, in particular the rapidly growing knowledge about the various interactions of beta-catenin with many transcription factors involved in controlling metabolism. These interactions may provide the basis for understanding how the wide range of activities of Wnt/beta-catenin signaling is differentially interpreted. Based on these results, a three-level mode for the molecular interpretation of beta-catenin activity gradients in liver is proposed favoring cell differentiation, metabolic zonation, and proliferation. While derangement of the combinatorial interplay of the various transcription factors with beta-catenin at the intermediary activity level may contribute to the development of metabolic diseases, extremely high activation of beta-catenin may eventually lead to initiation and progression of hepatocellular tumors.
Collapse
Affiliation(s)
- Rolf Gebhardt
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany.
| | | |
Collapse
|
12
|
Gómez-Valadés AG, Méndez-Lucas A, Vidal-Alabró A, Blasco FX, Chillon M, Bartrons R, Bermúdez J, Perales JC. Pck1 gene silencing in the liver improves glycemia control, insulin sensitivity, and dyslipidemia in db/db mice. Diabetes 2008; 57:2199-210. [PMID: 18443203 PMCID: PMC2494684 DOI: 10.2337/db07-1087] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C; encoded by Pck1) catalyzes the first committed step in gluconeogenesis. Extensive evidence demonstrates a direct correlation between PEPCK-C activity and glycemia control. Therefore, we aimed to evaluate the metabolic impact and their underlying mechanisms of knocking down hepatic PEPCK-C in a type 2 diabetic model. RESEARCH DESIGN AND METHODS PEPCK-C gene targeting was achieved using adenovirus-transduced RNAi. The study assessed several clinical symptoms of diabetes and insulin signaling in peripheral tissues, in addition to changes in gene expression, protein, and metabolites in the liver. Liver bioenergetics was also evaluated. RESULTS Treatment resulted in reduced PEPCK-C mRNA and protein. After treatment, improved glycemia and insulinemia, lower triglyceride, and higher total and HDL cholesterol were measured. Unsterified fatty acid accumulation was observed in the liver, in the absence of de novo lipogenesis. Despite hepatic lipidosis, treatment resulted in improved insulin signaling in the liver, muscle, and adipose tissue. O(2) consumption measurements in isolated hepatocytes demonstrated unaltered mitochondrial function and a consequent increased cellular energy charge. Key regulatory factors (FOXO1, hepatocyte nuclear factor-4alpha, and peroxisome proliferator-activated receptor-gamma coactivator [PGC]-1alpha) and enzymes (G6Pase) implicated in gluconeogenesis were downregulated after treatment. Finally, the levels of Sirt1, a redox-state sensor that modulates gluconeogenesis through PGC-1alpha, were diminished. CONCLUSIONS Our observations indicate that silencing PEPCK-C has direct impact on glycemia control and energy metabolism and provides new insights into the potential significance of the enzyme as a therapeutic target for the treatment of diabetes.
Collapse
Affiliation(s)
- Alicia G Gómez-Valadés
- Biophysics Unit, Department de Ciències Fisiològuiques II, IDIBELL-University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Troadec MB, Fautrel A, Drénou B, Leroyer P, Camberlein E, Turlin B, Guillouzo A, Brissot P, Loréal O. Transcripts of ceruloplasmin but not hepcidin, both major iron metabolism genes, exhibit a decreasing pattern along the portocentral axis of mouse liver. Biochim Biophys Acta Mol Basis Dis 2008; 1782:239-49. [PMID: 18222182 DOI: 10.1016/j.bbadis.2007.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 11/23/2007] [Accepted: 12/18/2007] [Indexed: 12/14/2022]
Abstract
BACKGROUND/AIMS During iron overload of dietary origin, iron accumulates predominantly in periportal hepatocytes. A gradient in the basal and normal transcriptional control of genes involved in iron metabolism along the portocentral axis of liver lobules could explain this feature. Therefore, we aimed at characterizing, by quantitative RT-PCR, the expression of iron metabolism genes in adult C57BL/6 mouse hepatocytes regarding lobular localisation, with special emphasis to cell ploidy, considering its possible relationship with lobular zonation. METHODS We used two methods to analyse separately periportal and perivenous liver cells: 1) a selective liver zonal destruction by digitonin prior to a classical collagenase dissociation, and 2) laser capture microdissection. We also developed a method to separate viable 4N and 8N polyploid hepatocytes by flow cytometer. RESULTS Transcripts of ceruloplasmin, involved in iron efflux, were overexpressed in periportal areas and the result was confirmed by in situ hybridization study. By contrast, hepcidin 1, hemojuvelin, ferroportin, transferrin receptor 2, hfe and L-ferritin mRNAs were not differentially expressed according to either lobular zonation or polyploidisation level. CONCLUSIONS At variance with glutamine or urea metabolism, iron metabolism is not featured by a metabolic zonation lying only on a basal transcriptional control. The preferential periportal expression of ceruloplasmin raises the issue of its special role in iron overload disorders involving a defect in cellular iron export.
Collapse
|
14
|
Hakvoort TBM, Vermeulen JLM, Lamers WH. STAT5 deficiency does not affect the expression of glutamine synthetase in mouse liver. Hepatology 2007; 45:1082; author reply 1083. [PMID: 17393503 DOI: 10.1002/hep.21548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
15
|
Gebhardt R, Baldysiak-Figiel A, Krügel V, Ueberham E, Gaunitz F. Hepatocellular expression of glutamine synthetase: an indicator of morphogen actions as master regulators of zonation in adult liver. ACTA ACUST UNITED AC 2007; 41:201-66. [PMID: 17368308 DOI: 10.1016/j.proghi.2006.12.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glutamine synthetase (GS) has long been known to be expressed exclusively in pericentral hepatocytes most proximal to the central veins of liver lobuli. This enzyme as well as its peculiar distribution complementary to the periportal compartment for ureogenesis plays an important role in nitrogen metabolism, particularly in homeostasis of blood levels of ammonium ions and glutamine. Despite this fact and intensive studies in vivo and in vitro, many aspects of the regulation of its activity on the protein and on the genetic level remained enigmatic. Recent experimental advances using transgenic mice and new analytic tools have revealed the fundamental role of morphogens such as wingless-type MMTV integration site family member signals (Wnt), beta-catenin, and adenomatous polyposis coli in the regulation of this particular enzyme. In addition, novel information concerning the structure of transcription factor binding sites within regulatory regions of the GS gene and their interactions with signalling pathways could be collected. In this review we focus on all aspects of the regulation of GS in the liver and demonstrate how the new findings have changed our view of the determinants of liver zonation. What appeared as a simple response of hepatocytes to blood-derived factors and local cellular interactions must now be perceived as a fundamental mechanism of adult tissue patterning by morphogens that were considered mainly as regulators of developmental processes. Though GS may be the most obvious indicator of morphogen action among many other targets, elucidation of the complex regulation of the expression of the GS gene could pave the road for a better understanding of the mechanisms involved in patterning of liver parenchyma. Based on current knowledge we propose a new concept of how morphogens, hormones and other factors may act in concert, in order to restrict gene expression to small subpopulations of one differentiated cell type, the hepatocyte, in different anatomical locations. Although many details of this regulatory network are still missing, and an era of exciting new discoveries is still about to come, it can already be envisioned that similar mechanisms may well be active in other organs contributing to the fine-tuning of organ-specific functions.
Collapse
Affiliation(s)
- Rolf Gebhardt
- Institut für Biochemie, Medizinische Fakultät, Universität Leipzig, Johannisallee 30, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
16
|
Somi S, Klein ATJ, Houweling AC, Ruijter JM, Buffing AAM, Moorman AFM, van den Hoff MJB. Atrial and ventricular myosin heavy-chain expression in the developing chicken heart: strengths and limitations of non-radioactive in situ hybridization. J Histochem Cytochem 2006; 54:649-64. [PMID: 16461363 DOI: 10.1369/jhc.5a6846.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myosin heavy-chain (MHC) isoforms are major structural components of the contractile apparatus of the heart muscle. Their spatio-temporal patterns of expression have been used as a tool to dissect cardiac development and differentiation. Although extensively investigated, controversy still exists concerning the expression patterns of atrial (AMHC), ventricular (VMHC), and cardiac myosin heavy-chain (CMHC) during development in the heart. In this study, we describe that probe length, probe concentration, and staining time in the non-radioactive in situ hybridization procedure seriously influence the observed pattern of MHC expression and the subsequent interpretation, explaining the divergent opinions in the field. Using a variety of external and internal controls for the in situ hybridization procedure, we demonstrate that both AMHC and VMHC are expressed throughout the entire heart tube during early development. During subsequent development, VMHC becomes restricted to the ventricles, whereas AMHC remains expressed in the atria, and, at substantially lower levels, is detected in the ventricles. These results are discussed in the context of methodological constraints of demonstrating patterns of gene expression. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.
Collapse
Affiliation(s)
- Semir Somi
- Academic Medical Center, Department of Anatomy & Embryology, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
17
|
Gómez-Valadés AG, Vidal-Alabró A, Molas M, Boada J, Bermúdez J, Bartrons R, Perales JC. Overcoming diabetes-induced hyperglycemia through inhibition of hepatic phosphoenolpyruvate carboxykinase (GTP) with RNAi. Mol Ther 2005; 13:401-10. [PMID: 16271515 DOI: 10.1016/j.ymthe.2005.08.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 08/31/2005] [Accepted: 08/31/2005] [Indexed: 11/29/2022] Open
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK; EC 4.1.1.32) is the rate-controlling enzyme in gluconeogenesis. In diabetic individuals, altered rates of gluconeogenesis are responsible for increased hepatic glucose output and sustained hyperglycemia. Liver-specific inhibition of PEPCK has not been assessed to date as a treatment for diabetes. We have designed a therapeutic, vector-based RNAi approach to induce posttranscriptional gene silencing of hepatic PEPCK using nonviral gene delivery. A transient reduction of PEPCK enzymatic activity (7.6 +/- 0.6 vs 9.7 +/- 1.1 mU/mg, P < 0.05) that correlated with decreased protein content of up to 50% was achieved using this strategy in diabetic mice. PEPCK partial silencing was sufficient to demonstrate lowered blood glucose (218 +/- 26 vs 364 +/- 33 mg/dl, P < 0.001) and improved glucose tolerance together with decreased circulating FFA (0.89 +/- 0.10 vs 1.44 +/- 0.11 mEq/dl, P < 0.001) and TAG (65 +/- 11 vs 102 +/- 16 mg/dl, P < 0.01), in the absence of liver steatosis or lactic acidosis. SREBP1c was down-regulated in PEPCK-silenced animals, suggesting a role for this pathway in the alterations of lipid metabolism. These data reinforce the significance of PEPCK in sustaining diabetes-induced hyperglycemia and validate liver-specific intervention at the level of PEPCK for diabetes gene therapy.
Collapse
Affiliation(s)
- Alicia G Gómez-Valadés
- Biophysics Unit, Department of Physiological Sciences II, IDIBELL-University of Barcelona, L'Hospitalet del Llobregat, Spain
| | | | | | | | | | | | | |
Collapse
|