1
|
Structure-Based and Rational Design of a Hepatitis C Virus Vaccine. Viruses 2021; 13:v13050837. [PMID: 34063143 PMCID: PMC8148096 DOI: 10.3390/v13050837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
A hepatitis C virus (HCV) vaccine is a critical yet unfulfilled step in addressing the global disease burden of HCV. While decades of research have led to numerous clinical and pre-clinical vaccine candidates, these efforts have been hindered by factors including HCV antigenic variability and immune evasion. Structure-based and rational vaccine design approaches have capitalized on insights regarding the immune response to HCV and the structures of antibody-bound envelope glycoproteins. Despite successes with other viruses, designing an immunogen based on HCV glycoproteins that can elicit broadly protective immunity against HCV infection is an ongoing challenge. Here, we describe HCV vaccine design approaches where immunogens were selected and optimized through analysis of available structures, identification of conserved epitopes targeted by neutralizing antibodies, or both. Several designs have elicited immune responses against HCV in vivo, revealing correlates of HCV antigen immunogenicity and breadth of induced responses. Recent studies have elucidated the functional, dynamic and immunological features of key regions of the viral envelope glycoproteins, which can inform next-generation immunogen design efforts. These insights and design strategies represent promising pathways to HCV vaccine development, which can be further informed by successful immunogen designs generated for other viruses.
Collapse
|
2
|
Christiansen D, Earnest-Silveira L, Chua B, Boo I, Drummer HE, Grubor-Bauk B, Gowans EJ, Jackson DC, Torresi J. Antibody Responses to a Quadrivalent Hepatitis C Viral-Like Particle Vaccine Adjuvanted with Toll-Like Receptor 2 Agonists. Viral Immunol 2018; 31:338-343. [PMID: 29489437 DOI: 10.1089/vim.2017.0182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The development of an effective preventative hepatitis C virus (HCV) vaccine will reside, in part, in its ability to elicit neutralizing antibodies (NAbs). We previously reported a genotype 1a HCV virus like particle (VLP) vaccine that produced HCV specific NAb and T cell responses that were substantially enhanced by Toll-like receptor 2 (TLR2) agonists. We have now produced a quadrivalent genotype 1a/1b/2a/3a HCV VLP vaccine and tested the ability of two TLR2 agonists, R4Pam2Cys and E8Pam2Cys, to stimulate the production of NAb. We now show that our vaccine with R4Pam2Cys or E8Pam2Cys produces strong antibody and NAb responses in vaccinated mice after just two doses. Total antibody titers were higher in mice inoculated with vaccine plus E8Pam2Cys compared to HCV VLPs alone. However, the TLR2 agonists did not result in stronger NAb responses compared to vaccine without adjuvant. Such a vaccine could provide a substantial addition to the overall goal to eliminate HCV.
Collapse
Affiliation(s)
- Dale Christiansen
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia
| | - Linda Earnest-Silveira
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia
| | - Brendon Chua
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia
| | - Irene Boo
- 2 Burnet Institute , Melbourne, Australia
| | - Heidi E Drummer
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia .,2 Burnet Institute , Melbourne, Australia .,3 Department of Microbiology, Monash University , Clayton, Australia
| | - Branka Grubor-Bauk
- 4 Department of Surgery, The University of Adelaide and The Basil Hetzel Institute for Translational Health Research, Adelaide, South Australia
| | - Eric J Gowans
- 4 Department of Surgery, The University of Adelaide and The Basil Hetzel Institute for Translational Health Research, Adelaide, South Australia
| | - David C Jackson
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia
| | - Joseph Torresi
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia
| |
Collapse
|
3
|
Chua BY, Sekiya T, Jackson DC. Opinion: Making Inactivated and Subunit-Based Vaccines Work. Viral Immunol 2018; 31:150-158. [PMID: 29369750 DOI: 10.1089/vim.2017.0146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Empirically derived vaccines have in the past relied on the isolation and growth of disease-causing microorganisms that are then inactivated or attenuated before being administered. This is often done without prior knowledge of the mechanisms involved in conferring protective immunity. Recent advances in scientific technologies and in our knowledge of how protective immune responses are induced enable us to rationally design novel and safer vaccination strategies. Such advances have accelerated the development of inactivated whole-organism- and subunit-based vaccines. In this review, we discuss ideal attributes and criteria that need to be considered for the development of vaccines and some existing vaccine platforms. We focus on inactivated vaccines against influenza virus and ways by which vaccine efficacy can be improved with the use of adjuvants and Toll-like receptor-2 signaling.
Collapse
Affiliation(s)
- Brendon Y Chua
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia .,2 Research Center for Zoonosis Control, Hokkaido University , Sapporo, Japan .,3 Global Institution for Collaborative Research and Education, Hokkaido University , Sapporo, Japan
| | - Toshiki Sekiya
- 2 Research Center for Zoonosis Control, Hokkaido University , Sapporo, Japan .,3 Global Institution for Collaborative Research and Education, Hokkaido University , Sapporo, Japan
| | - David C Jackson
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia .,2 Research Center for Zoonosis Control, Hokkaido University , Sapporo, Japan .,3 Global Institution for Collaborative Research and Education, Hokkaido University , Sapporo, Japan
| |
Collapse
|
4
|
Identification of a conserved linear neutralizing epitope recognized by monoclonal antibody 9A9 against serotype A foot-and-mouth disease virus. Arch Virol 2016; 161:2705-16. [PMID: 27422396 DOI: 10.1007/s00705-016-2984-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/11/2016] [Indexed: 10/21/2022]
Abstract
Foot-and-mouth disease (FMD), caused by foot-and-mouth disease virus (FMDV), is a highly contagious infectious disease that affects domestic and wild cloven-hoofed animals worldwide. In recent years, a series of outbreaks of serotype A FMD have occurred in many countries. High-affinity neutralizing antibodies against a conserved epitope have the potential to provide protective immunity against diverse subtypes of FMDV serotype A and to protect against future pandemics. In this study, we produced an A serotype FMDV-specific monoclonal antibody (MAb) against the viral capsid protein VP1, designated 9A9, that potently neutralized FMDV A/JLYS/CHA/2014 with a 50 % neutralization titer (NT50) of 4,096. GST-fusion proteins expressing truncated peptides of VP1 were subjected to Western blot analysis using MAb 9A9, and it was found that the peptide (143)RGDLGPLAARL(153) of VP1 was the minimal epitope for MAb 9A9 binding. Western blot analysis also revealed that the epitope peptide could be recognized by positive sera from serotype A FMDV-infected pigs and cattle. Subsequent alanine-scanning mutagenesis analysis revealed that residues Gly(147) and Leu(149) of the 9A9-recognized epitope are crucial for MAb 9A9 binding. Furthermore, under immunological pressure selected by MAb 9A9, a single amino acid residue replacement (L149P) occurred in a viral neutralization-escape mutant, which verified the location of a critical residue of this epitope at Leu(149). Importantly, the epitope (143)RGDLGPLAARL(153) was highly conserved among different topotypes of serotype A FMDV strains in sequence alignment analysis. Thus, the results of this study could have application potential in the development of epitope-based vaccines and a suitable MAb-based diagnostic method for detection of type A FMDV as well as quantitation of antibodies against FMDV serotype A.
Collapse
|
5
|
Large scale production of a mammalian cell derived quadrivalent hepatitis C virus like particle vaccine. J Virol Methods 2016; 236:87-92. [PMID: 27373602 DOI: 10.1016/j.jviromet.2016.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 12/14/2022]
Abstract
A method for the large-scale production of a quadrivalent mammalian cell derived hepatitis C virus-like particles (HCV VLPs) is described. The HCV core E1 and E2 coding sequences of genotype 1a, 1b, 2a or 3a were co-expressed in Huh7 cell factories using a recombinant adenoviral expression system. The structural proteins self-assembled into VLPs that were purified from Huh7 cell lysates by iodixanol ultracentrifugation and Stirred cell ultrafiltration. Electron microscopy, revealed VLPs of the different genotypes that are morphologically similar. Our results show that it is possible to produce large quantities of individual HCV genotype VLPs with relative ease thus making this approach an alternative for the manufacture of a quadrivalent mammalian cell derived HCV VLP vaccine.
Collapse
|
6
|
Earnest-Silveira L, Chua B, Chin R, Christiansen D, Johnson D, Herrmann S, Ralph SA, Vercauteren K, Mesalam A, Meuleman P, Das S, Boo I, Drummer H, Bock CT, Gowans EJ, Jackson DC, Torresi J. Characterization of a hepatitis C virus-like particle vaccine produced in a human hepatocyte-derived cell line. J Gen Virol 2016; 97:1865-1876. [PMID: 27147296 DOI: 10.1099/jgv.0.000493] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An effective immune response against hepatitis C virus (HCV) requires the early development of multi-specific class 1 CD8+ and class II CD4+ T-cells together with broad neutralizing antibody responses. We have produced mammalian-cell-derived HCV virus-like particles (VLPs) incorporating core, E1 and E2 of HCV genotype 1a to produce such immune responses. Here we describe the biochemical and morphological characterization of the HCV VLPs and study HCV core-specific T-cell responses to the particles. The E1 and E2 glycoproteins in HCV VLPs formed non-covalent heterodimers and together with core protein assembled into VLPs with a buoyant density of 1.22 to 1.28 g cm-3. The HCV VLPs could be immunoprecipited with anti-ApoE and anti-ApoC. On electron microscopy, the VLPs had a heterogeneous morphology and ranged in size from 40 to 80 nm. The HCV VLPs demonstrated dose-dependent binding to murine-derived dendritic cells and the entry of HCV VLPs into Huh7 cells was blocked by anti-CD81 antibody. Vaccination of BALB/c mice with HCV VLPs purified from iodixanol gradients resulted in the production of neutralizing antibody responses while vaccination of humanized MHC class I transgenic mice resulted in the prodution of HCV core-specific CD8+ T-cell responses. Furthermore, IgG purified from the sera of patients chronically infected with HCV genotypes 1a and 3a blocked the binding and entry of the HCV VLPs into Huh7 cells. These results show that our mammalian-cell-derived HCV VLPs induce humoral and HCV-specific CD8+ T-cell responses and will have important implications for the development of a preventative vaccine for HCV.
Collapse
Affiliation(s)
- L Earnest-Silveira
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - B Chua
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - R Chin
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - D Christiansen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia.,Department of Surgery, Austin Hospital, University of Melbourne, Australia
| | - D Johnson
- Department of Infectious Diseases, Austin Hospital, Heidelberg, Victoria 3084, Australia
| | - S Herrmann
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Australia
| | - S A Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Australia
| | - K Vercauteren
- Center for Vaccinology, Ghent University and Hospital, De Pintelaan 185 9000, Ghent, Belgium
| | - A Mesalam
- Center for Vaccinology, Ghent University and Hospital, De Pintelaan 185 9000, Ghent, Belgium
| | - P Meuleman
- Center for Vaccinology, Ghent University and Hospital, De Pintelaan 185 9000, Ghent, Belgium
| | - S Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - I Boo
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - H Drummer
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia.,Centre for Biomedical Research, Burnet Institute, Melbourne, Australia.,Department of Microbiology, Monash University, Clayton, Australia
| | - C-T Bock
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - E J Gowans
- The Basil Hetzel Institute and Queen Elizabeth Hospital, University of Adelaide, Australia
| | - D C Jackson
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph Torresi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
7
|
Gowthaman U, Mushtaq K, Tan AC, Rai PK, Jackson DC, Agrewala JN. Challenges and solutions for a rational vaccine design for TB-endemic regions. Crit Rev Microbiol 2015; 41:389-98. [PMID: 24495096 DOI: 10.3109/1040841x.2013.859125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vaccines have been successful for global eradication or control of dreaded diseases such as smallpox, diphtheria, tetanus, yellow fever, whooping cough, polio, and measles. Unfortunately, this success has not been achieved for controlling tuberculosis (TB) worldwide. Bacillus Calmette Guérin (BCG) is the only available vaccine against TB. Paradoxically, BCG has deciphered success in the Western world but has failed in TB-endemic areas. In this article, we highlight and discuss the aspects of immunity responsible for controlling Mycobacterium tuberculosis infection and factors responsible for the failure of BCG in TB-endemic countries. In addition, we also suggest strategies that contribute toward the development of successful vaccine in protecting populations where BCG has failed.
Collapse
|
8
|
Bellier B, Klatzmann D. Virus-like particle-based vaccines against hepatitis C virus infection. Expert Rev Vaccines 2014; 12:143-54. [DOI: 10.1586/erv.13.10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Hepatitis C VLPs delivered to dendritic cells by a TLR2 targeting lipopeptide results in enhanced antibody and cell-mediated responses. PLoS One 2012; 7:e47492. [PMID: 23091628 PMCID: PMC3472981 DOI: 10.1371/journal.pone.0047492] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/12/2012] [Indexed: 01/10/2023] Open
Abstract
Although many studies provide strong evidence supporting the development of HCV virus-like particle (VLP)-based vaccines, the fact that heterologous viral vectors and/or multiple dosing regimes are required to induce protective immunity indicates that it is necessary to improve their immunogenicity. In this study, we have evaluated the use of an anionic self-adjuvanting lipopeptide containing the TLR2 agonist Pam2Cys (E8Pam2Cys) to enhance the immunogenicity of VLPs containing the HCV structural proteins (core, E1 and E2) of genotype 1a. While co-formulation of this lipopeptide with VLPs only resulted in marginal improvements in dendritic cell (DC) uptake, its ability to concomitantly induce DC maturation at very small doses is a feature not observed using VLPs alone or in the presence of an aluminium hydroxide-based adjuvant (Alum). Dramatically improved VLP and E2-specific antibody responses were observed in VLP+E8Pam2Cys vaccinated mice where up to 3 doses of non-adjuvanted or traditionally alum-adjuvanted VLPs was required to match the antibody titres obtained with a single dose of VLPs formulated with this lipopeptide. This result also correlated with significantly higher numbers of specific antibody secreting cells that was detected in the spleens of VLP+E8Pam2Cys vaccinated mice and greater ability of sera from these mice to neutralise the binding and uptake of VLPs by Huh7 cells. Moreover, vaccination of HLA-A2 transgenic mice with this formulation also induced better VLP-specific IFN-γ-mediated responses compared to non-adjuvanted VLPs but comparable levels to that achieved when coadministered with complete freund’s adjuvant. These results suggest overall that the immunogenicity of HCV VLPs can be significantly improved by the addition of this novel adjuvant by targeting their delivery to DCs and could therefore constitute a viable vaccine strategy for the treatment of HCV.
Collapse
|
10
|
Gowthaman U, Rai PK, Khan N, Jackson DC, Agrewala JN. Lipidated promiscuous peptides vaccine for tuberculosis-endemic regions. Trends Mol Med 2012; 18:607-14. [PMID: 22939171 DOI: 10.1016/j.molmed.2012.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 07/10/2012] [Accepted: 07/20/2012] [Indexed: 10/27/2022]
Abstract
Despite nine decades of Bacillus Calmette--Guérin (BCG) vaccination, tuberculosis continues to be a major global health challenge. Clinical trials worldwide have proved the inadequacy of the BCG vaccine in preventing the manifestation of pulmonary tuberculosis in adults. Ironically, the efficacy of BCG is poorest in tuberculosis endemic areas. Factors such as nontuberculous or environmental mycobacteria and helminth infestation have been suggested to limit the efficacy of BCG. Hence, in high TB-burden countries, radically novel strategies of vaccination are urgently required. Here we showcase the properties of lipidated promiscuous peptide vaccines that target and activate cells of the innate and adaptive immune systems by employing a Toll-like receptor-2 agonist, S-[2,3-bis(palmitoyloxy)propyl]cysteine (Pam2Cys). Such a strategy elicits robust protection and enduring memory responses by type 1 T helper cells (Th1). Consequently, lipidated peptides may yield a better vaccine than BCG.
Collapse
Affiliation(s)
- Uthaman Gowthaman
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | | | | | | | | |
Collapse
|
11
|
Tan ACL, Eriksson EMY, Kedzierska K, Deliyannis G, Valkenburg SA, Zeng W, Jackson DC. Polyfunctional CD8(+) T cells are associated with the vaccination-induced control of a novel recombinant influenza virus expressing an HCV epitope. Antiviral Res 2012; 94:168-78. [PMID: 22504097 DOI: 10.1016/j.antiviral.2012.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 03/20/2012] [Accepted: 03/27/2012] [Indexed: 01/26/2023]
Abstract
In hepatitis C virus (HCV) infection, CD8(+) T cell responses have been shown to be important in viral clearance. Examining the efficacy of CD8(+) T cell vaccines against HCV has been limited by the lack of an HCV infectious model in mice and the differences between MHC restriction in humans and mice. Using HLA-A2 transgenic HHD mice, we demonstrate that intranasally delivered Pam2Cys-based lipopeptides containing HLA-A2-restricted HCV epitopes can induce polyfunctional CD8(+) T cell responses in several organs including the liver. To examine the activity of these responses in an infectious context, we developed a recombinant influenza virus that expresses the NS5B(2594-2602) epitope from non-structural protein 5B of hepatitis C virus (PR8-HCV(NS5B)). We showed that mice inoculated with a lipopeptide containing the NS5B epitope had reduced viral loads following challenge with the PR8-HCV(NS5B) virus. This reduction was associated with the induction of NS5B(2594-2602)-specific IFN-γ and TNF-α co-producing CD8(+) T cells. The T cell receptor usage in the NS5B(2594-2602) response was found to exhibit a Vβ8.1/8.2 bias that was characterized by a narrow repertoire and a common CDR3β motif. This work has identified CD8(+) T cell functions induced by lipopeptides that are associated with viral control and demonstrate the potential of lipopeptide-based vaccines as candidates for treatment of HCV infection.
Collapse
Affiliation(s)
- Amabel C L Tan
- Department of Microbiology & Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
12
|
Gupte GM, Arankalle VA. Evaluation of the immunogenicity of liposome encapsulated HVR1 and NS3 regions of genotype 3 HCV, either singly or in combination. Virol J 2012; 9:74. [PMID: 22452828 PMCID: PMC3349533 DOI: 10.1186/1743-422x-9-74] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 03/27/2012] [Indexed: 01/15/2023] Open
Abstract
Background Hepatitis C virus displays a high rate of mutation and exists as a quasispecies in infected patients. In the absence of an effective universal vaccine, genotype-specific vaccine development represents an alternative. We have attempted to develop a genotype 3 based, liposome encapsulated HCV vaccine with hypervariable region-1 (HVR1) and non-structural region-3 (NS3) components. Results HCV RNA extracted from serum samples of 49 chronically infected patients was PCR amplified to obtain HVR1 region. These amplified products were cloned to obtain 20 clones per sample in order to identify the quasispecies pattern. The HVR1 consensus sequence, along with three variants was reverse transcribed to obtain peptides. The peptides were checked for immunoreactivity individually, as a pool or as a single peptide tetramer interspersed with four glycine residues. Anti-HCV positivity varied from 42.6% (tetramer) to 92.2% (variant-4) when 115 anti-HCV positive sera representing genotypes 1, 3, 4 and 6 were screened. All the 95 anti-HCV negatives were scored negative by all antigens. Mice were immunized with different liposome encapsulated or Al(OH)3 adjuvanted formulations of HVR1 variants and recombinant NS3 protein, and monitored for anti-HVR1 and anti-NS3 antibody titres, IgG isotypes and antigen specific cytokine levels. A balanced Th1/Th2 isotyping response with high antibody titres was observed in most of the liposome encapsulated antigen groups. The effect of liposomes and aluminium hydroxide on the expression of immune response genes was studied using Taqman Low Density Array. Both Th1 (IFN-gamma, Il18) and Th2 (Il4) genes were up regulated in the liposome encapsulated HVR1 variant pool-NS3 combination group. In-vitro binding of the virus to anti-HVR1 antibodies was demonstrated. Conclusion The optimum immunogen was identified to be combination of peptides of HVR1 consensus sequence and its variants along with pNS3 encapsulated in liposomes, which could generate both cellular and humoral immune responses in mice deserving further evaluation in a suitable cell culture system/non-human primate model.
Collapse
Affiliation(s)
- Gouri M Gupte
- Hepatitis Division, National Institute of Virology, Microbial Containment Complex, Sus Road, Pashan, Pune, India 411021
| | | |
Collapse
|
13
|
Torresi J, Johnson D, Wedemeyer H. Progress in the development of preventive and therapeutic vaccines for hepatitis C virus. J Hepatol 2011; 54:1273-85. [PMID: 21236312 DOI: 10.1016/j.jhep.2010.09.040] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/27/2010] [Accepted: 09/07/2010] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV) is a blood borne disease estimated to chronically infect 3% of the worlds' population causing significant morbidity and mortality. Current medical therapy is curative in approximately 50% of patients. While recent treatment advances of genotype 1 infection using directly acting antiviral agents (DAAs) are encouraging, there is still a need to develop vaccine strategies capable of preventing infection. Moreover, vaccines may also be used in future in combination with DAAs enabling interferon-free treatment regimens. Viral and host specific factors contribute to viral evasion and present important impediments to vaccine development. Both, innate and adaptive immune responses are of major importance for the control of HCV infection. However, HCV has evolved ways of evading the host's immune response in order to establish persistent infection. For example, HCV inhibits intracellular interferon signalling pathways, impairs the activation of dendritic cells, CD8(+) and CD4(+) T cell responses, induces a state of T-cell exhaustion and selects escape variants with mutations CD8(+) T cell epitopes. An effective vaccine will need to produce strong and broadly cross-reactive CD4(+), CD8(+) T cell and neutralising antibody (NAb) responses to be successful in preventing or clearing HCV. Vaccines in clinical trials now include recombinant proteins, synthetic peptides, virosome based vaccines, tarmogens, modified vaccinia Ankara based vaccines, and DNA based vaccines. Several preclinical vaccine strategies are also under development and include recombinant adenoviral vaccines, virus like particles, and synthetic peptide vaccines. This paper will review the vaccines strategies employed, their success to date and future directions of vaccine design.
Collapse
Affiliation(s)
- Joseph Torresi
- Austin Centre for Infection Research, Department of Infectious Diseases Austin Hospital, Heidelberg, Victoria 3084, Australia.
| | | | | |
Collapse
|
14
|
Abstract
This review considers the stages of the development of synthetic peptide vaccines against infectious agents, novel approaches and technologies employed in this process, including bioinformatics, genomics, proteomics, large-scale peptide synthesis, high-throughput screening methods, the use of transgenic animals for modelling human infections. An important role for the development and selection of efficient adjuvants for peptide immunogens is noted. Examples of synthetic peptide vaccine developments against three infectious diseases (malaria, hepatitis C, and foot-and-mouth disease) are given.
Collapse
|
15
|
Abstract
This review considers the stages of the development of synthetic peptide vaccines against infectious agents, novel approaches and technologies employed in this process, including bioinformatics, genomics, proteomics, large-scale peptide synthesis, high-throughput screening methods, the use of transgenic animals for modelling human infections. An important role for the development and selection of efficient adjuvants for peptide immunogens is noted. Examples of synthetic peptide vaccine developments against three infectious diseases (malaria, hepatitis C, and foot-and-mouth disease) are given.
Collapse
Affiliation(s)
- A.A. Moysa
- Institute of Biomedical Chemistry, Russian Academy of Medical sciences
| | - E.F. Kolesanova
- Institute of Biomedical Chemistry, Russian Academy of Medical sciences
| |
Collapse
|
16
|
El-Awady MK, Tabll AA, Yousif H, El-Abd Y, Reda M, Khalil SB, El-Zayadi AR, Shaker MH, Bader El Din NG. Murine neutralizing antibody response and toxicity to synthetic peptides derived from E1 and E2 proteins of hepatitis C virus. Vaccine 2010; 28:8338-44. [PMID: 19995542 DOI: 10.1016/j.vaccine.2009.11.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 11/19/2009] [Accepted: 11/20/2009] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The highest estimated prevalence of HCV infection has been reported in Egypt, nearly 12% mostly type 4. Currently, a commercial vaccine to protect this high risk population as well as global HCV infected patients is not available. OBJECTIVES In the present study, we aim at: (1) examining the viral binding capacities of purified monospecific polyclonal murine antibodies raised against genetically conserved viral protein sequences, i.e. synthetic peptides derived from those sequences located within envelope proteins and (2) assessment of immunogenic properties and safety parameters of those peptides individually and in a vaccine format in mice. METHODS Purified IgG Abs from immunized mice were used in immunocapture RT-PCR experiments to test viral neutralization by Abs raised against each of 4 peptides termed p35 (E1), p36 (E2), p37 (E2) and p38 (E2). Swiss mice were immunized with each of the 3 peptides (p35, p37 and p38) which generated neutralizing antibodies in immunocapture experiments. Antibody responses to corresponding peptides were determined using different routes of administration, different adjuvants, different doses and at different time points post-injection. To explore the dose range for future pharmacological studies, three doses namely 50 ng, 10 μg and 50 μg/25 gm mouse body weight were tested for biochemical and histopathological changes in several organs. RESULTS Murine Abs against p35, p37 and p38 but not p36 showed HCV neutralization in immunocapture experiments. Subcutaneous injection of peptides elicited higher responses than i.m. and i.p. Immunization with Multiple Antigenic Peptide (MAP) form or coupled to Al PO4 elicited the highest Ab responses. Peptide doses of 50 ng/25 gm body weight or less were effective and safe, however dose assessment still requires further study. Histopathological changes were observed in animals that received doses ∼1000 times higher than the potential therapeutic dose. CONCLUSION Exploration of humoral immunogenicity, neutralization capacity and safety suggested that the peptides presented herein are candidate vaccine components for further preclinical assessment.
Collapse
Affiliation(s)
- Mostafa K El-Awady
- Biomedical Technology Department, National Research Center, Tahrir Street 12622, Dokki, Cairo, Egypt.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Moisa AA, Kolesanova EF. Synthetic peptide vaccines. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2010. [DOI: 10.1134/s1990750810040025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Yang D, Zhang C, Zhao L, Zhou G, Wang H, Yu L. Identification of a conserved linear epitope on the VP1 protein of serotype O foot-and-mouth disease virus by neutralising monoclonal antibody 8E8. Virus Res 2010; 155:291-9. [PMID: 20974198 DOI: 10.1016/j.virusres.2010.10.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 10/12/2010] [Accepted: 10/18/2010] [Indexed: 11/24/2022]
Abstract
Foot-and-mouth disease virus (FMDV) serotype O remains an important threat to animal husbandry worldwide, and the variability of the virus presents a major problem for FMDV vaccine design. High-affinity neutralising antibodies against a conserved epitope could provide protective immunity against diverse subtypes of FMDV serotype O and protect against future pandemics. We generated a novel monoclonal antibody (MAb) 8E8 that potently neutralised infection of FMDV O/YS/CHA/05 both in vitro and in vivo. Screening of a phage-displayed random 12-peptide library revealed that MAb 8E8 bound to phages displaying a consensus motif GDLNVRT, which is highly homologous to (146)GDLQVLT(152) of the FMDV VP1 protein. Given that MAb 8E8 showed reactivity with the (146)GDLQVLT(152) motif, we proposed that this motif represented a linear B-cell epitope of the VP1 protein. Western blot analysis revealed that the epitope peptide could be recognised by the positive sera from serotype O FMDV-infected pigs. The (147)DLQVLT(152) motif was the minimal requirement for reactivity as demonstrated by reactivity of MAb 8E8 with several truncated peptides derived from the motif. For further mapping, a set of different extended motifs derived from the minimally reactive epitope was expressed with a GST-tag and subjected to western blot. The results showed that a 10-aa peptide (145)RGDLQVLTPK(154) was the minimal unit with maximal binding activity to MAb 8E8. Subsequent alanine scanning mutagenesis studies revealed that D(147), Q(149) and V(150) are crucial for MAb 8E8 binding. Furthermore, the epitope was found to be highly conserved among different topotypes of serotype O FMDV through sequence alignment analysis and detection of MAb 8E8 for affinity to some isolates collected in China. Thus, the 8E8 epitope identified here should be helpful for designing epitope-based, intra-typic, cross-protective vaccines of serotype O FMDV.
Collapse
Affiliation(s)
- Decheng Yang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, PR China
| | | | | | | | | | | |
Collapse
|
19
|
Xiu BS, Feng XY, He J, Wang GH, Zhang XY, Zhang HQ, Song XG, Chen K, Ling SG, Zhu CX, Wei L, Rao HY. Evaluation of cross-reactive antibody response to HVR1 in chronic hepatitis C. World J Gastroenterol 2010; 16:4460-6. [PMID: 20845515 PMCID: PMC2941071 DOI: 10.3748/wjg.v16.i35.4460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To evaluate the presence and cross-reactive antibodies against hypervariable region 1 (HVR1) in hepatitis C virus (HCV) infected patients and its relationship with the progression of the disease.
METHODS: Sixteen representative HVR1 proteins selected from a unique set of 1600 natural sequences were used to semiquantitate the cross-reactivity of HVR1 antibodies in the sera of HCV patients. Fifty-five chronic HCV patients including 23 with asymptomatic mild hepatitis, 18 with chronic hepatitis and 16 with liver cirrhosis patients were studied.
RESULTS: The degree of the cross-reactivity of anti-HVR1 antibodies in 23 patients with mild asymptomatic hepatitis was 3.09 ± 2.68, which was significantly lower than in those with chronic hepatitis (5.44 ± 3.93, P < 0.05) and liver cirrhosis (7.44 ± 3.90, P < 0.01). No correlation was observed between the broadness of the cross-reactivity anti-HVR1 antibodies and patient’s age, infection time, serum alanine aminotransferase activity, or serum HCV-RNA concentration. It was the breath of cross-reactivity rather than the presence of anti-HVR1 antibody in HCV sera that was associated with the progression of liver disease.
CONCLUSION: The broadly cross-reactive HVR1 antibodies generated in natural HCV patients can not neutralize the virus, which results in persistent infection in patients with chronic hepatitis.
Collapse
|
20
|
El-Awady MK, Tabll AA, El-Abd YS, Yousif H, Hegab M, Reda M, El Shenawy R, Moustafa RI, Degheidy N, El Din NGB. Conserved peptides within the E2 region of Hepatitis C virus induce humoral and cellular responses in goats. Virol J 2009. [PMID: 19473491 DOI: 10.1186/1743-422x-6-66.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
The reason(s) why human antibodies raised against hepatitis C virus (HCV) E2 epitopes do not offer protection against multiple viral infections may be related to either genetic variations among viral strains particularly within the hypervariable region-1 (HVR-1), low titers of anti E2 antibodies or interference of non neutralizing antibodies with the function of neutralizing antibodies. This study was designed to assess the immunogenic properties of genetically conserved peptides derived from the C-terminal region of HVR-1 as potential therapeutic and/or prophylactic vaccines against HCV infection. Goats immunized with E2-conserved synthetic peptides termed p36 (a.a 430-446), p37(a.a 517-531) and p38 (a.a 412-419) generated high titers of anti-p36, anti-p37 and anti-P38 antibody responses of which only anti- p37 and anti- p38 were neutralizing to HCV particles in sera from patients infected predominantly with genotype 4a. On the other hand anti-p36 exhibited weak viral neutralization capacity on the same samples. Animals super-immunized with single epitopes generated 2 to 4.5 fold higher titers than similar antibodies produced in chronic HCV patients. Also the studied peptides elicited approximately 3 fold increase in cell proliferation of specific antibody-secreting peripheral blood mononuclear cells (PBMC) from immunized goats. These results indicate that, besides E1 derived peptide p35 (a.a 315-323) described previously by this laboratory, E2 conserved peptides p37 and p38 represent essential components of a candidate peptide vaccine against HCV infection.
Collapse
Affiliation(s)
- Mostafa K El-Awady
- Department of Biomedical Technology, National Research Center, Giza, Egypt.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
El-Awady MK, Tabll AA, El-Abd YS, Yousif H, Hegab M, Reda M, El Shenawy R, Moustafa RI, Degheidy N, El Din NGB. Conserved peptides within the E2 region of Hepatitis C virus induce humoral and cellular responses in goats. Virol J 2009; 6:66. [PMID: 19473491 PMCID: PMC2694788 DOI: 10.1186/1743-422x-6-66] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 05/27/2009] [Indexed: 02/07/2023] Open
Abstract
The reason(s) why human antibodies raised against hepatitis C virus (HCV) E2 epitopes do not offer protection against multiple viral infections may be related to either genetic variations among viral strains particularly within the hypervariable region-1 (HVR-1), low titers of anti E2 antibodies or interference of non neutralizing antibodies with the function of neutralizing antibodies. This study was designed to assess the immunogenic properties of genetically conserved peptides derived from the C-terminal region of HVR-1 as potential therapeutic and/or prophylactic vaccines against HCV infection. Goats immunized with E2-conserved synthetic peptides termed p36 (a.a 430-446), p37(a.a 517-531) and p38 (a.a 412-419) generated high titers of anti-p36, anti-p37 and anti-P38 antibody responses of which only anti- p37 and anti- p38 were neutralizing to HCV particles in sera from patients infected predominantly with genotype 4a. On the other hand anti-p36 exhibited weak viral neutralization capacity on the same samples. Animals super-immunized with single epitopes generated 2 to 4.5 fold higher titers than similar antibodies produced in chronic HCV patients. Also the studied peptides elicited approximately 3 fold increase in cell proliferation of specific antibody-secreting peripheral blood mononuclear cells (PBMC) from immunized goats. These results indicate that, besides E1 derived peptide p35 (a.a 315-323) described previously by this laboratory, E2 conserved peptides p37 and p38 represent essential components of a candidate peptide vaccine against HCV infection.
Collapse
Affiliation(s)
- Mostafa K El-Awady
- Department of Biomedical Technology, National Research Center, Giza, Egypt
| | - Ashraf A Tabll
- Department of Biomedical Technology, National Research Center, Giza, Egypt
| | - Yasmine S El-Abd
- Department of Biomedical Technology, National Research Center, Giza, Egypt
| | - Hassan Yousif
- Department of Biomedical Technology, National Research Center, Giza, Egypt
| | - Mohsen Hegab
- Department of Biomedical Technology, National Research Center, Giza, Egypt
| | - Mohamed Reda
- Department of Biomedical Technology, National Research Center, Giza, Egypt
| | - Reem El Shenawy
- Department of Biomedical Technology, National Research Center, Giza, Egypt
| | - Rehab I Moustafa
- Department of Biomedical Technology, National Research Center, Giza, Egypt
| | - Nabila Degheidy
- Parasitology and Animal Diseases Department, National Research Center, Giza, Egypt
| | | |
Collapse
|
22
|
Abstract
A panel of 52 murine monoclonal antibodies was found to recognize antigenic determinants that had been conserved among all major genetic subgroups of the H5N1 avian influenza virus prevalent since 1997. We screened a phage display library for peptides recognized by one such antibody (8H5). We analysed the specificity of 8H5 for reactive peptides presented as fusion proteins of HBc (hepatitis B core protein) and HEV (hepatitis E virus) structural protein, p239. This was then related to the specificity of the native HA (haemagglutinin) molecule by virtue of the capacity of fusion proteins to compete for 8H5 binding with different strains of H5N1 virus and the reactivity of antisera generated against fusion proteins to bind native HA molecules, and to inhibit haemagglutination and arrest infection by the virus. Nine reactive peptides of different amino acid sequences were identified, six of which were also reactive with the antibody in association with HBc and four were in association with p239. Binding occurred with the dimeric form of the four p239-fusion proteins and one of the HBc-fusion proteins, but not with the monomeric form. The HBc-fusion proteins blocked 8H5 binding with four strains of H5N1 influenza virus. Mouse antisera generated against fusion proteins bound to HA molecules, but did not inhibit haemagglutination or arrest H5N1 infection. Our findings indicate that 8H5 recognizes discontinuous sites presented by secondary and possibly higher structural orders of the peptides in spatially favourable positions for binding with the antibody, and that the peptides partially mimic the native 8H5 epitopes on the H5N1 virus.
Collapse
|
23
|
|
24
|
Abstract
BACKGROUND Viral hepatitis is the most common cause of liver disease in the world. In the past 25 years, vaccines have become available for two of the five hepatitis viruses, and, where implemented, vaccination has become a key component of hepatitis prevention. AIMS To provide an update on recent advances in the use of current hepatitis vaccines and to examine progress in the development of vaccines for the remaining hepatitis viruses. METHODS A Medline search was undertaken to identify the recent relevant literature. Search terms included hepatitis vaccines, hepatitis vaccination and hepatitis A-E vaccines. RESULTS Dramatic vaccine-induced declines in the incidence of both hepatitis A and B have occurred in the USA. Strategies to integrate hepatitis A vaccine into universal childhood immunization are being adopted. Similarly, strategies with the goal of eliminating transmission of hepatitis B have been promulgated. A vaccine for hepatitis E has been reported to be effective and safe, but progress in the development of vaccines for hepatitis C and D has been limited. CONCLUSION During the next few decades, the goals of eliminating hepatitis A and B virus transmission may be reached in the USA and elsewhere.
Collapse
Affiliation(s)
- R S Koff
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, USA.
| |
Collapse
|
25
|
Hepatitis C virus envelope glycoprotein immunization of rodents elicits cross-reactive neutralizing antibodies. Vaccine 2007; 25:7773-84. [PMID: 17919789 DOI: 10.1016/j.vaccine.2007.08.053] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/14/2007] [Accepted: 08/26/2007] [Indexed: 01/01/2023]
Abstract
Neutralizing antibody responses elicited during infection generally confer protection from infection. Hepatitis C virus (HCV) encodes two glycoproteins E1 and E2 that are essential for virus entry and are the major target for neutralizing antibodies. To assess whether both glycoproteins are required for the generation of a neutralizing antibody response, rodents were immunized with a series of glycoproteins comprising full length and truncated versions. Guinea pigs immunized with HCV-1 genotype 1a E1E2p7, E1E2 or E2 generated high titer anti-glycoprotein antibody responses that neutralized the infectivity of HCVpp and HCVcc expressing gps of the same genotype as the immunizing antigen. Less potent neutralization of viruses bearing the genotype 2 strain J6 gps was observed. In contrast, immunized mice demonstrated reduced anti-gp antibody responses, consistent with their minimal neutralizing activity. Immunization with E2 alone was sufficient to induce a high titer response that neutralized HCV pseudoparticles (HCVpp) bearing diverse glycoproteins and cell culture grown HCV (HCVcc). The neutralization titer was reduced 3-fold by the presence of lipoproteins in human sera. Cross-competition of the guinea pig anti-E1E2 immune sera with a panel of epitope mapped anti-E2 monoclonal antibodies for binding E2 identified a series of epitopes within the N-terminal domain that may be immunogenic in the immunized rodents. These data demonstrate that recombinant E2 and E1E2 can induce polyclonal antibody responses with cross-reactive neutralizing activity, supporting the future development of prophylactic and therapeutic vaccines.
Collapse
|