1
|
Zhang C, Liu Y, Wang L, Liu X, Chen C, Zhang J, Zhang C, Wang G, Zhuang H, Zhao H. Dose-response relationship between serum N-glycan markers and liver fibrosis in chronic hepatitis B. Hepatol Int 2024; 18:1434-1447. [PMID: 39017915 PMCID: PMC11461603 DOI: 10.1007/s12072-024-10709-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Evaluation of liver fibrosis played a monumental role in the diagnosis and monitoring of chronic hepatitis B (CHB). We aimed to explore the value of serum N-glycan markers in liver fibrosis. METHODS This multi-center (33 hospitals) study recruited 760 treatment-naïve CHB patients who underwent liver biopsy. Serum N-glycan markers were analyzed by DNA sequencer-assisted fluorophore-assisted with capillary electrophoresis (DSA-FACE) technology. First, we explore the relationship between 12 serum N-glycan markers and the fibrosis stage. Then, we developed a Px score for diagnosing significant fibrosis using the LASSO regression. Next, we compared the diagnostic performances between Px, LSM, APRI, and FIB-4. Finally, we explored the relationships between glycosyltransferase gene and liver fibrosis with RNA-transcriptome sequencing. RESULTS We included 622 CHB participants: male-dominated (69.6%); median age 42.0 (IQR 34.0-50.0); 287 with normal ALT; 73.0% with significant fibrosis. P5(NA2), P8(NA3), and P10(NA4) were opposite to the degree of fibrosis, while other profiles (except for P0[NGA2]) increased with the degree of fibrosis. Seven profiles (P1[NGA2F], P2[NGA2FB], P3[NG1A2F], P4[NG1A2F], P7[NA2FB], P8[NA3], and P9[NA3Fb]) were selected into Px score. Px score was associated with an increased risk of significant fibrosis (for per Px score increase, the risk of significant fibrosis was increased by 3.54 times (OR = 4.54 [2.63-7.82]) in the fully-adjusted generalized linear model. p for trend was <0.001. The diagnostic performance of the Px score was superior to others. Glycosyltransferase genes were overexpressed in liver fibrosis, and glycosylation and glycosyltransferase-related pathways were significantly enriched. CONCLUSIONS Serum N-glycan markers were positively correlated with liver fibrosis. Px score had good performance in distinguishing significant fibrosis.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, Beijing, 100034, China
| | - Yiqi Liu
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, Beijing, 100034, China
| | - Lin Wang
- Department of Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xueen Liu
- Department of Microbiology & Center of Infectious Diseases, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Cuiying Chen
- Department of Research and Development, Sysdiagno (Nanjing) Biotech Co., Ltd, Nanjing, 210008, Jiangsu Province, China
| | - Junli Zhang
- Department of Research and Development, Sysdiagno (Nanjing) Biotech Co., Ltd, Nanjing, 210008, Jiangsu Province, China
| | - Chao Zhang
- Department of Research and Development, Sysdiagno (Nanjing) Biotech Co., Ltd, Nanjing, 210008, Jiangsu Province, China
| | - Guiqiang Wang
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, Beijing, 100034, China.
- Department of Infectious Diseases, Peking University International Hospital, Beijing, 102206, China.
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China.
| | - Hui Zhuang
- Department of Microbiology & Center of Infectious Diseases, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Hong Zhao
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, Beijing, 100034, China.
- Department of Infectious Diseases, Peking University International Hospital, Beijing, 102206, China.
| |
Collapse
|
2
|
Yuan S, Chen Y, Zou L, Lu X, Liu R, Zhang S, Zhang Y, Chen C, Cheng D, Chen L, Sun G. Functional prediction of the potential NGLY1 mutations associated with rare disease CDG. Heliyon 2024; 10:e28787. [PMID: 38628705 PMCID: PMC11016977 DOI: 10.1016/j.heliyon.2024.e28787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
Genetic diseases are currently diagnosed by functional mutations. However, only some mutations are associated with disease. It is necessary to establish a quick prediction model for clinical screening. Pathogenic mutations in NGLY1 cause a rare autosomal recessive disease known as congenital disorder of deglycosylation (NGLY1-CDDG). Although NGLY1-CDDG can be diagnosed through gene sequencing, clinical relevance of a detected mutation in NGLY1 needs to be further confirmed. In this study, taken NGLY1-CDDG as an example, a comprehensive and practical predictive model for pathogenic mutations on NGLY1 through an NGLY1/Glycopeptide complex model was constructed, the binding sites of NGLY1 and glycopeptides were simulated, and an in vitro enzymatic assay system was established to facilitate quick clinical decisions for NGLY1-CDDG patients. The docking model covers 42 % of reported NGLY1-CDDG missense mutations (5/12). All reported mutations were subjected to in vitro enzymatic assay in which 18 mutations were dysfunctional (18/30). In addition, a full spectrum of functional R328 mutations was assayed and 11 mutations were dysfunctional (11/19). In this study, a model of NGLY1 and glycopeptides was built for potential functional mutations in NGLY1. In addition, the effect of potential regulatory compounds, including N-acetyl-l-cysteine and dithiothreitol, on NGLY1 was examined. The established in vitro assay may serve as a standard protocol to facilitate rapid diagnosis of all mutations in NGLY1-CDDG. This method could also be applied as a comprehensive and practical predictive model for the other rare genetic diseases.
Collapse
Affiliation(s)
- Shuying Yuan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Yanwen Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Lin Zou
- Department of Medical Microbiology and Parasitology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xinrong Lu
- Department of Medical Microbiology and Parasitology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ruijie Liu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Shaoxing Zhang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Yuxin Zhang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Cuiying Chen
- Department of Research and Development, SysDiagno Biotech, Nanjing, 211800, Jiangsu Province, China
| | - Dongqing Cheng
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Li Chen
- Department of Medical Microbiology and Parasitology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Guiqin Sun
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| |
Collapse
|
3
|
Li Z, Zhang N, Dong Z, Wang X, Zhou J, Gao J, Yang Y, Li J, Guan F, Zhou Y, Tan Z. Integrating transcriptomics, glycomics and glycoproteomics to characterize hepatitis B virus-associated hepatocellular carcinoma. Cell Commun Signal 2024; 22:200. [PMID: 38561745 PMCID: PMC10983713 DOI: 10.1186/s12964-024-01569-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) ranks as the third most common cause of cancer related death globally, representing a substantial challenge to global healthcare systems. In China, the primary risk factor for HCC is the hepatitis B virus (HBV). Aberrant serum glycoconjugate levels have long been linked to the progression of HBV-associated HCC (HBV-HCC). Nevertheless, few study systematically explored the dysregulation of glycoconjugates in the progression of HBV-associated HCC and their potency as the diagnostic and prognostic biomarker. METHODS An integrated strategy that combined transcriptomics, glycomics, and glycoproteomics was employed to comprehensively investigate the dynamic alterations in glyco-genes, N-glycans, and glycoproteins in the progression of HBV- HCC. RESULTS Bioinformatic analysis of Gene Expression Omnibus (GEO) datasets uncovered dysregulation of fucosyltransferases (FUTs) in liver tissues from HCC patients compared to adjacent tissues. Glycomic analysis indicated an elevated level of fucosylated N-glycans, especially a progressive increase in fucosylation levels on IgA1 and IgG2 determined by glycoproteomic analysis. CONCLUSIONS The findings indicate that the abnormal fucosylation plays a pivotal role in the progression of HBV-HCC. Systematic and integrative multi-omic analysis is anticipated to facilitate the discovery of aberrant glycoconjugates in tumor progression.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710077, P.R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, P.R. China
| | - Na Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710077, P.R. China
| | - Zewen Dong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, P.R. China
| | - Xin Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710077, P.R. China
| | - Jian Zhou
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710077, P.R. China
| | - Juan Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710077, P.R. China
| | - Yunyun Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, P.R. China
| | - Jing Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, P.R. China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, P.R. China
| | - Yue Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, P.R. China.
| | - Zengqi Tan
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, P.R. China.
| |
Collapse
|
4
|
Ochoa-Rios S, Grauzam SE, Gregory R, Angel PM, Drake RR, Helke KL, Mehta AS. Spatial Omics Reveals that Cancer-Associated Glycan Changes Occur Early in Liver Disease Development in a Western Diet Mouse Model of MASLD. J Proteome Res 2024; 23:786-796. [PMID: 38206822 DOI: 10.1021/acs.jproteome.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive disease and comprises different stages of liver damage; it is significantly associated with obese and overweight patients. Untreated MASLD can progress to life-threatening end-stage conditions, such as cirrhosis and liver cancer. N-Linked glycosylation is one of the most common post-translational modifications in the cell surface and secreted proteins. N-Linked glycan alterations have been established to be signatures of liver diseases. However, the N-linked glycan changes during the progression of MASLD to liver cancer are still unknown. Here, we induced different stages of MASLD in mice and liver-cancer-related phenotypes and elucidated the N-glycome profile during the progression of MASLD by quantitative and qualitative profiling in situ using matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS). Importantly, we identified specific N-glycan structures including fucosylated and highly branched N-linked glycans at very early stages of liver injury (steatosis), which in humans are associated with cancer development, establishing the importance of these modifications with disease progression. Finally, we report that N-linked glycan alterations can be observed in our models by MALDI-IMS before liver injury is identified by histological analysis. Overall, we propose these findings as promising biomarkers for the early diagnosis of liver injury in MASLD.
Collapse
Affiliation(s)
- Shaaron Ochoa-Rios
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Stéphane Elie Grauzam
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Rebecca Gregory
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
5
|
Butaye E, Somers N, Grossar L, Pauwels N, Lefere S, Devisscher L, Raevens S, Geerts A, Meuris L, Callewaert N, Van Vlierberghe H, Verhelst X. Systematic review: Glycomics as diagnostic markers for hepatocellular carcinoma. Aliment Pharmacol Ther 2024; 59:23-38. [PMID: 37877758 DOI: 10.1111/apt.17748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer with one of the highest cancer-related mortality rates worldwide. Early diagnosis is crucial for improving the therapeutic options and reducing the disease-related mortality. AIM To investigate serum N-glycomics as diagnostic markers for HCC. METHODS We performed a comprehensive search in PubMed, EMBASE, Web of Science and Scopus through August 17, 2023. Eligible studies assessed the potential use of serum N-glycomics as diagnostic biomarkers for HCC. Study selection, data extraction and quality assessment were performed by two independent reviewers. RESULTS Of the 48 articles included, 11 evaluated the utility of N-glycomics for the diagnosis of HCC in whole serum while the remaining articles focused on specific protein glycoforms or protein levels. Of these specific proteins, haptoglobin, alpha-fetoprotein (AFP), kininogen (Kin), α-1-antitrypsin and Golgi protein 73 (GP73) were the most frequently studied. Increased levels of fucosylation and branching presented as the most prevalent post-translational modifications of glycoproteins in patients with HCC compared to controls. Notably, glycomics-based biomarkers may provide a clinical benefit for the diagnosis of early HCC, as several algorithms achieved AUCs between 0.92-0.97. However, these were based on single studies with limited sample sizes and should therefore be validated. CONCLUSIONS Alterations in serum N-glycomics, characterised by increased levels of fucosylation and branching, have potential as diagnostic biomarkers for HCC. Optimisation of study design, patient selection and analysing techniques are needed before clinical implementation will be possible.
Collapse
Affiliation(s)
- Emma Butaye
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Nicky Somers
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Lorenz Grossar
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Nele Pauwels
- Knowledge Center for Health Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Sander Lefere
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Lindsey Devisscher
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Sarah Raevens
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Anja Geerts
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Leander Meuris
- Department of Biochemistry and Microbiology, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Nico Callewaert
- Department of Biochemistry and Microbiology, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Hans Van Vlierberghe
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Xavier Verhelst
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
6
|
Wang Y, Chen H. Protein glycosylation alterations in hepatocellular carcinoma: function and clinical implications. Oncogene 2023:10.1038/s41388-023-02702-w. [PMID: 37193819 DOI: 10.1038/s41388-023-02702-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/18/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide. Understanding the cancer mechanisms provides novel diagnostic, prognostic, and therapeutic markers for the management of HCC disease. In addition to genomic and epigenomic regulation, post-translational modification exerts a profound influence on protein functions and plays a critical role in regulating various biological processes. Protein glycosylation is one of the most common and complex post-translational modifications of newly synthesized proteins and acts as an important regulatory mechanism that is implicated in fundamental molecular and cell biology processes. Recent studies in glycobiology suggest that aberrant protein glycosylation in hepatocytes contributes to the malignant transformation to HCC by modulating a wide range of pro-tumorigenic signaling pathways. The dysregulated protein glycosylation regulates cancer growth, metastasis, stemness, immune evasion, and therapy resistance, and is regarded as a hallmark of HCC. Changes in protein glycosylation could serve as potential diagnostic, prognostic, and therapeutic factors in HCC. In this review, we summarize the functional importance, molecular mechanism, and clinical application of protein glycosylation alterations in HCC.
Collapse
Affiliation(s)
- Yifei Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Huarong Chen
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Tudor L, Nedic Erjavec G, Nikolac Perkovic M, Konjevod M, Uzun S, Kozumplik O, Mimica N, Lauc G, Svob Strac D, Pivac N. The Association of the Polymorphisms in the FUT8-Related Locus with the Plasma Glycosylation in Post-Traumatic Stress Disorder. Int J Mol Sci 2023; 24:ijms24065706. [PMID: 36982780 PMCID: PMC10056189 DOI: 10.3390/ijms24065706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/04/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
The molecular underpinnings of post-traumatic stress disorder (PTSD) are still unclear due to the complex interactions of genetic, psychological, and environmental factors. Glycosylation is a common post-translational modification of proteins, and different pathophysiological states, such as inflammation, autoimmune diseases, and mental disorders including PTSD, show altered N-glycome. Fucosyltransferase 8 (FUT8) is the enzyme that catalyzes the addition of core fucose on glycoproteins, and mutations in the FUT8 gene are associated with defects in glycosylation and functional abnormalities. This is the first study that investigated the associations of plasma N-glycan levels with FUT8-related rs6573604, rs11621121, rs10483776, and rs4073416 polymorphisms and their haplotypes in 541 PTSD patients and control participants. The results demonstrated that the rs6573604 T allele was more frequent in the PTSD than in the control participants. Significant associations of plasma N-glycan levels with PTSD and FUT8-related polymorphisms were observed. We also detected associations of rs11621121 and rs10483776 polymorphisms and their haplotypes with plasma levels of specific N-glycan species in both the control and PTSD groups. In carriers of different rs6573604 and rs4073416 genotypes and alleles, differences in plasma N-glycan levels were only found in the control group. These molecular findings suggest a possible regulatory role of FUT8-related polymorphisms in glycosylation, the alternations of which could partially explain the development and clinical manifestation of PTSD.
Collapse
Affiliation(s)
- Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.)
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.)
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.)
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.)
| | - Suzana Uzun
- Department for Biological Psychiatry and Psychogeriatrics, University Hospital Vrapce, 10000 Zagreb, Croatia; (S.U.); (O.K.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Faculty of Education and Rehabilitation Sciences, University of Zagreb, 10000 Zagreb, Croatia
| | - Oliver Kozumplik
- Department for Biological Psychiatry and Psychogeriatrics, University Hospital Vrapce, 10000 Zagreb, Croatia; (S.U.); (O.K.); (N.M.)
- Faculty of Education and Rehabilitation Sciences, University of Zagreb, 10000 Zagreb, Croatia
| | - Ninoslav Mimica
- Department for Biological Psychiatry and Psychogeriatrics, University Hospital Vrapce, 10000 Zagreb, Croatia; (S.U.); (O.K.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Gordan Lauc
- Glycobiology Laboratory, Genos Ltd., 10000 Zagreb, Croatia;
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.)
- Correspondence: (D.S.S.); (N.P.)
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (L.T.); (G.N.E.); (M.N.P.); (M.K.)
- University of Applied Sciences Hrvatsko Zagorje Krapina, 49000 Krapina, Croatia
- Correspondence: (D.S.S.); (N.P.)
| |
Collapse
|
8
|
Zhu W, Shi P, Liang A, Zhu Y, Fu J, Yuan S, Wu X. The combination of serum oligosaccharide chain (G-test), alpha-fetoprotein, and aspartate aminotransferase to alanine aminotransferase ratio provides the optimal diagnostic value for early detection of hepatocellular carcinoma. BMC Cancer 2022; 22:1061. [PMID: 36241994 PMCID: PMC9563102 DOI: 10.1186/s12885-022-10139-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/03/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this study was to compare the diagnostic value of serum oligosaccharide chain (G-test), alpha-fetoprotein (AFP) and aspartic aminotransferase to alanine aminotransferase ratios (AAR), both alone and in combination, for predicting hepatocellular carcinoma (HCC) onset. METHODS Between Januarys 2020-2022, 152 subjects admitted to the First Affiliated Hospital of Nanchang University was enrolled in this study, of which 77 had HCC, 18 chronic hepatitis (CH), 37 liver cirrhosis (LC) and 20 were healthy. Data for patient characteristics were collected, and differences between groups were analyzed by either Mann-Whitney U or χ2 tests. Receiver operating characteristic (ROC) curve analysis was used to determine the diagnostic value of AFP, G-test, and AAR for HCC. RESULTS G-test, AFP, and AAR were all found to have close correlations with HCC among the different patient groups, with G-test being the most predictive for HCC among healthy and CL patients, as represented by respective areas under the curve (AUC) of 0.953 and 0.792 (P < 0.001). By contrast, AAR had the greatest diagnostic ability for HCC among CH patients (AUC = 0.850; P < 0.001). However, the combination of all 3 biomarkers obtained the most optimal results for predicting HCC onset, in terms of predictive capability for all 3 non-HCC patient groups, yielding AUCs of 0.958, 0.898, and 0.808 (P < 0.001) for, respectively, healthy, CH, and LC patients. Additionally, AFP had higher specificity, but lower sensitivity, with increased threshold values, as the recommended threshold of AFP ≥ 400 ng/mL yielded a missed diagnosis rate of 72.7%. For AFP-negative HCC (AFP-NHCC) patients, G-test alone had the greatest diagnostic capability (AUC = 0.855; P < 0.001), sensitivity (83.8%), and specificity (87.5%). CONCLUSION G-test has the greatest diagnostic capability for HCC and AFP-NHCC, with high sensitivity and specificity, among healthy and LC patients. However, AAR had the highest diagnostic capability and sensitivity for HCC in CH. Overall, though, the combination of G-test, AFP and AAR provided the most optimal outcomes for predicting HCC onset, no matter the patient pre-conditions.
Collapse
Affiliation(s)
- Wentao Zhu
- Department of Infectious Diseases, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pei Shi
- Department of Infectious Diseases, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - An Liang
- Department of Infectious Diseases, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ying Zhu
- Department of Infectious Diseases, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiwei Fu
- Department of Infectious Diseases, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Songsong Yuan
- Department of Infectious Diseases, the First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Xiaoping Wu
- Department of Infectious Diseases, the First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
9
|
Mechref Y, Peng W, Gautam S, Ahmadi P, Lin Y, Zhu J, Zhang J, Liu S, Singal AG, Parikh ND, Lubman DM. Mass spectrometry based biomarkers for early detection of HCC using a glycoproteomic approach. Adv Cancer Res 2022; 157:23-56. [PMID: 36725111 PMCID: PMC10014290 DOI: 10.1016/bs.acr.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fourth most common cause of cancer-related mortality worldwide and 80%-90% of HCC develops in patients that have underlying cirrhosis. Better methods of surveillance are needed to increase early detection of HCC and the proportion of patients that can be offered curative therapies. Recent work in novel mass spec-based methods for glycomic and glycopeptide analysis for discovery and confirmation of markers for early detection of HCC versus cirrhosis is reviewed in this chapter. Results from recent work in these fields by several groups and the progress made in developing markers of early HCC which can outperform the current serum-based markers are described and discussed. Also, recent developments in isoform analysis of glycans and glycopeptides and in various mass spec fragmentation methods will be described and discussed.
Collapse
Affiliation(s)
- Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States.
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Parisa Ahmadi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Yu Lin
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Jianhui Zhu
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Jie Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Suyu Liu
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Amit G Singal
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Neehar D Parikh
- Division of Gastroenterology and Hepatology, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States.
| |
Collapse
|
10
|
Scott DA, Wang M, Grauzam S, Pippin S, Black A, Angel PM, Drake RR, Castellino S, Kono Y, Rockey DC, Mehta AS. GlycoFibroTyper: A Novel Method for the Glycan Analysis of IgG and the Development of a Biomarker Signature of Liver Fibrosis. Front Immunol 2022; 13:797460. [PMID: 35197973 PMCID: PMC8858972 DOI: 10.3389/fimmu.2022.797460] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
Our group has recently developed the GlycoTyper assay which is a streamlined antibody capture slide array approach to directly profile N-glycans of captured serum glycoproteins including immunoglobulin G (IgG). This method needs only a few microliters of serum and utilizes a simplified processing protocol that requires no purification or sugar modifications prior to analysis. In this method, antibody captured glycoproteins are treated with peptide N-glycosidase F (PNGase F) to release N-glycans for detection by MALDI imaging mass spectrometry (IMS). As alterations in N-linked glycans have been reported for IgG from large patient cohorts with fibrosis and cirrhosis, we utilized this novel method to examine the glycosylation of total IgG, as well as IgG1, IgG2, IgG3 and IgG4, which have never been examined before, in a cohort of 106 patients with biopsy confirmed liver fibrosis. Patients were classified as either having no evidence of fibrosis (41 patients with no liver disease or stage 0 fibrosis), early stage fibrosis (10 METAVIR stage 1 and 18 METAVIR stage 2) or late stage fibrosis (6 patients with METAVIR stage 3 fibrosis and 37 patients with METAVIR stage 4 fibrosis (cirrhosis)). Several major alterations in glycosylation were observed that classify patients as having no fibrosis (sensitivity of 92% and a specificity of 90%), early fibrosis (sensitivity of 84% with 90% specificity) or significant fibrosis (sensitivity of 94% with 90% specificity).
Collapse
Affiliation(s)
| | - Mengjun Wang
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Stephane Grauzam
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | | | - Alyson Black
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | | | - Yuko Kono
- Department of Medicine, Gastroenterology and Hepatology, University of California San Diego, San Diego, CA, United States
| | - Don C. Rockey
- Digestive Disease Research Center, Medical University of South Carolina, Charleston, SC, United States
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
- *Correspondence: Anand S. Mehta,
| |
Collapse
|
11
|
Chen F, Wang J, Wu Y, Gao Q, Zhang S. Potential Biomarkers for Liver Cancer Diagnosis Based on Multi-Omics Strategy. Front Oncol 2022; 12:822449. [PMID: 35186756 PMCID: PMC8851237 DOI: 10.3389/fonc.2022.822449] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Liver cancer is the fourth leading cause of cancer-related death worldwide. Hepatocellular carcinoma (HCC) accounts for about 85%-90% of all primary liver malignancies. However, only 20-30% of HCC patients are eligible for curative therapy mainly due to the lack of early-detection strategies, highlighting the significance of reliable and accurate biomarkers. The integration of multi-omics became an important tool for biomarker screening and unique alterations in tumor-associated genes, transcripts, proteins, post-translational modifications and metabolites have been observed. We here summarized the novel biomarkers for HCC diagnosis based on multi-omics technology as well as the clinical significance of these potential biomarkers in the early detection of HCC.
Collapse
Affiliation(s)
- Fanghua Chen
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Junming Wang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Yingcheng Wu
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Qiang Gao
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Shu Zhang
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
- *Correspondence: Shu Zhang,
| |
Collapse
|
12
|
Wang W, Xu X, Huang C, Gao C. N-glycan profiling alterations of serum and immunoglobulin G in immune thrombocytopenia. J Clin Lab Anal 2021; 36:e24201. [PMID: 34957618 PMCID: PMC8842136 DOI: 10.1002/jcla.24201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022] Open
Abstract
Background The glycosylation alterations of serum and IgG are involved in a variety of autoimmune and inflammatory diseases and have shown great potential in biomarker field. The diagnosis of immune thrombocytopenia (ITP) is exclusive. Our study aimed to discover the potential glyco‐biomarkers for auxiliary diagnosis of ITP. Methods The serum samples were obtained from 61 ITP patients and 35 healthy controls, and IgG samples were purified from 34 out of 61 ITP patients and 35 healthy controls. DNA sequencer‐assisted fluorophore‐assisted carbohydrate electrophoresis (DSA‐FACE) was used to analyze serum and IgG N‐glycan profiling. Results 6 of 12 serum N‐glycan peaks, 6 of 7 IgG N‐glycan peaks, serum fucosylation, and IgG galactosylation were significantly different between ITP patients and healthy controls (p < 0.05). IgG peak 7 showed good diagnostic efficacy for discriminating ITP patients from healthy individuals (AUC 0.967). ITP patients with severe thrombocytopenia had a significantly lower serum fucosylation than ITP patients with mild and moderate thrombocytopenia (p < 0.05). Serum fucosylation and serum peak 5 were correlated with platelet counts in ITP patients with severe thrombocytopenia, and the absolute values of correlation coefficient were both over 0.5. Conclusions The specific N‐glycan patterns of serum and IgG were observed in ITP patients. IgG peak 7 was a potential biomarker for auxiliary diagnosis of ITP.
Collapse
Affiliation(s)
- Wei Wang
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuewen Xu
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Chenjun Huang
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Chunfang Gao
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| |
Collapse
|
13
|
Verhelst X, Geerts A, Colman R, Vanlander A, Degroote H, Abreu de Carvalho L, Meuris L, Berrevoet F, Rogiers X, Callewaert N, Van Vlierberghe H. Serum Glycomics on Postoperative Day 7 Are Associated With Graft Loss Within 3 Months After Liver Transplantation Regardless of Early Allograft Dysfunction. Transplantation 2021; 105:2404-2410. [PMID: 33273318 DOI: 10.1097/tp.0000000000003567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Prediction of outcome after liver transplantation (LT) is limited by the lack of robust predictors of graft failure. In this prospective study, we aimed to define a serum glycomic signature in the first week after LT that is associated with graft loss at 3 mo after LT. METHODS Patients were included between January 1, 2011, and February 28, 2017. Glycomic analysis was performed using DNA sequencer-associated fluorophore-associated capillary electrophoresis on a serum sample 1 wk after LT. Making use of Lasso regression, an optimal glycomic signature was identified associated with 3-mo graft survival. RESULTS In this cohort of 131 patients, graft loss at 3 mo occurred in 14 patients (11.9%). The optimal mode, called the GlycoTransplantTest, yielded an area under the curve of 0.95 for association with graft loss at 3 mo. Using an optimized cutoff for this biomarker, sensitivity was 86% and specificity 89%. Negative predictive value was 98%. Odds ratio for graft loss at 3 mo was 70.211 (P < 0.001; 95% confidence interval, 10.876-453.231). CONCLUSIONS A serum glycomic signature is highly associated with graft loss at 3 mo. It could support decision making in early retransplantation.
Collapse
Affiliation(s)
- Xavier Verhelst
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
- Hepatology Research Unit, Ghent University, Ghent, Belgium
- European Reference Network, RARE LIVER, Ghent, Belgium
| | - Anja Geerts
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
- Hepatology Research Unit, Ghent University, Ghent, Belgium
- European Reference Network, RARE LIVER, Ghent, Belgium
| | - Roos Colman
- Biostatistical Unit, Ghent University, Ghent, Belgium
| | - Aude Vanlander
- Department of General and Hepatobiliary Surgery, Liver Transplantation Service, Ghent University Hospital Medical School, Ghent, Belgium
| | - Helena Degroote
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
- Hepatology Research Unit, Ghent University, Ghent, Belgium
- European Reference Network, RARE LIVER, Ghent, Belgium
| | - Luis Abreu de Carvalho
- Department of General and Hepatobiliary Surgery, Liver Transplantation Service, Ghent University Hospital Medical School, Ghent, Belgium
| | - Leander Meuris
- Department for Molecular Biomedical Research, Unit for Medical Biotechnology, VIB, Ghent, Belgium
| | - Frederik Berrevoet
- Department of General and Hepatobiliary Surgery, Liver Transplantation Service, Ghent University Hospital Medical School, Ghent, Belgium
| | - Xavier Rogiers
- Department of General and Hepatobiliary Surgery, Liver Transplantation Service, Ghent University Hospital Medical School, Ghent, Belgium
| | - Nico Callewaert
- Department for Molecular Biomedical Research, Unit for Medical Biotechnology, VIB, Ghent, Belgium
| | - Hans Van Vlierberghe
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
- Hepatology Research Unit, Ghent University, Ghent, Belgium
- European Reference Network, RARE LIVER, Ghent, Belgium
| |
Collapse
|
14
|
DelaCourt A, Black A, Angel P, Drake R, Hoshida Y, Singal A, Lewin D, Taouli B, Lewis S, Schwarz M, Fiel MI, Mehta AS. N-Glycosylation Patterns Correlate with Hepatocellular Carcinoma Genetic Subtypes. Mol Cancer Res 2021; 19:1868-1877. [PMID: 34380744 PMCID: PMC8802325 DOI: 10.1158/1541-7786.mcr-21-0348] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/15/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer deaths globally, and the incidence rate in the United States is increasing. Studies have identified inter- and intratumor heterogeneity as histologic and/or molecular subtypes/variants associated with response to certain molecular targeted therapies. Spatial HCC tissue profiling of N-linked glycosylation by matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) may serve as a new method to evaluate the tumor heterogeneity. Previous work has identified significant changes in the N-linked glycosylation of HCC tumors but has not accounted for the heterogeneous genetic and molecular nature of HCC. To determine the correlation between HCC-specific N-glycosylation changes and genetic/molecular tumor features, we profiled HCC tissue samples with MALDI-IMS and correlated the spatial N-glycosylation with a widely used HCC molecular classification (Hoshida subtypes). MALDI-IMS data displayed trends that could approximately distinguish between subtypes, with subtype 1 demonstrating significantly dysregulated N-glycosylation versus adjacent nontumor tissue. Although there were no individual N-glycan structures that could identify specific subtypes, trends emerged regarding the correlation of branched glycan expression to HCC as a whole and fucosylated glycan expression to subtype 1 tumors specifically. IMPLICATIONS: Correlating N-glycosylation to specific subtypes offers the specific detection of subtypes of HCC, which could both enhance early HCC sensitivity and guide targeted clinical therapies.
Collapse
Affiliation(s)
- Andrew DelaCourt
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - Alyson Black
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - Peggi Angel
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - Richard Drake
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - Yujin Hoshida
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Amit Singal
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - David Lewin
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Bachir Taouli
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sara Lewis
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Myron Schwarz
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - M Isabel Fiel
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
15
|
Gruszewska E, Grytczuk A, Chrostek L. Glycosylation in viral hepatitis. Biochim Biophys Acta Gen Subj 2021; 1865:129997. [PMID: 34474116 DOI: 10.1016/j.bbagen.2021.129997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND The interaction between hepatitis viruses and host cells is regulated by glycans exposed on the surfaces of human and viruses cells. As the biosynthesis and degradation of human glycoproteins take place at the highest level in the liver, the changes in glycosylation of serum proteins may potentially be useful in the diagnosis of liver pathology. On the other hand, specific alterations in viruses envelope glycans could cause large changes in the entry process of hepatitis viruses into a host cells. SCOPE OF REVIEW Unique alterations in glycosylation of specific proteins can be detected in HBV and HCV infected patients especially with confirmed fibrosis/cirrhosis. On the other hand, viral envelope proteins that bind to host cells are glycosylated. These glycosylated proteins play a key role in recognition, binding and penetration of the host cells. In this review we summarized the knowledge about significance of glycosylation for viral and host factors. MAJOR CONCLUSIONS Glycosylation changes in single serum glycoproteins are noticed in the sera of patients with viral hepatitis. However, a more specific biomarker for the diagnosis of chronic hepatitis than that of a single glycosylated molecule is systemic investigation of complete set of glycan structures (N-glycome). Glycans play important roles in the viral biology cycle especially as a connecting element with host receptors. GENERAL SIGNIFICANCE The interaction between virus glycoproteins and cellular receptors, which are also glycoproteins, determines the possibility of virus penetration into host cells. Therefore these glycans can be the targets for the developing of novel treatment strategies of viral hepatitis.
Collapse
Affiliation(s)
- Ewa Gruszewska
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| | - Agnieszka Grytczuk
- Department of Laboratory Diagnostics, University Clinical Hospital in Bialystok, Bialystok, Poland
| | - Lech Chrostek
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland.
| |
Collapse
|
16
|
Colli A, Nadarevic T, Miletic D, Giljaca V, Fraquelli M, Štimac D, Casazza G. Abdominal ultrasound and alpha-foetoprotein for the diagnosis of hepatocellular carcinoma in adults with chronic liver disease. Cochrane Database Syst Rev 2021; 4:CD013346. [PMID: 33855699 PMCID: PMC8078581 DOI: 10.1002/14651858.cd013346.pub2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) occurs mostly in people with chronic liver disease and ranks sixth in terms of global instances of cancer, and fourth in terms of cancer deaths for men. Despite that abdominal ultrasound (US) is used as an initial test to exclude the presence of focal liver lesions and serum alpha-foetoprotein (AFP) measurement may raise suspicion of HCC occurrence, further testing to confirm diagnosis as well as staging of HCC is required. Current guidelines recommend surveillance programme using US, with or without AFP, to detect HCC in high-risk populations despite the lack of clear benefits on overall survival. Assessing the diagnostic accuracy of US and AFP may clarify whether the absence of benefit in surveillance programmes could be related to under-diagnosis. Therefore, assessment of the accuracy of these two tests for diagnosing HCC in people with chronic liver disease, not included in surveillance programmes, is needed. OBJECTIVES Primary: the diagnostic accuracy of US and AFP, alone or in combination, for the diagnosis of HCC of any size and at any stage in adults with chronic liver disease, either in a surveillance programme or in a clinical setting. Secondary: to assess the diagnostic accuracy of abdominal US and AFP, alone or in combination, for the diagnosis of resectable HCC; to compare the diagnostic accuracy of the individual tests versus the combination of both tests; to investigate sources of heterogeneity in the results. SEARCH METHODS We searched the Cochrane Hepato-Biliary Group Controlled Trials Register, the Cochrane Hepato-Biliary Group Diagnostic-Test-Accuracy Studies Register, Cochrane Library, MEDLINE, Embase, LILACS, Science Citation Index Expanded, until 5 June 2020. We applied no language or document-type restrictions. SELECTION CRITERIA Studies assessing the diagnostic accuracy of US and AFP, independently or in combination, for the diagnosis of HCC in adults with chronic liver disease, with cross-sectional and case-control designs, using one of the acceptable reference standards, such as pathology of the explanted liver, histology of resected or biopsied focal liver lesion, or typical characteristics on computed tomography, or magnetic resonance imaging, all with a six-months follow-up. DATA COLLECTION AND ANALYSIS We independently screened studies, extracted data, and assessed the risk of bias and applicability concerns, using the QUADAS-2 checklist. We presented the results of sensitivity and specificity, using paired forest-plots, and tabulated the results. We used a hierarchical meta-analysis model where appropriate. We presented uncertainty of the accuracy estimates using 95% confidence intervals (CIs). We double-checked all data extractions and analyses. MAIN RESULTS We included 373 studies. The index-test was AFP (326 studies, 144,570 participants); US (39 studies, 18,792 participants); and a combination of AFP and US (eight studies, 5454 participants). We judged at high-risk of bias all but one study. Most studies used different reference standards, often inappropriate to exclude the presence of the target condition, and the time-interval between the index test and the reference standard was rarely defined. Most studies with AFP had a case-control design. We also had major concerns for the applicability due to the characteristics of the participants. As the primary studies with AFP used different cut-offs, we performed a meta-analysis using the hierarchical-summary-receiver-operating-characteristic model, then we carried out two meta-analyses including only studies reporting the most used cut-offs: around 20 ng/mL or 200 ng/mL. AFP cut-off 20 ng/mL: for HCC (147 studies) sensitivity 60% (95% CI 58% to 62%), specificity 84% (95% CI 82% to 86%); for resectable HCC (six studies) sensitivity 65% (95% CI 62% to 68%), specificity 80% (95% CI 59% to 91%). AFP cut-off 200 ng/mL: for HCC (56 studies) sensitivity 36% (95% CI 31% to 41%), specificity 99% (95% CI 98% to 99%); for resectable HCC (two studies) one with sensitivity 4% (95% CI 0% to 19%), specificity 100% (95% CI 96% to 100%), and one with sensitivity 8% (95% CI 3% to 18%), specificity 100% (95% CI 97% to 100%). US: for HCC (39 studies) sensitivity 72% (95% CI 63% to 79%), specificity 94% (95% CI 91% to 96%); for resectable HCC (seven studies) sensitivity 53% (95% CI 38% to 67%), specificity 96% (95% CI 94% to 97%). Combination of AFP (cut-off of 20 ng/mL) and US: for HCC (six studies) sensitivity 96% (95% CI 88% to 98%), specificity 85% (95% CI 73% to 93%); for resectable HCC (two studies) one with sensitivity 89% (95% CI 73% to 97%), specificity of 83% (95% CI 76% to 88%), and one with sensitivity 79% (95% CI 54% to 94%), specificity 87% (95% CI 79% to 94%). The observed heterogeneity in the results remains mostly unexplained, and only in part referable to different cut-offs or settings (surveillance programme compared to clinical series). The sensitivity analyses, excluding studies published as abstracts, or with case-control design, showed no variation in the results. We compared the accuracy obtained from studies with AFP (cut-off around 20 ng/mL) and US: a direct comparison in 11 studies (6674 participants) showed a higher sensitivity of US (81%, 95% CI 66% to 90%) versus AFP (64%, 95% CI 56% to 71%) with similar specificity: US 92% (95% CI 83% to 97%) versus AFP 89% (95% CI 79% to 94%). A direct comparison of six studies (5044 participants) showed a higher sensitivity (96%, 95% CI 88% to 98%) of the combination of AFP and US versus US (76%, 95% CI 56% to 89%) with similar specificity: AFP and US 85% (95% CI 73% to 92%) versus US 93% (95% CI 80% to 98%). AUTHORS' CONCLUSIONS In the clinical pathway for the diagnosis of HCC in adults, AFP and US, singularly or in combination, have the role of triage-tests. We found that using AFP, with 20 ng/mL as a cut-off, about 40% of HCC occurrences would be missed, and with US alone, more than a quarter. The combination of the two tests showed the highest sensitivity and less than 5% of HCC occurrences would be missed with about 15% of false-positive results. The uncertainty resulting from the poor study quality and the heterogeneity of included studies limit our ability to confidently draw conclusions based on our results.
Collapse
Affiliation(s)
- Agostino Colli
- Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Tin Nadarevic
- Department of Radiology, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | - Damir Miletic
- Department of Radiology , Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | - Vanja Giljaca
- Department of Gastroenterology, Heart of England NHS Foundation Trust, Birmingham, UK
| | - Mirella Fraquelli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca´ Granda - Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Davor Štimac
- Department of Gastroenterology, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | - Giovanni Casazza
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
17
|
Rosso N, Stephenson AM, Giraudi PJ, Tiribelli C. Diagnostic management of nonalcoholic fatty liver disease: a transformational period in the development of diagnostic and predictive tools-a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:727. [PMID: 33987425 PMCID: PMC8106012 DOI: 10.21037/atm-20-4723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
NAFLD is an emerging healthcare epidemic that is causing predictable adverse consequences for healthcare systems, societies and individuals. Whilst NAFLD is recognized as a multi-system disease with compound pathways that are both benign and pernicious in their unfolding; NASH is generally understood as a deleterious follow-on condition with path-specific tendencies that progress to cirrhosis, HCC and liver transplantation. Recent evidence is beginning to challenge this interpretation demanding more attention to the personalized nature of the disease and its pathogenesis across multiple different cohorts. This means that we need better diagnostic and prognostic tools not only to capture those 'at risk' disease phenotypes; but for better stratification and monitoring of patients according to their treatment strategies. With the advent of pipeline therapies for NASH underway, the medical profession looks to adopt more accurate non-invasive diagnostic tools that can help to delineate and eliminate NASH histology. This review looks at the search for the killer application revealing this particular moment in time as a transformational period; one that is pushing the boundaries of technology to integrate diverse panels of species through sensitive profiling and multi-omics approaches that cast wide, yet powerful diagnostic nets that have the potential to elucidate pathway specific biomarkers that are personalized and predictable.
Collapse
Affiliation(s)
- Natalia Rosso
- Fondazione Italiana Fegato, ONLUS Area Science Park Basovizza, Trieste, Italy
| | - Adam M Stephenson
- Helena Biosciences, Queensway South, Team Valley Trading Estate, Gateshead, UK
| | - Pablo J Giraudi
- Fondazione Italiana Fegato, ONLUS Area Science Park Basovizza, Trieste, Italy
| | - Claudio Tiribelli
- Fondazione Italiana Fegato, ONLUS Area Science Park Basovizza, Trieste, Italy
| |
Collapse
|
18
|
Zou C, Huang C, Yan L, Li X, Xing M, Li B, Gao C, Wang H. Serum N-glycan profiling as a diagnostic biomarker for the identification and assessment of psoriasis. J Clin Lab Anal 2021; 35:e23711. [PMID: 33507566 PMCID: PMC8059725 DOI: 10.1002/jcla.23711] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/14/2022] Open
Abstract
Background Glycosylation is an important post‐translational modification of protein. The change in glycosylation is involved in the occurrence and development of various diseases, and this study verified that N‐glycan markers might be a diagnostic marker in psoriasis. Methods A total of 76 psoriasis patients were recruited. We used Psoriasis Area Severity Index (PASI) scores to evaluate the state of psoriasis, 41 of whom were divided into three subgroups: mild, moderate, and severe. At the same time, 76 healthy subjects were enrolled as a control group. We used DNA sequencer–assisted fluorophore‐assisted carbohydrate electrophoresis (DSA‐FACE) to analyze serum N‐glycan profiling. Results Compared with the healthy controls, the relative abundance of structures in peaks 5(NA2), 9(NA3Fb), 11(NA4), and 12(NA4Fb) was elevated (p < .05), while that in peaks 3(NG1A2F), 4(NG1A2F), 6(NA2F), and 7(NA2FB) was decreased (p < .05) in the psoriasis group. The abundance of peak 5 (NA2) increased gradually with the aggravation of disease severity though there was no statistically significant, was probably correlated with the disease severity. The best area under the receiver operating characteristic (ROC) curve (AUC) of the logistic regression model (PglycoA) to diagnose psoriasis was 0.867, with a sensitivity of 72.37%, a specificity of 85.53%, a positive predictive value(PPV) of 83.33%, a negative predictive value(NPV) of 75.58%, and an accuracy of 78.95%. Conclusions Our study indicated that the N‐glycan–based diagnostic model would be a new, valuable, and noninvasive alternative for diagnosing psoriasis. Furthermore, the characteristic distinctive N‐glycan marker might be correlated with the severity gradation of the psoriasis disease.
Collapse
Affiliation(s)
- Chengyun Zou
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenjun Huang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Li Yan
- Department of Clinical Laboratory, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Xing
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunfang Gao
- Department of Laboratory Medicine, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Haiying Wang
- Department of Clinical Laboratory, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
19
|
Huang C, Liu L, Wang H, Fang M, Feng H, Li Y, Wang M, Tong L, Xiao X, Wang Z, Xu X, He Y, Gao C. Serum N-glycan fingerprint nomogram predicts liver fibrosis: a multicenter study. Clin Chem Lab Med 2021; 59:1087-1097. [PMID: 33554541 DOI: 10.1515/cclm-2020-1588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/11/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Liver cirrhosis (LC) is the end-stage of fibrosis in chronic liver diseases, non-invasive early detection of liver fibrosis (LF) is particularly essential for therapeutic decision. Aberrant glycosylation of glycoproteins has been demonstrated to be closely related to liver abnormalities. METHODS This study was designed to enroll a total of 1,565 participants with LC/LF, chronic hepatitis virus (CHB) and healthy controls. Fibrosis was confirmed by liver biopsy. Using capillary electrophoresis N-glycan fingerprint (NGFP) analysis, we developed a nomogram algorithm (FIB-G) to discriminate LC from non-cirrhotic subjects. RESULTS The FIB-G demonstrated good diagnostic performances in identifying LC with the area under the curve (AUC) 0.895 (95%CI: 0.857-0.915). Furthermore, the diagnostic efficiencies of FIB-G were superior to that of log (P2/P8), procollagen III N-terminal (PIIINP), type IV collage (IV-C), laminin (LN), hyaluronic acid (HA), aspartate transaminase to platelets ratio index (APRI), and FIB-4 when detecting significant fibrosis (S0-1 vs. S2-4, AUC: 0.787, 95%CI: 0.701-0.873), severe fibrosis (S0-2 vs. S3-4, AUC: 0.844, 95%CI: 0.763-0.924), and LC (S0-3 vs. S4, AUC: 0.773, 95%CI: 0.667-0.880). Besides, changes of FIB-G were associated well with the regression of fibrosis and liver function Child-Pugh classification. CONCLUSIONS FIB-G is an accurate multivariant N-glycomic algorithm for LC prediction and fibrosis progression/regression monitoring. The high throughput feasible NGFP using only 2 μL of serum could help physicians make the more precise non-invasive staging of LF or cirrhosis and reduce the need for invasive liver biopsy.
Collapse
Affiliation(s)
- Chenjun Huang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, P.R. China
| | - Lijuan Liu
- Department of Laboratory Medicine, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Hao Wang
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Shanghai, P.R. China
| | - Meng Fang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, P.R. China
| | - Huijuan Feng
- Department of Laboratory Medicine, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Ya Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Mengmeng Wang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, P.R. China.,Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, P.R. China
| | - Lin Tong
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, P.R. China
| | - Xiao Xiao
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, P.R. China
| | - Ziyi Wang
- Department of Data Analysis, Wonders Information Co. LTD., Shanghai, P.R. China
| | - Xuewen Xu
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, P.R. China
| | - Yutong He
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, P.R. China
| | - Chunfang Gao
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, P.R. China
| |
Collapse
|
20
|
Cajic S, Hennig R, Burock R, Rapp E. Capillary (Gel) Electrophoresis-Based Methods for Immunoglobulin (G) Glycosylation Analysis. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:137-172. [PMID: 34687009 DOI: 10.1007/978-3-030-76912-3_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The in-depth characterization of protein glycosylation has become indispensable in many research fields and in the biopharmaceutical industry. Especially knowledge about modulations in immunoglobulin G (IgG) N-glycosylation and their effect on immunity enabled a better understanding of human diseases and the development of new, more effective drugs for their treatment. This chapter provides a deeper insight into capillary (gel) electrophoresis-based (C(G)E) glycan analysis, addressing its impressive performance and possibilities, its great potential regarding real high-throughput for large cohort studies, as well as its challenges and limitations. We focus on the latest developments with respect to miniaturization and mass spectrometry coupling, as well as data analysis and interpretation. The use of exoglycosidase sequencing in combination with current C(G)E technology is discussed, highlighting possible difficulties and pitfalls. The application section describes the detailed characterization of N-glycosylation, utilizing multiplexed CGE with laser-induced fluorescence detection (xCGE-LIF). Besides a comprehensive overview on antibody glycosylation by comparing species-specific IgGs and human immunoglobulins A, D, E, G, and M, the chapter comprises a comparison of therapeutic monoclonal antibodies from different production cell lines, as well as a detailed characterization of Fab and Fc glycosylation. These examples illustrate the full potential of C(G)E, resolving the smallest differences in sugar composition and structure.
Collapse
Affiliation(s)
- Samanta Cajic
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - René Hennig
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
- glyXera GmbH, Magdeburg, Germany.
| | | | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- glyXera GmbH, Magdeburg, Germany
| |
Collapse
|
21
|
Li W, Ma Y, Guo Z, Xing R, Liu Z. Efficient Screening of Glycan-Specific Aptamers Using a Glycosylated Peptide as a Scaffold. Anal Chem 2020; 93:956-963. [PMID: 33300777 DOI: 10.1021/acs.analchem.0c03675] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abnormal glycan structures are valuable biomarkers for disease states; the development of glycan-specific binders is thereby significantly important. However, the structural homology and weak immunogenicity of glycans pose major hurdles in the evolution of antibodies, while the poor availability of complex glycans also has extremely hindered the selection of anti-glycan aptamers. Herein, we present a new approach to efficiently screen aptamers toward specific glycans with a complex structure, using a glycosylated peptide as a scaffold. In this method, using peptide-imprinted magnetic nanoparticles (MNPs) as a versatile platform, a glycopeptide tryptically digested from a native glycoprotein was selectively entrapped for positive selection, while a nonglycosylated analogue with an identical peptide sequence was synthesized for negative selection. Alternating positive and negative selection steps were carried out to guide the directed evolution of glycan-binding aptamers. As proof of the principle, the biantennary digalactosylated disialylated N-glycan A2G2S2, against which there have been no antibodies and lectins so far, was employed as the target. With the glycoprotein transferrin as a source of target glycan, two satisfied anti-A2G2S2 aptamers were selected within seven rounds. Since A2G2S2 is upregulated in cancerous liver cells, carboxyfluorescein (FAM)-labeled aptamers were prepared as fluorescent imaging reagents, and successful differentiation of cancerous liver cells over normal liver cells was achieved, which demonstrated the application feasibility of the selected aptamers. This approach obviated a tedious glycan preparation process and allowed favorable expose of the intrinsic flexible conformation of natural glycans. Therefore, it holds great promise for developing glycan-specific aptamers for challenging applications such as cancer targeting.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yanyan Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhanchen Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Rongrong Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
22
|
Higashi M, Yoshimura T, Usui N, Kano Y, Deguchi A, Tanabe K, Uchimura Y, Kuriyama S, Suzuki Y, Masaki T, Ikenaka K. A Potential Serum N-glycan Biomarker for Hepatitis C Virus-Related Early-Stage Hepatocellular Carcinoma with Liver Cirrhosis. Int J Mol Sci 2020; 21:ijms21238913. [PMID: 33255418 PMCID: PMC7727814 DOI: 10.3390/ijms21238913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023] Open
Abstract
Detection of early-stage hepatocellular carcinoma (HCC) is beneficial for prolonging patient survival. However, the serum markers currently used show limited ability to identify early-stage HCC. In this study, we explored human serum N-glycans as sensitive markers to diagnose HCC in patients with cirrhosis. Using a simplified fluorescence-labeled N-glycan preparation method, we examined non-sialylated and sialylated N-glycan profiles from 71 healthy controls and 111 patients with hepatitis and/or liver cirrhosis (LC) with or without HCC. We found that the level of serum N-glycan A2G1(6)FB, a biantennary N-glycan containing core fucose and bisecting GlcNAc residues, was significantly higher in hepatitis C virus (HCV)-infected cirrhotic patients with HCC than in those without HCC. In addition, A2G1(6)FB was detectable in HCV-infected patients with early-stage HCC and could be a more accurate marker than alpha-fetoprotein (AFP) or protein induced by vitamin K absence or antagonists-II (PIVKA-II). Moreover, there was no apparent correlation between the levels of A2G1(6)FB and those of AFP or PIVKA-II. Thus, simultaneous use of A2G1(6)FB and traditional biomarkers could improve the accuracy of HCC diagnosis in HCV-infected patients with LC, suggesting that A2G1(6)FB may be a reliable biomarker for early-stage HCC patients.
Collapse
Affiliation(s)
- Mikito Higashi
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; (M.H.); (Y.K.)
- Mitsubishi Chemical Group Science and Technology Research Center, Yokohama, Kanagawa 227-8502, Japan;
| | - Takeshi Yoshimura
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; (M.H.); (Y.K.)
- Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka 565-0871, Japan
- Correspondence:
| | - Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan;
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| | - Yuichiro Kano
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; (M.H.); (Y.K.)
| | - Akihiro Deguchi
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan; (A.D.); (T.M.)
| | - Kazuhiro Tanabe
- Mitsubishi Chemical Group Science and Technology Research Center, Yokohama, Kanagawa 227-8502, Japan;
| | - Youichi Uchimura
- Mitsubishi Chemical Group Science and Technology Research Center, Yokohama, Kanagawa 227-8502, Japan;
| | - Shigeki Kuriyama
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan; (A.D.); (T.M.)
| | - Yasuyuki Suzuki
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan;
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan; (A.D.); (T.M.)
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; (M.H.); (Y.K.)
- Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
- Correspondence:
| |
Collapse
|
23
|
Shao H, Reider B, Jarvas G, Guttman A, Jiang Z, Tran NT, Taverna M. On-line enrichment of N-glycans by immobilized metal-affinity monolith for capillary electrophoresis analysis. Anal Chim Acta 2020; 1134:1-9. [DOI: 10.1016/j.aca.2020.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 01/22/2023]
|
24
|
Cong M, Ou X, Huang J, Long J, Li T, Liu X, Wang Y, Wu X, Zhou J, Sun Y, Shang Q, Chen G, Ma H, Xie W, Piao H, Yang Y, Gao Z, Xu X, Tan Z, Chen C, Zeng N, Wu S, Kong Y, Liu T, Wang P, You H, Jia J, Zhuang H. A Predictive Model Using N-Glycan Biosignatures for Clinical Diagnosis of Early Hepatocellular Carcinoma Related to Hepatitis B Virus. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:415-423. [PMID: 32522092 DOI: 10.1089/omi.2020.0055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Early diagnosis of hepatic cancer is a major public health challenge. While changes in serum N-glycans have been observed as patients progress from liver fibrosis/cirrhosis to hepatocellular carcinoma (HCC), the predictive performance of N-glycans is yet to be determined for HCC early diagnosis as well as differential diagnosis from liver fibrosis/cirrhosis. In a total sample of 247 patients with hepatitis B virus-related liver disease, we characterized and compared the serum N-glycans in very early/early and intermediate/advanced stages of HCC and those with liver fibrosis/cirrhosis. Additionally, we performed a retrospective timeline analysis of the serum N-glycans 6 and 12 months before a diagnosis of the very early/early stage of HCC (EHCC). A predictive model was built, named hereafter as Glycomics-EHCC, incorporating the glycan peaks (GPs) 1, 2, and 4. The model showed a larger area under the receiver operating characteristic curve compared with a traditional model with the α-fetoprotein (0.936 vs. 0.731, respectively). The Glycomics-EHCC model had a sensitivity of 84.6% and specificity of 85.0% at a cutoff value of -0.39 to distinguish EHCC from liver fibrosis/cirrhosis. Moreover, the Glycomics-EHCC model was able to forecast a future EHCC diagnosis with a sensitivity and specificity over 90% and 85%, respectively, using the serum N-glycan biosignatures 6 or 12 months earlier when the patients were suffering from liver fibrosis/cirrhosis before being diagnosed with EHCC. This serum glycomic biosignature model warrants further clinical studies in independent population samples and offers promise to forecast EHCC and its differential diagnosis from liver fibrosis/cirrhosis.
Collapse
Affiliation(s)
- Min Cong
- Department of Microbiology and Center of Infectious Diseases, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xiaojuan Ou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Jian Huang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiang Long
- Department of Oncology Minimally Invasive Interventional Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Li
- Department of Microbiology and Center of Infectious Diseases, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xueen Liu
- Department of Microbiology and Center of Infectious Diseases, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yanhong Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xiaoning Wu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Jialing Zhou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Yameng Sun
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Qinghua Shang
- Department of Liver Diseases, The No. 88 Hospital of the People's Liberation Army, Taian, China
| | - Guofeng Chen
- Second Liver Cirrhosis Diagnosis and Treatment Center, 302 Military Hospital of China, Beijing, China
| | - Hui Ma
- Peking University Hepatology Institute, Peking University People's Hospital, Beijing, China
| | - Wen Xie
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongxin Piao
- Department of Infectious Diseases, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yongping Yang
- Center of Therapeutic Research for Liver Cancer, Beijing 302 Hospital, Beijing, China
| | - Zhiliang Gao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyuan Xu
- Department of Infectious Diseases, Peking University First Hospital, Beijing, China
| | | | | | - Na Zeng
- Clinical Epidemiology and Evidence-Based Medicine Unit, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shanshan Wu
- Clinical Epidemiology and Evidence-Based Medicine Unit, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuanyuan Kong
- Clinical Epidemiology and Evidence-Based Medicine Unit, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tianhui Liu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Ping Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Hui Zhuang
- Department of Microbiology and Center of Infectious Diseases, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
25
|
Cao X, Shang QH, Chi XL, Zhang W, Xiao HM, Sun MM, Chen G, An Y, Lv CL, Wang L, Nan YM, Chen CY, Tan ZN, Liu XE, Zhuang H. Serum N-glycan markers for diagnosing liver fibrosis induced by hepatitis B virus. World J Gastroenterol 2020; 26:1067-1079. [PMID: 32205997 PMCID: PMC7080998 DOI: 10.3748/wjg.v26.i10.1067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/10/2020] [Accepted: 01/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is the primary cause of hepatitis with chronic HBV infection, which may develop into liver fibrosis, cirrhosis and hepatocellular carcinoma. Detection of early-stage fibrosis related to HBV infection is of great clinical significance to block the progression of liver lesion. Direct liver biopsy is regarded as the gold standard to detect and assess fibrosis; however, this method is invasive and prone to clinical sampling error. In order to address these issues, we attempted to find more convenient and effective serum markers for detecting HBV-induced early-stage liver fibrosis.
AIM To investigate serum N-glycan profiling related to HBV-induced liver fibrosis and verify multiparameter diagnostic models related to serum N-glycan changes.
METHODS N-glycan profiles from the sera of 432 HBV-infected patients with liver fibrosis were analyzed. Significant changed N-glycan levels (peaks) (P < 0.05) in different fibrosis stages were selected in the modeling group, and multiparameter diagnostic models were established based on changed N-glycan levels by logistic regression analysis. The receiver operating characteristic (ROC) curve analysis was performed to evaluate diagnostic efficacy of N-glycans models. These models were then compared with the aspartate aminotransferase to platelet ratio index (APRI) , fibrosis index based on the four factors (FIB-4), glutamyltranspeptidase platelet albumin index (S index), GlycoCirrho-test, and GlycoFibro-test. Furthermore, we combined multiparameter diagnostic models with alanine aminotransferase (ALT) and platelet (PLT) tests and compared their diagnostic power. In addition, the diagnostic accuracy of N-glycan models was also verified in the validation group of patients.
RESULTS Multiparameter diagnostic models constructed based on N-glycan peak 1, 3, 4 and 8 could distinguish between different stages of liver fibrosis. The area under ROC curves (AUROCs) of Model A and Model B were 0.890 and 0.752, respectively differentiating fibrosis F0-F1 from F2-F4, and F0-F2 from F3-F4, and surpassing other serum panels. However, AUROC (0.747) in Model C used for the diagnosis of F4 from F0-F3 was lower than AUROC (0.795) in FIB-4. In combination with ALT and PLT, the multiparameter models showed better diagnostic power (AUROC = 0.912, 0.829, 0.885, respectively) when compared with other models. In the validation group, the AUROCs of the three combined models (0.929, 0.858, and 0.867, respectively) were still satisfactory. We also applied the combined models to distinguish adjacent fibrosis stages of 432 patients (F0-F1/F2/F3/F4), and the AUROCs were 0.917, 0.720 and 0.785.
CONCLUSION Multiparameter models based on serum N-glycans are effective supplementary markers to distinguish between adjacent fibrosis stages of patients caused by HBV, especially in combination with ALT and PLT.
Collapse
Affiliation(s)
- Xi Cao
- Department of Microbiology and Center of Infectious Diseases, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qing-Hua Shang
- Department of Liver Disease, No. 88 Hospital of Chinese People’s Liberation Army, Tai'an 271000, Shandong Province, China
| | - Xiao-Ling Chi
- Department of Hepatology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Wei Zhang
- Department of Liver Disease, No. 88 Hospital of Chinese People’s Liberation Army, Tai'an 271000, Shandong Province, China
| | - Huan-Ming Xiao
- Department of Hepatology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Mi-Mi Sun
- Department of Liver Disease, No. 88 Hospital of Chinese People’s Liberation Army, Tai'an 271000, Shandong Province, China
| | - Gang Chen
- Department of Liver Disease, No. 88 Hospital of Chinese People’s Liberation Army, Tai'an 271000, Shandong Province, China
| | - Yong An
- Department of Liver Disease, No. 88 Hospital of Chinese People’s Liberation Army, Tai'an 271000, Shandong Province, China
| | - Chun-Lei Lv
- Department of Liver Disease, No. 88 Hospital of Chinese People’s Liberation Army, Tai'an 271000, Shandong Province, China
| | - Lin Wang
- Department of Microbiology and Center of Infectious Diseases, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yue-Min Nan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei Province, China
| | - Cui-Ying Chen
- Department of Molecular Biomedical Research, Xian si-da Biotechnology Company Limited, Nanjing 210000, Jiangsu Province, China
| | - Zong-Nan Tan
- Department of Molecular Biomedical Research, Xian si-da Biotechnology Company Limited, Nanjing 210000, Jiangsu Province, China
| | - Xue-En Liu
- Department of Microbiology and Center of Infectious Diseases, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hui Zhuang
- Department of Microbiology and Center of Infectious Diseases, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
26
|
The diagnostic value of serum DSA-TRF in hepatocellular carcinoma. Glycoconj J 2020; 37:231-240. [DOI: 10.1007/s10719-019-09906-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/04/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022]
|
27
|
Verhelst X, Dias AM, Colombel JF, Vermeire S, Van Vlierberghe H, Callewaert N, Pinho SS. Protein Glycosylation as a Diagnostic and Prognostic Marker of Chronic Inflammatory Gastrointestinal and Liver Diseases. Gastroenterology 2020; 158:95-110. [PMID: 31626754 DOI: 10.1053/j.gastro.2019.08.060] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/03/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022]
Abstract
Glycans are sequences of carbohydrates that are added to proteins or lipids to modulate their structure and function. Glycans modify proteins required for regulation of immune cells, and alterations have been associated with inflammatory conditions. For example, specific glycans regulate T-cell activation, structures, and functions of immunoglobulins; interactions between microbes and immune and epithelial cells; and malignant transformation in the intestine and liver. We review the effects of protein glycosylation in regulation of gastrointestinal and liver functions, and how alterations in glycosylation serve as diagnostic or prognostic factors, or as targets for therapy.
Collapse
Affiliation(s)
- Xavier Verhelst
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Ana M Dias
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal; Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | | | - Severine Vermeire
- Translational Research in Gastrointestinal Disorders, Department of Clinical and Experimental Medicine, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Hans Van Vlierberghe
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Nico Callewaert
- Vlaams Instituut voor Biotechnologie-UGent Center for Medical Biotechnology, Gent, Belgium
| | - Salomé S Pinho
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal; Institute for Research and Innovation in Health, University of Porto, Porto, Portugal; Medical Faculty, University of Porto, Porto, Portugal.
| |
Collapse
|
28
|
Singh SP, Barik RK. NonInvasive Biomarkers in Nonalcoholic Fatty Liver Disease: Are We There Yet? J Clin Exp Hepatol 2020; 10:88-98. [PMID: 32025168 PMCID: PMC6995889 DOI: 10.1016/j.jceh.2019.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 09/15/2019] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. NAFLD encompasses a spectrum of disease ranging from simple steatosis (NAFL) to nonalcoholic steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma. However, despite the growing recognition of this important disease burden, there are significant challenges to accurately and noninvasively diagnose the various forms of NAFLD, especially to differentiate benign steatosis from the progressive NASH. This is of utmost importance because although liver biopsy is considered the current imperfect 'gold' standard for diagnosing NASH and staging fibrosis, it is an invasive procedure with significant limitations. Although, a number of noninvasive markers have been or are currently undergoing investigation, until date, no highly sensitive and specific tests are available to differentiate NASH from simple steatosis. At the moment, further investigations are needed before prediction models or blood-based biomarkers become available and acceptable for routine clinical care. There is a great need for developing inexpensive, easily accessible, highly sensitive and specific biomarkers that permit not only the identification of patients at high risk of adverse outcomes, but also the monitoring of disease progression and response after therapeutic interventions.
Collapse
Affiliation(s)
- Shivaram P. Singh
- Address for correspondence: Shivaram Prasad Singh, Professor, Dept. of Gastroenterology, S.C.B. Medical College, Cuttack, Odisha, 753007, India.
| | | |
Collapse
|
29
|
Perakakis N, Polyzos SA, Yazdani A, Sala-Vila A, Kountouras J, Anastasilakis AD, Mantzoros CS. Non-invasive diagnosis of non-alcoholic steatohepatitis and fibrosis with the use of omics and supervised learning: A proof of concept study. Metabolism 2019; 101:154005. [PMID: 31711876 DOI: 10.1016/j.metabol.2019.154005] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/23/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) affects 25-30% of the general population and is characterized by the presence of non-alcoholic fatty liver (NAFL) that can progress to non-alcoholic steatohepatitis (NASH), liver fibrosis and cirrhosis leading to hepatocellular carcinoma. To date, liver biopsy is the gold standard for the diagnosis of NASH and for staging liver fibrosis. This study aimed to train models for the non-invasive diagnosis of NASH and liver fibrosis based on measurements of lipids, glycans and biochemical parameters in peripheral blood and with the use of different machine learning methods. METHODS We performed a lipidomic, glycomic and free fatty acid analysis in serum samples of 49 healthy subjects and 31 patients with biopsy-proven NAFLD (15 with NAFL and 16 with NASH). The data from the above measurements combined with measurements of 4 hormonal parameters were analyzed with two different platforms and five different machine learning tools. RESULTS 365 lipids, 61 glycans and 23 fatty acids were identified with mass-spectrometry and liquid chromatography. Robust differences in the concentrations of specific lipid species were observed between healthy, NAFL and NASH subjects. One-vs-Rest (OvR) support vector machine (SVM) models with recursive feature elimination (RFE) including 29 lipids or combining lipids with glycans and/or hormones (20 or 10 variables total) could differentiate with very high accuracy (up to 90%) between the three conditions. In an exploratory analysis, a model consisting of 10 lipid species could robustly discriminate between the presence of liver fibrosis or not (98% accuracy). CONCLUSION We propose novel models utilizing lipids, hormones and glycans that can diagnose with high accuracy the presence of NASH, NAFL or healthy status. Additionally, we report a combination of lipids that can diagnose the presence of liver fibrosis. Both models should be further trained prospectively and validated in large independent cohorts.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Stergios A Polyzos
- First Department of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alireza Yazdani
- Division of Applied Mathematics, Brown University, Providence, RI 02906, USA
| | - Aleix Sala-Vila
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, Villarroel 170, Barcelona 08036, Spain
| | - Jannis Kountouras
- Second Medical Clinic, Faculty of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | | | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Hanamatsu H, Nishikaze T, Tsumoto H, Ogawa K, Kobayashi T, Yokota I, Morikawa K, Suda G, Sho T, Nakai M, Miura N, Higashino K, Sekiya S, Iwamoto S, Miura Y, Furukawa JI, Tanaka K, Sakamoto N. Comparative Glycomic Analysis of Sialyl Linkage Isomers by Sialic Acid Linkage-Specific Alkylamidation in Combination with Stable Isotope Labeling of α2,3-Linked Sialic Acid Residues. Anal Chem 2019; 91:13343-13348. [DOI: 10.1021/acs.analchem.9b03617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hisatoshi Hanamatsu
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Takashi Nishikaze
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Kyoto 604-8511, Japan
| | - Hiroki Tsumoto
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Koji Ogawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Takashi Kobayashi
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo, Hokkaido 001-0021, Japan
| | - Ikuko Yokota
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Kenichi Morikawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Goki Suda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Takuya Sho
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Masato Nakai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Nobuaki Miura
- Bioinformatics Laboratory, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
| | - Kenichi Higashino
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo, Hokkaido 001-0021, Japan
| | - Sadanori Sekiya
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Kyoto 604-8511, Japan
| | - Shinichi Iwamoto
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Kyoto 604-8511, Japan
| | - Yuri Miura
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Jun-ichi Furukawa
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Koichi Tanaka
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Kyoto 604-8511, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| |
Collapse
|
31
|
Kobayashi T, Ogawa K, Furukawa JI, Hanamatsu H, Hato M, Yoshinaga T, Morikawa K, Suda G, Sho T, Nakai M, Higashino K, Numata Y, Shinohara Y, Sakamoto N. Quantifying Protein-Specific N-Glycome Profiles by Focused Protein and Immunoprecipitation Glycomics. J Proteome Res 2019; 18:3133-3141. [DOI: 10.1021/acs.jproteome.9b00232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Takashi Kobayashi
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo, Japan
| | - Koji Ogawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Jun-ichi Furukawa
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Hisatoshi Hanamatsu
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Megumi Hato
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo, Japan
| | - Tomoyo Yoshinaga
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo, Japan
| | - Kenichi Morikawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Goki Suda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takuya Sho
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masato Nakai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kenichi Higashino
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo, Japan
| | - Yoshito Numata
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo, Japan
| | - Yasuro Shinohara
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
32
|
Detrimental links between physical inactivity, metabolic risk and N-glycomic biomarkers of aging. Exp Gerontol 2019; 124:110626. [PMID: 31158451 DOI: 10.1016/j.exger.2019.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/29/2019] [Accepted: 05/30/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND N-linked enzymatic glycosylation modulates the function of proteins and contributes to development of age-related metabolic abnormalities. Whether physical activity (PA) is linked to a specific N-glycan profile and can offset detrimental links between N-glycans and metabolic risk profile has never been explored. The aim of the present study is to assess serum N-glycan profile in older women with different PA levels and metabolic risk status. MATERIALS AND METHODS Components of the metabolic syndrome (MetS) and serum N-glycans analyzed using DSA-FACE technology were assessed in 109 older community-dwelling women (65-70 yrs). Ten peaks, each representing a unique N-glycan structure were detected. Moderate-to-vigorous PA (MVPA) was assessed objectively using accelerometry. All analyses were adjusted by covariates. RESULTS Significantly elevated levels of NGA2FB (peak 2) and NA3F (peak 9) and lower level of the α(1,6)-arm monogalactosylated (NG1(6)A2F) (peak 3) were demonstrated in women with MetS compared to their healthier peers (p < 0.05). Importantly, women adhering to the PA guideline of time in MVPA had a 10% and a 12% lower level of NA3 (peak 8) and NA4 (peak 10), respectively, compared to those less active even after adjustment by MetS and covariates (p < 0.05). Interestingly, time spent in PA below the MVPA threshold was not linked to N-glycans. CONCLUSION Novel links between PA behaviors and N-glycan profile are demonstrated in older adults, regardless of metabolic risk status. This proposed effect on N-glycans requires engagement in MVPA. This supports public health efforts to promote adherence to PA guidelines in older adults across different stages of disease prevention.
Collapse
|
33
|
Zhu J, Warner E, Parikh ND, Lubman DM. Glycoproteomic markers of hepatocellular carcinoma-mass spectrometry based approaches. MASS SPECTROMETRY REVIEWS 2019; 38:265-290. [PMID: 30472795 PMCID: PMC6535140 DOI: 10.1002/mas.21583] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/19/2018] [Indexed: 05/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third most-common cause of cancer-related death worldwide. Most cases of HCC develop in patients that already have liver cirrhosis and have been recommended for surveillance for an early onset of HCC. Cirrhosis is the final common pathway for several etiologies of liver disease, including hepatitis B and C, alcohol, and increasingly non-alcoholic fatty liver disease. Only 20-30% of patients with HCC are eligible for curative therapy due primarily to inadequate early-detection strategies. Reliable, accurate biomarkers for HCC early detection provide the highest likelihood of curative therapy and survival; however, current early-detection methods that use abdominal ultrasound and serum alpha fetoprotein are inadequate due to poor adherence and limited sensitivity and specificity. There is an urgent need for convenient and highly accurate validated biomarkers for HCC early detection. The theme of this review is the development of new methods to discover glycoprotein-based markers for detection of HCC with mass spectrometry approaches. We outline the non-mass spectrometry based methods that have been used to discover HCC markers including immunoassays, capillary electrophoresis, 2-D gel electrophoresis, and lectin-FLISA assays. We describe the development and results of mass spectrometry-based assays for glycan screening based on either MALDI-MS or ESI analysis. These analyses might be based on the glycan content of serum or on glycan screening for target molecules from serum. We describe some of the specific markers that have been developed as a result, including for proteins such as Haptoglobin, Hemopexin, Kininogen, and others. We discuss the potential role for other technologies, including PGC chromatography and ion mobility, to separate isoforms of glycan markers. Analyses of glycopeptides based on new technologies and innovative softwares are described and also their potential role in discovery of markers of HCC. These technologies include new fragmentation methods such as EThcD and stepped HCD, which can identify large numbers of glycopeptide structures from serum. The key role of lectin extraction in various assays for intact glycopeptides or their truncated versions is also described, where various core-fucosylated and hyperfucosylated glycopeptides have been identified as potential markers of HCC. Finally, we describe the role of LC-MRMs or lectin-FLISA MRMs as a means to validate these glycoprotein markers from patient samples. These technological advancements in mass spectrometry have the potential to lead to novel biomarkers to improve the early detection of HCC.
Collapse
Affiliation(s)
- Jianhui Zhu
- Department of Surgery, The University of Michigan, Ann Arbor 48109, Michigan
| | - Elisa Warner
- Department of Surgery, The University of Michigan, Ann Arbor 48109, Michigan
| | - Neehar D. Parikh
- Department of Internal Medicine, The University of Michigan, Ann Arbor 48109, Michigan
| | - David M. Lubman
- Department of Surgery, The University of Michigan, Ann Arbor 48109, Michigan
| |
Collapse
|
34
|
Metabolomic and glycomic findings in posttraumatic stress disorder. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:181-193. [PMID: 30025792 DOI: 10.1016/j.pnpbp.2018.07.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/21/2018] [Accepted: 07/14/2018] [Indexed: 01/10/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a stressor-related disorder that develops in a subset of individuals exposed to a traumatic experience. Factors associated with vulnerability to PTSD are still not fully understood. PTSD is frequently comorbid with various psychiatric and somatic disorders, moderate response to treatment and remission rates. The term "theranostics" combines diagnosis, prognosis, and therapy and offers targeted therapy based on specific analyses. Theranostics, combined with novel techniques and approaches called "omics", which integrate genomics, transcriptomic, proteomics and metabolomics, might improve knowledge about biological underpinning of PTSD, and offer novel therapeutic strategies. The focus of this review is on metabolomic and glycomic data in PTSD. Metabolomics evaluates changes in the metabolome of an organism by exploring the set of small molecules (metabolites), while glycomics studies the glycome, a complete repertoire of glycan structures with their functional roles in biological systems. Both metabolome and glycome reflect the physiological and pathological conditions in individuals. Only a few studies evaluated metabolic and glycomic changes in patients with PTSD. The metabolomics studies in PTSD patients uncovered different metabolites that might be associated with psychopathological alterations in PTSD. The glycomics study in PTSD patients determined nine N-glycan structures and found accelerated and premature aging in traumatized subjects and subjects with PTSD based on a GlycoAge index. Therefore, further larger studies and replications are needed. Better understanding of the biological basis of PTSD, including metabolomic and glycomic data, and their integration with other "omics" approaches, might identify new molecular targets and might provide improved therapeutic approaches.
Collapse
|
35
|
Han Y, Xiao K, Tian Z. Comparative Glycomics Study of Cell-Surface N-Glycomes of HepG2 versus LO2 Cell Lines. J Proteome Res 2019; 18:372-379. [PMID: 30343578 DOI: 10.1021/acs.jproteome.8b00655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell-surface N-glycans play important roles in both inter- and intracellular processes, including cell adhesion and development, cell recognition, as well as cancer development and metastasis; detailed structural characterization of these N-glycans is thus paramount. Here we report our comparative N-glycomics study of cell-surface N-glycans of the hepatocellular carcinoma (HCC) HepG2 cells vs the normal liver LO2 cells. With sequential trypsin digestion of proteins, C18 depletion of peptides without glycosylation, PNGase F digestion of N-glycopeptides, PGC enrichment of N-glycans, CH3I permethylation of the enriched N-glycans, cell-surface N-glycomes of the HepG2 and LO2 cells were analyzed using C18-RPLC-MS/MS (HCD). With spectrum-level FDR no bigger than 1%, 351 and 310 N-glycans were identified for HepG2 and LO2, respectively, with comprehensive structural information (not only monosaccharide composition, but also sequence and linkage) by N-glycan database search engine GlySeeker. The percentage of hybrid N-glycans with tetra-antennary structures was substantially increased in the HepG2 cells. This comprehensive discovery study of differentially expressed cell-surface N-glycans in HepG2 vs LO2 serves as a solid reference for future validation study of glycosylation markers in HCC.
Collapse
Affiliation(s)
- Yuyin Han
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability , Tongji University , Shanghai 200092 , China
| | - Kaijie Xiao
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability , Tongji University , Shanghai 200092 , China
| | - Zhixin Tian
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability , Tongji University , Shanghai 200092 , China
| |
Collapse
|
36
|
Analysis of Hepatocellular Carcinoma Tissue for Biomarker Discovery. MOLECULAR AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/978-3-030-21540-8_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Perakakis N, Yazdani A, Karniadakis GE, Mantzoros C. Omics, big data and machine learning as tools to propel understanding of biological mechanisms and to discover novel diagnostics and therapeutics. Metabolism 2018; 87:A1-A9. [PMID: 30098323 PMCID: PMC6325641 DOI: 10.1016/j.metabol.2018.08.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Nikolaos Perakakis
- Department of Endocrinology, VA Boston Healthcare System, Jamaica Plain, Boston, MA 02130, USA; Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Alireza Yazdani
- Division of Applied Mathematics, Brown University, Providence, RI 02906, USA
| | | | - Christos Mantzoros
- Department of Endocrinology, VA Boston Healthcare System, Jamaica Plain, Boston, MA 02130, USA; Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
38
|
West CA, Wang M, Herrera H, Liang H, Black A, Angel PM, Drake RR, Mehta AS. N-Linked Glycan Branching and Fucosylation Are Increased Directly in Hcc Tissue As Determined through in Situ Glycan Imaging. J Proteome Res 2018; 17:3454-3462. [PMID: 30110170 DOI: 10.1021/acs.jproteome.8b00323] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hepatocellular carcinoma (HCC) remains as the fifth most common cancer in the world and accounts for more than 700,000 deaths annually. Changes in serum glycosylation have long been associated with this cancer but the source of that material is unknown and direct glycan analysis of HCC tissues has been limited. Our laboratory previously developed a method of in situ tissue based N-linked glycan imaging that bypasses the need for microdissection and solubilization of tissue prior to analysis. We used this methodology in the analysis of 138 HCC tissue samples and compared the N-linked glycans in cancer tissue with either adjacent untransformed or tissue from patients with liver cirrhosis but no cancer. Ten glycans were found significantly elevated in HCC tissues as compared to cirrhotic or adjacent tissue. These glycans fell into two major classes, those with increased levels of fucosylation and those with increased levels of branching with or without any fucose modifications. In addition, increased levels of fucosylated glycoforms were associated with a reduction in survival time. This work supports the hypothesis that the increased levels of fucosylated N-linked glycans in HCC serum are produced directly from the cancer tissue.
Collapse
Affiliation(s)
- Connor A West
- Medical University of South Carolina , Department of Cell and Molecular Pharmacology , 173 Ashley Avenue BSB 358 , Charleston , South Carolina 29425 , United States
| | - Mengjun Wang
- Medical University of South Carolina , Department of Cell and Molecular Pharmacology , 173 Ashley Avenue BSB 358 , Charleston , South Carolina 29425 , United States
| | - Harmin Herrera
- Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine , Department of Microbiology and Immunology , 2900 Queen Lane , Philadelphia , Pennsylvania 19129 , United States
| | - Hongyan Liang
- Medical University of South Carolina , Department of Cell and Molecular Pharmacology , 173 Ashley Avenue BSB 358 , Charleston , South Carolina 29425 , United States
| | - Alyson Black
- Medical University of South Carolina , Department of Cell and Molecular Pharmacology , 173 Ashley Avenue BSB 358 , Charleston , South Carolina 29425 , United States
| | - Peggi M Angel
- Medical University of South Carolina , Department of Cell and Molecular Pharmacology , 173 Ashley Avenue BSB 358 , Charleston , South Carolina 29425 , United States
| | - Richard R Drake
- Medical University of South Carolina , Department of Cell and Molecular Pharmacology , 173 Ashley Avenue BSB 358 , Charleston , South Carolina 29425 , United States
| | - Anand S Mehta
- Medical University of South Carolina , Department of Cell and Molecular Pharmacology , 173 Ashley Avenue BSB 358 , Charleston , South Carolina 29425 , United States
| |
Collapse
|
39
|
Dědová T, Grunow D, Kappert K, Flach D, Tauber R, Blanchard V. The effect of blood sampling and preanalytical processing on human N-glycome. PLoS One 2018; 13:e0200507. [PMID: 29995966 PMCID: PMC6040761 DOI: 10.1371/journal.pone.0200507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/27/2018] [Indexed: 11/19/2022] Open
Abstract
Glycome modulations have been described in the onset and progression of many diseases. Thus, many studies have proposed glycans from blood glycoproteins as disease markers. Astonishingly, little effort has been given unraveling preanalytical conditions potentially influencing glycan analysis prior to blood biomarker studies. In this work, we evaluate for the first time the effect of hemolysis, storage and blood collection, but also influence of various times and temperatures between individual processing steps on the total N-glycome and on a glycan-biomarker score. Venous blood was collected from 10 healthy donors in 11 blood collection tubes with different additives, processed variously to obtain 16 preanalytical variables and N-glycans released from serum or plasma were analyzed by MALDI-TOF-MS and capillary electrophoresis coupled with fluorescence detection (CE-LIF) for the first time. Long time storage of deep frozen samples at -20°C or -80°C exerted only a minor influence on the glycome as demonstrated by CE-LIF. The N-glycome was very stable evidenced by MALDI-TOF when stored at 4°C for at least 48 hours and blood collected in tubes devoid of additives. The glycome was stable upon storage after centrifugation and aliquoting, which is an important information considering future diagnostic applications. Hemolysis, however, negatively correlated with an established glycan score for ovarian cancer, when evaluated by MALDI-TOF-MS measurement by affecting relative intensities of certain glycans, which could lead to false negative / positive results in glycan biomarker studies.
Collapse
Affiliation(s)
- Tereza Dědová
- Charité –Universitätsmedizin Berlin, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Berlin, Germany
- Freie Universität Berlin, Department of Biology, Chemistry and Pharmacy, Berlin, Germany
| | - Detlef Grunow
- Charité –Universitätsmedizin Berlin, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Berlin, Germany
| | - Kai Kappert
- Charité –Universitätsmedizin Berlin, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Berlin, Germany
- Center for Cardiovascular Research, German Center for Cardiovascular Research, Charité –Universitätsmedizin Berlin, Berlin, Germany
| | - Dagmar Flach
- Sarstedt AG&Co, Nümbrecht, North Rhine-Westphalia, Germany
| | - Rudolf Tauber
- Charité –Universitätsmedizin Berlin, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Berlin, Germany
| | - Véronique Blanchard
- Charité –Universitätsmedizin Berlin, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Berlin, Germany
| |
Collapse
|
40
|
Boeck C, Pfister S, Bürkle A, Vanhooren V, Libert C, Salinas-Manrique J, Dietrich DE, Kolassa IT, Karabatsiakis A. Alterations of the serum N-glycan profile in female patients with Major Depressive Disorder. J Affect Disord 2018. [PMID: 29529546 DOI: 10.1016/j.jad.2018.02.082] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Glycans are short chains of saccharides linked to glycoproteins that are known to be involved in a wide range of inflammatory processes. As depression has been consistently associated with chronic low-grade inflammation, we asked whether patients with Major Depressive Disorder show alterations in the N-glycosylation pattern of serum proteins that might be linked to associated changes in inflammatory processes. METHODS In a study cohort of 21 female patients with an acute depressive episode and 21 non-depressed female control subjects aged between 50 and 69 years, we analyzed the serum N-glycan profile by DNA Sequencer Adapted-Fluorophore Assisted Carbohydrate Electrophoresis (DSA-FACE) and assessed the serum levels of interleukin (IL)- 6, tumor necrosis factor (TNF)-α and C-reactive protein (CRP) by chemiluminescence immunoassays and nephelometry. RESULTS Compared to controls, MDD patients showed significant differences in the serum levels of several N-glycan structures. Alterations in the serum N-glycan profile were associated with depressive symptom severity and exploratory analyses revealed that they were most pronounced in MDD patients with a history of childhood sexual abuse. Furthermore, MDD patients showed higher levels of IL-6 and a trend for higher CRP levels, which were also associated with similar alterations in the serum N-glycan profile as those characteristic for MDD patients. LIMITATIONS The relatively small sample size and the presence of potential confounders (e.g., BMI, smoking, medication). CONCLUSION The results offer the first evidence that specific differences in the N-glycosylation pattern of serum proteins constitute a so far unrecognized level of biological alterations that might be involved in the immune changes associated with MDD.
Collapse
Affiliation(s)
- Christina Boeck
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany.
| | - Sophia Pfister
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Alexander Bürkle
- Molecular Toxicology, Department of Biology, University of Konstanz, Box 628, Germany
| | - Valerie Vanhooren
- VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Claude Libert
- VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Belgium
| | | | - Detlef E Dietrich
- Burghof-Klinik, Rinteln, Germany; Department of Mental Health, Hannover Medical School, Hannover, Germany
| | - Iris-Tatjana Kolassa
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Alexander Karabatsiakis
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| |
Collapse
|
41
|
Black AP, Mehta AS. The search for biomarkers of hepatocellular carcinoma and the impact on patient outcome. Curr Opin Pharmacol 2018; 41:74-78. [PMID: 29772420 DOI: 10.1016/j.coph.2018.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/14/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the 5th most common cancer, but the 3rd leading cause of cancer death globally with approximately 700,000 fatalities annually. The severity of this cancer arises from its difficulty to detect and treat. The major etiologies of HCC are liver fibrosis or cirrhosis from chronic viral infections, as well as metabolic conditions. Since most cases arise from prior pathologies, biomarker surveillance in high-risk individuals is an essential approach for early detection and improved patient outcome. While many molecular biomarkers have been associated with HCC, there are few that have made clinical impact for this disease. Here we review some major approaches used for HCC biomarker discovery-proteomics and glycomics-and describe new methodologies being tested for biomarker development.
Collapse
Affiliation(s)
- Alyson P Black
- Medical University of South Carolina, Charleston, SC 29425, United States
| | - Anand S Mehta
- Medical University of South Carolina, Charleston, SC 29425, United States.
| |
Collapse
|
42
|
Gligorijević N, Minić S, Križáková M, Katrlík J, Nedić O. Structural changes of fibrinogen as a consequence of cirrhosis. Thromb Res 2018; 166:43-49. [PMID: 29655002 DOI: 10.1016/j.thromres.2018.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/14/2018] [Accepted: 04/06/2018] [Indexed: 12/19/2022]
Abstract
Cirrhosis is a disease which may develop as a consequence of various conditions. In advanced liver disease, blood coagulation can be seriously affected. Portal hypertension, vascular abnormalities and/or a dysbalance in coagulation factors may result in bleeding disorders or in the development of thrombosis. Fibrinogen is the main protein involved in clot formation and wound healing. The aim of this work was to analyse the glycosylation pattern of the isolated fibrinogen molecules by lectin-based protein microarray, together with the carbonylation pattern of the individual fibrinogen chains, possible changes in the molecular secondary and tertiary structure and reactivity with the insulin-like growth factor-binding protein 1 (IGFBP-1) in patients with cirrhosis. The results pointed to an increase in several carbohydrate moieties: tri/tetra-antennary structures, Gal β-1,4 GlcNAc, terminal α-2,3 Sia and α-1,3 Man, and a decrease in core α-1,6 Fuc and bi-antennary galactosylated N-glycans with bisecting GlcNAc. Fibrinogen Aα chain was the most susceptible to carbonylation, followed by the Bβ chain. Cirrhosis induced additional protein carbonylation, mostly on the α chain. Spectrofluorimetry and CD spectrometry detected reduction in the α-helix content, protein unfolding and/or appearance of modified amino acid residues in cirrhosis. The amount of complexes which fibrinogen forms with IGFBP-1, another factor involved in wound healing was significantly greater in patients with cirrhosis than in healthy individuals. A more detailed knowledge of individual molecules in coagulation process may contribute to deeper understanding of coagulopathies and the results of this study offer additional information on the possible mechanisms involved in impaired coagulation due to cirrhosis.
Collapse
Affiliation(s)
- Nikola Gligorijević
- Institute for the Application of Nuclear Energy (INEP), Department of Metabolism, University of Belgrade, Banatska 31b, 11000 Belgrade, Serbia.
| | - Simeon Minić
- Center of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia.
| | - Martina Križáková
- Institute of Chemistry, Slovak Academy of Sciences, Department of Glycobiotechnology, Dúbravskácesta 9, 84538 Bratislava, Slovak Republic.
| | - Jaroslav Katrlík
- Institute of Chemistry, Slovak Academy of Sciences, Department of Glycobiotechnology, Dúbravskácesta 9, 84538 Bratislava, Slovak Republic.
| | - Olgica Nedić
- Institute for the Application of Nuclear Energy (INEP), Department of Metabolism, University of Belgrade, Banatska 31b, 11000 Belgrade, Serbia.
| |
Collapse
|
43
|
Verhelst X, Geerts A, Jochmans I, Vanderschaeghe D, Paradissis A, Vanlander A, Berrevoet F, Dahlqvist G, Nevens F, Pirenne J, Rogiers X, Callewaert N, Troisi RI, Van Vlierberghe H. Glycome Patterns of Perfusate in Livers Before Transplantation Associate With Primary Nonfunction. Gastroenterology 2018; 154:1361-1368. [PMID: 29309776 DOI: 10.1053/j.gastro.2017.12.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/12/2017] [Accepted: 12/27/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND & AIMS Primary nonfunction (PNF) is a rare complication after liver transplantation that requires urgent retransplantation. PNF is associated with livers from extended criteria donors. Clinical and biochemical factors have not been identified that reliably associate with graft function after liver transplantation. Serum patterns of N-glycans associate with changes in the liver. We analyzed perfusate from grafted liver to identify protein glycosylation patterns associated with PNF. METHODS We performed a prospective study of consecutive patients who underwent liver transplantation (66 patients, from 1 center, in the derivation set, and 56 patients, from 2 centers, in the validation set) in Belgium, from October 1, 2011, through April 30, 2017. All donor grafts were transported using cold static storage, and perfusate samples were collected from the livers by flushing of hepatic veins before transplantation. Protein-linked N-glycans were isolated from perfusate samples and analyzed with a multicapillary electrophoresis-based ABI3130 sequencer. We compared glycan patterns between patients with vs without PNF of transplanted livers. PNF was defined as the need for urgent retransplantation when a graft had no evidence of function, after exclusion of other causes, such as hepatic artery thrombosis or acute cellular rejection. RESULTS The relative abundance of a single glycan, agalacto core-alpha-1,6-fucosylated biantennary glycan (NGA2F) was significantly increased in perfusate of livers given to 4 patients who developed PNF after liver transplantation compared with livers given to patients who did not develop PNF. Level of NGA2F identified patients with PNF with 100% accuracy. This glycomarker was the only factor associated with PNF in multivariate analysis in the derivation and the validation sets (P < .0001). CONCLUSIONS In an analysis of patients who underwent liver transplantation, we associated graft perfusate level of glycan NGA2F present on perfusate proteins with development of PNF with 100% accuracy, and validated this finding in a separate cohort of patients. This biomarker might be used to assess grafts before transplantation, especially when high-risk organs are under consideration.
Collapse
Affiliation(s)
- Xavier Verhelst
- Department of Hepatology and Gastroenterology, Ghent University Hospital, Ghent, Belgium; Laboratory of Hepatology Research, Ghent University, Ghent, Belgium
| | - Anja Geerts
- Department of Hepatology and Gastroenterology, Ghent University Hospital, Ghent, Belgium; Laboratory of Hepatology Research, Ghent University, Ghent, Belgium
| | - Ina Jochmans
- Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium; Laboratory of Abdominal Transplantation, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Dieter Vanderschaeghe
- VIB-Ugent Center for Medical Biotechnology and Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Agnes Paradissis
- Department of Hepatology and Gastroenterology, Ghent University Hospital, Ghent, Belgium; Laboratory of Hepatology Research, Ghent University, Ghent, Belgium
| | - Aude Vanlander
- Department of General, Hepatobiliary and Liver Transplantation Surgery, Ghent, Belgium; University Hospital Medical School, Ghent, Belgium
| | - Frederik Berrevoet
- Department of General, Hepatobiliary and Liver Transplantation Surgery, Ghent, Belgium; University Hospital Medical School, Ghent, Belgium
| | | | - Frederik Nevens
- Department of Hepatology, University Hospitals, Leuven, Belgium
| | - Jacques Pirenne
- Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium; Laboratory of Abdominal Transplantation, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Xavier Rogiers
- Department of General, Hepatobiliary and Liver Transplantation Surgery, Ghent, Belgium; University Hospital Medical School, Ghent, Belgium
| | - Nico Callewaert
- VIB-Ugent Center for Medical Biotechnology and Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Roberto I Troisi
- Department of General, Hepatobiliary and Liver Transplantation Surgery, Ghent, Belgium; University Hospital Medical School, Ghent, Belgium
| | - Hans Van Vlierberghe
- Department of Hepatology and Gastroenterology, Ghent University Hospital, Ghent, Belgium; Laboratory of Hepatology Research, Ghent University, Ghent, Belgium.
| |
Collapse
|
44
|
Fujiwara N, Friedman SL, Goossens N, Hoshida Y. Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine. J Hepatol 2018; 68:526-549. [PMID: 28989095 PMCID: PMC5818315 DOI: 10.1016/j.jhep.2017.09.016] [Citation(s) in RCA: 466] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 01/27/2023]
Abstract
Patients who develop chronic fibrotic liver disease, caused by viral or metabolic aetiologies, are at a high risk of developing hepatocellular carcinoma (HCC). Even after complete HCC tumour resection or ablation, the carcinogenic tissue microenvironment in the remnant liver can give rise to recurrent de novo HCC tumours, which progress into incurable, advanced-stage disease in most patients. Thus, early detection and prevention of HCC development is, in principle, the most impactful strategy to improve patient prognosis. However, a "one-size-fits-all" approach to HCC screening for early tumour detection, as recommended by clinical practice guidelines, is utilised in less than 20% of the target population, and the performance of screening modalities, including ultrasound and alpha-fetoprotein, is suboptimal. Furthermore, optimal screening strategies for emerging at-risk patient populations, such as those with chronic hepatitis C after viral cure, or those with non-cirrhotic, non-alcoholic fatty liver disease remain controversial. New HCC biomarkers and imaging modalities may improve the sensitivity and specificity of HCC detection. Clinical and molecular HCC risk scores will enable precise HCC risk prediction followed by tailoured HCC screening of individual patients, maximising cost-effectiveness and optimising allocation of limited medical resources. Several aetiology-specific and generic HCC chemoprevention strategies are evolving. Epidemiological and experimental studies have identified candidate chemoprevention targets and therapies, including statins, anti-diabetic drugs, and selective molecular targeted agents, although their clinical testing has been limited by the lengthy process of cancer development that requires long-term, costly studies. Individual HCC risk prediction is expected to overcome the challenge by enabling personalised chemoprevention, targeting high-risk patients for precision HCC prevention and substantially improving the dismal prognosis of HCC.
Collapse
Affiliation(s)
- Naoto Fujiwara
- Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, USA; Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Japan
| | - Scott L Friedman
- Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, USA
| | - Nicolas Goossens
- Division of Gastroenterology and Hepatology, Geneva University Hospital, Geneva, Switzerland
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, USA.
| |
Collapse
|
45
|
Ma J, Sanda M, Wei R, Zhang L, Goldman R. Quantitative analysis of core fucosylation of serum proteins in liver diseases by LC-MS-MRM. J Proteomics 2018; 189:67-74. [PMID: 29427759 DOI: 10.1016/j.jprot.2018.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 12/22/2022]
Abstract
Aberrant core fucosylation of proteins has been linked to liver diseases. In this study, we carried out multiple reaction monitoring (MRM) quantification of core fucosylated N-glycopeptides of serum proteins partially deglycosylated by a combination of endoglycosidases (endoF1, endoF2, and endoF3). To minimize variability associated with the preparatory steps, the analysis was performed without enrichment of glycopeptides or fractionation of serum besides the nanoRP chromatography. Specifically, we quantified core fucosylation of 22 N-glycopeptides derived from 17 proteins together with protein abundance of these glycoproteins in a cohort of 45 participants (15 disease-free control, 15 fibrosis and 15 cirrhosis patients) using a multiplex nanoUPLC-MS-MRM workflow. We find increased core fucosylation of 5 glycopeptides at the stage of liver fibrosis (i.e., N630 of serotransferrin, N107 of alpha-1-antitrypsin, N253 of plasma protease C1 inhibitor, N397 of ceruloplasmin, and N86 of vitronectin), increase of additional 6 glycopeptides at the stage of cirrhosis (i.e., N138 and N762 of ceruloplasmin, N354 of clusterin, N187 of hemopexin, N71 of immunoglobulin J chain, and N127 of lumican), while the degree of core fucosylation of 10 glycopeptides did not change. Interestingly, although we observe an increase in the core fucosylation at N86 of vitronectin in liver fibrosis, core fucosylation decreases on the N169 glycopeptide of the same protein. Our results demonstrate that the changes in core fucosylation are protein and site specific during the progression of fibrotic liver disease and independent of the changes in the quantity of N-glycoproteins. It is expected that the fully optimized multiplex LC-MS-MRM assay of core fucosylated glycopeptides will be useful for the serologic assessment of the fibrosis of liver. BIOLOGICAL SIGNIFICANCE: We have quantified the difference in core fucosylation among three comparison groups (healthy control, fibrosis and cirrhosis patients) using a sensitive and selective LC-MS-MRM method. Despite an overall increase in core fucosylation of many of the glycoproteins that we examined, core fucosylation changed in a protein- and site-specific manner. Moreover, increased and decreased fucosylation was observed on different N-glycopeptides of the same protein. Altered core fucosylation of N-glycopeptides might be used as an alternative serologic assay for the evaluation of fibrotic liver disease.
Collapse
Affiliation(s)
- Junfeng Ma
- Proteomics and Metabolomics Shared Resource, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Miloslav Sanda
- Proteomics and Metabolomics Shared Resource, Georgetown University Medical Center, Washington, DC 20057, USA; Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Renhuizi Wei
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Lihua Zhang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Radoslav Goldman
- Proteomics and Metabolomics Shared Resource, Georgetown University Medical Center, Washington, DC 20057, USA; Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
46
|
de Oliveira RM, Ornelas Ricart CA, Araujo Martins AM. Use of Mass Spectrometry to Screen Glycan Early Markers in Hepatocellular Carcinoma. Front Oncol 2018; 7:328. [PMID: 29379771 PMCID: PMC5775512 DOI: 10.3389/fonc.2017.00328] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022] Open
Abstract
Association between altered glycosylation patterns and poor prognosis in cancer points glycans as potential specific tumor markers. Most proteins are glycosylated and functionally arranged on cell surface and extracellular matrix, mediating interactions and cellular signaling. Thereby, aberrant glycans may be considered a pathological phenotype at least as important as changes in protein expression for cancer and other complex diseases. As most serum glycoproteins have hepatic origin, liver disease phenotypes, such as hepatocellular carcinoma (HCC), may present altered glycan profile and display important modifications. One of the prominent obstacles in HCC is the diagnostic in advanced stages when patients have several liver dysfunctions, limiting treatment options and life expectancy. The characterization of glycomic profiles in pathological conditions by means of mass spectrometry (MS) may lead to the discovery of early diagnostic markers using non-invasive approaches. MS is a powerful analytical technique capable of elucidating many glycobiological issues and overcome limitations of the serological markers currently applied in clinical practice. Therefore, MS-based glycomics of tumor biomarkers is a promising tool to increase early detection and monitoring of disease.
Collapse
Affiliation(s)
- Raphaela Menezes de Oliveira
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Carlos Andre Ornelas Ricart
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Aline Maria Araujo Martins
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil.,University Hospital Walter Cantídeo, Surgery Department, Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
47
|
Chen J, Fang M, Chen X, Yi C, Ji J, Cheng C, Wang M, Gu X, Sun Q, Gao C. N-glycosylation of serum proteins for the assessment of patients with IgD multiple myeloma. BMC Cancer 2017; 17:881. [PMID: 29268706 PMCID: PMC5740902 DOI: 10.1186/s12885-017-3891-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 12/08/2017] [Indexed: 01/16/2023] Open
Abstract
Background Because glycosylation is one of the most common post-translational modifications of proteins and because changes in glycosylation have been shown to have a significant correlation with the development of many cancer types, we investigated the serum N-glycome used to diagnose, stage and evaluate the pathological outcomes in IgD multiple myeloma. Methods Serum samples were available for 20 patients with IgD multiple myeloma, 41 patients with light chain multiple myeloma and 42 healthy control subjects. Serum N-glycans were released and analysed using DNA sequencer-assisted fluorophore-assisted capillary electrophoresis. Results Characteristic changes were revealed in the serum N-glycome of IgD myeloma. In particular, three N-glycans (NG1(6)A2F, Peak3; NG1(3)A2F, Peak4; NA2FB, Peak7) showed increased clinical value. The best area under the ROC curve of NG1(6)A2F to diagnose IgD myeloma was 0.981, with a 95.0% sensitivity and 95.2% specificity, and that of NG1(3)A2F was 0.936, with a 95.0% sensitivity and 78.6% specificity. The best area under the ROC curve of NA2FB/NG1(3)A2F to differentially diagnose IgD myeloma versus light chain myeloma was 0.744, with a 95.3% sensitivity and 50.0% specificity. The level of NG1(3)A2F was correlated with the international staging system, while the higher abundance of NA2FB presented in IgD myeloma was predictive of a shorter progression-free survival. Conclusions The advent of serum N-glycan signatures may play a role in the diagnosis, staging and prognosis of IgD myeloma and will serve as the foundation for a precision medicine approach to this rare subtype of multiple myeloma. Electronic supplementary material The online version of this article (10.1186/s12885-017-3891-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Chen
- Department of Laboratory Medicine, Shanghai Jingan District Zhabei Central Hospital, 619 Zhonghuaxin Road, Shanghai, China
| | - Meng Fang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, China
| | - Xiaoling Chen
- Department of Hematology, Shanghai Jingan District Zhabei Central Hospital, 619 Zhonghuaxin Road, Shanghai, China
| | - Changhong Yi
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, China
| | - Jun Ji
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, China
| | - Cheng Cheng
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, China
| | - Mengmeng Wang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, China
| | - Xing Gu
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, China
| | - Quansheng Sun
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, China
| | - Chunfang Gao
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, China.
| |
Collapse
|
48
|
Kozlik P, Sanda M, Goldman R. Nano reversed phase versus nano hydrophilic interaction liquid chromatography on a chip in the analysis of hemopexin glycopeptides. J Chromatogr A 2017; 1519:152-155. [PMID: 28888681 DOI: 10.1016/j.chroma.2017.08.066] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/08/2017] [Accepted: 08/22/2017] [Indexed: 12/31/2022]
Abstract
Analysis of the glycosylation of proteins is a challenge that requires orthogonal methods to achieve separation of the diverse glycoforms. A combination of reversed phase chromatography with tandem mass spectrometry (RP-LC-MS/MS) is one of the most powerful tools for glycopeptide analysis. In this work, we developed and compared RP-LC and hydrophilic interaction liquid chromatography (HILIC) in nanoscale on a chip combined with MS/MS in order to separate glycoforms of two peptides obtained from the tryptic digest of hemopexin. We observed reduction of the retention time with decreasing polarity of glycans attached to the same peptide backbone in HILIC. The opposite effect was observed for RP-LC. The presence of sialic acids prolonged the retention of glycopeptides in both chromatographic modes. The nanoHILIC method provided higher selectivity based on the composition of glycan, compared to nanoRP-LC but a lower sensitivity. The nanoHILIC method was able to partially separate linkage isomers of fucose (core and outer arm) on bi-antennary glycoform of SWPAVGDCSSALR glycopeptide, which is beneficial in the elucidation of the structure of the fucosylated glycoforms.
Collapse
Affiliation(s)
- Petr Kozlik
- Department of Oncology, Lombardi Comprehensive Cancer Center PSB GF9, Georgetown University, 3800 Reservoir Road NW, Washington, DC 20057, United States; Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Miloslav Sanda
- Department of Oncology, Lombardi Comprehensive Cancer Center PSB GF9, Georgetown University, 3800 Reservoir Road NW, Washington, DC 20057, United States
| | - Radoslav Goldman
- Department of Oncology, Lombardi Comprehensive Cancer Center PSB GF9, Georgetown University, 3800 Reservoir Road NW, Washington, DC 20057, United States; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3800 Reservoir Road NW, Washington, DC 20057, United States.
| |
Collapse
|
49
|
Wang M, Fang M, Zhu J, Feng H, Warner E, Yi C, Ji J, Gu X, Gao C. Serum N
-glycans outperform CA19-9 in diagnosis of extrahepatic cholangiocarcinoma. Electrophoresis 2017; 38:2749-2756. [PMID: 28752594 DOI: 10.1002/elps.201700084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/23/2017] [Accepted: 07/19/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Mengmeng Wang
- Department of Laboratory Medicine, Eastern Hepatobiliary Hospital; Second Military Medical University; Shanghai P. R. China
- Department of Surgery; University of Michigan Medical Center; Ann Arbor MI USA
| | - Meng Fang
- Department of Laboratory Medicine, Eastern Hepatobiliary Hospital; Second Military Medical University; Shanghai P. R. China
| | - Jianhui Zhu
- Department of Surgery; University of Michigan Medical Center; Ann Arbor MI USA
| | - Huijuan Feng
- Department of Laboratory Medicine, Eastern Hepatobiliary Hospital; Second Military Medical University; Shanghai P. R. China
| | - Elisa Warner
- Department of Surgery; University of Michigan Medical Center; Ann Arbor MI USA
- Department of Epidemiology; University of Michigan School of Public Health; Ann Arbor MI USA
| | - Changhong Yi
- Department of Laboratory Medicine, Eastern Hepatobiliary Hospital; Second Military Medical University; Shanghai P. R. China
| | - Jun Ji
- Department of Laboratory Medicine, Eastern Hepatobiliary Hospital; Second Military Medical University; Shanghai P. R. China
| | - Xing Gu
- Department of Laboratory Medicine, Eastern Hepatobiliary Hospital; Second Military Medical University; Shanghai P. R. China
| | - Chunfang Gao
- Department of Laboratory Medicine, Eastern Hepatobiliary Hospital; Second Military Medical University; Shanghai P. R. China
| |
Collapse
|
50
|
Qin X, Guo Y, Du H, Zhong Y, Zhang J, Li X, Yu H, Zhang Z, Jia Z, Li Z. Comparative Analysis for Glycopatterns and Complex-Type N-Glycans of Glycoprotein in Sera from Chronic Hepatitis B- and C-Infected Patients. Front Physiol 2017; 8:596. [PMID: 28871230 PMCID: PMC5566988 DOI: 10.3389/fphys.2017.00596] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/02/2017] [Indexed: 12/25/2022] Open
Abstract
Background: Chronic infection with HBV (CHB) or HCV (CHC) is the most common chronic viral hepatitis that can lead to cirrhosis and hepatocellular carcinoma in humans, their infections have distinct pathogenic processes, however, little is known about the difference of glycoprotein glycopatterns in serum between hepatitis B virus (HBV)- and hepatitis C virus (HCV)-infected patients. Methods: A method combining the lectin microarrays, letin-mediated affinity capture glycoproteins, and MALDI-TOF/TOF-MS was employed to analyze serum protein glycopatterns and identify the glycan structures from patients with CHB (n = 54) or CHC(n = 47), and healthy volunteers (HV, n = 35). Lectin blotting was further utilized to validate and assess the expression levels of their serum glycopatterns. Finally, the differences of the glycoprotein glycopatterns were systematically compared between CHB and CHC patients. Conclusions: As a result, there were 11 lectins (e.g., HHL, GSL-II, and EEL) exhibited significantly increased expression levels, and three lectins (LCA, VVA, and ACA) exhibited significantly decreased expression levels of serum protein glycopatterns only in the CHB patients. However, DBA exhibited significantly decreased expression levels, and two lectins (WGA and SNA) exhibited significantly increased expression levels of serum glycopatterns only in the CHC patients. Furthermore, LEL and MAL-I showed a coincidentally increasing trend in both CHC and CHB patients compared with the HV. The individual analysis demonstrated that eight lectins (MPL, GSL-I, PTL-II, UEA-I, WGA, LEL, VVA, and MAL-I) exhibited a high degree of consistency with the pooled serum samples of HV, CHB, and CHC patients. Besides, a complex-type N-glycans binder PHA-E+L exhibited significantly decreased NFIs in the CHB compared with HV and CHC subjects (p < 0.01). The MALDI-TOF/TOF-MS results of N-linked glycans from the serum glycoproteins isolated by PHA-E+L-magnetic particle conjugates showed that there was an overlap of 23 N-glycan peaks (e.g., m/z 1419.743, 1663.734, and 1743.581) between CHB, and CHC patients, 5 glycan peaks (e.g., m/z 1850.878, 1866.661, and 2037.750) were presented in virus-infected hepatitis patients compared with HV, 3 glycan peaks (1460.659, 2069.740, and 2174.772) were observed only in CHC patients. Our data provide useful information to find new biomarkers for distinguishing CHB and CHC patients based on the precision alteration of their serum glycopatterns.
Collapse
Affiliation(s)
- Xinmin Qin
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest UniversityXi'an, China
| | - Yonghong Guo
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'an, China
| | - Haoqi Du
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest UniversityXi'an, China
| | - Yaogang Zhong
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest UniversityXi'an, China
| | - Jiaxu Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest UniversityXi'an, China
| | - Xuetian Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest UniversityXi'an, China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest UniversityXi'an, China
| | - Zhiwei Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest UniversityXi'an, China
| | - Zhansheng Jia
- Center of Infectious Diseases, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest UniversityXi'an, China
| |
Collapse
|