1
|
Hegarty R, Thompson RJ. Genetic aetiologies of acute liver failure. J Inherit Metab Dis 2024; 47:582-597. [PMID: 38499319 DOI: 10.1002/jimd.12733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Acute liver failure (ALF) is a rare, rapidly evolving, clinical syndrome with devastating consequences where definitive treatment is by emergency liver transplantation. Establishing a diagnosis can be challenging and, historically, the cause of ALF was unidentified in up to half of children. However, recent technological and clinical advances in genomic medicine have led to an increasing proportion being diagnosed with monogenic aetiologies of ALF. The conditions encountered include a diverse group of inherited metabolic disorders each with prognostic and treatment implications. Often these disorders are clinically indistinguishable and may even mimic disorders of immune regulation or red cell disorders. Rapid genomic sequencing for children with ALF is, therefore, a key component in the diagnostic work up today. This review focuses on the monogenic aetiologies of ALF.
Collapse
Affiliation(s)
- Robert Hegarty
- Paediatric Liver, GI and Nutrition Centre, King's College Hospital, London, UK
- Institute of Liver Studies, King's College London, London, UK
| | - Richard J Thompson
- Paediatric Liver, GI and Nutrition Centre, King's College Hospital, London, UK
- Institute of Liver Studies, King's College London, London, UK
| |
Collapse
|
2
|
Khan MQ, Hassan S, Lizaola-Mayo BC, Bhat M, Watt KD. Navigating the "specific etiology" steatohepatitis category: Evaluation and management of nonalcoholic/nonmetabolic dysfunction-associated steatohepatitis. Hepatology 2023:01515467-990000000-00637. [PMID: 37939197 DOI: 10.1097/hep.0000000000000674] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Affiliation(s)
- Mohammad Qasim Khan
- Department of Internal Medicine, Division of Gastroenterology, University of Western Ontario, London, Ontario, Canada
| | - Sara Hassan
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| | - Blanca C Lizaola-Mayo
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Phoenix, Arizona, USA
| | - Mamatha Bhat
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Toronto, Toronto, Ontario, Canada
| | - Kymberly D Watt
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Squires JE, Miethke AG, Valencia CA, Hawthorne K, Henn L, Van Hove JL, Squires RH, Bove K, Horslen S, Kohli R, Molleston JP, Romero R, Alonso EM, Bezerra JA, Guthery SL, Hsu E, Karpen SJ, Loomes KM, Ng VL, Rosenthal P, Mysore K, Wang KS, Friederich MW, Magee JC, Sokol RJ. Clinical spectrum and genetic causes of mitochondrial hepatopathy phenotype in children. Hepatol Commun 2023; 7:e0139. [PMID: 37184518 PMCID: PMC10187840 DOI: 10.1097/hc9.0000000000000139] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/19/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Alterations in both mitochondrial DNA (mtDNA) and nuclear DNA genes affect mitochondria function, causing a range of liver-based conditions termed mitochondrial hepatopathies (MH), which are subcategorized as mtDNA depletion, RNA translation, mtDNA deletion, and enzymatic disorders. We aim to enhance the understanding of pathogenesis and natural history of MH. METHODS We analyzed data from patients with MH phenotypes to identify genetic causes, characterize the spectrum of clinical presentation, and determine outcomes. RESULTS Three enrollment phenotypes, that is, acute liver failure (ALF, n = 37), chronic liver disease (Chronic, n = 40), and post-liver transplant (n = 9), were analyzed. Patients with ALF were younger [median 0.8 y (range, 0.0, 9.4) vs 3.4 y (0.2, 18.6), p < 0.001] with fewer neurodevelopmental delays (40.0% vs 81.3%, p < 0.001) versus Chronic. Comprehensive testing was performed more often in Chronic than ALF (90.0% vs 43.2%); however, etiology was identified more often in ALF (81.3% vs 61.1%) with mtDNA depletion being most common (ALF: 77% vs Chronic: 41%). Of the sequenced cohort (n = 60), 63% had an identified mitochondrial disorder. Cluster analysis identified a subset without an underlying genetic etiology, despite comprehensive testing. Liver transplant-free survival was 40% at 2 years (ALF vs Chronic, 16% vs 65%, p < 0.001). Eighteen (21%) underwent transplantation. With 33 patient-years of follow-up after the transplant, 3 deaths were reported. CONCLUSIONS Differences between ALF and Chronic MH phenotypes included age at diagnosis, systemic involvement, transplant-free survival, and genetic etiology, underscoring the need for ultra-rapid sequencing in the appropriate clinical setting. Cluster analysis revealed a group meeting enrollment criteria but without an identified genetic or enzymatic diagnosis, highlighting the need to identify other etiologies.
Collapse
Affiliation(s)
- James E. Squires
- UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - C. Alexander Valencia
- Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Interpath Laboratory, Pendleton, Oregon, USA
| | - Kieran Hawthorne
- Arbor Research Collaborative for Health, Ann Arbor, Michigan, USA
| | - Lisa Henn
- Arbor Research Collaborative for Health, Ann Arbor, Michigan, USA
| | - Johan L.K. Van Hove
- University of Colorado School of Medicine, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Robert H. Squires
- UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kevin Bove
- Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Simon Horslen
- UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rohit Kohli
- Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Jean P. Molleston
- Indiana University-Riley Hospital for Children, Indianapolis, Indiana, USA
| | - Rene Romero
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Estella M. Alonso
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Jorge A. Bezerra
- Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Stephen L. Guthery
- University of Utah School of Medicine, Primary Children’s Hospital, Salt Lake City, Utah, USA
| | - Evelyn Hsu
- University of Washington School of Medicine and Seattle Children’s Hospital, Seattle, Washington, USA
| | - Saul J. Karpen
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kathleen M. Loomes
- The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Vicky L. Ng
- Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | | - Krupa Mysore
- Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Kasper S. Wang
- Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Marisa W. Friederich
- University of Colorado School of Medicine, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - John C. Magee
- University of Michigan Hospitals and Health Centers, Ann Arbor, Michigan, USA
| | - Ronald J. Sokol
- University of Colorado School of Medicine, Children’s Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
4
|
Yildiz Y, Tokatli A. Comment on the "NASPGHAN Position Paper on the Diagnosis and Management of Pediatric Acute Liver Failure". J Pediatr Gastroenterol Nutr 2022; 74:e130. [PMID: 35149645 DOI: 10.1097/mpg.0000000000003408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yilmaz Yildiz
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
5
|
Squires JE, Alonso EM, Ibrahim SH, Kasper V, Kehar M, Martinez M, Squires RH. North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition Position Paper on the Diagnosis and Management of Pediatric Acute Liver Failure. J Pediatr Gastroenterol Nutr 2022; 74:138-158. [PMID: 34347674 DOI: 10.1097/mpg.0000000000003268] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ABSTRACT Pediatric acute liver failure (PALF) is a rare, rapidly progressive clinical syndrome with significant morbidity and mortality. The phenotype of PALF manifests as abrupt onset liver dysfunction, which can be brought via disparate etiology. Management is reliant upon intensive clinical care and support, often provided by the collaborative efforts of hepatologists, critical care specialists, and liver transplant surgeons. The construction of an age-based diagnostic approach, the identification of a potential underlying cause, and the prompt implementation of appropriate therapy can be lifesaving; however, the dynamic and rapidly progressive nature of PALF also demands that diagnostic inquiries be paired with monitoring strategies for the recognition and treatment of common complications of PALF. Although liver transplantation can provide a potential life-saving therapeutic option, the ability to confidently determine the certainness that liver transplant is needed for an individual child has been hampered by a lack of adequately tested clinical decision support tools and accurate predictive models. Given the accelerated progress in understanding PALF, we will provide clinical guidance to pediatric gastroenterologists and other pediatric providers caring for children with PALF by presenting the most recent advances in diagnosis, management, pathophysiology, and associated outcomes.
Collapse
Affiliation(s)
- James E Squires
- Division of Gastroenterology, Hepatology and Nutrition, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Estella M Alonso
- Department Pediatric Hepatology, Ann and Robert H Lurie Children's Hospital, Chicago, Illinois, USA
| | - Samar H Ibrahim
- Department of Pediatrics, Division of Pediatric Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Vania Kasper
- Division of Pediatric Gastroenterology, Nutrition and Liver Diseases, Hasbro Children's Hospital, Providence, RI
| | - Mohit Kehar
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Mercedes Martinez
- Department of Pediatrics, Vagelos College of Physician and Surgeons, Columbia University, New York, NY
| | - Robert H Squires
- Division of Gastroenterology, Hepatology and Nutrition, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
6
|
Abstract
Fatty acid oxidation disorders (FAOD) are a group of rare, autosomal recessive, metabolic disorders caused by variants of the genes for the enzymes and proteins involved in the transport and metabolism of fatty acids in the mitochondria. Those affected by FAOD are unable to convert fatty acids into tricarboxylic acid cycle intermediates such as acetyl-coenzyme A, resulting in decreased adenosine triphosphate and glucose for use as energy in a variety of high-energy-requiring organ systems. Signs and symptoms may manifest in infants but often also appear in adolescents or adults during times of increased metabolic demand, such as fasting, physiologic stress, and prolonged exercise. Patients with FAOD present with a highly heterogeneous clinical spectrum. The most common clinical presentations include hypoketotic hypoglycemia, liver dysfunction, cardiomyopathy, rhabdomyolysis, and skeletal myopathy, as well as peripheral neuropathy and retinopathy in some subtypes. Despite efforts to detect FAOD through newborn screening and manage patients early, symptom onset can be sudden and serious, even resulting in death. Therefore, it is critical to identify quickly and accurately the key signs and symptoms of patients with FAOD to manage metabolic decompensations and prevent serious comorbidities.
Collapse
Affiliation(s)
| | - Erin MacLeod
- Children's National Hospital, Washington, DC, USA
| | | | - Bryan Hainline
- Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
7
|
Kwong S, Meyerson C, Zheng W, Kassardjian A, Stanzione N, Zhang K, Wang HL. Acute hepatitis and acute liver failure: Pathologic diagnosis and differential diagnosis. Semin Diagn Pathol 2019; 36:404-414. [PMID: 31405537 DOI: 10.1053/j.semdp.2019.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute hepatitis and acute liver failure are severe medical conditions that require early clinical intervention. Histopathologic findings on a liver biopsy or a liver explant may help identify the underlying etiology or provide an important direction for further clinical, laboratory and radiographical investigation. This review is divided into two main portions. The first portion concentrates on various etiologies and discusses unique histologic features that can be associated with specific etiologies. The second portion describes the general morphologic features based on which the diagnosis of acute hepatitis and acute liver failure are made. Histopathologic distinction between collapse and cirrhosis and limitations of histopathologic assessment for underlying etiologies are addressed in this portion. Another focus of this review is non-necrotic acute liver failure, which typically features diffuse microvesicular steatosis secondary to various etiologies causing mitochondrial dysfunction. Molecular testing serves an increasingly important role in the diagnosis and management of this group of disorders.
Collapse
Affiliation(s)
- Stanley Kwong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095, United States.
| | - Cherise Meyerson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095, United States
| | - Wei Zheng
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095, United States
| | - Ari Kassardjian
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095, United States
| | - Nicholas Stanzione
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095, United States
| | - Kuixing Zhang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095, United States
| | - Hanlin L Wang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095, United States.
| |
Collapse
|
8
|
Hegarty R, Deheragoda M, Fitzpatrick E, Dhawan A. Paediatric fatty liver disease (PeFLD): All is not NAFLD - Pathophysiological insights and approach to management. J Hepatol 2018; 68:1286-1299. [PMID: 29471012 DOI: 10.1016/j.jhep.2018.02.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 12/14/2022]
Abstract
The recognition of a pattern of steatotic liver injury where histology mimicked alcoholic liver disease, but alcohol consumption was denied, led to the identification of non-alcoholic fatty liver disease (NAFLD). Non-alcoholic fatty liver disease has since become the most common chronic liver disease in adults owing to the global epidemic of obesity. However, in paediatrics, the term NAFLD seems incongruous: alcohol consumption is largely not a factor and inherited metabolic disorders can mimic or co-exist with a diagnosis of NAFLD. The term paediatric fatty liver disease may be more appropriate. In this article, we summarise the known causes of steatosis in children according to their typical, clinical presentation: i) acute liver failure; ii) neonatal or infantile jaundice; iii) hepatomegaly, splenomegaly or hepatosplenomegaly; iv) developmental delay/psychomotor retardation and perhaps most commonly; v) the asymptomatic child with incidental discovery of abnormal liver enzymes. We offer this model as a means to provide pathophysiological insights and an approach to management of the ever more complex subject of fatty liver.
Collapse
Affiliation(s)
- Robert Hegarty
- Paediatric Liver, GI and Nutrition Centre and Mowatlabs, King's College Hospital, London, United Kingdom
| | - Maesha Deheragoda
- Liver Histopathology, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Emer Fitzpatrick
- Paediatric Liver, GI and Nutrition Centre and Mowatlabs, King's College Hospital, London, United Kingdom
| | - Anil Dhawan
- Paediatric Liver, GI and Nutrition Centre and Mowatlabs, King's College Hospital, London, United Kingdom.
| |
Collapse
|
9
|
Pawlak M, Baugé E, Lalloyer F, Lefebvre P, Staels B. Ketone Body Therapy Protects From Lipotoxicity and Acute Liver Failure Upon Pparα Deficiency. Mol Endocrinol 2015; 29:1134-43. [PMID: 26087172 DOI: 10.1210/me.2014-1383] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Acute liver failure (ALF) is a severe and rapid liver injury, often occurring without any preexisting liver disease, which may precipitate multiorgan failure and death. ALF is often associated with impaired β-oxidation and increased oxidative stress (OS), characterized by elevated levels of hepatic reactive oxygen species (ROS) and lipid peroxidation (LPO) products. Peroxisome proliferator-activated receptor (PPAR)α has been shown to confer hepatoprotection in acute and chronic liver injury, at least in part, related to its ability to control peroxisomal and mitochondrial β-oxidation. To study the pathophysiological role of PPARα in hepatic response to high OS, we induced a pronounced LPO by treating wild-type and Pparα-deficient mice with high doses of fish oil (FO), containing n-3 polyunsaturated fatty acids. FO feeding of Pparα-deficient mice, in contrast to control sunflower oil, surprisingly induced coma and death due to ALF as indicated by elevated serum alanine aminotransferase, aspartate aminotransferase, ammonia, and a liver-specific increase of ROS and LPO-derived malondialdehyde. Reconstitution of PPARα specifically in the liver using adeno-associated serotype 8 virus-PPARα in Pparα-deficient mice restored β-oxidation and ketogenesis and protected mice from FO-induced lipotoxicity and death. Interestingly, administration of the ketone body β-hydroxybutyrate prevented FO-induced ALF in Pparα-deficient mice, and normalized liver ROS and malondialdehyde levels. Therefore, PPARα protects the liver from FO-induced OS through its regulatory actions on ketone body levels. β-Hydroxybutyrate treatment could thus be an option to prevent LPO-induced liver damage.
Collapse
Affiliation(s)
- Michal Pawlak
- European Genomic Institute for Diabetes, Inserm UMR1011, and University Lille, F-59000 Lille Cédex, France; and Institut Pasteur de Lille, F-59019 Lille Cédex, France
| | - Eric Baugé
- European Genomic Institute for Diabetes, Inserm UMR1011, and University Lille, F-59000 Lille Cédex, France; and Institut Pasteur de Lille, F-59019 Lille Cédex, France
| | - Fanny Lalloyer
- European Genomic Institute for Diabetes, Inserm UMR1011, and University Lille, F-59000 Lille Cédex, France; and Institut Pasteur de Lille, F-59019 Lille Cédex, France
| | - Philippe Lefebvre
- European Genomic Institute for Diabetes, Inserm UMR1011, and University Lille, F-59000 Lille Cédex, France; and Institut Pasteur de Lille, F-59019 Lille Cédex, France
| | - Bart Staels
- European Genomic Institute for Diabetes, Inserm UMR1011, and University Lille, F-59000 Lille Cédex, France; and Institut Pasteur de Lille, F-59019 Lille Cédex, France
| |
Collapse
|
10
|
Teufel U, Weitz J, Flechtenmacher C, Prietsch V, Schmidt J, Hoffmann GF, Kölker S, Engelmann G. High urgency liver transplantation in ornithine transcarbamylase deficiency presenting with acute liver failure. Pediatr Transplant 2011; 15:E110-5. [PMID: 21884343 DOI: 10.1111/j.1399-3046.2009.01171.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OTCD can present with ALF at any age. Under adequate therapy symptoms resolve quickly. We report a three-yr-old girl with the manifestation of an OTCD as ALF. Despite adequate pharmacotherapy and protein restriction, the patient deteriorated and developed hepatic encephalopathy. A high urgency liver transplantation was performed and the patient recovered completely. We conclude that in patients with ALF urea cycle defects in general and OTCD in particular should be considered as differential diagnosis. Patients should be managed in a center that has the capacity for an emergency liver transplantation.
Collapse
Affiliation(s)
- Ulrike Teufel
- Department of General Pediatrics, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Black DD. The continuing challenge of "indeterminate" acute liver failure in children. J Pediatr 2009; 155:769-70. [PMID: 19914425 DOI: 10.1016/j.jpeds.2009.07.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 07/29/2009] [Indexed: 01/07/2023]
|
12
|
James LP, Alonso EM, Hynan LS, Hinson JA, Davern TJ, Lee WM, Squires RH. Detection of acetaminophen protein adducts in children with acute liver failure of indeterminate cause. Pediatrics 2006; 118:e676-81. [PMID: 16950959 DOI: 10.1542/peds.2006-0069] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Acetaminophen cysteine protein adducts are a widely recognized correlate of acetaminophen-mediated hepatic injury in laboratory animals. The objective of this study was to use a new assay for the detection of acetaminophen cysteine protein adducts in children with acute liver failure to determine the role of acetaminophen toxicity in acute liver failure of unknown cause. METHODS Serum samples from children with acute liver failure were measured for acetaminophen cysteine protein adducts using high-performance liquid chromatography with electrochemical detection. For comparison, samples from children with well-characterized acetaminophen toxicity and children with known other causes of acute liver failure also were measured for acetaminophen cysteine protein adducts. The analytical laboratory was blinded to patient diagnoses. RESULTS Acetaminophen cysteine protein adduct was detected in 90% of samples from children with acute liver failure that was attributed to acetaminophen toxicity, 12.5% of samples from children with acute liver failure of indeterminate cause, and 9.6% of samples from children with acute liver failure that was attributed to other causes. Adduct-positive patients from the indeterminate cause subgroup had higher levels of serum aspartate aminotransferase and alanine aminotransferase and lower levels of bilirubin. Adduct-positive patients also had lower rates of transplantation and higher rates of spontaneous remission. CONCLUSIONS A small but significant percentage of children with acute liver failure of indeterminate cause tested positive for acetaminophen cysteine protein adducts, strongly suggesting acetaminophen toxicity as the cause of acute liver failure. An assay for the detection of acetaminophen cysteine protein adducts can aid the diagnosis of acetaminophen-related liver injury in children.
Collapse
Affiliation(s)
- Laura P James
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Publications concerning liver histopathology in fatty liver disease and chronic hepatitis C, iron and copper overload, and liver transplantation from the past year have been surveyed to highlight useful concepts and diagnostic information. RECENT FINDINGS Two microscopic forms of pediatric nonalcoholic steatohepatitis have been described: type 1 in which hepatocyte ballooning and/or pericellular fibrosis accompany the steatosis; and type 2 which has portal tract inflammation and/or fibrosis as the salient accompanying feature. In chronic hepatitis C, the ductular reaction appears to be a major factor associated with fibrosis. In patients transplanted for hepatitis C virus-related cirrhosis, immunostaining of post-transplant liver biopsies for alpha-smooth muscle actin (i.e. in activated hepatic stellate cells) may identify those individuals at risk for severe recurrence. Clinicopathological papers on several forms of non-HFE hemochromatosis were published and Wilson's disease was described in individuals of 60 years or more in age. Cholestasis in childhood was expertly reviewed and histopathologic precursor lesions of hepatocellular carcinoma were also examined in a comprehensive article. SUMMARY Recent publications with impact on liver biopsy interpretation include a morphologic classification of nonalcoholic steatohepatitis in childhood, the differential diagnosis of childhood cholestasis and pathogenetic factors involved in fibrogenesis in chronic hepatitis C.
Collapse
Affiliation(s)
- Jay H Lefkowitch
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
14
|
Abstract
1. The interplay of four factors determines the outcome in Acute Liver Failure (ALF). Current criteria used for prognosis address each of these factors. a. Hepatic regeneration: Age, poor prognostic etiologies (drug, idiopathic ALF), b. Hepatocellular failure: INR, Bilirubin, c. Encephalopathy and brain edema: Stage III/IV, hyperacute vs acute/subacute, d. Multiorgan failure (MOF): pH. 2. In hyperacute liver failure, exemplified by acetaminophen-induced injury, prognostic criteria have focused on the course of encephalopathy and of multiorgan failure. In non-acetaminophen induced ALF, prognostic criteria reflect a greater role of hepatic regeneration in outcome. 3. Prognostic indices combine features of these four factors. The Kings College criteria (KCC) have been shown to have a better performance than the Clichy criteria. The KCC appear to have a higher specificity than sensitivity for acetaminophen-induced ALF, while its negative predictive value for non-acetaminophen induced ALF is unfortunately low. 4. Newer prognostic markers have been proposed, including serum phosphate and alpha fetoprotein as markers of regeneration and blood lactate, a reflection of MOF and hepatocellular failure. They are likely to complement the KCC rather than replace them. 5. Clinical judgement is still needed to weigh management options in this disease.
Collapse
Affiliation(s)
- Andres T Blei
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|