1
|
Pathophysiology of Portal Hypertension. PANVASCULAR MEDICINE 2015. [PMCID: PMC7153457 DOI: 10.1007/978-3-642-37078-6_144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The bases of our current knowledge on the physiology of the hepatic portal system are largely owed to the work of three pioneering vascular researchers from the sixteenth and the seventeenth centuries: A. Vesalius, W. Harvey, and F. Glisson. Vesalius is referred to as the founder of modern human anatomy, and in his influential book, De humani corporis fabrica libri septem, he elaborated the first anatomical atlas of the hepatic portal venous system (Vesalius 2013). Sir William Harvey laid the foundations of modern cardiovascular research with his Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus (Harvey 1931) in which he established the nature of blood circulation. Finally, F. Glisson characterized the gastrointestinal-hepatic vascular system (Child 1955). These physiological descriptions were later complemented with clinical observations. In the eighteenth and nineteenth centuries, Morgagni, Puckelt, Cruveilhier, and Osler were the first to make the connection between common hepatic complications – ascites, splenomegaly, and gastrointestinal bleeding – and obstruction of the portal system (Sandblom 1993). These were the foundations that allowed Gilbert, Villaret, and Thompson to establish an early definition of portal hypertension at the beginning of the twentieth century. In this period, Thompson performed the first direct measurement of portal pressure by laparotomy in some patients (Gilbert and Villaret 1906; Thompson et al. 1937). Considering all these milestones, and paraphrasing Sir Isaac Newton, if hepatologists have seen further, it is by standing on the shoulders of giants. Nowadays, our understanding of the pathogenesis of portal hypertension has largely improved thanks to the progress in preclinical and clinical research. However, this field is ever-changing and hepatologists are continually identifying novel pathological mechanisms and developing new therapeutic strategies for this clinical condition. Hence, the aim of this chapter is to summarize the current knowledge about this clinical condition.
Collapse
|
2
|
Guillot A, Hamdaoui N, Bizy A, Zoltani K, Souktani R, Zafrani ES, Mallat A, Lotersztajn S, Lafdil F. Cannabinoid receptor 2 counteracts interleukin-17-induced immune and fibrogenic responses in mouse liver. Hepatology 2014; 59:296-306. [PMID: 23813495 DOI: 10.1002/hep.26598] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 06/17/2013] [Indexed: 12/19/2022]
Abstract
UNLABELLED Interleukin (IL)-17 is a proinflammatory and fibrogenic cytokine mainly produced by T-helper (Th)17 lymphocytes, together with the hepatoprotective and antifibrogenic cytokine, IL-22. Cannabinoid receptor 2 (CB2) is predominantly expressed in immune cells and displays anti-inflammatory and antifibrogenic effects. In the present study, we further investigated the mechanism underlying antifibrogenic properties of CB2 receptor and explored its effect on the profibrogenic properties of IL-17. After bile duct ligation (BDL), the hepatic expression of Th17 markers and IL-17 production were enhanced in CB2(-/-) mice, as compared to wild-type (WT) counterparts, and correlated with increased fibrosis in these animals. In contrast, IL-22-induced expression was similar in both animal groups. Inhibition of Th17 differentiation by digoxin lowered Th17 marker gene expression and IL-17 production and strongly reduced liver fibrosis in CB2(-/-) BDL mice. In vitro, differentiation of CD4(+) naïve T cells into Th17 lymphocytes was decreased by the CB2 agonist, JWH-133, and was associated with reduced Th17 marker messenger RNA expression and IL-17 production, without modification of IL-22 release. The inhibitory effect of JWH-133 on IL-17 production relied on signal transducer and activator of transcription (STAT)5 phosphorylation. Indeed, STAT5 phosphorylation and translocation into the nucleus was enhanced in JWH133-treated Th17 lymphocytes, and the addition of a STAT5 inhibitor reversed the inhibitory effect of the CB2 agonist on IL-17 production, without affecting IL-22 levels. Finally, in vitro studies also demonstrated that CB2 receptor activation in macrophages and hepatic myofibroblasts blunts IL-17-induced proinflammatory gene expression. CONCLUSION These data demonstrate that CB2 receptor activation decreases liver fibrosis by selectively reducing IL-17 production by Th17 lymphocytes via a STAT5-dependent pathway, and by blunting the proinflammatory effects of IL-17 on its target cells, while preserving IL-22 production.
Collapse
Affiliation(s)
- Adrien Guillot
- Inserm, U955, Créteil, France; Université Paris-Est, Faculté de Médecine, UMR-S955, Créteil, France
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Glaser S, Onori P, Wise C, Yang F, Marzioni M, Alvaro D, Franchitto A, Mancinelli R, Alpini G, Munshi MK, Gaudio E. Recent advances in the regulation of cholangiocyte proliferation and function during extrahepatic cholestasis. Dig Liver Dis 2010; 42:245-52. [PMID: 20153989 PMCID: PMC2836402 DOI: 10.1016/j.dld.2010.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 01/08/2010] [Indexed: 12/11/2022]
Abstract
Bile duct epithelial cells (i.e., cholangiocytes), which line the intrahepatic biliary epithelium, are the target cells in a number of human cholestatic liver diseases (termed cholangiopathies). Cholangiocyte proliferation and death is present in virtually all human cholangiopathies. A number of recent studies have provided insights into the key mechanisms that regulate the proliferation and function of cholangiocytes during the pathogenesis of cholestatic liver diseases. In our review, we have summarised the most important of these recent studies over the past 3 years with a focus on those performed in the animal model of extrahepatic bile duct ligation. In the first part of the review, we provide relevant background on the biliary ductal system. We then proceed with a general discussion of the factors regulating biliary proliferation performed in the cholestatic animal model of bile duct ligation. Further characterisation of the factors that regulate cholangiocyte proliferation and function will help in elucidating the mechanisms regulating the pathogenesis of biliary tract diseases in humans and in devising new treatment approaches for these devastating diseases.
Collapse
Affiliation(s)
- S.S. Glaser
- Digestive Disease Research Center, Scott & White, TX, United States, Department of Medicine, Division of Gastroenterology, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, TX, United States,* Corresponding author at: Digestive Disease Research Center, Texas A&M Health Science Center, 702 SW H.K. Dodgen Loop, Temple, TX 76504, United States. Tel.: +1 254 742 7058; fax: +1 254 724 5944. ** Corresponding author at: Department of Human Anatomy, University of Rome “La Sapienza”, Via Alfonso Borelli 50 00161 Rome, Rome 00161, Italy. Tel.: +39 06 4991 8060; fax: +39 06 4991 8062
| | - P. Onori
- Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy
| | - C. Wise
- Department of Medicine, Division of Gastroenterology, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | - F. Yang
- Department of Medicine, Division of Gastroenterology, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, TX, United States, Shengjing Hospital, China Medical University, Shenyang City, Liaoning Province, China
| | - M. Marzioni
- Department of Gastroenterology, Universita' Politecnica delle Marche, Ancona, Italy
| | - D. Alvaro
- Gastroenterology, University of Rome “La Sapienza”, Rome, Italy
| | - A. Franchitto
- Department of Human Anatomy, University of Rome “La Sapienza”, Rome, Italy
| | - R. Mancinelli
- Department of Human Anatomy, University of Rome “La Sapienza”, Rome, Italy
| | - G. Alpini
- Digestive Disease Research Center, Scott & White, TX, United States, Department of Medicine, Division of Gastroenterology, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, TX, United States, Central Texas Veterans Health Care System, Temple, TX, United States
| | - Md. K. Munshi
- Department of Medicine, Division of Gastroenterology, Scott & White and Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | - E. Gaudio
- Department of Human Anatomy, University of Rome “La Sapienza”, Rome, Italy,* Corresponding author at: Digestive Disease Research Center, Texas A&M Health Science Center, 702 SW H.K. Dodgen Loop, Temple, TX 76504, United States. Tel.: +1 254 742 7058; fax: +1 254 724 5944. ** Corresponding author at: Department of Human Anatomy, University of Rome “La Sapienza”, Via Alfonso Borelli 50 00161 Rome, Rome 00161, Italy. Tel.: +39 06 4991 8060; fax: +39 06 4991 8062
| |
Collapse
|
4
|
[Endogenous cannabinoids in liver disease: Many darts for a single target]. GASTROENTEROLOGIA Y HEPATOLOGIA 2009; 33:323-9. [PMID: 19758727 DOI: 10.1016/j.gastrohep.2009.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 06/29/2009] [Indexed: 11/24/2022]
Abstract
Endogenous cannabinoids are ubiquitous lipid-signaling molecules able to partially mimic the actions produced by Delta(9)-tetrahydrocannabinol, the compound responsible for most of the psychological effects of marijuana. Endocannabinoids are derived from arachidonic acid and are involved in many physiological effects. This family of substances includes anandamide (arachidonylethanolamide), 2-arachydonylglycerol, noladin ether and virodhamine. The interaction of these substances with CB1 and CB2 receptors results in most of their biological effects. The endocannabinoid system is involved in the pathogenesis of the cardiovascular dysfunction occurring in advanced liver disease and also plays a role in the pathogenesis of portal hypertension and liver fibrosis. Moreover, this system is also altered in other processes associated with hepatic dysfunction, including encephalopathy, obesity and steatosis. These findings indicate that the endocannabinoid system may open new avenues for the therapeutic regulation of fibrosis and portal hypertension in advanced liver disease.
Collapse
|
5
|
Endocannabinoids anandamide and its cannabinoid receptors in liver fibrosis after murine schistosomiasis. ACTA ACUST UNITED AC 2009; 29:182-6. [DOI: 10.1007/s11596-009-0209-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Indexed: 01/16/2023]
|
6
|
Principe A, Melgar-Lesmes P, Fernández-Varo G, del Arbol LR, Ros J, Morales-Ruiz M, Bernardi M, Arroyo V, Jiménez W. The hepatic apelin system: a new therapeutic target for liver disease. Hepatology 2008; 48:1193-201. [PMID: 18816630 DOI: 10.1002/hep.22467] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED Apelin is a peptide that plays an important role in heart physiology and pathophysiology, inflammation, and angiogenesis. We evaluated whether the endogenous apelin system is involved in the pathogenesis of the hepatic remodeling and cardiovascular and renal complications occurring in advanced liver disease. The circulating levels of apelin, the messenger RNA (mRNA) and protein expression of apelin and apelin receptor, the immunohistological detection of apelin and apelin receptor, and the effects induced by the chronic administration of an apelin receptor antagonist on fibrosis and vessel density were evaluated in rats with cirrhosis and ascites and in control rats. The serum levels of apelin in patients with cirrhosis were also measured. Apelin levels were higher in rats with cirrhosis than in controls. Apelin mRNA showed a four-fold rise only in hepatic tissue, but not in the lung, heart, or kidney of rats with cirrhosis. These animals also showed hepatic apelin receptor mRNA levels 300 times higher than controls. Apelin was highly expressed by stellate cells, whereas apelin receptor was overexpressed in the hepatic parenchyma of animals with cirrhosis. Rats with cirrhosis treated with the apelin receptor antagonist showed diminished hepatic fibrosis and vessel density, improved cardiovascular performance, and renal function and lost ascites. Human patients also showed a marked increase in apelin levels. CONCLUSION The selective hepatic activation of the apelin system, together with the drop in fibrosis and neoangiogenesis and the improvement in cardiovascular and excretory function resulting from apelin receptor blockade, points to the hepatic apelin system as a novel therapeutic target in liver disease.
Collapse
Affiliation(s)
- Alessandro Principe
- Biochemistry and Molecular Genetics Service, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wustrow DJ, Maynard GD, Yuan J, Zhao H, Mao J, Guo Q, Kershaw M, Hammer J, Brodbeck RM, Near KE, Zhou D, Beers DS, Chenard BL, Krause JE, Hutchison AJ. Aminopyrazine CB1 receptor inverse agonists. Bioorg Med Chem Lett 2008; 18:3376-81. [PMID: 18448340 DOI: 10.1016/j.bmcl.2008.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 04/09/2008] [Accepted: 04/10/2008] [Indexed: 10/22/2022]
Abstract
A series of 5,6-diaryl-2-amino-pyrazines were prepared and found to have antagonist-like properties at the CB1 receptor. Subsequent SAR studies optimized both receptor potency and drug-like properties including solubility and Cytochrome-P450 inhibition potential. Optimized compounds were demonstrated to be inverse agonists and compared in vivo with rimonabant for their ability to inhibit food intake, to occupy central CB1 receptors and to influence hormonal markers associated with obesity.
Collapse
Affiliation(s)
- David J Wustrow
- Neurogen Corporation, 35 Northeast Industrial Road, Branford CT 06405, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
DeMorrow S, Francis H, Gaudio E, Ueno Y, Venter J, Onori P, Franchitto A, Vaculin B, Vaculin S, Alpini G. Anandamide inhibits cholangiocyte hyperplastic proliferation via activation of thioredoxin 1/redox factor 1 and AP-1 activation. Am J Physiol Gastrointest Liver Physiol 2008; 294:G506-19. [PMID: 18096608 DOI: 10.1152/ajpgi.00304.2007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The endocannabinoid system regulates various aspects of hepatic fibrosis; however, nothing is known about its role in regulating cholangiocyte proliferation and function. We evaluated the effects of anandamide (AEA) on cholangiocyte proliferation and explored the effects of AEA on the thioredoxin 1 (TRX1)/redox factor 1 (Ref1)/activator protein-1 (AP-1) pathway. Mice underwent bile duct ligation (BDL) and were infused with AEA for 3 days postsurgery. Proliferation and apoptosis were evaluated in liver sections. Effects of in vitro AEA treatment on cholangiocyte proliferation and apoptosis were studied in purified cholangiocytes. The relative expression of cannabinoid receptors was also assessed in liver sections and cholangiocytes. mRNA expression of the cannabinoid receptors Cb1 and VR1 was decreased after BDL, whereas there was an upregulation of Cb2 mRNA. AEA decreased cholangiocyte growth and induced accumulation of reactive oxygen species, upregulation of TRX1, Ref1, c-Fos, and c-Jun expression, increased nuclear localization of TRX1, and increased AP-1 transcriptional activity. Specific knockdown of TRX1 or Ref1 expression ablated the AP-1 transcriptional activity and AEA-induced cell death but not expression of c-Fos and c-Jun. Knockdown of c-Fos and c-Jun expression also ablated AEA-induced apoptosis. We conclude that AEA suppresses cholangiocyte proliferation during cholestasis via a Cb2-dependent mechanism. Modulation of the endocannabinoid system may be important in the treatment of cholangiopathies.
Collapse
Affiliation(s)
- Sharon DeMorrow
- Division of Research and Education, Scott & White Hospital, Temple, TX 76504, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The hepatic stellate cell has surprised and engaged physiologists, pathologists, and hepatologists for over 130 years, yet clear evidence of its role in hepatic injury and fibrosis only emerged following the refinement of methods for its isolation and characterization. The paradigm in liver injury of activation of quiescent vitamin A-rich stellate cells into proliferative, contractile, and fibrogenic myofibroblasts has launched an era of astonishing progress in understanding the mechanistic basis of hepatic fibrosis progression and regression. But this simple paradigm has now yielded to a remarkably broad appreciation of the cell's functions not only in liver injury, but also in hepatic development, regeneration, xenobiotic responses, intermediary metabolism, and immunoregulation. Among the most exciting prospects is that stellate cells are essential for hepatic progenitor cell amplification and differentiation. Equally intriguing is the remarkable plasticity of stellate cells, not only in their variable intermediate filament phenotype, but also in their functions. Stellate cells can be viewed as the nexus in a complex sinusoidal milieu that requires tightly regulated autocrine and paracrine cross-talk, rapid responses to evolving extracellular matrix content, and exquisite responsiveness to the metabolic needs imposed by liver growth and repair. Moreover, roles vital to systemic homeostasis include their storage and mobilization of retinoids, their emerging capacity for antigen presentation and induction of tolerance, as well as their emerging relationship to bone marrow-derived cells. As interest in this cell type intensifies, more surprises and mysteries are sure to unfold that will ultimately benefit our understanding of liver physiology and the diagnosis and treatment of liver disease.
Collapse
Affiliation(s)
- Scott L Friedman
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York 10029-6574, USA.
| |
Collapse
|
10
|
Friedman SL. Reefer madness? Assessing the effects of cannabinoids with a less jaundiced eye. J Hepatol 2007; 46:180-2. [PMID: 17107732 DOI: 10.1016/j.jhep.2006.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Scott L Friedman
- Division of Liver Diseases, Mount Sinai School of Medicine, Box 1123, Mount Sinai School of Medicine, 1425 Madison Avenue, Room 11-70C, New York, NY, USA.
| |
Collapse
|
11
|
Muddu AK, Guha IN, Elsharkawy AM, Mann DA. Resolving fibrosis in the diseased liver: translating the scientific promise to the clinic. Int J Biochem Cell Biol 2006; 39:695-714. [PMID: 17110155 DOI: 10.1016/j.biocel.2006.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 10/03/2006] [Accepted: 10/04/2006] [Indexed: 01/18/2023]
Abstract
Liver fibrosis and its end-stage disease cirrhosis are a major cause of mortality and morbidity throughout the world. Fibrosis is a response to chronic liver injury or infection that if unabated leads to the replacement of normal functional liver tissue with scar tissue. Basic research over the past decade has generated a vastly improved knowledge of the cell and molecular biology of liver fibrosis that provides a framework on which to design and develop therapeutics. The field has also witnessed a genuine paradigm shift from the original dogma that liver fibrosis is only ever a progressive process, to the new understanding that liver fibrosis even in an advanced stage can be reversible. There is therefore renewed optimism that liver fibrosis may be cured providing that we develop therapies that halt the fibrogenic process and encourage the natural regenerative properties of the liver. The key to the design of effective therapeutics will be to exploit the ongoing discoveries pertaining to the biology and function of fibrogenic hepatic myofibroblasts and their interplay with other liver cells and with the hepatic extracellular matrix. This review provides a critique of those discoveries in basic research that provide the most promise for translation to the clinic. In addition, we review the latest developments in the search for minimal invasive diagnostic tests for fibrosis that will be essential for determining the efficacy of anti-fibrotic drugs.
Collapse
Affiliation(s)
- Ajay K Muddu
- Liver Group, Division of Infection, Inflammation & Repair, University of Southampton, Southampton SO16 6YD, United Kingdom
| | | | | | | |
Collapse
|
12
|
Pacher P, Bátkai S, Kunos G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 2006; 58:389-462. [PMID: 16968947 PMCID: PMC2241751 DOI: 10.1124/pr.58.3.2] [Citation(s) in RCA: 1473] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The recent identification of cannabinoid receptors and their endogenous lipid ligands has triggered an exponential growth of studies exploring the endocannabinoid system and its regulatory functions in health and disease. Such studies have been greatly facilitated by the introduction of selective cannabinoid receptor antagonists and inhibitors of endocannabinoid metabolism and transport, as well as mice deficient in cannabinoid receptors or the endocannabinoid-degrading enzyme fatty acid amidohydrolase. In the past decade, the endocannabinoid system has been implicated in a growing number of physiological functions, both in the central and peripheral nervous systems and in peripheral organs. More importantly, modulating the activity of the endocannabinoid system turned out to hold therapeutic promise in a wide range of disparate diseases and pathological conditions, ranging from mood and anxiety disorders, movement disorders such as Parkinson's and Huntington's disease, neuropathic pain, multiple sclerosis and spinal cord injury, to cancer, atherosclerosis, myocardial infarction, stroke, hypertension, glaucoma, obesity/metabolic syndrome, and osteoporosis, to name just a few. An impediment to the development of cannabinoid medications has been the socially unacceptable psychoactive properties of plant-derived or synthetic agonists, mediated by CB(1) receptors. However, this problem does not arise when the therapeutic aim is achieved by treatment with a CB(1) receptor antagonist, such as in obesity, and may also be absent when the action of endocannabinoids is enhanced indirectly through blocking their metabolism or transport. The use of selective CB(2) receptor agonists, which lack psychoactive properties, could represent another promising avenue for certain conditions. The abuse potential of plant-derived cannabinoids may also be limited through the use of preparations with controlled composition and the careful selection of dose and route of administration. The growing number of preclinical studies and clinical trials with compounds that modulate the endocannabinoid system will probably result in novel therapeutic approaches in a number of diseases for which current treatments do not fully address the patients' need. Here, we provide a comprehensive overview on the current state of knowledge of the endocannabinoid system as a target of pharmacotherapy.
Collapse
Affiliation(s)
- Pál Pacher
- Laboratory of Physiological Studies, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Room 2S-24, Bethesda, MD 20892-9413, USA
| | | | | |
Collapse
|