1
|
Lehrich BM, Delgado ER. Lipid Nanovesicle Platforms for Hepatocellular Carcinoma Precision Medicine Therapeutics: Progress and Perspectives. Organogenesis 2024; 20:2313696. [PMID: 38357804 PMCID: PMC10878025 DOI: 10.1080/15476278.2024.2313696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality globally. HCC is highly heterogenous with diverse etiologies leading to different driver mutations potentiating unique tumor immune microenvironments. Current therapeutic options, including immune checkpoint inhibitors and combinations, have achieved limited objective response rates for the majority of patients. Thus, a precision medicine approach is needed to tailor specific treatment options for molecular subsets of HCC patients. Lipid nanovesicle platforms, either liposome- (synthetic) or extracellular vesicle (natural)-derived present are improved drug delivery vehicles which may be modified to contain specific cargos for targeting specific tumor sites, with a natural affinity for liver with limited toxicity. This mini-review provides updates on the applications of novel lipid nanovesicle-based therapeutics for HCC precision medicine and the challenges associated with translating this therapeutic subclass from preclinical models to the clinic.
Collapse
Affiliation(s)
- Brandon M. Lehrich
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Evan R. Delgado
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Arrè V, Negro R, Giannelli G. The role of inflammasomes in hepatocellular carcinoma: Mechanisms and therapeutic insights. Ann Hepatol 2024:101772. [PMID: 39701280 DOI: 10.1016/j.aohep.2024.101772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
Hepatocellular carcinoma is among the most frequent forms of primary liver cancer and develops within a context of chronic inflammation, frequently associated with a multitude of risk factors, including viral infections, metabolic dysfunction-associated fatty liver disease, metabolic dysfunction-associated steatohepatitis and liver fibrosis. The tumor microenvironment is crucial for the progression of HCC, as immune cells, tumor-associated fibroblasts and hepatic stellate cells interact to promote chronic inflammation and tumor spread. Inflammasomes, the multiprotein complexes that launch the innate immune response, emerge as important mediators in the pathogenesis of HCC. Among others, the inflammasome Nucleotide-binding oligomerization domain, Leucine rich Repeat (NLR) and Pyrin (NLRP) 3 (NLRP3), and absent in melanoma 2 (AIM2), exhibit a dual role in HCC background. It has been reported that they can exert oncosuppressive functions by triggering the inflammatory death of cancer cells. Vice versa, chronic activation contributes to the development of a pro-tumorigenic environment, thus supporting tumor growth. In addition, other inflammasomes such as Nucleotide-binding oligomerization domain, Leucine rich Repeat (NLR) and Pyrin (NLRP) 6 and 12 (NLRP6 and NLRP12, respectively) regulate HCC onset and progression, although more experimental evidence is required. This review focuses on the molecular mechanisms underpinning the inflammasome's contribution to the onset, progression and spread of HCC. Moreover, we will explore the potential therapeutic approaches currently under investigation, which aim to improve the efficacy and reduce the side effects of the treatments currently available. Targeting inflammasomes may be a promising therapeutic strategy for the treatment of HCC, offering new opportunities to improve patient prognosis.
Collapse
Affiliation(s)
- Valentina Arrè
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy.
| | - Roberto Negro
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy.
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology, "S. de Bellis", IRCCS Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy.
| |
Collapse
|
3
|
Zhang W, Li N, Li J, Zhao Y, Long Y, He C, Zhang C, Li B, Zhao Y, Lai S, Ding W, Gao M, Tan L, Wei X, Yang R, Jiang X. Noninvasive identification of proliferative hepatocellular carcinoma on multiphase dynamic CT: quantitative and LI-RADS lexicon-based evaluation. Eur Radiol 2024:10.1007/s00330-024-11247-9. [PMID: 39665988 DOI: 10.1007/s00330-024-11247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/20/2024] [Accepted: 11/24/2024] [Indexed: 12/13/2024]
Abstract
OBJECTIVE To identify proliferative hepatocellular carcinoma (HCC) preoperatively using quantitative measurements combined with the updated standard 2021 LI-RADS universal lexicon-based qualitative features on multiphase dynamic CT (MDCT). METHODS We retrospectively analyzed 273 patients (102 proliferative HCCs) who underwent preoperative MDCT with surgically confirmed HCC in two medical centers. Imaging features were evaluated according to the updated 2021 LI-RADS universal lexicon, and quantitative measurements were analyzed. All MDCT findings and clinical factors were compared. Four predictive models (clinical, CT quantitative-clinical, CT qualitative-clinical, and combinational models) were developed and validated in an external cohort for identifying proliferative HCC. ROC analysis was used to assess model performances. All models were tested in a subgroup of patients with a single lesion ≤ 5 cm (n = 124). RESULTS Both the CT quantitative-clinical and CT qualitative-clinical models effectively identified proliferative HCC in the training and external validation cohorts (all AUCs > 0.79). The combinational model, integrating one clinical (AFP ≥ 200 ng/mL), three qualitative (rim arterial phase hyperenhancement (APHE), non-smooth tumor margin, and incomplete or absent capsule), and one quantitative feature (standardized tumor-to-aorta density ratio in portal venous phase ≤ (- 0.13), showed significant improvement in the training cohort (AUC 0.871) and comparable performance in the validation cohort (AUC 0.870). Additionally, AFP ≥ 200 ng/mL and Rim APHE were significantly associated with HCC recurrence (p < 0.05). CONCLUSIONS The combinational model, integrating clinical, CT quantitative, and qualitative features, shows potential for the noninvasively preoperative prediction of proliferative HCC. Further validation is needed to establish its broader clinical utility. KEY POINTS Question Preoperative identification of proliferative HCC could influence patient treatment and prognosis, yet there is no CT-based universally applicable model to identify this subtype. Findings The updated standard 2021 LI-RADS universal lexicon-based features, in combination with quantitative MDCT measurements, could aid in the noninvasive detection of proliferative HCC. Clinical relevance The updated standard 2021 LI-RADS universal lexicon-based CT qualitative features and quantitative measurements may aid in identifying proliferative HCC and tumor recurrence, offering potential guidance for personalized treatment. Further studies are required to assess their generalizability to different clinical scenarios.
Collapse
Affiliation(s)
- Wanli Zhang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Nan Li
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiamin Li
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yue Zhao
- Department of Radiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Yi Long
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Chutong He
- Medical Imaging Center, Jinan University First Affiliated Hospital, Guangzhou, China
| | - Chuanxian Zhang
- Department of Radiology, The Zhaoqing Hospital of the Third Affiliated Hospital, Sun Yat-sen University, Zhaoqing, China
| | - Bo Li
- Department of Radiology, The First People's Hospital of Foshan, Foshan, China
| | - Yandong Zhao
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Shengsheng Lai
- School of Medical Equipment, Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Wenshuang Ding
- Department of Pathology, Guangzhou First People's Hospital, Guangzhou, China
| | - Mingyong Gao
- Department of Radiology, The First People's Hospital of Foshan, Foshan, China
| | - Lilian Tan
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinhua Wei
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Ruimeng Yang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
- School of Medicine, South China University of Technology, Guangzhou, China.
| | - Xinqing Jiang
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
- School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
4
|
Monga S, Lehrich B, Delgado E, Yasaka T, Liu S, Cao C, Liu Y, Taheri M, Guan X, Koeppen H, Singh S, Liu JJ, Singh-Varma A, Krutsenko Y, Poddar M, Hitchens T, Foley L, Liang B, Rialdi A, Rai R, Patel P, Riley M, Bell A, Raeman R, Dadali T, Luke J, Guccione E, Ebrahimkhani M, Lujambio A, Chen X, Maier M, Wang Y, Broom W, Tao J. Precision targeting of β-catenin induces tumor reprogramming and immunity in hepatocellular cancers. RESEARCH SQUARE 2024:rs.3.rs-5494074. [PMID: 39711542 PMCID: PMC11661417 DOI: 10.21203/rs.3.rs-5494074/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
First-line immune checkpoint inhibitor (ICI) combinations show responses in subsets of hepatocellular carcinoma (HCC) patients. Nearly half of HCCs are Wnt-active with mutations in CTNNB1 (encoding for β-catenin), AXIN1/2 , or APC , and demonstrate limited benefit to ICI due to an immune excluded tumor microenvironment. We show significant tumor responses in multiple β-catenin-mutated immunocompetent HCC models to a novel siRNA encapsulated in lipid nanoparticle targeting CTNNB1 (LNP-CTNNB1). Both single-cell and spatial transcriptomics revealed cellular and zonal reprogramming of CTNNB1 -mutated tumors, along with activation of immune regulatory transcription factors IRF2 and POU2F1, re-engaged type I/II interferon signaling, and alterations in both innate and adaptive immune responses upon β-catenin suppression with LNP-CTNNB1. Moreover, LNP-CTNNB1 synergized with ICI in advanced-stage disease through orchestrating enhanced recruitment of cytotoxic T cell aggregates. Lastly, CTNNB1 -mutated patients treated with atezolizumab plus bevacizumab combination had decreased presence of lymphoid aggregates, which were prognostic for response and survival. In conclusion, LNP-CTNNB1 is efficacious as monotherapy and in combination with ICI in CTNNB1 -mutated HCCs through impacting tumor cell intrinsic signaling and remodeling global immune surveillance, providing rationale for clinical investigations.
Collapse
|
5
|
Barcena-Varela M, Monga SP, Lujambio A. Precision models in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-01024-w. [PMID: 39663463 DOI: 10.1038/s41575-024-01024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Hepatocellular carcinoma (HCC) represents a global health challenge, and ranks among one of the most prevalent and deadliest cancers worldwide. Therapeutic advances have expanded the treatment armamentarium for patients with advanced HCC, but obstacles remain. Precision oncology, which aims to match specific therapies to patients who have tumours with particular features, holds great promise. However, its implementation has been hindered by the existence of numerous 'HCC influencers' that contribute to the high inter-patient heterogeneity. HCC influencers include tumour-related characteristics, such as genetic alterations, immune infiltration, stromal composition and aetiology, and patient-specific factors, such as sex, age, germline variants and the microbiome. This Review delves into the intricate world of HCC, describing the most innovative model systems that can be harnessed to identify precision and/or personalized therapies. We provide examples of how different models have been used to nominate candidate biomarkers, their limitations and strategies to optimize such models. We also highlight the importance of reproducing distinct HCC influencers in a flexible and modular way, with the aim of dissecting their relative contribution to therapy response. Next-generation HCC models will pave the way for faster discovery of precision therapies for patients with advanced HCC.
Collapse
Affiliation(s)
- Marina Barcena-Varela
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Satdarshan P Monga
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Li KM, Meng LF, Yang ZH, Hu WT. NUP155 and NDC1 interaction in NSCLC: a promising target for tumor progression. Front Pharmacol 2024; 15:1514367. [PMID: 39720592 PMCID: PMC11666513 DOI: 10.3389/fphar.2024.1514367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 11/28/2024] [Indexed: 12/26/2024] Open
Abstract
Background NUP155 was reported to involve breast invasive carcinoma and hepatocellular carcinoma. We hypothesized that NUP155 and NDC1impacted the progression of NSCLC. Methods The dataset was analyzed to find differentially expressed genes. Functional enrichment analysis and Kaplan-Meier survival analysis were performed for differentially expressed genes. Western blot, Clone formation assay, Transwell assay and CCK-8 assay were performed to determine the performance and role of the target gene in NSCLC. Results The research found that the NUP family played a role in various diseases. Differential expression analysis and survival analysis were performed to identify 6 related-genes, including NUP155, NDC1, KPNA2, MAD2L1, NUP62CL, and POM121L2NUP155 and NDC1 could interact with NUP53, respectively. This effect was necessary to complete the assembly of the nuclear pore complex. Conclusion NUP155 interacted with NDC1 to complete the assembly of the nuclear pore complex, which promoted the development of NSCLC. Our study demonstrated that NUP155 was expected to be a potential target for the treatment of NSCLC.
Collapse
Affiliation(s)
| | | | | | - Wen-Tao Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Dantzer C, Dif L, Vaché J, Basbous S, Billottet C, Moreau V. Specific features of ß-catenin-mutated hepatocellular carcinomas. Br J Cancer 2024; 131:1871-1880. [PMID: 39261716 PMCID: PMC11628615 DOI: 10.1038/s41416-024-02849-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
CTNNB1, encoding the ß-catenin protein, is a key oncogene contributing to liver carcinogenesis. Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer in adult, representing the third leading cause of cancer-related death. Aberrant activation of the Wnt/ß-catenin pathway, mainly due to mutations of the CTNNB1 gene, is observed in a significant subset of HCC. In this review, we first resume the major recent advances in HCC classification with a focus on CTNNB1-mutated HCC subclass. We present the regulatory mechanisms involved in β-catenin stabilisation, transcriptional activity and binding to partner proteins. We then describe specific phenotypic characteristics of CTNNB1-mutated HCC thanks to their unique gene expression patterns. CTNNB1-mutated HCC constitute a full-fledged subclass of HCC with distinct pathological features such as well-differentiated cells with low proliferation rate, association to cholestasis, metabolic alterations, immune exclusion and invasion. Finally, we discuss therapeutic approaches to target ß-catenin-mutated liver tumours and innovative perspectives for future drug developments.
Collapse
Affiliation(s)
| | - Lydia Dif
- University Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Justine Vaché
- University Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Sara Basbous
- University Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | | | | |
Collapse
|
8
|
Fu Y, Maccioni L, Wang XW, Greten TF, Gao B. Alcohol-associated liver cancer. Hepatology 2024; 80:1462-1479. [PMID: 38607725 DOI: 10.1097/hep.0000000000000890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
Heavy alcohol intake induces a wide spectrum of liver diseases ranging from steatosis, steatohepatitis, cirrhosis, and HCC. Although alcohol consumption is a well-known risk factor for the development, morbidity, and mortality of HCC globally, alcohol-associated hepatocellular carcinoma (A-HCC) is poorly characterized compared to viral hepatitis-associated HCC. Most A-HCCs develop after alcohol-associated cirrhosis (AC), but the direct carcinogenesis from ethanol and its metabolites to A-HCC remains obscure. The differences between A-HCC and HCCs caused by other etiologies have not been well investigated in terms of clinical prognosis, genetic or epigenetic landscape, molecular mechanisms, and heterogeneity. Moreover, there is a huge gap between basic research and clinical practice due to the lack of preclinical models of A-HCC. In the current review, we discuss the pathogenesis, heterogeneity, preclinical approaches, epigenetic, and genetic profiles of A-HCC, and discuss the current insights into and the prospects for future research on A-HCC. The potential effect of alcohol on cholangiocarcinoma and liver metastasis is also discussed.
Collapse
Affiliation(s)
- Yaojie Fu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Luca Maccioni
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Xin Wei Wang
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Tim F Greten
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Lehrich BM, Tao J, Liu S, Hirsch TZ, Yasaka TM, Cao C, Delgado ER, Guan X, Lu S, Pan L, Liu Y, Singh S, Poddar M, Bell A, Singhi AD, Zucman-Rossi J, Wang Y, Monga SP. Development of mutated β-catenin gene signature to identify CTNNB1 mutations from whole and spatial transcriptomic data in patients with HCC. JHEP Rep 2024; 6:101186. [PMID: 39583094 PMCID: PMC11582745 DOI: 10.1016/j.jhepr.2024.101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 11/26/2024] Open
Abstract
Background & Aims Patients with β-catenin (encoded by CTNNB1)-mutated hepatocellular carcinoma (HCC) demonstrate heterogenous responses to first-line immune checkpoint inhibitors (ICIs). Precision-medicine based treatments for this subclass are currently in clinical development. Here, we report derivation of the Mutated β-catenin Gene Signature (MBGS) to predict CTNNB1-mutational status in patients with HCC for future application in personalized medicine treatment regimens. Methods Co-expression of mutant-Nrf2 and hMet ± mutant-β-catenin in murine livers in mice led to HCC development. The MBGS was derived using bulk RNA-seq and intersectional transcriptomic analysis of β-catenin-mutated and non-mutated HCC models. Integrated RNA/whole-exome-sequencing and spatial transcriptomic data from multiple cohorts of patients with HCC was assessed to address the ability of MBGS to detect CTNNB1 mutation, the tumor immune microenvironment, and/or predict therapeutic responses. Results Bulk RNA-seq comparing HCC specimens in mutant β-catenin-Nrf2, β-catenin-Met and β-catenin-Nrf2-Met to Nrf2-Met HCC model yielded 95 common upregulated genes. In The Cancer Genome Atlas (TCGA)-LIHC dataset, differential gene expression analysis with false discovery rate (FDR) = 0.05 and log2(fold change) >1.5 on the 95 common genes comparing CTNNB1-mutated vs. wild-type patients narrowed the gene panel to a 13-gene MBGS. MBGS predicted CTNNB1-mutations in TCGA (n = 374) and French (n = 398) patient cohorts with AUCs of 0.90 and 0.94, respectively. Additionally, a higher MBGS expression score was associated with lack of significant improvement in overall survival or progression-free survival in the atezolizumab-bevacizumab arm vs. the sorafenib arm in the IMbrave150 cohort. MBGS performed comparable or superior to other CTNNB1-mutant classifiers. MBGS overlapped with Hoshida S3, Boyault G5/G6, and Chiang CTNNB1 subclass tumors in TCGA and in HCC spatial transcriptomic datasets visually depicting these tumors to be situated in an immune excluded tumor microenvironment. Conclusions MBGS will aid in patient stratification to guide precision medicine therapeutics for CTNNB1-mutated HCC subclass as a companion diagnostic, as anti-β-catenin therapies become available. Impact and implications As precision medicine for liver cancer treatment becomes a reality, diagnostic tools are needed to help classify patients into groups for the best treatment choices. We have developed a molecular signature that could serve as a companion diagnostic and uses bulk or spatial transcriptomic data to identify a unique subclass of liver tumors. This subgroup of liver cancer patients derive limited benefit from the current standard of care and are expected to benefit from specialized directed therapies that are on the horizon.
Collapse
Affiliation(s)
- Brandon M. Lehrich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Junyan Tao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Silvia Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Theo Z. Hirsch
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, Paris, France
- Institut du Cancer Paris CARPEM, AP-HP, Department of Oncology, Hopital Européen Georges Pompidou, Paris, France
| | - Tyler M. Yasaka
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Catherine Cao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Evan R. Delgado
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Xiangnan Guan
- Translational Medicine, Genentech Inc., San Francisco, CA, USA
| | - Shan Lu
- Translational Medicine, Genentech Inc., San Francisco, CA, USA
| | - Long Pan
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, Paris, France
- Institut du Cancer Paris CARPEM, AP-HP, Department of Oncology, Hopital Européen Georges Pompidou, Paris, France
| | - Yuqing Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sucha Singh
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Minakshi Poddar
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aaron Bell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Aatur D. Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, Paris, France
- Institut du Cancer Paris CARPEM, AP-HP, Department of Oncology, Hopital Européen Georges Pompidou, Paris, France
| | - Yulei Wang
- Translational Medicine, Genentech Inc., San Francisco, CA, USA
| | - Satdarshan P. Monga
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Pan J, Zhang C, Huang H, Zhu Y, Zhang Y, Wu S, Zhao YC, Chen F. Deciphering the Prognostic and Therapeutic Value of a Gene Model Associated with Two Aggressive Hepatocellular Carcinoma Phenotypes Using Machine Learning. J Hepatocell Carcinoma 2024; 11:2373-2390. [PMID: 39634327 PMCID: PMC11614714 DOI: 10.2147/jhc.s480358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
Background Macrotrabecular-massive (MTM) and vessels encapsulating tumor clusters (VETC)-hepatocellular carcinoma (HCC) are aggressive histopathological phenotypes with significant prognostic implications. However, the molecular markers associated with MTM-HCC and VETC-HCC and their implications for clinical outcomes and therapeutic strategies remain unclear. Methods Utilizing the TCGA-LIHC cohort, we employed machine learning techniques to develop a prognostic risk score based on MTM and VETC-related genes. The performance of the risk score was assessed by investigating various aspects including clinical outcomes, biological pathways, treatment responses, drug sensitivities, tumor microenvironment, and molecular subclasses. To validate the risk score, additional data from the ICGC-JP, GSE14520, GSE104580, GSE109211, and an in-house cohort were collected and analyzed. Results The machine learning algorithm established a 4-gene-based risk score. High-risk patients had significantly worse prognosis compared to low-risk patients, with the risk score being associated with malignant progression of HCC. Functionally, the high-risk group exhibited enrichment in tumor proliferation pathways. Additionally, patients in the low-risk group exhibited improved response to TACE and sorafenib treatments compared to the high-risk group. In contrast, the high-risk group exhibited reduced sensitivity to immunotherapy and increased sensitivity to paclitaxel. In the in-house cohort, high-risk patients displayed higher rates of early recurrence, along with an increased frequency of elevated alpha-fetoprotein, microvascular invasion, and aggressive MRI features associated with HCC. Conclusion This study has successfully developed a risk score based on MTM and VETC-related genes, providing a promising tool for prognosis prediction and personalized treatment strategies in HCC patients.
Collapse
Affiliation(s)
- Junhan Pan
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Cong Zhang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Huizhen Huang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yanyan Zhu
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yuhao Zhang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Shuzhen Wu
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yan-Ci Zhao
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
11
|
Meng L, Jiang Z, Shen G, Lin S, Gao F, Guo X, Lv B, Hu S, Ni Z, Chen S, Ji Y. Genetic alterations are related to clinicopathological features and risk of recurrence/metastasis of hepatocellular carcinoma. Eur J Cancer Prev 2024:00008469-990000000-00191. [PMID: 39642087 DOI: 10.1097/cej.0000000000000939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Lack of efficient biomarkers and clinical translation of molecular typing impedes the implementation of targeted therapy for hepatocellular carcinoma (HCC). High-throughput sequencing techniques represented by next-generation sequencing (NGS) are tools for detecting targetable genes. The objective of this study is to explore the genetic alterations associated with clinicopathological features and the risk of recurrence/metastasis in HCC. NGS analysis was conducted on formalin-fixed paraffin-embedded tissues from 164 resected liver samples obtained from Chinese patients. Morphologic subtypes were reviewed based on hematoxylin-eosin and immunohistochemistry staining, Correlation to the acquired molecular features were analyzed with clinicopathological information. We also retrieved follow-up information of the 123 transplanted cases from 2017 to 2019 to screen recurrence/metastasis-associated factors by univariate analysis. Generally, the most frequently mutated genes include TP53 and CTNNB1 which showed a trend of mutually exclusive mutation. Copy-number variant with the highest frequency was detected in TAF1 and CCND1 in 11q13.3 loci. Correlation analysis showed that various genetic alterations were associated with morphologic subtypes and other pathologic features. While gene signatures of proliferation/nonproliferation class were correlated with differentiation, satellite foci and other invasive morphological features. Macrotrabecular-massive subtype, TSC2 (tuberous sclerosis complex 2) mutation, Ki-67 expression, and other six factors were found to be associated with recurrence/metastasis after liver transplantation. Genetic alterations detected by NGS show correlation with not only pathological and clinical features, but also with recurrence/metastasis after liver transplantation. Further gene-level molecular typing will be practical for targeted therapy and individual recurrence risk assessment in HCC patients.
Collapse
Affiliation(s)
- Lili Meng
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai
| | - Zhenjian Jiang
- Department of Pathology, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, China
| | - Guangyue Shen
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai
| | - Shulan Lin
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai
- Department of Pathology, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, China
| | - Feng Gao
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai
| | - Xinxin Guo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai
| | - Bin Lv
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai
| | - Shuying Hu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai
| | - Zheng Ni
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai
| | - Shanghua Chen
- Department of Pathology, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai
| |
Collapse
|
12
|
Novitasari D, Nakamae I, Yoneda-Kato N, Kato JY, Hippo Y, Suenaga Y, Putri DDP, Meiyanto E, Ikawati M. The Combination of Sorafenib and PGV-1 Inhibits the Proliferation of Hepatocellular Carcinoma Through c-Myc Suppression in an Additive Manner: In Vitro Studies. Adv Pharmacol Pharm Sci 2024; 2024:4297953. [PMID: 39628938 PMCID: PMC11614502 DOI: 10.1155/adpp/4297953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 10/04/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive types of liver cancer, and it is frequently associated with upregulated c-Myc expression. Sorafenib (Sor) is commonly used to treat HCC, but many patients experienced mild to severe side effects due to prolonged Sor treatment during therapy. It has been known that Pentagamavunone-1 (PGV-1) exhibits a remarkable antiproliferative effect on several cancer cells, yet limited studies have reported its cellular activities in HCC. The current study aims to evaluate the anticancer effects of Sor in combination with PGV-1 on the progression of HCC proliferation. c-Myc expressing cells, JHH-7 and Huh-7, were used for this study, then Sor and PGV-1 were tested for their effect on the cellular physiology phenomena including cytotoxicity combination assay and colony formation assay, cell cycle profile and reactive oxygen species (ROS) level by flow cytometry, senescence induction by beta-galactosidase (SA-β-gal) assay, and migration inhibition by wound healing assay. The c-Myc expression was evaluated through Western blot. PGV-1 was more effective than Sor at inhibiting cell growth, and it showed greater selectivity for HCC over fibroblast cells. The combination of Sor with PGV-1 exhibited synergistic-additive cytotoxicity with an irreversible effect in HCC cell lines. The combination induced senescence similarly with Sor alone in JHH-7 cells, while PGV-1 enhanced the cellular senescence when combined with Sor in Huh-7 cells. Furthermore, the combination increased ROS level in the same way as PGV-1 did in HCC. The combination with PGV-1 acted better than Sor alone to inhibit JHH-7 cell migration. In addition, the combination treatment led to the suppression of c-Myc, particularly in JHH-7 cells. Taken together, combining Sor with PGV-1 promotes better efficacy than Sor alone to inhibit HCC cell proliferation, and further evaluation of the efficacy and safety of adding PGV-1 to Sor in HCC therapy is worthwhile as a potential combination treatment option.
Collapse
Affiliation(s)
- Dhania Novitasari
- Laboratory of Tumor Cell Biology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Ikuko Nakamae
- Laboratory of Tumor Cell Biology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Noriko Yoneda-Kato
- Laboratory of Tumor Cell Biology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Jun-ya Kato
- Laboratory of Tumor Cell Biology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Yoshitaka Hippo
- Department of Molecular Carcinogenesis, Chiba Cancer Centre Research Institute, Chiba, Japan
| | - Yusuke Suenaga
- Laboratory of Evolutionary Oncology, Chiba Cancer Centre Research Institute, Chiba, Japan
| | - Dyaningtyas Dewi Pamungkas Putri
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Pharmacology, Toxicology, and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Edy Meiyanto
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Muthi' Ikawati
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
13
|
Su L, Bu J, Yu J, Jin M, Meng G, Zhu X. Comprehensive review and updated analysis of DNA methylation in hepatocellular carcinoma: From basic research to clinical application. Clin Transl Med 2024; 14:e70066. [PMID: 39462685 PMCID: PMC11513202 DOI: 10.1002/ctm2.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary malignant tumour, ranking second in global mortality rates and posing significant health threats. Epigenetic alterations, particularly DNA methylation, have emerged as pivotal factors associated with HCC diagnosis, therapy, prognosis and malignant progression. However, a comprehensive analysis of the DNA methylation mechanism driving HCC progression and its potential as a therapeutic biomarker remains lacking. This review attempts to comprehensively summarise various aspects of DNA methylation, such as its mechanism, detection methods and biomarkers aiding in HCC diagnosis, treatment and prognostic assessment of HCC. It also explores the role of DNA methylation in regulating HCC's malignant progression and sorafenib resistance, alongside elaborating the therapeutic effects of DNA methyltransferase inhibitors on HCC. A detailed examination of these aspects underscores the significant research on DNA methylation in tumour cells to elucidate malignant progression mechanisms, identify diagnostic markers and develop new tumour-specific inhibitors for HCC. KEY POINTS: A comprehensive summary of various aspects of DNA methylation, such as its mechanism, detection methods and biomarkers aiding in diagnosis and treatment. The role of DNA methylation in regulating hepatocellular carcinoma's (HCC) malignant progression and sorafenib resistance, alongside elaborating therapeutic effects of DNA methyltransferase inhibitors. Deep research on DNA methylation is critical for discovering novel tumour-specific inhibitors for HCC.
Collapse
Affiliation(s)
- Lin Su
- Department of Pain ManagementShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jiawen Bu
- Department of Colorectal SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jiahui Yu
- Department of UltrasoundShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Mila Jin
- Department of Operation RoomThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Guanliang Meng
- Department of UrologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xudong Zhu
- Department of OncologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Department of General SurgeryCancer Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
14
|
López CL, Calvo M, Cámara JC, García-Paredes B, Gómez-Martin C, López AM, Pazo-Cid R, Sastre J, Yaya R, Feliu J. SEOM-GEMCAD-TTD clinical guidelines for the management of hepatocarcinoma patients (2023). Clin Transl Oncol 2024; 26:2800-2811. [PMID: 38914756 PMCID: PMC11467113 DOI: 10.1007/s12094-024-03568-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 06/26/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy in the liver and is the third cause of cancer-related death worldwide. Surveillance with abdominal ultrasound should be offered to individuals at high risk for developing HCC. Accurate diagnosis, staging, and liver function are crucial when determining the optimal therapeutic approach. The BCLC staging system is widely endorsed in Western countries. Managing this pathology requires a multidisciplinary, personalized approach, generally with a multimodal strategy. Surgery remains the only curative option, albeit local and systemic therapy may also increase survival when surgery is not suitable. In advanced disease, systemic treatment should be offered to patients with ECOG/PS 0-1 and Child-Pugh class A.
Collapse
Affiliation(s)
- Carlos López López
- Medical Oncology Department, H. U. Marqués de Valdecilla, IDIVAL, UNICAN, Santander, Cantabria, Spain.
| | - Mariona Calvo
- Medical Oncology Department, Institut Català d'Oncologia-L'Hospitalet del Llobregat, Barcelona, Spain
| | - Juan Carlos Cámara
- Medical Oncology Department, Hospital Universitario Fundación Alcorcón, Madrid, Spain
| | | | - Carlos Gómez-Martin
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Ana María López
- Medical Oncology Department, Hospital Universitario de Burgos, Burgos, Spain
| | - Roberto Pazo-Cid
- Medical Oncology Department, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Javier Sastre
- Medical Oncology Department, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - Ricardo Yaya
- Medical Oncology Department, Instituvo Valenciano de Oncología, Valencia, Spain
| | - Jaime Feliu
- Medical Oncology Department, Hospital Universitario de La Paz, IdiPAZ, CIBERONC, UAM, Madrid, Spain
| |
Collapse
|
15
|
Ha NB, Yao F. Alcohol and Hepatocellular Carcinoma. Clin Liver Dis 2024; 28:633-646. [PMID: 39362712 DOI: 10.1016/j.cld.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Alcohol-associated liver disease (ALD) poses a significant risk for hepatocellular carcinoma (HCC), comprising various liver conditions from steatosis to cirrhosis. Despite accounting for a third of global HCC cases and deaths, ALD-related HCC lacks characterization compared to viral hepatitis-related HCC. Proposed mechanisms for ALD-related HCC include acetaldehyde toxicity, increased reactive oxygen species, and inflammation. This review examines ALD-associated HCC epidemiology, co-factors like viral hepatitis and metabolic syndrome, surveillance, and treatment challenges. Despite advances in screening and management, ALD-related HCC often presents at advanced stages, limiting treatment options and survival.
Collapse
Affiliation(s)
- Nghiem B Ha
- Hepatology, Liver Transplant, Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Francisco, 505 Parnassus Avenue, S-357, San Francisco, CA 94112, USA
| | - Francis Yao
- Hepatology, Liver Transplant, Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Francisco, 505 Parnassus Avenue, S-357, San Francisco, CA 94112, USA.
| |
Collapse
|
16
|
Ma S, Meng G, Liu T, You J, He R, Zhao X, Cui Y. The Wnt signaling pathway in hepatocellular carcinoma: Regulatory mechanisms and therapeutic prospects. Biomed Pharmacother 2024; 180:117508. [PMID: 39362068 DOI: 10.1016/j.biopha.2024.117508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/26/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor that arises from hepatocytes. Multiple signaling pathways play a regulatory role in the occurrence and development of HCC, with the Wnt signaling pathway being one of the primary regulatory pathways. In normal hepatocytes, the Wnt signaling pathway maintains cell regeneration and organ development. However, when aberrant activated, the Wnt pathway is closely associated with invasion, cancer stem cells(CSCs), drug resistance, and immune evasion in HCC. Among these factors, the development of drug resistance is one of the most important factors affecting the efficacy of HCC treatment. These mechanisms form the basis for tumor cell adaptation and evolution within the body, enabling continuous changes in tumor cells, resistance to drugs and immune system attacks, leading to metastasis and recurrence. In recent years, there have been numerous new discoveries regarding these mechanisms. An increasing number of drugs targeting the Wnt signaling pathway have been developed, with some already entering clinical trials. Therefore, this review encompasses the latest research on the role of the Wnt signaling pathway in the onset and progression of HCC, as well as advancements in its therapeutic strategies.
Collapse
Affiliation(s)
- Shihui Ma
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Guorui Meng
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Tong Liu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Junqi You
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Risheng He
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Xudong Zhao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Yunfu Cui
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China.
| |
Collapse
|
17
|
Effendi K, Rahadiani N, Stephanie M, Kurebayashi Y, Tsujikawa H, Jasirwan CO, Syaiful RA, Sakamoto M. Comparative Immunohistochemical Analysis of Clinicopathological Subgroups in Hepatocellular Carcinomas from Japan and Indonesia. J Clin Exp Hepatol 2024; 14:101451. [PMID: 38975604 PMCID: PMC11225344 DOI: 10.1016/j.jceh.2024.101451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/19/2024] [Indexed: 07/09/2024] Open
Abstract
Background Standardized pathological evaluation based on immunohistochemical (IHC) analysis could improve hepatocellular carcinoma (HCC) diagnoses worldwide. We evaluated differences in clinicopathological subgroups in HCCs from two academic institutions in Tokyo-Japan, and Jakarta-Indonesia. Methods Clinicopathological parameters and molecular expression patterns were evaluated in 35 HCCs from Indonesia and 41 HCCs from Japan. IHC analysis of biliary/stem cell (B/S) markers (cytokeratin 19, sal-like protein 4, epithelial cell adhesion molecule) and Wnt/β-catenin (W/B) signaling-related molecules (β-catenin, glutamine synthetase) could determine the IHC-based subgroups. For immuno-subtypes categorization, CD3/CD79α double immunohistochemistry was done to evaluate the infiltration of T and B cells. CD34 staining allowed identification of vessels that encapsulated tumor clusters (VETC). Results Indonesian HCC patients were mostly <60 years old (66%) with a hepatitis B virus (HBV) background (82%), in contrast to Japanese HCC patients (8% and 19%, respectively, both P < 0.001). In comparison with Japanese, Indonesian cases more frequently had >5 cm tumor size (74% vs 23%, P = 0.001), poor differentiation (40% vs 24%), portal vein invasion (80% vs 61%), and α-fetoprotein levels >500 ng/ml (45% vs 13%, P = 0.005). No significant differences were found in the proportions of B/S, W/B, and -/- subgroups from both countries. No immune-high tumors were observed among Indonesian cases, and immune-low tumors (66%) were more common than in Japanese cases (54%). VETC-positive tumors in Indonesia were significantly more common (29%), and most were in the HBV (90%) and -/- subgroups (90%), whereas Japanese VETC cases (10%, P = 0.030) were nonviral (100%) and W/B subgroups (75%). Conclusion IHC-based analysis more precisely reflected the clinicopathological differences of HCCs in Japan and Indonesia. These findings provide new insights into standardization attempts and HCC heterogeneity among countries.
Collapse
Affiliation(s)
- Kathryn Effendi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Nur Rahadiani
- Department of Anatomical Pathology, Faculty of Medicine Universitas Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Marini Stephanie
- Department of Anatomical Pathology, Faculty of Medicine Universitas Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Yutaka Kurebayashi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Hanako Tsujikawa
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
- Department of Diagnostic Pathology, National Hospital Organization Saitama Hospital, Saitama, Japan
| | - Chyntia O.M. Jasirwan
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine Universitas Indonesia/Dr. Cipto Mangunkusmo Hospital, Jakarta, Indonesia
| | - Ridho A. Syaiful
- Division of Digestive Surgery, Department of Surgery, Faculty of Medicine Universitas Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
- School of Medicine, International University of Health and Welfare, Chiba, Japan
| |
Collapse
|
18
|
Qu H, Zhang S, Guo M, Miao Y, Han Y, Ju R, Cui X, Li Y. Deep Learning Model for Predicting Proliferative Hepatocellular Carcinoma Using Dynamic Contrast-Enhanced MRI: Implications for Early Recurrence Prediction Following Radical Resection. Acad Radiol 2024; 31:4445-4455. [PMID: 38749868 DOI: 10.1016/j.acra.2024.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/29/2024] [Accepted: 04/15/2024] [Indexed: 11/01/2024]
Abstract
RATIONALE AND OBJECTIVES The proliferative nature of hepatocellular carcinoma (HCC) is closely related to early recurrence following radical resection. This study develops and validates a deep learning (DL) prediction model to distinguish between proliferative and non-proliferative HCCs using dynamic contrast-enhanced MRI (DCE-MRI), aiming to refine preoperative assessments and optimize treatment strategies by assessing early recurrence risk. MATERIALS AND METHODS In this retrospective study, 355 HCC patients from two Chinese medical centers (April 2018-February 2023) who underwent radical resection were included. Patient data were collected from medical records, imaging databases, and pathology reports. The cohort was divided into a training set (n = 251), an internal test set (n = 62), and external test sets (n = 42). A DL model was developed using DCE-MRI images of primary tumors. Clinical and radiological models were generated from their respective features, and fusion strategies were employed for combined model development. The discriminative abilities of the clinical, radiological, DL, and combined models were extensively analyzed. The performances of these models were evaluated against pathological diagnoses, with independent and fusion DL-based models validated for clinical utility in predicting early recurrence. RESULTS The DL model, using DCE-MRI, outperformed clinical and radiological feature-based models in predicting proliferative HCC. The area under the curve (AUC) for the DL model was 0.98, 0.89, and 0.83 in the training, internal validation, and external validation sets, respectively. The AUCs for the combined DL and clinical feature models were 0.99, 0.86, and 0.83 in these sets, while the AUCs for the combined DL, clinical, and radiological model were 0.99, 0.87, and 0.8, respectively. Among models predicting early recurrence, the DL plus clinical features model showed superior performance. CONCLUSION The DL-based DCE-MRI model demonstrated robust performance in predicting proliferative HCC and stratifying patient risk for early postoperative recurrence. As a non-invasive tool, it shows promise in enhancing decision-making for individualized HCC management strategies.
Collapse
Affiliation(s)
- Hui Qu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Shuairan Zhang
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, PR China
| | - Miaoran Guo
- Department of Radiology, The First Hospital of China Medical University, Shenyang, PR China
| | - Yuan Miao
- Department of Pathology, the College of Basic Medical Science and the First Hospital of China Medical University, Shenyang, PR China
| | - Yuxi Han
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, PR China
| | - Ronghui Ju
- Department of Radiology, The People's Hospital of Liaoning Province, Shenyang, PR China
| | - Xiaoyu Cui
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Yiling Li
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
19
|
Bollhagen A, Bodenmiller B. Highly Multiplexed Tissue Imaging in Precision Oncology and Translational Cancer Research. Cancer Discov 2024; 14:2071-2088. [PMID: 39485249 PMCID: PMC11528208 DOI: 10.1158/2159-8290.cd-23-1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/24/2024] [Accepted: 08/13/2024] [Indexed: 11/03/2024]
Abstract
Precision oncology tailors treatment strategies to a patient's molecular and health data. Despite the essential clinical value of current diagnostic methods, hematoxylin and eosin morphology, immunohistochemistry, and gene panel sequencing offer an incomplete characterization. In contrast, highly multiplexed tissue imaging allows spatial analysis of dozens of markers at single-cell resolution enabling analysis of complex tumor ecosystems; thereby it has the potential to advance our understanding of cancer biology and supports drug development, biomarker discovery, and patient stratification. We describe available highly multiplexed imaging modalities, discuss their advantages and disadvantages for clinical use, and potential paths to implement these into clinical practice. Significance: This review provides guidance on how high-resolution, multiplexed tissue imaging of patient samples can be integrated into clinical workflows. It systematically compares existing and emerging technologies and outlines potential applications in the field of precision oncology, thereby bridging the ever-evolving landscape of cancer research with practical implementation possibilities of highly multiplexed tissue imaging into routine clinical practice.
Collapse
Affiliation(s)
- Alina Bollhagen
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Campani C, Imbeaud S, Couchy G, Ziol M, Hirsch TZ, Rebouissou S, Noblet B, Nahon P, Hormigos K, Sidali S, Seror O, Taly V, Ganne Carrie N, Laurent-Puig P, Zucman-Rossi J, Nault JC. Circulating tumour DNA in patients with hepatocellular carcinoma across tumour stages and treatments. Gut 2024; 73:1870-1882. [PMID: 39054058 DOI: 10.1136/gutjnl-2024-331956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE Circulating tumour DNA (ctDNA) is a promising non-invasive biomarker in cancer. We aim to assess the dynamic of ctDNA in patients with hepatocellular carcinoma (HCC). DESIGN We analysed 772 plasmas from 173 patients with HCC collected at the time of diagnosis or treatment (n=502), 24 hours after locoregional treatment (n=154) and during follow-up (n=116). For controls, 56 plasmas from patients with chronic liver disease without HCC were analysed. All samples were analysed for cell free DNA (cfDNA) concentration, and for mutations in TERT promoter, CTNNB1, TP53, PIK3CA and NFE2L2 by sequencing and droplet-based digital PCR. Results were compared with 232 corresponding tumour samples. RESULTS In patients with active HCC, 40.2% of the ctDNA was mutated vs 14.6% in patients with inactive HCC and 1.8% in controls (p<0.001). In active HCC, we identified 27.5% of mutations in TERT promoter, 21.3% in TP53, 13.1% in CTNNB1, 0.4% in PIK3CA and 0.2% in NFE2L2, most of the times similar to those identified in the corresponding tumour. CtDNA mutation rate increased with advanced tumour stages (p<0.001). In 103 patients treated by percutaneous ablation, the presence and number of mutations in the ctDNA before treatment were associated with higher risk of death (p=0.001) and recurrence (p<0.001). Interestingly, cfDNA concentration and detectable mutations increased 24 hours after a locoregional treatment. Among 356 plasmas collected in 53 patients treated by systemic treatments, we detected mutations at baseline in 60.4% of the cases. In patients treated by atezolizumab-bevacizumab, persistence of mutation in ctDNA was associated with radiological progression (63.6% vs 36.4% for disappearance, p=0.019). In two patients progressing under systemic treatments, we detected the occurrence of mutations in CTNNB1 in the plasma that was subclonal in the tumour for one patient and not detectable in the tumour for the other one. CONCLUSION ctDNA offers dynamic information reflecting tumour biology. It represents a non-invasive tool useful to guide HCC clinical management.
Collapse
Affiliation(s)
- Claudia Campani
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Internal Medicine and Hepatology Unit, Department of Experimental and Clinical Medicine, University of Firenze, Florence, Italy
| | - Sandrine Imbeaud
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
| | - Gabrielle Couchy
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
| | - Marianne Ziol
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Pathology Department and Biological Resource Center Center (BB-0033-00027), Paris-Seine-Saint-Denis, University Hospital, Avicenne Hospital, APHP, Sorbonne Paris Nord University, Bobugny, France
| | - Theo Z Hirsch
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
| | - Sandra Rebouissou
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
| | - Bénédicte Noblet
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
| | - Pierre Nahon
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Liver Unit, Avicenne Hospital, APHP, University Sorbonne Paris Nord, Bobigny, France
| | - Katia Hormigos
- Cordeliers Research Center, INSERM, CNRS SNC 5096, Sorbonne University, Paris Cité University, Paris, France
| | - Sabrina Sidali
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Liver unit, Paris Cité University, Beaujon Hospital, APHP, DMU DIGEST, Clichy, France
| | - Olivier Seror
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Interventional Radiology Unit, Avicenne Hospital, APHP, Bobigny, Paris, France
| | - Valerie Taly
- Cordeliers Research Center, INSERM, CNRS SNC 5096, Sorbonne University, Paris Cité University, Paris, France
| | - Nathalie Ganne Carrie
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Liver Unit, Avicenne Hospital, APHP, University Sorbonne Paris Nord, Bobigny, France
| | - Pierre Laurent-Puig
- Cordeliers Research Center, INSERM, Sorbonne University, Paris Cité University, Institut of Cancer Paris CARPEM, AP-HP-Hôpital Européen Georges Pompidou, Paris, France
| | - Jessica Zucman-Rossi
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Cordeliers Research Center, INSERM, Sorbonne University, Paris Cité University, Institut of Cancer Paris CARPEM, AP-HP-Hôpital Européen Georges Pompidou, Paris, France
| | - Jean-Charles Nault
- Cordeliers Research Center, INSERM, Paris Cité University, "Functional Genomics of Solid Tumors" Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, Sorbonne Université, Université Paris Cité, Paris, France
- Liver Unit, Avicenne Hospital, APHP, University Sorbonne Paris Nord, Bobigny, France
| |
Collapse
|
21
|
Ringelhan M, Schuehle S, van de Klundert M, Kotsiliti E, Plissonnier ML, Faure-Dupuy S, Riedl T, Lange S, Wisskirchen K, Thiele F, Cheng CC, Yuan D, Leone V, Schmidt R, Hünergard J, Geisler F, Unger K, Algül H, Schmid RM, Rad R, Wedemeyer H, Levrero M, Protzer U, Heikenwalder M. HBV-related HCC development in mice is STAT3 dependent and indicates an oncogenic effect of HBx. JHEP Rep 2024; 6:101128. [PMID: 39290403 PMCID: PMC11406364 DOI: 10.1016/j.jhepr.2024.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 09/19/2024] Open
Abstract
Background & Aims Although most hepatocellular carcinoma (HCC) cases are driven by hepatitis and cirrhosis, a subset of patients with chronic hepatitis B develop HCC in the absence of advanced liver disease, indicating the oncogenic potential of hepatitis B virus (HBV). We investigated the role of HBV transcripts and proteins on HCC development in the absence of inflammation in HBV-transgenic mice. Methods HBV-transgenic mice replicating HBV and expressing all HBV proteins from a single integrated 1.3-fold HBV genome in the presence or absence of wild-type HBx (HBV1.3/HBVxfs) were analyzed. Flow cytometry, molecular, histological and in vitro analyses using human cell lines were performed. Hepatocyte-specific Stat3- and Socs3-knockout was analyzed in HBV1.3 mice. Results Approximately 38% of HBV1.3 mice developed liver tumors. Protein expression patterns, histology, and mutational landscape analyses indicated that tumors resembled human HCC. HBV1.3 mice showed no signs of active hepatitis, except STAT3 activation, up to the time point of HCC development. HBV-RNAs covering HBx sequence, 3.5-kb HBV RNA and HBx-protein were detected in HCC tissue. Interestingly, HBVxfs mice expressing all HBV proteins except a C-terminally truncated HBx (without the ability to bind DNA damage binding protein 1) showed reduced signs of DNA damage response and had a significantly reduced HCC incidence. Importantly, intercrossing HBV1.3 mice with a hepatocyte-specific STAT3-knockout abrogated HCC development. Conclusions Expression of HBV-proteins is sufficient to cause HCC in the absence of detectable inflammation. This indicates the oncogenic potential of HBV and in particular HBx. In our model, HBV-driven HCC was STAT3 dependent. Our study highlights the immediate oncogenic potential of HBV, challenging the idea of a benign highly replicative phase of HBV infection and indicating the necessity for an HBV 'cure'. Impact and implications Although most HCC cases in patients with chronic HBV infection occur after a sequence of liver damage and fibrosis, a subset of patients develops HCC without any signs of advanced liver damage. We demonstrate that the expression of all viral transcripts in HBV-transgenic mice suffices to induce HCC development independent of inflammation and fibrosis. These data indicate the direct oncogenic effects of HBV and emphasize the idea of early antiviral treatment in the 'immune-tolerant' phase (HBeAg-positive chronic HBV infection).
Collapse
Affiliation(s)
- Marc Ringelhan
- Second Medical Department, University Hospital Rechts der Isar, Technical University of Munich, School of Medicine & Health, Munich, Germany
- German Centre for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Svenja Schuehle
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Maarten van de Klundert
- Institute of Virology, Technical University of Munich, School of Medicine & Health/Helmholtz Munich, Munich, Germany
| | - Elena Kotsiliti
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | | | | | - Tobias Riedl
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Lange
- Second Medical Department, University Hospital Rechts der Isar, Technical University of Munich, School of Medicine & Health, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine & Health, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karin Wisskirchen
- Institute of Virology, Technical University of Munich, School of Medicine & Health/Helmholtz Munich, Munich, Germany
| | - Frank Thiele
- Institute of Virology, Technical University of Munich, School of Medicine & Health/Helmholtz Munich, Munich, Germany
| | - Cho-Chin Cheng
- Institute of Virology, Technical University of Munich, School of Medicine & Health/Helmholtz Munich, Munich, Germany
| | - Detian Yuan
- Institute of Virology, Technical University of Munich, School of Medicine & Health/Helmholtz Munich, Munich, Germany
| | - Valentina Leone
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Research Unit for Radiation Cytogenetics, Helmholtz Munich, Neuherberg, Germany
| | - Ronny Schmidt
- Sciomics GmbH, Karl-Landsteiner-Straβe 6, 69151 Neckargemünd, Germany
| | - Juliana Hünergard
- Institute of Virology, Technical University of Munich, School of Medicine & Health/Helmholtz Munich, Munich, Germany
| | - Fabian Geisler
- Second Medical Department, University Hospital Rechts der Isar, Technical University of Munich, School of Medicine & Health, Munich, Germany
| | - Kristian Unger
- Research Unit for Radiation Cytogenetics, Helmholtz Munich, Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Hana Algül
- Second Medical Department, University Hospital Rechts der Isar, Technical University of Munich, School of Medicine & Health, Munich, Germany
- Comprehensive Cancer Center TUM (CCCMTUM), University Hospital rechts der Isar, Technical University of Munich, School of Medicine & Health, Munich, Germany
| | - Roland M Schmid
- Second Medical Department, University Hospital Rechts der Isar, Technical University of Munich, School of Medicine & Health, Munich, Germany
| | - Roland Rad
- Second Medical Department, University Hospital Rechts der Isar, Technical University of Munich, School of Medicine & Health, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine & Health, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Massimo Levrero
- INSERM Unit 1052, Cancer Research Center of Lyon, Lyon, France
- Hepatology Department, Hospices Civils de Lyon, Lyon, France
- Department of Internal Medicine - DMISM, Sapienza University, Rome, Italy
- Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Ulrike Protzer
- German Centre for Infection Research (DZIF), Munich Partner Site, Munich, Germany
- Institute of Virology, Technical University of Munich, School of Medicine & Health/Helmholtz Munich, Munich, Germany
| | - Mathias Heikenwalder
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Virology, Technical University of Munich, School of Medicine & Health/Helmholtz Munich, Munich, Germany
- The M3 Research Center, Medical Faculty, University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
22
|
Chen J, Kaya NA, Zhang Y, Kendarsari RI, Sekar K, Lee Chong S, Seshachalam VP, Ling WH, Jin Phua CZ, Lai H, Yang H, Lu B, Lim JQ, Ma S, Chew SC, Chua KP, Santiago Alvarez JJ, Wu L, Ooi L, Yaw-Fui Chung A, Cheow PC, Kam JH, Wei-Chieh Kow A, Ganpathi IS, Bunchaliew C, Thammasiri J, Koh PS, Bee-Lan Ong D, Lim J, de Villa VH, Dela Cruz RD, Loh TJ, Wan WK, Leow WQ, Yang Y, Liu J, Skanderup AJ, Pang YH, Ting Soon GS, Madhavan K, Kiat-Hon Lim T, Bonney G, Goh BKP, Chew V, Dan YY, Toh HC, Sik-Yin Foo R, Tam WL, Zhai W, Kah-Hoe Chow P. A multimodal atlas of hepatocellular carcinoma reveals convergent evolutionary paths and 'bad apple' effect on clinical trajectory. J Hepatol 2024; 81:667-678. [PMID: 38782118 DOI: 10.1016/j.jhep.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is a highly fatal cancer characterized by high intra-tumor heterogeneity (ITH). A panoramic understanding of its tumor evolution, in relation to its clinical trajectory, may provide novel prognostic and treatment strategies. METHODS Through the Asia-Pacific Hepatocellular Carcinoma trials group (NCT03267641), we recruited one of the largest prospective cohorts of patients with HCC, with over 600 whole genome and transcriptome samples from 123 treatment-naïve patients. RESULTS Using a multi-region sampling approach, we revealed seven convergent genetic evolutionary paths governed by the early driver mutations, late copy number variations and viral integrations, which stratify patient clinical trajectories after surgical resection. Furthermore, such evolutionary paths shaped the molecular profiles, leading to distinct transcriptomic subtypes. Most significantly, although we found the coexistence of multiple transcriptomic subtypes within certain tumors, patient prognosis was best predicted by the most aggressive cell fraction of the tumor, rather than by overall degree of transcriptomic ITH level - a phenomenon we termed the 'bad apple' effect. Finally, we found that characteristics throughout early and late tumor evolution provide significant and complementary prognostic power in predicting patient survival. CONCLUSIONS Taken together, our study generated a comprehensive landscape of evolutionary history for HCC and provides a rich multi-omics resource for understanding tumor heterogeneity and clinical trajectories. IMPACT AND IMPLICATIONS This prospective study, utilizing comprehensive multi-sector, multi-omics sequencing and clinical data from surgically resected hepatocellular carcinoma (HCC), reveals critical insights into the role of tumor evolution and intra-tumor heterogeneity (ITH) in determining the prognosis of HCC. These findings are invaluable for oncology researchers and clinicians, as they underscore the influence of distinct evolutionary paths and the 'bad apple' effect, where the most aggressive tumor fraction dictates disease progression. These insights not only enhance prognostic accuracy post-surgical resection but also pave the way for personalized treatment strategies tailored to specific tumor evolutionary and transcriptomic profiles. The coexistence of multiple subtypes within the same tumor prompts a re-appraisal of the utilities of depending on single samples to represent the entire tumor and suggests the need for clinical molecular imaging. This research thus marks a significant step forward in the clinical understanding and management of HCC, underscoring the importance of integrating tumor evolutionary dynamics and multi-omics biomarkers into therapeutic decision-making. CLINICAL TRIAL NUMBER NCT03267641 (Observational cohort).
Collapse
Affiliation(s)
- Jianbin Chen
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore.
| | - Neslihan Arife Kaya
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Republic of Singapore
| | - Ying Zhang
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
| | - Raden Indah Kendarsari
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
| | - Karthik Sekar
- Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, Republic of Singapore
| | - Shay Lee Chong
- Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, Republic of Singapore
| | - Veerabrahma Pratap Seshachalam
- Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, Republic of Singapore
| | - Wen Huan Ling
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore; Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, Republic of Singapore
| | - Cheryl Zi Jin Phua
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
| | - Hannah Lai
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
| | - Hechuan Yang
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China
| | - Bingxin Lu
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore; Cell & Developmental Biology, Division of Biosciences, Faculty of Life Sciences, Bloomsbury, London WC1E 6AP, UK
| | - Jia Qi Lim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
| | - Siming Ma
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
| | - Sin Chi Chew
- Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, Republic of Singapore
| | - Khi Pin Chua
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
| | - Jacob Josiah Santiago Alvarez
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
| | - Lingyan Wu
- Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, Republic of Singapore
| | - London Ooi
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital and National Cancer Centre Singapore, Republic of Singapore
| | - Alexander Yaw-Fui Chung
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital and National Cancer Centre Singapore, Republic of Singapore
| | - Peng Chung Cheow
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital and National Cancer Centre Singapore, Republic of Singapore
| | - Juinn Huar Kam
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital and National Cancer Centre Singapore, Republic of Singapore
| | - Alfred Wei-Chieh Kow
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Republic of Singapore
| | - Iyer Shridhar Ganpathi
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Republic of Singapore
| | - Chairat Bunchaliew
- Hepato-Pancreato-Biliary Surgery Unit, Department of Surgery, National Cancer Institute, Bangkok, Thailand
| | | | - Peng Soon Koh
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Diana Bee-Lan Ong
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jasmine Lim
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vanessa H de Villa
- Department of Surgery and Center for Liver Disease Management and Transplantation, The Medical City, Pasig City, Metro Manila, Philippines
| | | | - Tracy Jiezhen Loh
- Department of Pathology, Singapore General Hospital, Singapore 169608, Republic of Singapore
| | - Wei Keat Wan
- Department of Pathology, Singapore General Hospital, Singapore 169608, Republic of Singapore
| | - Wei Qiang Leow
- Department of Pathology, Singapore General Hospital, Singapore 169608, Republic of Singapore
| | - Yi Yang
- School of Data Science, The Chinese University of Hong Kong-Shenzhen, Shenzhen 518172, China
| | - Jin Liu
- School of Data Science, The Chinese University of Hong Kong-Shenzhen, Shenzhen 518172, China
| | - Anders Jacobsen Skanderup
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
| | - Yin Huei Pang
- Department of Pathology, National University Health System, Singapore 119074, Republic of Singapore
| | - Gwyneth Shook Ting Soon
- Department of Pathology, National University Health System, Singapore 119074, Republic of Singapore
| | - Krishnakumar Madhavan
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Republic of Singapore
| | - Tony Kiat-Hon Lim
- Department of Pathology, Singapore General Hospital, Singapore 169608, Republic of Singapore
| | - Glenn Bonney
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Republic of Singapore
| | - Brian K P Goh
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital and National Cancer Centre Singapore, Republic of Singapore
| | - Valerie Chew
- Translational Immunology Institute (TII), SingHealth Duke-NUS Academic Medical Centre, Singapore, Republic of Singapore
| | - Yock Young Dan
- Division of Gastroenterology and Hepatology, University Medicine Cluster, National University Hospital, Singapore, Republic of Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Center Singapore, 169610 Singapore, Republic of Singapore
| | - Roger Sik-Yin Foo
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore; Cardiovascular Research Institute, National University of Singapore, National University Healthcare System, Singapore 119228, Republic of Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Republic of Singapore; Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599, Republic of Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University Singapore, 14 Medical Drive, Singapore 117599, Republic of Singapore.
| | - Weiwei Zhai
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, P.R. China.
| | - Pierce Kah-Hoe Chow
- Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, Republic of Singapore; Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital and National Cancer Centre Singapore, Republic of Singapore; SingHealth-Duke-NUS Academic Surgery Program, Duke-NUS Graduate Medical School, Singapore 169857, Republic of Singapore.
| |
Collapse
|
23
|
Talubo NDD, Tsai PW, Tayo LL. Comprehensive RNA-Seq Gene Co-Expression Analysis Reveals Consistent Molecular Pathways in Hepatocellular Carcinoma across Diverse Risk Factors. BIOLOGY 2024; 13:765. [PMID: 39452074 PMCID: PMC11505157 DOI: 10.3390/biology13100765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Hepatocellular carcinoma (HCC) has the highest mortality rate and is the most frequent of liver cancers. The heterogeneity of HCC in its etiology and molecular expression increases the difficulty in identifying possible treatments. To elucidate the molecular mechanisms of HCC across grades, data from The Cancer Genome Atlas (TCGA) were used for gene co-expression analysis, categorizing each sample into its pre-existing risk factors. The R library BioNERO was used for preprocessing and gene co-expression network construction. For those modules most correlated with a grade, functional enrichments from different databases were then tested, which appeared to have relatively consistent patterns when grouped by G1/G2 and G3/G4. G1/G2 exhibited the involvement of pathways related to metabolism and the PI3K/Akt pathway, which regulates cell proliferation and related pathways, whereas G3/G4 showed the activation of cell adhesion genes and the p53 signaling pathway, which regulates apoptosis, cell cycle arrest, and similar processes. Module preservation analysis was then used with the no history dataset as the reference network, which found cell adhesion molecules and cell cycle genes to be preserved across all risk factors, suggesting they are imperative in the development of HCC regardless of potential etiology. Through hierarchical clustering, modules related to the cell cycle, cell adhesion, the immune system, and the ribosome were found to be consistently present across all risk factors, with distinct clusters linked to oxidative phosphorylation in viral HCC and pentose and glucuronate interconversions in non-viral HCC, underscoring their potential roles in cancer progression.
Collapse
Affiliation(s)
- Nicholas Dale D. Talubo
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
- School of Graduate Studies, Mapúa University, Manila 1002, Philippines
| | - Po-Wei Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan;
| | - Lemmuel L. Tayo
- Department of Biology, School of Health Sciences, Mapúa University, Makati 1203, Philippines
| |
Collapse
|
24
|
Jin Z, Wang X, Zhang X, Cheng S, Liu Y. Identification of two heterogeneous subtypes of hepatocellular carcinoma with distinct pathway activities and clinical outcomes based on gene set variation analysis. Front Genet 2024; 15:1441189. [PMID: 39323867 PMCID: PMC11423295 DOI: 10.3389/fgene.2024.1441189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Background High heterogeneity is an essential feature of malignant tumors. This study aims to reveal the drivers of hepatocellular carcinoma heterogeneity for prognostic stratification and to guide individualized treatment. Methods Omics data and clinical data for two HCC cohorts were derived from the Cancer Genome Atlas (TCGA) and the International Cancer Genome Atlas (ICGC), respectively. CNV data and methylation data were downloaded from the GSCA database. GSVA was used to estimate the transcriptional activity of KEGG pathways, and consensus clustering was used to categorize the HCC samples. The pRRophetic package was used to predict the sensitivity of samples to anticancer drugs. TIMER, MCPcounter, quanTIseq, and TIDE algorithms were used to assess the components of TME. LASSO and COX analyses were used to establish a prognostic gene signature. The biological role played by genes in HCC cells was confirmed by in vitro experiments. Results We classified HCC tissues into two categories based on the activity of prognostic pathways. Among them, the transcriptional profile of cluster A HCC is similar to that of normal tissue, dominated by cancer-suppressive metabolic pathways, and has a better prognosis. In contrast, cluster B HCC is dominated by high proliferative activity and has significant genetic heterogeneity. Meanwhile, cluster B HCC is often poorly differentiated, has a high rate of serum AFP positivity, is prone to microvascular invasion, and has shorter overall survival. In addition, we found that mutations, copy number variations, and aberrant methylation were also crucial drivers of the differences in heterogeneity between the two HCC subtypes. Meanwhile, the TME of the two HCC subtypes is also significantly different, which offers the possibility of precision immunotherapy for HCC patients. Finally, based on the prognostic value of molecular subtypes, we developed a gene signature that could accurately predict patients' OS. The riskscore quantified by the signature could evaluate the heterogeneity of HCC and guide clinical treatment. Finally, we confirmed through in vitro experiments that RFPL4B could promote the progression of Huh7 cells. Conclusion The molecular subtypes we identified effectively exposed the heterogeneity of HCC, which is important for discovering new effective therapeutic targets.
Collapse
Affiliation(s)
- Zhipeng Jin
- Department of Hepatopancreatobiliary Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Xin Wang
- Department of Hepatopancreatobiliary Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Xue Zhang
- Central Laboratory, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Siqi Cheng
- Department of Hepatopancreatobiliary Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Yefu Liu
- Department of Hepatopancreatobiliary Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| |
Collapse
|
25
|
Sun Z, Liu H, Zhao Q, Li JH, Peng SF, Zhang Z, Yang JH, Fu Y. Immune-related cell death index and its application for hepatocellular carcinoma. NPJ Precis Oncol 2024; 8:194. [PMID: 39245753 PMCID: PMC11381516 DOI: 10.1038/s41698-024-00693-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 08/28/2024] [Indexed: 09/10/2024] Open
Abstract
Regulated cell death (RCD) plays a crucial role in the immune microenvironment, development, and progression of hepatocellular carcinoma (HCC). However, reliable immune-related cell death signatures have not been explored. In this study, we collected 12 RCD modes (e.g., apoptosis, ferroptosis, and cuproptosis), including 1078 regulators, to identify immune-related cell death genes based on HCC immune subgroups. Using a developed competitive machine learning framework, nine genes were screened to construct the immune-related cell death index (IRCDI), which is available for online application. Multi-omics data, along with clinical features, were analyzed to explore the HCC malignant heterogeneity. To validate the efficacy of this model, more than 18 independent cohorts, including survival and diverse treatment cohorts and datasets, were utilized. These findings were further validated using in-house samples and molecular biological experiments. Overall, the IRCDI may have a wide application in individual therapeutic decision-making and improving outcomes for HCC patients.
Collapse
Affiliation(s)
- Zhao Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hao Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qian Zhao
- Clinical Systems Biology Key Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jie-Han Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - San-Fei Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing-Hua Yang
- Clinical Systems Biology Key Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
26
|
Macdonald JK, Taylor HB, Wang M, Delacourt A, Edge C, Lewin DN, Kubota N, Fujiwara N, Rasha F, Marquez CA, Ono A, Oka S, Chayama K, Lewis S, Taouli B, Schwartz M, Fiel MI, Drake RR, Hoshida Y, Mehta AS, Angel PM. The Spatial Extracellular Proteomic Tumor Microenvironment Distinguishes Molecular Subtypes of Hepatocellular Carcinoma. J Proteome Res 2024; 23:3791-3805. [PMID: 38980715 PMCID: PMC11385377 DOI: 10.1021/acs.jproteome.4c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/31/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024]
Abstract
Hepatocellular carcinoma (HCC) mortality rates continue to increase faster than those of other cancer types due to high heterogeneity, which limits diagnosis and treatment. Pathological and molecular subtyping have identified that HCC tumors with poor outcomes are characterized by intratumoral collagenous accumulation. However, the translational and post-translational regulation of tumor collagen, which is critical to the outcome, remains largely unknown. Here, we investigate the spatial extracellular proteome to understand the differences associated with HCC tumors defined by Hoshida transcriptomic subtypes of poor outcome (Subtype 1; S1; n = 12) and better outcome (Subtype 3; S3; n = 24) that show differential stroma-regulated pathways. Collagen-targeted mass spectrometry imaging (MSI) with the same-tissue reference libraries, built from untargeted and targeted LC-MS/MS was used to spatially define the extracellular microenvironment from clinically-characterized, formalin-fixed, paraffin-embedded tissue sections. Collagen α-1(I) chain domains for discoidin-domain receptor and integrin binding showed distinctive spatial distribution within the tumor microenvironment. Hydroxylated proline (HYP)-containing peptides from the triple helical regions of fibrillar collagens distinguished S1 from S3 tumors. Exploratory machine learning on multiple peptides extracted from the tumor regions could distinguish S1 and S3 tumors (with an area under the receiver operating curve of ≥0.98; 95% confidence intervals between 0.976 and 1.00; and accuracies above 94%). An overall finding was that the extracellular microenvironment has a high potential to predict clinically relevant outcomes in HCC.
Collapse
Affiliation(s)
- Jade K. Macdonald
- Department
of Cell and Molecular Pharmacology, Medical
University of South Carolina, Charleston, South Carolina 29425, United States
| | - Harrison B. Taylor
- Department
of Cell and Molecular Pharmacology, Medical
University of South Carolina, Charleston, South Carolina 29425, United States
| | - Mengjun Wang
- Department
of Cell and Molecular Pharmacology, Medical
University of South Carolina, Charleston, South Carolina 29425, United States
| | - Andrew Delacourt
- Department
of Cell and Molecular Pharmacology, Medical
University of South Carolina, Charleston, South Carolina 29425, United States
| | - Christin Edge
- Department
of Cell and Molecular Pharmacology, Medical
University of South Carolina, Charleston, South Carolina 29425, United States
| | - David N. Lewin
- Department
of Cell and Molecular Pharmacology, Medical
University of South Carolina, Charleston, South Carolina 29425, United States
| | - Naoto Kubota
- Liver
Tumor Translational Research Program, Simmons Comprehensive Cancer
Center, Division of Digestive and Liver Diseases, Department of Internal
Medicine, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Naoto Fujiwara
- Liver
Tumor Translational Research Program, Simmons Comprehensive Cancer
Center, Division of Digestive and Liver Diseases, Department of Internal
Medicine, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Fahmida Rasha
- Liver
Tumor Translational Research Program, Simmons Comprehensive Cancer
Center, Division of Digestive and Liver Diseases, Department of Internal
Medicine, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Cesia A. Marquez
- Liver
Tumor Translational Research Program, Simmons Comprehensive Cancer
Center, Division of Digestive and Liver Diseases, Department of Internal
Medicine, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Atsushi Ono
- Department
of Gastroenterology, Graduate School of
Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Shiro Oka
- Department
of Gastroenterology, Graduate School of
Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kazuaki Chayama
- Hiroshima
Institute of Life Sciences, Hiroshima 734-8553, Japan
- Collaborative
Research Laboratory of Medical Innovation, Research Center for Hepatology
and Gastroenterology, Hiroshima University, Hiroshima 734-8553, Japan
- RIKEN Center
for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Sara Lewis
- Department
of Radiology, Icahn School of Medicine at
Mount Sinai, New York, New York 10029, United States
| | - Bachir Taouli
- Department
of Radiology, Icahn School of Medicine at
Mount Sinai, New York, New York 10029, United States
| | - Myron Schwartz
- Department
of Radiology, Icahn School of Medicine at
Mount Sinai, New York, New York 10029, United States
- Department
of Surgery, Icahn School of Medicine at
Mount Sinai, New York, New York 10029, United States
| | - M Isabel Fiel
- Department
of Radiology, Icahn School of Medicine at
Mount Sinai, New York, New York 10029, United States
- Department
of Pathology, Icahn School of Medicine at
Mount Sinai, New York, New York 10029, United States
| | - Richard R. Drake
- Department
of Cell and Molecular Pharmacology, Medical
University of South Carolina, Charleston, South Carolina 29425, United States
| | - Yujin Hoshida
- Liver
Tumor Translational Research Program, Simmons Comprehensive Cancer
Center, Division of Digestive and Liver Diseases, Department of Internal
Medicine, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Anand S. Mehta
- Department
of Cell and Molecular Pharmacology, Medical
University of South Carolina, Charleston, South Carolina 29425, United States
| | - Peggi M. Angel
- Department
of Cell and Molecular Pharmacology, Medical
University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
27
|
Sai Varshini M, Aishwarya Reddy R, Thaggikuppe Krishnamurthy P. Unlocking hope: GSK-3 inhibitors and Wnt pathway activation in Alzheimer's therapy. J Drug Target 2024; 32:909-917. [PMID: 38838023 DOI: 10.1080/1061186x.2024.2365263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterised by progressive cognitive decline and the accumulation of amyloid-β plaques and tau tangles. The Wnt signalling pathway known for its crucial role in neurodevelopment and adult neurogenesis has emerged as a potential target for therapeutic intervention in AD. Glycogen synthase kinase-3 beta (GSK-3β), a key regulator of the Wnt pathway, plays a pivotal role in AD pathogenesis by promoting tau hyperphosphorylation and neuroinflammation. Several preclinical studies have demonstrated that inhibiting GSK-3β leads to the activation of Wnt pathway thereby promoting neuroprotective effects, and mitigating cognitive deficits in AD animal models. The modulation of Wnt signalling appears to have multifaceted benefits including the reduction of amyloid-β production, tau hyperphosphorylation, enhancement of synaptic plasticity, and inhibition of neuroinflammation. These findings suggest that targeting GSK-3β to activate Wnt pathway may represent a novel approach for slowing or halting the progression of AD. This hypothesis reviews the current state of research exploring the activation of Wnt pathway through the inhibition of GSK-3β as a promising therapeutic strategy in AD.
Collapse
Affiliation(s)
- Magham Sai Varshini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India
| | - Ramakkamma Aishwarya Reddy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India
| | | |
Collapse
|
28
|
Guo DZ, Zhang X, Zhang SQ, Zhang SY, Zhang XY, Yan JY, Dong SY, Zhu K, Yang XR, Fan J, Zhou J, Huang A. Single-cell tumor heterogeneity landscape of hepatocellular carcinoma: unraveling the pro-metastatic subtype and its interaction loop with fibroblasts. Mol Cancer 2024; 23:157. [PMID: 39095854 PMCID: PMC11295380 DOI: 10.1186/s12943-024-02062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Tumor heterogeneity presents a formidable challenge in understanding the mechanisms driving tumor progression and metastasis. The heterogeneity of hepatocellular carcinoma (HCC) in cellular level is not clear. METHODS Integration analysis of single-cell RNA sequencing data and spatial transcriptomics data was performed. Multiple methods were applied to investigate the subtype of HCC tumor cells. The functional characteristics, translation factors, clinical implications and microenvironment associations of different subtypes of tumor cells were analyzed. The interaction of subtype and fibroblasts were analyzed. RESULTS We established a heterogeneity landscape of HCC malignant cells by integrated 52 single-cell RNA sequencing data and 5 spatial transcriptomics data. We identified three subtypes in tumor cells, including ARG1+ metabolism subtype (Metab-subtype), TOP2A+ proliferation phenotype (Prol-phenotype), and S100A6+ pro-metastatic subtype (EMT-subtype). Enrichment analysis found that the three subtypes harbored different features, that is metabolism, proliferating, and epithelial-mesenchymal transition. Trajectory analysis revealed that both Metab-subtype and EMT-subtype originated from the Prol-phenotype. Translation factor analysis found that EMT-subtype showed exclusive activation of SMAD3 and TGF-β signaling pathway. HCC dominated by EMT-subtype cells harbored an unfavorable prognosis and a deserted microenvironment. We uncovered a positive loop between tumor cells and fibroblasts mediated by SPP1-CD44 and CCN2/TGF-β-TGFBR1 interaction pairs. Inhibiting CCN2 disrupted the loop, mitigated the transformation to EMT-subtype, and suppressed metastasis. CONCLUSION By establishing a heterogeneity landscape of malignant cells, we identified a three-subtype classification in HCC. Among them, S100A6+ tumor cells play a crucial role in metastasis. Targeting the feedback loop between tumor cells and fibroblasts is a promising anti-metastatic strategy.
Collapse
Affiliation(s)
- De-Zhen Guo
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xin Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Sen-Quan Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shi-Yu Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiang-Yu Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jia-Yan Yan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - San-Yuan Dong
- Department of Radiology, Zhongshan Hospital, Shanghai Institute of Medical Imaging, Fudan University, Shanghai, 200032, China
| | - Kai Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xin-Rong Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| | - Ao Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
29
|
Jeong BK, Choi WI, Choi W, Moon J, Lee WH, Choi C, Choi IY, Lee SH, Kim JK, Ju YS, Kim P, Moon YA, Park JY, Kim H. A male mouse model for metabolic dysfunction-associated steatotic liver disease and hepatocellular carcinoma. Nat Commun 2024; 15:6506. [PMID: 39090079 PMCID: PMC11294468 DOI: 10.1038/s41467-024-50660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
The lack of an appropriate preclinical model of metabolic dysfunction-associated steatotic liver disease (MASLD) that recapitulates the whole disease spectrum impedes exploration of disease pathophysiology and the development of effective treatment strategies. Here, we develop a mouse model (Streptozotocin with high-fat diet, STZ + HFD) that gradually develops fatty liver, metabolic dysfunction-associated steatohepatitis (MASH), hepatic fibrosis, and hepatocellular carcinoma (HCC) in the context of metabolic dysfunction. The hepatic transcriptomic features of STZ + HFD mice closely reflect those of patients with obesity accompanying type 2 diabetes mellitus, MASH, and MASLD-related HCC. Dietary changes and tirzepatide administration alleviate MASH, hepatic fibrosis, and hepatic tumorigenesis in STZ + HFD mice. In conclusion, a murine model recapitulating the main histopathologic, transcriptomic, and metabolic alterations observed in MASLD patients is successfully established.
Collapse
Affiliation(s)
- Byung-Kwan Jeong
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
- Biomedical Research Center, KAIST, Daejeon, Korea
| | - Won-Il Choi
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
- Biomedical Research Center, KAIST, Daejeon, Korea
| | - Wonsuk Choi
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea.
| | - Jieun Moon
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
- Biomedical Research Center, KAIST, Daejeon, Korea
| | - Won Hee Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
- Biomedical Research Center, KAIST, Daejeon, Korea
| | - Chan Choi
- Department of Pathology, Chonnam National University Medical School, Hwasun, Korea
| | - In Young Choi
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd, Hwaseong, Korea
| | - Sang-Hyun Lee
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd, Hwaseong, Korea
| | - Jung Kuk Kim
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd, Hwaseong, Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
- Biomedical Research Center, KAIST, Daejeon, Korea
| | - Pilhan Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
- Biomedical Research Center, KAIST, Daejeon, Korea
| | - Young-Ah Moon
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, 22212, Korea
| | - Jun Yong Park
- Department of Internal Medicine, Yonsei University College of Medicine, Yonsei Liver Center, Severance Hospital, Seoul, Korea.
| | - Hail Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea.
- Biomedical Research Center, KAIST, Daejeon, Korea.
| |
Collapse
|
30
|
Oshi M, Chida K, Roy AM, Mann GK, An N, Yan L, Endo I, Takabe K. Higher inflammatory response in hepatocellular carcinoma is associated with immune cell infiltration and a better outcome. Hepatol Int 2024; 18:1299-1309. [PMID: 38898190 DOI: 10.1007/s12072-024-10678-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/01/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) often develops from chronic liver inflammation. Inflammation within a tumor can either promote cancer progression or activate an immune response against it. This study aims to determine the clinical significance of enhanced inflammation in HCC. METHODS Data from 655 HCC patients across four cohorts (TCGA, GSE6764, GSE76427, GSE89377) were examined. Inflammatory response was quantified using a scoring system derived from the gene set variation analysis of the "INFLAMMATORY_RESPONSE" gene set. RESULTS A stepwise increase in inflammatory response was noted from normal liver to cirrhosis, with consistently lower levels in HCC across both GSE6764 and GSE89377 cohorts (both p < 0.001). Similar trends were observed in interferon response, pathways such as IL6/JAK/STAT3 and complement signaling, coagulation cascade, and allograft rejection (all p < 0.02). HCCs with high inflammatory response were associated with increased immune cell infiltrations (p < 0.01) and cytolytic activity (p < 0.001). Interestingly, these HCCs had reduced mutation rates, no relationship with cell proliferation, and displayed both immune responses and pro-cancerous signals including epithelial-mesenchymal transition, KRAS, and hypoxia. Further, a high inflammatory score correlated with improved disease-free survival in TCGA (p = 0.034) and overall survival in GSE76427 (p = 0.008). CONCLUSION HCC with higher levels of inflammatory response demonstrated increased immune cell infiltration, enhanced immune-related and other pro-cancerous-related signaling, and showed a trend toward a better patient prognosis.
Collapse
Affiliation(s)
- Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Kohei Chida
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Arya Mariam Roy
- Department of Hematology and Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Gabriella Kim Mann
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Nan An
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan.
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, 160-8402, Japan.
- Department of Breast and Thyroid Surgery, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan.
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8520, Japan.
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, 14263, USA.
| |
Collapse
|
31
|
Kotulkar M, Paine-Cabrera D, Apte U. Role of Hepatocyte Nuclear Factor 4 Alpha in Liver Cancer. Semin Liver Dis 2024; 44:383-393. [PMID: 38901435 DOI: 10.1055/a-2349-7236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Liver cancer is the sixth most common cancer and the fourth leading cause of cancer-related deaths worldwide. Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer and the incidence of HCC is on the rise. Liver cancers in general and HCC in particular do not respond to chemotherapy. Radiological ablation, surgical resection, and liver transplantation are the only medical therapies currently available. Hepatocyte nuclear factor 4 α (HNF4α) is an orphan nuclear receptor expressed only in hepatocytes in the liver. HNF4α is considered the master regulator of hepatic differentiation because it regulates a significant number of genes involved in various liver-specific functions. In addition to maintaining hepatic differentiation, HNF4α also acts as a tumor suppressor by inhibiting hepatocyte proliferation by suppressing the expression of promitogenic genes and inhibiting epithelial to mesenchymal transition in hepatocytes. Loss of HNF4α expression and function is associated with rapid progression of chronic liver diseases that ultimately lead to liver cirrhosis and HCC, including metabolism-associated steatohepatitis, alcohol-associated liver disease, and hepatitis virus infection. This review summarizes the role of HNF4α in liver cancer pathogenesis and highlights its potential as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Manasi Kotulkar
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Diego Paine-Cabrera
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
32
|
Amadeo E, Foti S, Camera S, Rossari F, Persano M, Lo Prinzi F, Vitiello F, Casadei-Gardini A, Rimini M. Developing targeted therapeutics for hepatocellular carcinoma: a critical assessment of promising phase II agents. Expert Opin Investig Drugs 2024; 33:839-849. [PMID: 39039690 DOI: 10.1080/13543784.2024.2377321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the first for primary liver tumors. In recent years greater therapeutic advancement was represented by employment of tyrosine kinase inhibitors (TKIs) either in monotherapy or in combination with immune checkpoint inhibitors (ICIs). AREAS COVERED Major attention was given to target therapies in the last couple of years, especially in those currently under phase II trials. Priority was given either to combinations of novel ICI and TKIs or those targeting alternative mutations of major carcinogenic pathways. EXPERT OPINION As TKIs are playing a more crucial role in HCC therapeutic strategies, it is fundamental to further expand molecular testing and monitoring of acquired resistances. Despite the recent advancement in both laboratory and clinical studies, further research is necessary to face the discrepancy in clinical practice.
Collapse
Affiliation(s)
- Elisabeth Amadeo
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Silvia Foti
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Silvia Camera
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Federico Rossari
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Mara Persano
- Medical Oncology, University and University Hospital of Cagliari, Cagliari, Italy
| | - Federica Lo Prinzi
- Operative Research Unit of Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Francesco Vitiello
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Andrea Casadei-Gardini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Margherita Rimini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| |
Collapse
|
33
|
Dantzer C, Vaché J, Brunel A, Mahouche I, Raymond AA, Dupuy JW, Petrel M, Bioulac-Sage P, Perrais D, Dugot-Senant N, Verdier M, Bessette B, Billottet C, Moreau V. Emerging role of oncogenic ß-catenin in exosome biogenesis as a driver of immune escape in hepatocellular carcinoma. eLife 2024; 13:RP95191. [PMID: 39008536 PMCID: PMC11249736 DOI: 10.7554/elife.95191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
Immune checkpoint inhibitors have produced encouraging results in cancer patients. However, the majority of ß-catenin-mutated tumors have been described as lacking immune infiltrates and resistant to immunotherapy. The mechanisms by which oncogenic ß-catenin affects immune surveillance remain unclear. Herein, we highlighted the involvement of ß-catenin in the regulation of the exosomal pathway and, by extension, in immune/cancer cell communication in hepatocellular carcinoma (HCC). We showed that mutated ß-catenin represses expression of SDC4 and RAB27A, two main actors in exosome biogenesis, in both liver cancer cell lines and HCC patient samples. Using nanoparticle tracking analysis and live-cell imaging, we further demonstrated that activated ß-catenin represses exosome release. Then, we demonstrated in 3D spheroid models that activation of β-catenin promotes a decrease in immune cell infiltration through a defect in exosome secretion. Taken together, our results provide the first evidence that oncogenic ß-catenin plays a key role in exosome biogenesis. Our study gives new insight into the impact of ß-catenin mutations on tumor microenvironment remodeling, which could lead to the development of new strategies to enhance immunotherapeutic response.
Collapse
Affiliation(s)
| | - Justine Vaché
- Université de Bordeaux, INSERM, U1312, BRICBordeauxFrance
| | - Aude Brunel
- Université de Limoges, INSERM, U1308, CAPTuRLimogesFrance
| | | | - Anne-Aurélie Raymond
- Université de Bordeaux, INSERM, U1312, BRICBordeauxFrance
- Plateforme OncoProt, Université de Bordeaux, CNRS, INSERM, TBM-Core, US5, UAR3457BordeauxFrance
| | - Jean-William Dupuy
- Plateforme OncoProt, Université de Bordeaux, CNRS, INSERM, TBM-Core, US5, UAR3457BordeauxFrance
- Plateforme Protéome, Université de Bordeaux, Bordeaux ProteomeBordeauxFrance
| | - Melina Petrel
- Bordeaux Imaging Center, Université de Bordeaux, CNRS, INSERM, BICBordeauxFrance
| | | | - David Perrais
- Université de Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, BordeauxBordeauxFrance
| | - Nathalie Dugot-Senant
- Plateforme d'histologie, Université de Bordeaux, CNRS, INSERM, TBM-Core, US5, UAR3457BordeauxFrance
| | | | | | | | | |
Collapse
|
34
|
Ikliptikawati DK, Makiyama K, Hazawa M, Wong RW. Unlocking the Gateway: The Spatio-Temporal Dynamics of the p53 Family Driven by the Nuclear Pores and Its Implication for the Therapeutic Approach in Cancer. Int J Mol Sci 2024; 25:7465. [PMID: 39000572 PMCID: PMC11242911 DOI: 10.3390/ijms25137465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
The p53 family remains a captivating focus of an extensive number of current studies. Accumulating evidence indicates that p53 abnormalities rank among the most prevalent in cancer. Given the numerous existing studies, which mostly focus on the mutations, expression profiles, and functional perturbations exhibited by members of the p53 family across diverse malignancies, this review will concentrate more on less explored facets regarding p53 activation and stabilization by the nuclear pore complex (NPC) in cancer, drawing on several studies. p53 integrates a broad spectrum of signals and is subject to diverse regulatory mechanisms to enact the necessary cellular response. It is widely acknowledged that each stage of p53 regulation, from synthesis to degradation, significantly influences its functionality in executing specific tasks. Over recent decades, a large body of data has established that mechanisms of regulation, closely linked with protein activation and stabilization, involve intricate interactions with various cellular components. These often transcend canonical regulatory pathways. This new knowledge has expanded from the regulation of genes themselves to epigenomics and proteomics, whereby interaction partners increase in number and complexity compared with earlier paradigms. Specifically, studies have recently shown the involvement of the NPC protein in such complex interactions, underscoring the further complexity of p53 regulation. Furthermore, we also discuss therapeutic strategies based on recent developments in this field in combination with established targeted therapies.
Collapse
Affiliation(s)
- Dini Kurnia Ikliptikawati
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan;
| | - Kei Makiyama
- Laboratory of Molecular Cell Biology, Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
| | - Masaharu Hazawa
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan;
- Laboratory of Molecular Cell Biology, Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
| | - Richard W. Wong
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan;
- Laboratory of Molecular Cell Biology, Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
| |
Collapse
|
35
|
Moniaux N, Geoffre N, Deshayes A, Dos Santos A, Job S, Lacoste C, Nguyen TS, Darnaud M, Friedel-Arboleas M, Guettier C, Purhonen J, Kallijärvi J, Amouyal G, Amouyal P, Bréchot C, Vivès RR, Buendia MA, Issad T, Faivre J. Tumor suppressive role of the antimicrobial lectin REG3A targeting the O -GlcNAc glycosylation pathway. Hepatology 2024:01515467-990000000-00943. [PMID: 38975812 DOI: 10.1097/hep.0000000000000993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND AND AIMS Antimicrobial proteins of the regenerating family member 3 alpha (REG3A) family provide a first line of protection against infections and transformed cells. Their expression is inducible by inflammation, which makes their role in cancer biology less clear since an immune-inflammatory context may preexist or coexist with cancer, as occurs in HCC. The aim of this study is to clarify the role of REG3A in liver carcinogenesis and to determine whether its carbohydrate-binding functions are involved. APPROACH AND RESULTS This study provides evidence for a suppressive role of REG3A in HCC by reducing O -GlcNAcylation in 2 mouse models of HCC, in vitro cell studies, and clinical samples. REG3A expression in hepatocytes significantly reduced global O -GlcNAcylation and O -GlcNAcylation of c-MYC in preneoplastic and tumor livers and markedly inhibited HCC development in REG3A-c-MYC double transgenic mice and mice exposed to diethylnitrosamine. REG3A modified O -GlcNAcylation without altering the expression or activity of O-linked N-acetylglucosaminyltransferase, O-linked N-acetylglucosaminyl hydrolase, or glutamine fructose-6-phosphate amidotransferase. Reduced O -GlcNAcylation was consistent with decreased levels of UDP-GlcNAc in precancerous and cancerous livers. This effect was linked to the ability of REG3A to bind glucose and glucose-6 phosphate, suggested by a REG3A mutant unable to bind glucose and glucose-6 phosphate and alter O -GlcNAcylation. Importantly, patients with cirrhosis with high hepatic REG3A expression had lower levels of O -GlcNAcylation and longer cancer-free survival than REG3A-negative cirrhotic livers. CONCLUSIONS REG3A helps fight liver cancer by reducing O -GlcNAcylation. This study suggests a new paradigm for the regulation of O -GlcNAc signaling in cancer-related pathways through interactions with the carbohydrate-binding function of REG3A.
Collapse
Affiliation(s)
- Nicolas Moniaux
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Nicolas Geoffre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Alice Deshayes
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Alexandre Dos Santos
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Sylvie Job
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Claire Lacoste
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Tung-Son Nguyen
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Marion Darnaud
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | | | - Catherine Guettier
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Saclay, Hôpital Bicêtre, Laboratoire Anatomie Pathologique, Le Kremlin Bicêtre, France
| | - Janne Purhonen
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jukka Kallijärvi
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | - Romain R Vivès
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Marie Annick Buendia
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Tarik Issad
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Medical-University Department (DMU) Biology Genetics, Université Paris-Saclay, Paul-Brousse Hospital, Villejuif, France
| |
Collapse
|
36
|
He Y, Han S, Li H, Wu Y, Jia W, Chen Z, Pan Y, Cai N, Wen J, Li G, Liang J, Zhao J, Liu Q, Liang H, Ding Z, Huang Z, Zhang B. CREB3 suppresses hepatocellular carcinoma progression by depressing AKT signaling through competitively binding with insulin receptor and transcriptionally activating RNA-binding motif protein 38. MedComm (Beijing) 2024; 5:e633. [PMID: 38952575 PMCID: PMC11215284 DOI: 10.1002/mco2.633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/03/2024] Open
Abstract
cAMP responsive element binding protein 3 (CREB3), belonging to bZIP family, was reported to play multiple roles in various cancers, but its role in hepatocellular carcinoma (HCC) is still unclear. cAMP responsive element binding protein 3 like 3 (CREB3L3), another member of bZIP family, was thought to be transcription factor (TF) to regulate hepatic metabolism. Nevertheless, except for being TFs, other function of bZIP family were poorly understood. In this study, we found CREB3 inhibited growth and metastasis of HCC in vitro and in vivo. RNA sequencing indicated CREB3 regulated AKT signaling to influence HCC progression. Mass spectrometry analysis revealed CREB3 interacted with insulin receptor (INSR). Mechanistically, CREB3 suppressed AKT phosphorylation by inhibiting the interaction of INSR with insulin receptor substrate 1 (IRS1). In our study, CREB3 was firstly proved to affect activation of substrates by interacting with tyrosine kinase receptor. Besides, CREB3 could act as a TF to transactivate RNA-binding motif protein 38 (RBM38) expression, leading to suppressed AKT phosphorylation. Rescue experiments further confirmed the independence between the two functional manners. In conclusion, CREB3 acted as a tumor suppressor in HCC, which inhibited AKT phosphorylation through independently interfering interaction of INSR with IRS1, and transcriptionally activating RBM38.
Collapse
Affiliation(s)
- Yi He
- Hepatic Surgery CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Department of Pediatric SurgeryTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Shenqi Han
- Hepatic Surgery CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Han Li
- Hepatic Surgery CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yu Wu
- Hepatic Surgery CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Wenlong Jia
- Hepatic Surgery CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Zeyu Chen
- Hepatic Surgery CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yonglong Pan
- Hepatic Surgery CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Department of Pediatric SurgeryTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Ning Cai
- Hepatic Surgery CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Jingyuan Wen
- Hepatic Surgery CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Ganxun Li
- Hepatic Surgery CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Junnan Liang
- Hepatic Surgery CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Jianping Zhao
- Hepatic Surgery CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Qiumeng Liu
- Hepatic Surgery CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Huifang Liang
- Hepatic Surgery CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Zeyang Ding
- Hepatic Surgery CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Zhao Huang
- Hepatic Surgery CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Bixiang Zhang
- Hepatic Surgery CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
37
|
Voisin L, Lapouge M, Saba-El-Leil MK, Gombos M, Javary J, Trinh VQ, Meloche S. Syngeneic mouse model of YES-driven metastatic and proliferative hepatocellular carcinoma. Dis Model Mech 2024; 17:dmm050553. [PMID: 39051113 PMCID: PMC11552496 DOI: 10.1242/dmm.050553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/24/2024] [Indexed: 07/27/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a disease of high unmet medical need that has become a global health problem. The development of targeted therapies for HCC has been hindered by the incomplete understanding of HCC pathogenesis and the limited number of relevant preclinical animal models. We recently unveiled a previously uncharacterized YES kinase (encoded by YES1)-dependent oncogenic signaling pathway in HCC. To model this subset of HCC, we established a series of syngeneic cell lines from liver tumors of transgenic mice expressing activated human YES. The resulting cell lines (referred to as HepYF) were enriched for expression of stem cell and progenitor markers, proliferated rapidly, and were characterized by high SRC family kinase (SFK) activity and activated mitogenic signaling pathways. Transcriptomic analysis indicated that HepYF cells are representative of the most aggressive proliferation class G3 subgroup of HCC. HepYF cells formed rapidly growing metastatic tumors upon orthotopic implantation into syngeneic hosts. Treatment with sorafenib or the SFK inhibitor dasatinib markedly inhibited the growth of HepYF tumors. The new HepYF HCC cell lines provide relevant preclinical models to study the pathogenesis of HCC and test novel small-molecule inhibitor and immunotherapy approaches.
Collapse
Affiliation(s)
- Laure Voisin
- Institute for Research in Immunology and Cancer, Montreal, Quebec H3T 1J4, Canada
| | - Marjorie Lapouge
- Institute for Research in Immunology and Cancer, Montreal, Quebec H3T 1J4, Canada
| | - Marc K. Saba-El-Leil
- Institute for Research in Immunology and Cancer, Montreal, Quebec H3T 1J4, Canada
| | - Melania Gombos
- Institute for Research in Immunology and Cancer, Montreal, Quebec H3T 1J4, Canada
| | - Joaquim Javary
- Institute for Research in Immunology and Cancer, Montreal, Quebec H3T 1J4, Canada
| | - Vincent Q. Trinh
- Institute for Research in Immunology and Cancer, Montreal, Quebec H3T 1J4, Canada
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
- Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Montreal, Quebec H3T 1J4, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
38
|
Zhang W, Wang J, Shan C. The eEF1A protein in cancer: Clinical significance, oncogenic mechanisms, and targeted therapeutic strategies. Pharmacol Res 2024; 204:107195. [PMID: 38677532 DOI: 10.1016/j.phrs.2024.107195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Eukaryotic elongation factor 1A (eEF1A) is among the most abundant proteins in eukaryotic cells. Evolutionarily conserved across species, eEF1A is in charge of translation elongation for protein biosynthesis as well as a plethora of non-translational moonlighting functions for cellular homeostasis. In malignant cells, however, eEF1A becomes a pleiotropic driver of cancer progression via a broad diversity of pathways, which are not limited to hyperactive translational output. In the past decades, mounting studies have demonstrated the causal link between eEF1A and carcinogenesis, gaining deeper insights into its multifaceted mechanisms and corroborating its value as a prognostic marker in various cancers. On the other hand, an increasing number of natural and synthetic compounds were discovered as anticancer eEF1A-targeting inhibitors. Among them, plitidepsin was approved for the treatment of multiple myeloma whereas metarrestin was currently under clinical development. Despite significant achievements in these two interrelated fields, hitherto there lacks a systematic examination of the eEF1A protein in the context of cancer research. Therefore, the present work aims to delineate its clinical implications, molecular oncogenic mechanisms, and targeted therapeutic strategies as reflected in the ever expanding body of literature, so as to deepen mechanistic understanding of eEF1A-involved tumorigenesis and inspire the development of eEF1A-targeted chemotherapeutics and biologics.
Collapse
Affiliation(s)
- Weicheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| | - Jiyan Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Changliang Shan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| |
Collapse
|
39
|
Kara-Ali GH, Cano L, Dion S, Imerzoukene G, Hamon A, Simoes Eugénio M, Piquet-Pellorce C, Ghukasyan G, Samson M, Le Seyec J, Dimanche-Boitrel MT. Trim21 deficiency in mice increases HCC carcinogenesis in a NASH context and is associated with immune checkpoint upregulation. Int J Cancer 2024; 154:1999-2013. [PMID: 38308587 DOI: 10.1002/ijc.34869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/04/2023] [Accepted: 01/11/2024] [Indexed: 02/05/2024]
Abstract
The global pandemic of metabolic diseases has increased the incidence of hepatocellular carcinoma (HCC) in the context of non-alcoholic steatohepatitis (NASH). The downregulation of the E3 ubiquitin ligase TRIM21 has been linked to poor prognosis in different cancers including HCC. In order to investigate the role of TRIM21 in liver cancer progression on NASH, Trim21+/+ and Trim21-/- male mice were injected with streptozotocin at the neonatal stage. The hypoinsulinemic mice were then fed with a high-fat high-cholesterol diet (HFHCD) for 4, 8 or 12 weeks. All mice developed NASH which systematically resulted in HCC progression. Interestingly, compared to the Trim21+/+ control mice, liver damage was worsened in Trim21-/- mice, with more HCC nodules found after 12 weeks on HFHCD. Immune population analysis in the spleen and liver revealed a higher proportion of CD4+PD-1+ and CD8+PD-1+ T cells in Trim21-/- mice. The liver and HCC tumors of Trim21-/- mice also exhibited an increase in the number of PD-L1+ and CD68+ PD-L1+ cells. Thus, TRIM21 limits the emergence of HCC nodules in mice with NASH by potentially restricting the expression of PD-1 in lymphocytes and PD-L1 in tumors.
Collapse
Affiliation(s)
- Ghania Hounana Kara-Ali
- EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Univ. Rennes, Inserm, Rennes, France
| | - Luis Cano
- INRAE, CHU Pontchaillou, Inserm, UMR 1241 Numecan, Univ. Rennes, Rennes, France
| | - Sarah Dion
- EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Univ. Rennes, Inserm, Rennes, France
| | - Ghiles Imerzoukene
- EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Univ. Rennes, Inserm, Rennes, France
| | - Annaig Hamon
- EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Univ. Rennes, Inserm, Rennes, France
| | - Mélanie Simoes Eugénio
- EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Univ. Rennes, Inserm, Rennes, France
| | - Claire Piquet-Pellorce
- EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Univ. Rennes, Inserm, Rennes, France
| | - Gevorg Ghukasyan
- Plateforme d'Histopathologie de Haute Précision (H2P2), Université de Rennes, Rennes, France
| | - Michel Samson
- EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Univ. Rennes, Inserm, Rennes, France
| | - Jacques Le Seyec
- EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Univ. Rennes, Inserm, Rennes, France
| | - Marie-Thérèse Dimanche-Boitrel
- EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Univ. Rennes, Inserm, Rennes, France
| |
Collapse
|
40
|
Jiang Z, Wu Y, Miao Y, Deng K, Yang F, Xu S, Wang Y, You R, Zhang L, Fan Y, Guo W, Lian Q, Chen L, Zhang X, Zheng Y, Gu J. HCCDB v2.0: Decompose Expression Variations by Single-cell RNA-seq and Spatial Transcriptomics in HCC. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae011. [PMID: 38886186 PMCID: PMC11423853 DOI: 10.1093/gpbjnl/qzae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/18/2023] [Accepted: 10/01/2023] [Indexed: 06/20/2024]
Abstract
Large-scale transcriptomic data are crucial for understanding the molecular features of hepatocellular carcinoma (HCC). Integrated 15 transcriptomic datasets of HCC clinical samples, the first version of HCC database (HCCDB v1.0) was released in 2018. Through the meta-analysis of differentially expressed genes and prognosis-related genes across multiple datasets, it provides a systematic view of the altered biological processes and the inter-patient heterogeneities of HCC with high reproducibility and robustness. With four years having passed, the database now needs integration of recently published datasets. Furthermore, the latest single-cell and spatial transcriptomics have provided a great opportunity to decipher complex gene expression variations at the cellular level with spatial architecture. Here, we present HCCDB v2.0, an updated version that combines bulk, single-cell, and spatial transcriptomic data of HCC clinical samples. It dramatically expands the bulk sample size by adding 1656 new samples from 11 datasets to the existing 3917 samples, thereby enhancing the reliability of transcriptomic meta-analysis. A total of 182,832 cells and 69,352 spatial spots are added to the single-cell and spatial transcriptomics sections, respectively. A novel single-cell level and 2-dimension (sc-2D) metric is proposed as well to summarize cell type-specific and dysregulated gene expression patterns. Results are all graphically visualized in our online portal, allowing users to easily retrieve data through a user-friendly interface and navigate between different views. With extensive clinical phenotypes and transcriptomic data in the database, we show two applications for identifying prognosis-associated cells and tumor microenvironment. HCCDB v2.0 is available at http://lifeome.net/database/hccdb2.
Collapse
Affiliation(s)
- Ziming Jiang
- Eight-Year Program of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China
| | - Yanhong Wu
- MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Institute for Precision Medicine & Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yuxin Miao
- MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Institute for Precision Medicine & Department of Automation, Tsinghua University, Beijing 100084, China
| | - Kaige Deng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Fan Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Shuhuan Xu
- Fuzhou Institute for Data Technology, Fuzhou 350207, China
| | - Yupeng Wang
- Fuzhou Institute for Data Technology, Fuzhou 350207, China
| | - Renke You
- Fuzhou Institute for Data Technology, Fuzhou 350207, China
| | - Lei Zhang
- Fuzhou Institute for Data Technology, Fuzhou 350207, China
| | - Yuhan Fan
- MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Institute for Precision Medicine & Department of Automation, Tsinghua University, Beijing 100084, China
| | - Wenbo Guo
- MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Institute for Precision Medicine & Department of Automation, Tsinghua University, Beijing 100084, China
| | - Qiuyu Lian
- University of Michigan – Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Chen
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, China
- National Center for Liver Cancer, Shanghai 201805, China
| | - Xuegong Zhang
- MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Institute for Precision Medicine & Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yongchang Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jin Gu
- MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Institute for Precision Medicine & Department of Automation, Tsinghua University, Beijing 100084, China
| |
Collapse
|
41
|
Younis MA, Harashima H. Understanding Gene Involvement in Hepatocellular Carcinoma: Implications for Gene Therapy and Personalized Medicine. Pharmgenomics Pers Med 2024; 17:193-213. [PMID: 38737776 PMCID: PMC11088404 DOI: 10.2147/pgpm.s431346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/09/2024] [Indexed: 05/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the dominant type of liver cancers and is one of the deadliest health threats globally. The conventional therapeutic options for HCC are hampered by low efficiency and intolerable side effects. Gene therapy, however, now offers hope for the treatment of many disorders previously considered incurable, and gene therapy is beginning to address many of the shortcomings of conventional therapies. Herein, we summarize the involvement of genes in the pathogenesis and prognosis of HCC, with a special focus on dysregulated signaling pathways, genes involved in immune evasion, and non-coding RNAs as novel two-edged players, which collectively offer potential targets for the gene therapy of HCC. Herein, the opportunities and challenges of HCC gene therapy are discussed. These include innovative therapies such as genome editing and cell therapies. Moreover, advanced gene delivery technologies that recruit nanomedicines for use in gene therapy for HCC are highlighted. Finally, suggestions are offered for improved clinical translation and future directions in this area of endeavor.
Collapse
Affiliation(s)
- Mahmoud A Younis
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| |
Collapse
|
42
|
Shi X, Shi D, Yin Y, Wu Y, Chen W, Yu Y, Wang X. Cuproptosis-associated genes (CAGs) contribute to the prognosis prediction and potential therapeutic targets in hepatocellular carcinoma. Cell Signal 2024; 117:111072. [PMID: 38307306 DOI: 10.1016/j.cellsig.2024.111072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Cuproptosis is a novel form of cell death that exhibits close association with mitochondrial respiration and occurs through distinct mechanisms compared to previously characterized forms of cell death. However, the precise impact of cuproptosis-associated genes (CAGs) on prognosis, immune profiles, and treatment efficacy in hepatocellular carcinomas (HCC) remains poorly understood. METHODS A comprehensive analysis of CAGs in hepatocellular carcinoma (HCC) prognosis was conducted using genomic data from HCC patients. Consensus clustering analysis was performed to determine molecular subtypes related to cuproptosis in HCC. The single-sample gene set enrichment analysis (ssGSEA) algorithm was applied to quantify the infiltration levels of immune cells, while the "ESTIMATE" package was employed to calculate tumor purity, stromal scores, and immune scores in the tumor microenvironment (TME). Principal component analysis (PCA) algorithm was utilized to construct a risk score related to CAGs. Finally, CCK8, wound healing, Transwell migration/invasion, EDU and xenograft model were employed to explore the potential oncogenic role of MTF1. RESULTS Three distinct patterns of cuproptosis modification were identified, each associated with unique functional enrichments, clinical characteristics, immune cell infiltration, immune checkpoints, tumor microenvironment (TME), and prognosis. A CAGs-related risk score (Cuscore) was developed to predict prognosis in TCGA and validated in GSE76427 and ICGC datasets. Notably, patients with a low Cuscore had better prognoses and were more likely to benefit from immunotherapy.Additionally, the high Cuscore group in HCC also revealed three potential therapeutic targets (TUBA1B, CDC25B, and CSNK2A1) as well as several therapeutic compounds. Moreover, the experiment measured the expression levels of six prognosis-related CAGs, wherein knockdown of MTF1 exhibited suppression of proliferation, invasion, and migration formation in HCC cell lines. CONCLUSION The findings have enhanced our comprehension of the cuproptosis characteristics in HCC, and stratification based on CuScore may potentially enhance the prediction of patients' prognosis and facilitate the development of effective and innovative treatment strategies.
Collapse
Affiliation(s)
- Xiaoli Shi
- School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China; Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu Province 210029, China
| | - Dongmin Shi
- Department of Medical Oncology, Shanghai Changzheng Hospital, Shanghai 200072, China
| | - Yefeng Yin
- Department of Colorectal Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuxiao Wu
- Department of Respiratory and Critical Care Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shangdong 250117, China
| | - Wenwei Chen
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu Province 210029, China
| | - Yue Yu
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu Province 210029, China.
| | - Xuehao Wang
- School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China; Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu Province 210029, China.
| |
Collapse
|
43
|
Bakiri L, Hasenfuss SC, Guío-Carrión A, Thomsen MK, Hasselblatt P, Wagner EF. Liver cancer development driven by the AP-1/c-Jun~Fra-2 dimer through c-Myc. Proc Natl Acad Sci U S A 2024; 121:e2404188121. [PMID: 38657045 PMCID: PMC11067056 DOI: 10.1073/pnas.2404188121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death. HCC incidence is on the rise, while treatment options remain limited. Thus, a better understanding of the molecular pathways involved in HCC development has become a priority to guide future therapies. While previous studies implicated the Activator Protein-1 (AP-1) (Fos/Jun) transcription factor family members c-Fos and c-Jun in HCC formation, the contribution of Fos-related antigens (Fra-) 1 and 2 is unknown. Here, we show that hepatocyte-restricted expression of a single chain c-Jun~Fra-2 protein, which functionally mimics the c-Jun/Fra-2 AP-1 dimer, results in spontaneous HCC formation in c-Jun~Fra-2hep mice. Several hallmarks of human HCC, such as cell cycle dysregulation and the expression of HCC markers are observed in liver tumors arising in c-Jun~Fra-2hep mice. Tumorigenesis occurs in the context of mild inflammation, low-grade fibrosis, and Pparγ-driven dyslipidemia. Subsequent analyses revealed increased expression of c-Myc, evidently under direct regulation by AP-1 through a conserved distal 3' enhancer. Importantly, c-Jun~Fra-2-induced tumors revert upon switching off transgene expression, suggesting oncogene addiction to the c-Jun~Fra-2 transgene. Tumors escaping reversion maintained c-Myc and c-Myc target gene expression, likely due to increased c-Fos. Interfering with c-Myc in established tumors using the Bromodomain and Extra-Terminal motif inhibitor JQ-1 diminished liver tumor growth in c-Jun~Fra-2 mutant mice. Thus, our data establish c-Jun~Fra-2hep mice as a model to study liver tumorigenesis and identify the c-Jun/Fra-2-Myc interaction as a potential target to improve HCC patient stratification and/or therapy.
Collapse
Affiliation(s)
- Latifa Bakiri
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
- Genes, Development and Disease Group, National Cancer Research Centre, 28029, Madrid, Spain
| | - Sebastian C. Hasenfuss
- Genes, Development and Disease Group, National Cancer Research Centre, 28029, Madrid, Spain
| | - Ana Guío-Carrión
- Genes, Development and Disease Group, National Cancer Research Centre, 28029, Madrid, Spain
| | - Martin K. Thomsen
- Department of Biomedicine, University of Aarhus, 8000, Aarhus, Denmark
| | - Peter Hasselblatt
- Department of Medicine II, University Hospital and Faculty of Medicine, 79106, Freiburg, Germany
| | - Erwin F. Wagner
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
- Laboratory Genes and Disease, Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
44
|
Zheng S, Chan SW, Liu F, Liu J, Chow PKH, Toh HC, Hong W. Hepatocellular Carcinoma: Current Drug Therapeutic Status, Advances and Challenges. Cancers (Basel) 2024; 16:1582. [PMID: 38672664 PMCID: PMC11048862 DOI: 10.3390/cancers16081582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of liver cancer, accounting for ~90% of liver neoplasms. It is the second leading cause of cancer-related deaths and the seventh most common cancer worldwide. Although there have been rapid developments in the treatment of HCC over the past decade, the incidence and mortality rates of HCC remain a challenge. With the widespread use of the hepatitis B vaccine and antiviral therapy, the etiology of HCC is shifting more toward metabolic-associated steatohepatitis (MASH). Early-stage HCC can be treated with potentially curative strategies such as surgical resection, liver transplantation, and radiofrequency ablation, improving long-term survival. However, most HCC patients, when diagnosed, are already in the intermediate or advanced stages. Molecular targeted therapy, followed by immune checkpoint inhibitor immunotherapy, has been a revolution in HCC systemic treatment. Systemic treatment of HCC especially for patients with compromised liver function is still a challenge due to a significant resistance to immune checkpoint blockade, tumor heterogeneity, lack of oncogenic addiction, and lack of effective predictive and therapeutic biomarkers.
Collapse
Affiliation(s)
- Shunzhen Zheng
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan 250098, China;
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore; (S.W.C.); (W.H.)
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China;
| | - Siew Wee Chan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore; (S.W.C.); (W.H.)
| | - Fei Liu
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan 250098, China;
| | - Jun Liu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China;
| | - Pierce Kah Hoe Chow
- Division of Surgery and Surgical Oncology, National Cancer Centre, Singapore 169610, Singapore;
- Academic Clinical Programme for Surgery, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 168583, Singapore;
| | - Wanjin Hong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore; (S.W.C.); (W.H.)
| |
Collapse
|
45
|
Choi JH, Thung SN. Recent Advances in Pathology of Intrahepatic Cholangiocarcinoma. Cancers (Basel) 2024; 16:1537. [PMID: 38672619 PMCID: PMC11048541 DOI: 10.3390/cancers16081537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (ICCA) is a malignant epithelial neoplasm characterized by biliary differentiation within the liver. ICCA is molecularly heterogeneous and exhibits a broad spectrum of histopathological features. It is a highly aggressive carcinoma with high mortality and poor survival rates. ICCAs are classified into two main subtypes: the small-duct type and large-duct types. These two tumor types have different cell origins and clinicopathological features. ICCAs are characterized by numerous molecular alterations, including mutations in KRAS, TP53, IDH1/2, ARID1A, BAP1, BRAF, SAMD4, and EGFR, and FGFR2 fusion. Two main molecular subtypes-inflammation and proliferation-have been proposed. Recent advances in high-throughput assays using next-generation sequencing have improved our understanding of ICCA pathogenesis and molecular genetics. The diagnosis of ICCA poses a significant challenge for pathologists because of its varied morphologies and phenotypes. Accurate diagnosis of ICCA is essential for effective patient management and prognostic determination. This article provides an updated overview of ICCA pathology, focusing particularly on molecular features, histological subtypes, and diagnostic approaches.
Collapse
Affiliation(s)
- Joon Hyuk Choi
- Department of Pathology, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea
| | - Swan N. Thung
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA;
| |
Collapse
|
46
|
Liu X, Zhang K, Kaya NA, Jia Z, Wu D, Chen T, Liu Z, Zhu S, Hillmer AM, Wuestefeld T, Liu J, Chan YS, Hu Z, Ma L, Jiang L, Zhai W. Tumor phylogeography reveals block-shaped spatial heterogeneity and the mode of evolution in Hepatocellular Carcinoma. Nat Commun 2024; 15:3169. [PMID: 38609353 PMCID: PMC11015015 DOI: 10.1038/s41467-024-47541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Solid tumors are complex ecosystems with heterogeneous 3D structures, but the spatial intra-tumor heterogeneity (sITH) at the macroscopic (i.e., whole tumor) level is under-explored. Using a phylogeographic approach, we sequence genomes and transcriptomes from 235 spatially informed sectors across 13 hepatocellular carcinomas (HCC), generating one of the largest datasets for studying sITH. We find that tumor heterogeneity in HCC segregates into spatially variegated blocks with large genotypic and phenotypic differences. By dissecting the transcriptomic heterogeneity, we discover that 30% of patients had a "spatially competing distribution" (SCD), where different spatial blocks have distinct transcriptomic subtypes co-existing within a tumor, capturing the critical transition period in disease progression. Interestingly, the tumor regions with more advanced transcriptomic subtypes (e.g., higher cell cycle) often take clonal dominance with a wider geographic range, rejecting neutral evolution for SCD patients. Extending the statistical tests for detecting natural selection to many non-SCD patients reveal varying levels of selective signal across different tumors, implying that many evolutionary forces including natural selection and geographic isolation can influence the overall pattern of sITH. Taken together, tumor phylogeography unravels a dynamic landscape of sITH, pinpointing important evolutionary and clinical consequences of spatial heterogeneity in cancer.
Collapse
Affiliation(s)
- Xiaodong Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ke Zhang
- Department of General Surgery, Beijing Ditan Hospital, Capital Medical University, No. 8, Jingshun East Street, Chaoyang District, Beijing, P.R. China
| | - Neslihan A Kaya
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Zhe Jia
- Department of General Surgery, Beijing Ditan Hospital, Capital Medical University, No. 8, Jingshun East Street, Chaoyang District, Beijing, P.R. China
| | - Dafei Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tingting Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zhiyuan Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Sinan Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Centre for Quantitative Medicine, Program in Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Axel M Hillmer
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Torsten Wuestefeld
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jin Liu
- Centre for Quantitative Medicine, Program in Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Yun Shen Chan
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Zheng Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liang Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Li Jiang
- Department of General Surgery, Beijing Ditan Hospital, Capital Medical University, No. 8, Jingshun East Street, Chaoyang District, Beijing, P.R. China.
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
47
|
Sanceau J, Poupel L, Joubel C, Lagoutte I, Caruso S, Pinto S, Desbois-Mouthon C, Godard C, Hamimi A, Montmory E, Dulary C, Chantalat S, Roehrig A, Muret K, Saint-Pierre B, Deleuze JF, Mouillet-Richard S, Forné T, Grosset CF, Zucman-Rossi J, Colnot S, Gougelet A. DLK1/DIO3 locus upregulation by a β-catenin-dependent enhancer drives cell proliferation and liver tumorigenesis. Mol Ther 2024; 32:1125-1143. [PMID: 38311851 PMCID: PMC11163201 DOI: 10.1016/j.ymthe.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 02/06/2024] Open
Abstract
The CTNNB1 gene, encoding β-catenin, is frequently mutated in hepatocellular carcinoma (HCC, ∼30%) and in hepatoblastoma (HB, >80%), in which DLK1/DIO3 locus induction is correlated with CTNNB1 mutations. Here, we aim to decipher how sustained β-catenin activation regulates DLK1/DIO3 locus expression and the role this locus plays in HB and HCC development in mouse models deleted for Apc (ApcΔhep) or Ctnnb1-exon 3 (β-cateninΔExon3) and in human CTNNB1-mutated hepatic cancer cells. We identified an enhancer site bound by TCF-4/β-catenin complexes in an open conformation upon sustained β-catenin activation (DLK1-Wnt responsive element [WRE]) and increasing DLK1/DIO3 locus transcription in β-catenin-mutated human HB and mouse models. DLK1-WRE editing by CRISPR-Cas9 approach impaired DLK1/DIO3 locus expression and slowed tumor growth in subcutaneous CTNNB1-mutated tumor cell grafts, ApcΔhep HB and β-cateninΔExon3 HCC. Tumor growth inhibition resulted either from increased FADD expression and subsequent caspase-3 cleavage in the first case or from decreased expression of cell cycle actors regulated by FoxM1 in the others. Therefore, the DLK1/DIO3 locus is an essential determinant of FoxM1-dependent cell proliferation during β-catenin-driven liver tumorigenesis. Targeting the DLK1-WRE enhancer to silence the DLK1/DIO3 locus might thus represent an interesting therapeutic strategy to restrict tumor growth in primary liver cancers with CTNNB1 mutations.
Collapse
Affiliation(s)
- Julie Sanceau
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Lucie Poupel
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France; Inovarion, F-75005 Paris, France
| | - Camille Joubel
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Isabelle Lagoutte
- University Paris Cité, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Sandra Pinto
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France
| | - Christèle Desbois-Mouthon
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Cécile Godard
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Akila Hamimi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Enzo Montmory
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Cécile Dulary
- Centre National de Génotypage, Institut de Génomique, CEA, F-91057 Evry, France
| | - Sophie Chantalat
- Centre National de Génotypage, Institut de Génomique, CEA, F-91057 Evry, France
| | - Amélie Roehrig
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Kevin Muret
- Centre National de Génotypage, Institut de Génomique, CEA, F-91057 Evry, France
| | | | | | - Sophie Mouillet-Richard
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Thierry Forné
- IGMM, University Montpellier, CNRS, F-34293 Montpellier, France
| | - Christophe F Grosset
- University Bordeaux, INSERM, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancer, BMGIC, U1035, MIRCADE team, F-33076 Bordeaux, France; University Bordeaux, INSERM, Bordeaux Institute in Oncology, BRIC, U1312, MIRCADE team, F-33076 Bordeaux, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Sabine Colnot
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France
| | - Angélique Gougelet
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France; Team « Oncogenic functions of beta-catenin signaling in the liver », Équipe labellisée par la Ligue Nationale contre le Cancer, F-75013 Paris, France; APHP, Institut du Cancer Paris CARPEM, F-75015 Paris, France.
| |
Collapse
|
48
|
Chen S, Liao C, Hu H, Liao J, Chen Z, Li S, Zeng X, Peng B, Shen S, Li D, Li S, Lai J, Peng S, Xie Y, Kuang M. Hypoxia-driven tumor stromal remodeling and immunosuppressive microenvironment in scirrhous HCC. Hepatology 2024; 79:780-797. [PMID: 37725755 DOI: 10.1097/hep.0000000000000599] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/26/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND AND AIMS Scirrhous HCC (SHCC) is one of the unique subtypes of HCC, characterized by abundant fibrous stroma in the tumor microenvironment. However, the molecular traits of SHCC remain unclear, which is essential to develop specialized therapeutic approaches for SHCC. APPROACH AND RESULTS We presented an integrative analysis containing single-cell RNA-sequencing, whole-exome sequencing, and bulk RNA-sequencing in SHCC and usual HCC samples from 134 patients to delineate genomic features, transcriptomic profiles, and stromal immune microenvironment of SHCC. Multiplexed immunofluorescence staining, flow cytometry, and functional experiments were performed for validation. Here, we identified SHCC presented with less genomic heterogeneity while possessing a unique transcriptomic profile different from usual HCC. Insulin-like growth factor 2 was significantly upregulated in SHCC tumor cells compared to usual HCC, and could serve as a potential diagnostic biomarker for SHCC. Significant tumor stromal remodeling and hypoxia were observed in SHCC with enrichment of matrix cancer-associated fibroblasts and upregulation of hypoxic pathways. Insulin-like growth factor 2 was identified as a key mediator in shaping the hypoxic stromal microenvironment of SHCC. Under this microenvironment, SHCC exhibited an immunosuppressive niche correlated to enhanced VEGFA signaling activity, where CD4 + T cells and CD8 + T cells were dysfunctional. Furthermore, we found that another hypoxic-related molecule SPP1 from SHCC tumor cells suppressed the function of dendritic cells via the SPP1-CD44 axis, which also probably hindered the activation of T cells. CONCLUSION We uncovered the genomic characteristics of SHCC, and revealed a hypoxia-driven tumor stroma remodeling and immunosuppressive microenvironment in SHCC.
Collapse
Affiliation(s)
- Shuling Chen
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Changyi Liao
- Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Huanjing Hu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Junbin Liao
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zebin Chen
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shuang Li
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xuezhen Zeng
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Bo Peng
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shunli Shen
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Dongming Li
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shaoqiang Li
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jiaming Lai
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Sui Peng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yubin Xie
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ming Kuang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
49
|
De Battista D, Yakymi R, Scheibe E, Sato S, Gerstein H, Markowitz TE, Lack J, Mereu R, Manieli C, Zamboni F, Farci P. Identification of Two Distinct Immune Subtypes in Hepatitis B Virus (HBV)-Associated Hepatocellular Carcinoma (HCC). Cancers (Basel) 2024; 16:1370. [PMID: 38611048 PMCID: PMC11011136 DOI: 10.3390/cancers16071370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/12/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
HBV is the most common risk factor for HCC development, accounting for almost 50% of cases worldwide. Despite significant advances in immunotherapy, there is limited information on the HBV-HCC tumor microenvironment (TME), which may influence the response to checkpoint inhibitors. Here, we characterize the TME in a unique series of liver specimens from HBV-HCC patients to identify who might benefit from immunotherapy. By combining an extensive immunohistochemistry analysis with the transcriptomic profile of paired liver samples (tumor vs. nontumorous tissue) from 12 well-characterized Caucasian patients with HBV-HCC, we identified two distinct tumor subtypes that we defined immune-high and immune-low. The immune-high subtype, seen in half of the patients, is characterized by a high number of infiltrating B and T cells in association with stromal activation and a transcriptomic profile featuring inhibition of antigen presentation and CTL activation. All the immune-high tumors expressed high levels of CTLA-4 and low levels of PD-1, while PD-L1 was present only in four of six cases. In contrast, the immune-low subtype shows significantly lower lymphocyte infiltration and stromal activation. By whole exome sequencing, we documented that four out of six individuals with the immune-low subtype had missense mutations in the CTNNB1 gene, while only one patient had mutations in this gene in the immune-high subtype. Outside the tumor, there were no differences between the two subtypes. This study identifies two distinctive immune subtypes in HBV-associated HCC, regardless of the microenvironment observed in the surrounding nontumorous tissue, providing new insights into pathogenesis. These findings may be instrumental in the identification of patients who might benefit from immunotherapy.
Collapse
Affiliation(s)
- Davide De Battista
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (D.D.B.); (R.Y.); (E.S.); (S.S.); (H.G.)
| | - Rylee Yakymi
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (D.D.B.); (R.Y.); (E.S.); (S.S.); (H.G.)
| | - Evangeline Scheibe
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (D.D.B.); (R.Y.); (E.S.); (S.S.); (H.G.)
| | - Shinya Sato
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (D.D.B.); (R.Y.); (E.S.); (S.S.); (H.G.)
| | - Hannah Gerstein
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (D.D.B.); (R.Y.); (E.S.); (S.S.); (H.G.)
| | - Tovah E. Markowitz
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Justin Lack
- NIAID Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Roberto Mereu
- Department of Surgery, Liver Transplantation Center, Azienda Ospedaliera Brotzu, 09047 Cagliari, Italy; (R.M.); (F.Z.)
| | - Cristina Manieli
- Sevizio di Anatomia Patologica, Azienda Ospedaliera Brotzu, 09047 Cagliari, Italy;
| | - Fausto Zamboni
- Department of Surgery, Liver Transplantation Center, Azienda Ospedaliera Brotzu, 09047 Cagliari, Italy; (R.M.); (F.Z.)
| | - Patrizia Farci
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (D.D.B.); (R.Y.); (E.S.); (S.S.); (H.G.)
| |
Collapse
|
50
|
Ramirez CFA, Taranto D, Ando-Kuri M, de Groot MHP, Tsouri E, Huang Z, de Groot D, Kluin RJC, Kloosterman DJ, Verheij J, Xu J, Vegna S, Akkari L. Cancer cell genetics shaping of the tumor microenvironment reveals myeloid cell-centric exploitable vulnerabilities in hepatocellular carcinoma. Nat Commun 2024; 15:2581. [PMID: 38519484 PMCID: PMC10959959 DOI: 10.1038/s41467-024-46835-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Myeloid cells are abundant and plastic immune cell subsets in the liver, to which pro-tumorigenic, inflammatory and immunosuppressive roles have been assigned in the course of tumorigenesis. Yet several aspects underlying their dynamic alterations in hepatocellular carcinoma (HCC) progression remain elusive, including the impact of distinct genetic mutations in shaping a cancer-permissive tumor microenvironment (TME). Here, in newly generated, clinically-relevant somatic female HCC mouse models, we identify cancer genetics' specific and stage-dependent alterations of the liver TME associated with distinct histopathological and malignant HCC features. Mitogen-activated protein kinase (MAPK)-activated, NrasG12D-driven tumors exhibit a mixed phenotype of prominent inflammation and immunosuppression in a T cell-excluded TME. Mechanistically, we report a NrasG12D cancer cell-driven, MEK-ERK1/2-SP1-dependent GM-CSF secretion enabling the accumulation of immunosuppressive and proinflammatory monocyte-derived Ly6Clow cells. GM-CSF blockade curbs the accumulation of these cells, reduces inflammation, induces cancer cell death and prolongs animal survival. Furthermore, GM-CSF neutralization synergizes with a vascular endothelial growth factor (VEGF) inhibitor to restrain HCC outgrowth. These findings underscore the profound alterations of the myeloid TME consequential to MAPK pathway activation intensity and the potential of GM-CSF inhibition as a myeloid-centric therapy tailored to subsets of HCC patients.
Collapse
Affiliation(s)
- Christel F A Ramirez
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daniel Taranto
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Masami Ando-Kuri
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marnix H P de Groot
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Efi Tsouri
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Zhijie Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Daniel de Groot
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Roelof J C Kluin
- Genomics Core facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daan J Kloosterman
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joanne Verheij
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jing Xu
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Serena Vegna
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Leila Akkari
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|