1
|
Münz C, Campbell GR, Esclatine A, Faure M, Labonte P, Lussignol M, Orvedahl A, Altan-Bonnet N, Bartenschlager R, Beale R, Cirone M, Espert L, Jung J, Leib D, Reggiori F, Sanyal S, Spector SA, Thiel V, Viret C, Wei Y, Wileman T, Wodrich H. Autophagy machinery as exploited by viruses. AUTOPHAGY REPORTS 2025; 4:27694127.2025.2464986. [PMID: 40201908 PMCID: PMC11921968 DOI: 10.1080/27694127.2025.2464986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 04/10/2025]
Abstract
Viruses adapt and modulate cellular pathways to allow their replication in host cells. The catabolic pathway of macroautophagy, for simplicity referred to as autophagy, is no exception. In this review, we discuss anti-viral functions of both autophagy and select components of the autophagy machinery, and how viruses have evaded them. Some viruses use the membrane remodeling ability of the autophagy machinery to build their replication compartments in the cytosol or efficiently egress from cells in a non-lytic fashion. Some of the autophagy machinery components and their remodeled membranes can even be found in viral particles as envelopes or single membranes around virus packages that protect them during spreading and transmission. Therefore, studies on autophagy regulation by viral infections can reveal functions of the autophagy machinery beyond lysosomal degradation of cytosolic constituents. Furthermore, they can also pinpoint molecular interactions with which the autophagy machinery can most efficiently be manipulated, and this may be relevant to develop effective disease treatments based on autophagy modulation.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, ZürichSwitzerland
| | - Grant R Campbell
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of SD, Vermillion, SD, USA
| | - Audrey Esclatine
- Université Paris-Saclay, CEA, CNRS, 10 Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Universite Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007Lyon, France
| | - Patrick Labonte
- eINRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Canada
| | - Marion Lussignol
- Université Paris-Saclay, CEA, CNRS, 10 Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anthony Orvedahl
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division Virus-Associated Carcinogenesis, Heidelberg, Germany
- German Centre for Infection Research, Heidelberg partner site, Heidelberg, Germany
| | - Rupert Beale
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London, UK
- Division of Medicine, University College London, London, UK
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucile Espert
- University of Montpellier, Montpellier, France
- CNRS, Institut de Recherche enInfectiologie deMontpellier (IRIM), Montpellier, France
| | - Jae Jung
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - David Leib
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, NH, USA
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, Aarhus C, Denmark
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, UK
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Stephen A. Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Rady Children’s Hospital, San Diego, CA, USA
| | - Volker Thiel
- Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Universite Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007Lyon, France
| | - Yu Wei
- Institut Pasteur-Theravectys Joint Laboratory, Department of Virology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Thomas Wileman
- Norwich Medical School, University of East Anglia
- Quadram Institute Bioscience, Norwich Research Park, Norfolk, UK
| | - Harald Wodrich
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
2
|
Mishra AK, Hossain MM, Sata TN, Pant K, Yadav AK, Sah AK, Gupta P, Ismail M, Nayak B, Shalimar, Venugopal SK. ALR inhibits HBV replication and autophagosome formation by ameliorating HBV-induced ROS production in hepatic cells. Virus Genes 2025; 61:167-178. [PMID: 39934594 DOI: 10.1007/s11262-025-02139-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
HBV has a small genome and thrives in the infected hepatocytes by hijacking the cellular machinery and cellular pathways. HBV induces incomplete autophagy for its replication and survival. This study showed that HBV replication induces Reactive oxygen species (ROS) production, which in turn augments the formation of autophagosomes. Augmenter of liver regeneration (ALR) is a sufhydryl oxidase and has an anti-oxidative property. We sought to determine the interplay between HBV and antioxidant protein ALR. We showed that HBV downregulated ALR expression in hepatic cells. There was increased ROS production in HBV-infected cells while ALR downregulated ROS levels and expression of NADPH oxidase NOX4. N-acetyl cysteine, a ROS scavenger, downregulated ROS level and autophagosome formation in HBV-expressing cells. ALR overexpression in HBV-expressing cells downregulated the expression of autophagy marker proteins while upregulated the expression of p-MTOR. ALR overexpression decreased the expression of HBx, HBsAg, and total HBV load. This study showed that HBx relieved ALR-mediated inhibition by upregulating the miR-181a expression in HBV-infected cells, which in turn downregulated ALR expression.
Collapse
Affiliation(s)
- Amit Kumar Mishra
- Lab of Molecular Medicine and Hepatology, FLSB, South Asian University, Chanakyapuri, New Delhi, India
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - Md Musa Hossain
- Lab of Molecular Medicine and Hepatology, FLSB, South Asian University, Chanakyapuri, New Delhi, India
| | - Teja Naveen Sata
- Lab of Molecular Medicine and Hepatology, FLSB, South Asian University, Chanakyapuri, New Delhi, India
| | - Kishor Pant
- Lab of Molecular Medicine and Hepatology, FLSB, South Asian University, Chanakyapuri, New Delhi, India
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Ajay K Yadav
- Lab of Molecular Medicine and Hepatology, FLSB, South Asian University, Chanakyapuri, New Delhi, India
- Indiana University, Bloomington, IN, USA
| | - Amrendra Kumar Sah
- Lab of Molecular Medicine and Hepatology, FLSB, South Asian University, Chanakyapuri, New Delhi, India
| | - Parul Gupta
- Lab of Molecular Medicine and Hepatology, FLSB, South Asian University, Chanakyapuri, New Delhi, India
- UT Southwestern Medical Center, Dallas, TX, USA
| | - Md Ismail
- Lab of Molecular Medicine and Hepatology, FLSB, South Asian University, Chanakyapuri, New Delhi, India
| | - Baibaswata Nayak
- Dept. of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Shalimar
- Dept. of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Senthil Kumar Venugopal
- Lab of Molecular Medicine and Hepatology, FLSB, South Asian University, Chanakyapuri, New Delhi, India.
| |
Collapse
|
3
|
Nourazarian A, Yousefi H, Biray Avci C, Shademan B, Behboudi E. The Interplay Between Viral Infection and Cell Death: A Ping-Pong Effect. Adv Virol 2025; 2025:5750575. [PMID: 39959654 PMCID: PMC11824611 DOI: 10.1155/av/5750575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/05/2024] [Accepted: 01/10/2025] [Indexed: 02/18/2025] Open
Abstract
Programmed cell death (PCD) is a well-studied cellular mechanism that plays a critical role in immune responses, developmental processes, and the maintenance of tissue homeostasis. However, viruses have developed diverse strategies to bypass or manipulate the host apoptotic machinery to enhance their replication and survival. As a result, the interaction between PCD pathways and viruses has garnered increased interest, leading to many studies being published in recent years. This study aims to provide an overview of the current understanding of PCD pathways and their significance in viral infections. We will discuss various forms of cell death pathways, including apoptosis, autophagy, necroptosis, and pyroptosis, as well as their corresponding molecular mechanisms. In addition, we will show how viruses manipulate host PCD pathways to prevent or delay cell death or facilitate viral replication. This study emphasizes the importance of investigating the mechanisms by which viruses control the host's PCD machinery to gain insight into the evolutionary dynamics of host-pathogen interactions and to develop new approaches for predicting and managing viral threats. Overall, we aimed to highlight new research areas in PCD and viruses, including introduction of new targets for the development of new antiviral drugs to modulate the cellular apoptotic machinery and novel inhibitors of host cell death pathways.
Collapse
Affiliation(s)
- Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Hadi Yousefi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emad Behboudi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| |
Collapse
|
4
|
Chuang YC, Ou JHJ. Hepatitis B virus entry, assembly, and egress. Microbiol Mol Biol Rev 2024; 88:e0001424. [PMID: 39440957 DOI: 10.1128/mmbr.00014-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
SUMMARYHepatitis B virus (HBV) is an important human pathogen that chronically infects approximately 250 million people in the world, resulting in ~1 million deaths annually. This virus is a hepatotropic virus and can cause severe liver diseases including cirrhosis and hepatocellular carcinoma. The entry of HBV into hepatocytes is initiated by the interaction of its envelope proteins with its receptors. This is followed by the delivery of the viral nucleocapsid to the nucleus for the release of its genomic DNA and the transcription of viral RNAs. The assembly of the viral capsid particles may then take place in the nucleus or the cytoplasm and may involve cellular membranes. This is followed by the egress of the virus from infected cells. In recent years, significant research progresses had been made toward understanding the entry, the assembly, and the egress of HBV particles. In this review, we discuss the molecular pathways of these processes and compare them with those used by hepatitis delta virus and hepatitis C virus , two other hepatotropic viruses that are also enveloped. The understanding of these processes will help us to understand how HBV replicates and causes diseases, which will help to improve the treatments for HBV patients.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - J-H James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| |
Collapse
|
5
|
Pimentel JM, Zhou JY, Wu GS. Autophagy and cancer therapy. Cancer Lett 2024; 605:217285. [PMID: 39395780 DOI: 10.1016/j.canlet.2024.217285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Autophagy is an intracellular degradation process that sequesters cytoplasmic components in double-membrane vesicles known as autophagosomes, which are degraded upon fusion with lysosomes. This pathway maintains the integrity of proteins and organelles while providing energy and nutrients to cells, particularly under nutrient deprivation. Deregulation of autophagy can cause genomic instability, low protein quality, and DNA damage, all of which can contribute to cancer. Autophagy can also be overactivated in cancer cells to aid in cancer cell survival and drug resistance. Emerging evidence indicates that autophagy has functions beyond cargo degradation, including roles in tumor immunity and cancer stem cell survival. Additionally, autophagy can also influence the tumor microenvironment. This feature warrants further investigation of the role of autophagy in cancer, in which autophagy manipulation can improve cancer therapies, including cancer immunotherapy. This review discusses recent findings on the regulation of autophagy and its role in cancer therapy and drug resistance.
Collapse
Affiliation(s)
- Julio M Pimentel
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA; Institutional Research Academic Career Development Award Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jun Ying Zhou
- Molecular Therapeutics Program, Karmanos Cancer Institute, Detroit, MI, 48201, USA; Department of Oncology, Wayne State University, Detroit, MI, 48201, USA
| | - Gen Sheng Wu
- Molecular Therapeutics Program, Karmanos Cancer Institute, Detroit, MI, 48201, USA; Department of Oncology, Wayne State University, Detroit, MI, 48201, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
6
|
Yang L, Liu X, Zhen L, Liu Y, Wu L, Xu W, Peng L, Xie C. ANXA4 restricts HBV replication by inhibiting autophagic degradation of MCM2 in chronic hepatitis B. BMC Med 2024; 22:521. [PMID: 39511535 PMCID: PMC11546334 DOI: 10.1186/s12916-024-03724-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) is an enveloped DNA virus that causes chronic hepatitis B (CHB) infection. Annexin, a Ca2+-activated protein, is widely expressed in various organs and tissues and has potential utility in disease diagnosis and treatment. However, the relationship between the annexin family and CHB remains unclear. METHODS Clinical samples from hepatitis patients and donors or healthy individuals were collected. Transcriptome sequencing in CHB liver tissues and HBV-infected cells were performed. HepG2.2.15 cells with the full-length HBV genome and HBV-infected HepG2-NTCP cell models were established. HBV-infected mouse model was constructed and adeno-associated virus was utilized. RESULTS ANXA4 expression was elevated during CHB infection. ANXA4 knockdown promoted HBV replication and aggravated liver injury, while ANXA4 overexpression alleviated that. Mechanistically, autophagy pathway was activated by ANXA4 deficiency, promoting autophagic degradation of minichromosome maintenance complex component 2 (MCM2). MCM2 inhibition activated HBV replication, while MCM2 overexpression attenuated ANXA4 deficiency-induced HBV replication and liver injury. Clinically, the expression of hepatitis B viral protein was negatively correlated with the ANXA4 levels, and CHB patients with high ANXA4 levels (> 8 ng/ml) showed higher sensitivity to interferon therapy. CONCLUSIONS ANXA4 functions as a protective factor during HBV infection. ANXA4 expression is elevated under HBV attack to restrict HBV replication by inhibiting autophagic degradation of MCM2, thereby alleviating liver injury and suppressing the CHB infection process. ANXA4 also enhances the sensitivity of CHB patients to interferon therapy. Therefore, ANXA4 is expected to be a new target for CHB treatment and prognostic evaluation.
Collapse
Affiliation(s)
- Luo Yang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Breast Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of General Surgery, Jinan, Shandong, China
| | - Xianzhi Liu
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Limin Zhen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ying Liu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lina Wu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenxiong Xu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Peng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Chan Xie
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Kaur S, Vashistt J, Changotra H. Autophagy Gene BECN1 Intronic Variant rs9890617 Predisposes Individuals to Hepatitis B Virus Infection. Biochem Genet 2024; 62:3336-3349. [PMID: 38103127 DOI: 10.1007/s10528-023-10608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Beclin 1 protein encoded by the BECN1 gene plays a critical role in the autophagy pathway which is utilized by the Hepatitis B virus (HBV) for its replication. HBV is known for the subversion of the host's autophagy process for its multiplication. The aim of this study was to determine the role of BECN1 intronic variants in HBV susceptibility. Intronic region variant rs9890617 was analyzed using Human splicing finder v3.1 and was found to alter splicing signals. A total of 712 individuals (494 HBV infected and 218 healthy controls) were recruited in the study and genotyped by applying Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP). Statistical analysis revealed that the mutant allele T of rs9890617 was significantly associated with the overall disease risk in the allelic model (OR 1.41; 95%CI 1.00-1.99, p = 0.04). On stratifying the data based on the different stages of HBV infection, the mutant genotype showed a significant association with the chronic group in allelic (OR 1.62; 95%CI 1.11-2.39, p = 0.01), dominant (OR 1.64; 95%CI 1.07-2.52, p = 0.02), and co-dominant (OR 1.55; 95%CI 1.00-2.40, p = 0.04) models. Overall, this is the first study regarding beclin 1 variant rs9890617 and we found a significant association of the mutant T allele with the genetic predisposition to HBV infection.
Collapse
Affiliation(s)
- Sargeet Kaur
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| | - Jitendraa Vashistt
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| | - Harish Changotra
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, 143 005, India.
| |
Collapse
|
8
|
Li Y, Wang F, Geng Z, He T, Song Y, Wu J, Wang B. HBx promotes tumorigenicity through RRM2-mediated autophagy in hepatocellular carcinoma. Cell Biosci 2024; 14:116. [PMID: 39256879 PMCID: PMC11389268 DOI: 10.1186/s13578-024-01298-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infection can exacerbate liver disease progression through multiple mechanisms, eventually leading to hepatocellular carcinoma (HCC). HBV-encoded oncogene X protein (HBx), a key regulatory protein of HBV infection, serves as a positive regulator of hepatocarcinogenesis. The indispensability of the M2 subunit of ribonucleotide-diphosphate reductase (RRM2) lies in its role in facilitating DNA replication and repair processes. In our previous investigation, it was postulated that the gene RRM2 exhibits elevated expression levels in several categories of malignant tumors, particularly in HBV-related HCC. Additionally, it was observed that RRM2 is present within protein complexes that are centered on HBx. In the present investigation, the objective of this work was to investigate the potential relationship between the elevated expression of RRM2 in HBV-related HCC and the influence of HBx on this expression. The study attempted to determine the specific mechanism by which RRM2 is implicated in the promotion of hepatocarcinogenesis by HBx. There have been multiple scholarly proposals suggesting that the induction of autophagy by HBx is a significant intermediary factor in the development of HCC. However, the precise carcinogenic function of HBx-induced autophagy remains a subject of debate. RESULTS This work initially investigated the impact of suppressing cellular autophagy on the malignant biological behaviors of HBx-promoted cells using an in vitro cellular model. The findings revealed that the suppression of cellular autophagy partially disrupted the oncogenic effects of HBx. In light of this, we proceeded to conduct more investigations into the regulatory association between RRM2 and HBx-induced autophagy in the upstream-downstream context. Our data indicate that HBx proteins increase the expression of RRM2. Suppression of RRM2 expression not only hinders HBx-induced autophagy, but also worsens the cellular G1/S blockage and reduces the HBx-induced malignant growth of hepatocellular carcinoma tumors, while stimulating apoptosis. CONCLUSIONS Therefore, we hypothesised that RRM2 is a potential downstream target of HBx-induced hepatocarcinogenesis, and mining the oncogenic mechanism of RRM2 is significant in exploring the preventive treatment of HBV-related HCC.
Collapse
Affiliation(s)
- Yaqun Li
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Department of Pharmacy, Department of Oncology, Shanghai Medical College, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Furan Wang
- Pfizer Research China, Shanghai, 200000, China
| | - Zikai Geng
- Pharmacy School, Binzhou Medical University, Yantai, Shandong Province, 264003, China
| | - Tianye He
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yun Song
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jian Wu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Bin Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
9
|
Guan C, Li Y, Wang Q, Wang J, Tian C, He Y, Li Z. Genome-wide identification of ATG genes and their expression profiles under biotic and abiotic stresses in Fenneropenaeus chinensis. BMC Genomics 2024; 25:625. [PMID: 38902611 PMCID: PMC11188248 DOI: 10.1186/s12864-024-10529-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Autophagy is a conserved catabolic process in eukaryotes that contributes to cell survival in response to multiple stresses and is important for organism fitness. Extensive research has shown that autophagy plays a pivotal role in both viral infection and replication processes. Despite the increasing research dedicated to autophagy, investigations into shrimp autophagy are relatively scarce. RESULTS Based on three different methods, a total of 20 members of the ATGs were identified from F. chinensis, all of which contained an autophagy domain. These genes were divided into 18 subfamilies based on their different C-terminal domains, and were found to be located on 16 chromosomes. Quantitative real-time PCR (qRT-PCR) results showed that ATG genes were extensively distributed in all the tested tissues, with the highest expression levels were detected in muscle and eyestalk. To clarify the comprehensive roles of ATG genes upon biotic and abiotic stresses, we examined their expression patterns. The expression levels of multiple ATGs showed an initial increase followed by a decrease, with the highest expression levels observed at 6 h and/or 24 h after WSSV injection. The expression levels of three genes (ATG1, ATG3, and ATG4B) gradually increased until 60 h after injection. Under low-salt conditions, 12 ATG genes were significantly induced, and their transcription abundance peaked at 96 h after treatment. CONCLUSIONS These results suggested that ATG genes may have significant roles in responding to various environmental stressors. Overall, this study provides a thorough characterization and expression analysis of ATG genes in F. chinensis, laying a strong foundation for further functional studies and promising potential in innate immunity.
Collapse
Affiliation(s)
- Chenhui Guan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266237, PR China
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
| | - Yalun Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266237, PR China
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
| | - Qiong Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Jiajia Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Caijuan Tian
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Bio-technology, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, PR China
| | - Yuying He
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China.
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China.
| | - Zhaoxia Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266237, PR China.
| |
Collapse
|
10
|
Mao Z, Mu J, Gao Z, Huang S, Chen L. Biological Functions and Potential Therapeutic Significance of O-GlcNAcylation in Hepatic Cellular Stress and Liver Diseases. Cells 2024; 13:805. [PMID: 38786029 PMCID: PMC11119800 DOI: 10.3390/cells13100805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
O-linked-β-D-N-acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation), which is dynamically regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), is a post-translational modification involved in multiple cellular processes. O-GlcNAcylation of proteins can regulate their biological functions via crosstalk with other post-translational modifications, such as phosphorylation, ubiquitination, acetylation, and methylation. Liver diseases are a major cause of death worldwide; yet, key pathological features of the disease, such as inflammation, fibrosis, steatosis, and tumorigenesis, are not fully understood. The dysregulation of O-GlcNAcylation has been shown to be involved in some severe hepatic cellular stress, viral hepatitis, liver fibrosis, nonalcoholic fatty acid liver disease (NAFLD), malignant progression, and drug resistance of hepatocellular carcinoma (HCC) through multiple molecular signaling pathways. Here, we summarize the emerging link between O-GlcNAcylation and hepatic pathological processes and provide information about the development of therapeutic strategies for liver diseases.
Collapse
Affiliation(s)
- Zun Mao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Z.M.); (Z.G.)
| | - Junpeng Mu
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou 221004, China;
| | - Zhixiang Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Z.M.); (Z.G.)
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Z.M.); (Z.G.)
| |
Collapse
|
11
|
Tepjanta P, Fujiyama K, Misaki R, Kimkong I. The N-linked glycosylation modifications in the hepatitis B surface protein impact cellular autophagy, HBV replication, and HBV secretion. PLoS One 2024; 19:e0299403. [PMID: 38489292 PMCID: PMC10942060 DOI: 10.1371/journal.pone.0299403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
N-linked glycosylation is a pivotal post-translational modification that significantly influences various aspects of protein biology. Autophagy, a critical cellular process, is instrumental in cell survival and maintenance. The hepatitis B virus (HBV) has evolved mechanisms to manipulate this process to ensure its survival within host cells. Significantly, post-translational N-linked glycosylation in the large surface protein of HBV (LHBs) influences virion assembly, infectivity, and immune evasion. This study investigated the role of N-linked glycosylation of LHBs in autophagy, and its subsequent effects on HBV replication and secretion. LHBs plasmids were constructed by incorporating single-, double-, and triple-mutated N-linked glycosylation sites through amino acid substitutions at N4, N112, and N309. In comparison to the wild-type LHBs, N-glycan mutants, including N309Q, N4-309Q, N112-309Q, and N4-112-309Q, induced autophagy gene expression and led to autophagosome accumulation in hepatoma cells. Acridine orange staining of cells expressing LHBs mutations revealed impaired lysosomal acidification, suggesting potential blockage of autophagic flux at later stages. Furthermore, N-glycan mutants increased the mRNA expression of HBV surface antigen (HBsAg). Notably, N309Q significantly elevated HBx oncogene level. The LHBs mutants, particularly N309Q and N112-309Q, significantly enhanced HBV replication, whereas N309Q, N4-309Q, and N4-112-309Q markedly increased HBV progeny secretion. Remarkably, our findings demonstrated that autophagy is indispensable for the impact of N-linked glycosylation mutations in LHBs on HBV secretion, as evidenced by experiments with a 3-methyladenine (3-MA) inhibitor. Our study provides pioneering insights into the interplay between N-linked glycosylation mutations in LHBs, host autophagy, and the HBV life cycle. Additionally, we offer a new clue for further investigation into carcinogenesis of hepatocellular carcinoma (HCC). These findings underscore the potential of targeting either N-linked glycosylation modifications or the autophagic pathway for the development of innovative therapies against HBV and/or HCC.
Collapse
Affiliation(s)
- Patcharin Tepjanta
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Kazuhito Fujiyama
- International Center for Biotechnology (ICBiotech), Osaka University, Osaka, Japan
| | - Ryo Misaki
- International Center for Biotechnology (ICBiotech), Osaka University, Osaka, Japan
| | - Ingorn Kimkong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University – Kasetsart University, Bangkok, Thailand
| |
Collapse
|
12
|
Dutta S, Ganguly A, Ghosh Roy S. An Overview of the Unfolded Protein Response (UPR) and Autophagy Pathways in Human Viral Oncogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 386:81-131. [PMID: 38782502 DOI: 10.1016/bs.ircmb.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Autophagy and Unfolded Protein Response (UPR) can be regarded as the safe keepers of cells exposed to intense stress. Autophagy maintains cellular homeostasis, ensuring the removal of foreign particles and misfolded macromolecules from the cytoplasm and facilitating the return of the building blocks into the system. On the other hand, UPR serves as a shock response to prolonged stress, especially Endoplasmic Reticulum Stress (ERS), which also includes the accumulation of misfolded proteins in the ER. Since one of the many effects of viral infection on the host cell machinery is the hijacking of the host translational system, which leaves in its wake a plethora of misfolded proteins in the ER, it is perhaps not surprising that UPR and autophagy are common occurrences in infected cells, tissues, and patient samples. In this book chapter, we try to emphasize how UPR, and autophagy are significant in infections caused by six major oncolytic viruses-Epstein-Barr (EBV), Human Papilloma Virus (HPV), Human Immunodeficiency Virus (HIV), Human Herpesvirus-8 (HHV-8), Human T-cell Lymphotropic Virus (HTLV-1), and Hepatitis B Virus (HBV). Here, we document how whole-virus infection or overexpression of individual viral proteins in vitro and in vivo models can regulate the different branches of UPR and the various stages of macro autophagy. As is true with other viral infections, the relationship is complicated because the same virus (or the viral protein) exerts different effects on UPR and Autophagy. The nature of this response is determined by the cell types, or in some cases, the presence of diverse extracellular stimuli. The vice versa is equally valid, i.e., UPR and autophagy exhibit both anti-tumor and pro-tumor properties based on the cell type and other factors like concentrations of different metabolites. Thus, we have tried to coherently summarize the existing knowledge, the crux of which can hopefully be harnessed to design vaccines and therapies targeted at viral carcinogenesis.
Collapse
Affiliation(s)
- Shovan Dutta
- Center for Immunotherapy & Precision Immuno-Oncology (CITI), Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Anirban Ganguly
- Department of Biochemistry, All India Institute of Medical Sciences, Deoghar, Jharkhand, India
| | - Sounak Ghosh Roy
- Henry M Jackson for the Advancement of Military Medicine, Naval Medical Research Command, Silver Spring, MD, United States.
| |
Collapse
|
13
|
Yousefi P, Tabibzadeh A, Jawaziri AK, Mehrjoo M, Akhavan M, Allahqoli L, Salehiniya H. Autophagy-related genes polymorphism in hepatitis B virus-associated hepatocellular carcinoma: A systematic review. Immun Inflamm Dis 2024; 12:e1182. [PMID: 38353395 PMCID: PMC10865419 DOI: 10.1002/iid3.1182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/19/2024] [Accepted: 01/27/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Chronic hepatitis B (CHB) virus is the most common risk factor for developing liver malignancy. Autophagy is an essential element in human cell maintenance. Several studies have demonstrated that autophagy plays a vital role in liver cancer at different stages. In this systematic review, we intend to investigate the role of polymorphism and mutations of autophagy-related genes (ATGs) in the pathogenesis and carcinogenesis of the hepatitis B virus (HBV). MATERIALS AND METHODS The search was conducted in online databases (Web of Science, PubMed, and Scopus) using Viruses, Infections, Polymorphism, Autophagy, and ATG. The study was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. RESULTS The primary search results led to 422 studies. By screening and eligibility evaluation, only four studies were relevant. The most important polymorphisms in hepatocellular carcinoma were rs2241880 in ATG16L1, rs77859116, rs510432, and rs548234 in ATG5. Furthermore, some polymorphisms are associated with an increased risk of HBV infection including, rs2241880 in ATG16L1 and rs6568431 in ATG5. CONCLUSION The current study highlights the importance of rs2241880 in ATG16L1 and rs77859116, rs510432, and rs548234 in ATG5 for HBV-induced HCC. Additionally, some mutations in ATG16L1 and ATG5 were important in risk of HBV infection. The study highlights the gap of knowledge in the field of ATG polymorphisms in HBV infection and HBV-induced HCC.
Collapse
Affiliation(s)
- Parastoo Yousefi
- Department of Virology, School of MedicineIran University of Medical SciencesTehranIran
| | - Alireza Tabibzadeh
- Department of Virology, School of MedicineIran University of Medical SciencesTehranIran
| | | | - Mohsen Mehrjoo
- Department of Biochemistry and Genetics, School of MedicineLorestan University of Medical SciencesKhorramabadIran
| | - Mandana Akhavan
- Department of Microbiology, Faculty of Medical SciencesIslamic Azad University, Arak BranchArakIran
| | - Leila Allahqoli
- Department of MidwiferyMinistry of Health and Medical EducationTehranIran
| | - Hamid Salehiniya
- Department of Epidemiology and Biostatistics, School of Health, Social Determinants of Health Research CenterBirjand University of Medical SciencesBirjandIran
| |
Collapse
|
14
|
Xing Z, Jiang X, Wu Y, Yu Z. Targeted Mevalonate Pathway and Autophagy in Antitumor Immunotherapy. Curr Cancer Drug Targets 2024; 24:890-909. [PMID: 38275055 DOI: 10.2174/0115680096273730231206054104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 01/27/2024]
Abstract
Tumors of the digestive system are currently one of the leading causes of cancer-related death worldwide. Despite considerable progress in tumor immunotherapy, the prognosis for most patients remains poor. In the tumor microenvironment (TME), tumor cells attain immune escape through immune editing and acquire immune tolerance. The mevalonate pathway and autophagy play important roles in cancer biology, antitumor immunity, and regulation of the TME. In addition, there is metabolic crosstalk between the two pathways. However, their role in promoting immune tolerance in digestive system tumors has not previously been summarized. Therefore, this review focuses on the cancer biology of the mevalonate pathway and autophagy, the regulation of the TME, metabolic crosstalk between the pathways, and the evaluation of their efficacy as targeted inhibitors in clinical tumor immunotherapy.
Collapse
Affiliation(s)
- Zongrui Xing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
| | - Xiangyan Jiang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yuxia Wu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Zeyuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
| |
Collapse
|
15
|
Cui S, Xia T, Zhao J, Ren X, Wu T, Kameni M, Guo X, He L, Guo J, Duperray-Susini A, Levillayer F, Collard JM, Zhong J, Pan L, Tangy F, Vidalain PO, Zhou D, Jiu Y, Faure M, Wei Y. NDP52 mediates an antiviral response to hepatitis B virus infection through Rab9-dependent lysosomal degradation pathway. Nat Commun 2023; 14:8440. [PMID: 38114531 PMCID: PMC10730550 DOI: 10.1038/s41467-023-44201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
Autophagy receptor NDP52 triggers bacterial autophagy against infection. However, the ability of NDP52 to protect against viral infection has not been established. We show that NDP52 binds to envelope proteins of hepatitis B virus (HBV) and triggers a degradation process that promotes HBV clearance. Inactivating NDP52 in hepatocytes results in decreased targeting of viral envelopes in the lysosome and increased levels of viral replication. NDP52 inhibits HBV at both viral entry and late replication stages. In contrast to NDP52-mediated bacterial autophagy, lysosomal degradation of HBV envelopes is independent of galectin 8 and ATG5. NDP52 forms complex with Rab9 and viral envelope proteins and links HBV to Rab9-dependent lysosomal degradation pathway. These findings reveal that NDP52 acts as a sensor for HBV infection, which mediates a unique antiviral response to eliminate the virus. This work also suggests direct roles for autophagy receptors in other lysosomal degradation pathways than canonical autophagy.
Collapse
Affiliation(s)
- Shuzhi Cui
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Tian Xia
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
- Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, 75015, Paris, France
| | - Jianjin Zhao
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Xiaoyu Ren
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Tingtao Wu
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Mireille Kameni
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Xiaoju Guo
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Li He
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Jingao Guo
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | | | - Florence Levillayer
- Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, 75015, Paris, France
| | - Jean-Marc Collard
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
- Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, 75015, Paris, France
| | - Jin Zhong
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Lifeng Pan
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China
| | - Frédéric Tangy
- Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, 75015, Paris, France
| | - Pierre-Olivier Vidalain
- Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, 75015, Paris, France
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, CNRS UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Yaming Jiu
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, CNRS UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
| | - Yu Wei
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China.
- Institut Pasteur, Université Paris Cité, 28 rue du Dr. Roux, 75015, Paris, France.
| |
Collapse
|
16
|
Zhao Z, Wei Z, Zheng J, Li Z, Zou H, Wen X, Li F, Wang X, Huang Q, Zeng H, Fan H, Cai X, Zhang J, Jia B, Huang A, Lu M, Lin Y. Hepatitis B virus promotes its own replication by enhancing RAB5A-mediated dual activation of endosomal and autophagic vesicle pathways. Emerg Microbes Infect 2023; 12:2261556. [PMID: 37725090 PMCID: PMC10614717 DOI: 10.1080/22221751.2023.2261556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/17/2023] [Indexed: 09/21/2023]
Abstract
Chronic hepatitis B virus (HBV) infection remains one of the major global public health concerns, and it develop into liver fibrosis, cirrhosis, and hepatocellular carcinoma. Recent evidence suggests that endosomal and autophagic vesicles are beneficial for HBV replication. However, it has not been well elucidated how HBV exploits such intracellular vesicle systems for its replication. RAB5A, a member of small GTPase family, plays crucial roles in early endosome biogenesis and autophagy initiation. We observed that RAB5A mRNA and protein levels were significantly increased in HBV-expressing hepatoma cell lines as well as in liver tissue samples from chronic HBV-infected patients. Moreover, RAB5A silencing inhibited HBV replication and subviral particle (SVP) expression significantly in HBV-transfected and -infected hepatoma cells, whereas RAB5A overexpression increased them. Mechanistically, RAB5A increases HBV replication through enhancement of early endosome (EE) - late endosome (LE) activation by interacting with EEA1, as well as enhancing autophagy induction by interacting with VPS34. Additionally, HBV infection enhances RAB5A-mediated dual activation of EE-LE system and autophagy. Collectively, our findings highlight that HBV utilizes RAB5A-mediated dual activation of endosomal and autophagic vesicle pathways for its own replication and persistence. Therefore, RAB5A is a potential target for chronic HBV infection treatment.
Collapse
Affiliation(s)
- Zhenyu Zhao
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhen Wei
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jiaxin Zheng
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhihong Li
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hecun Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiang Wen
- Key Laboratory of Infectious and Parasitic Diseases in Chongqing, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Fahong Li
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xueyu Wang
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Qian Huang
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Huaqing Zeng
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hui Fan
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xuefei Cai
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Bei Jia
- Key Laboratory of Infectious and Parasitic Diseases in Chongqing, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ailong Huang
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yong Lin
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
17
|
Teixeira SC, Teixeira TL, Tavares PCB, Alves RN, da Silva AA, Borges BC, Martins FA, Dos Santos MA, de Castilhos P, E Silva Brígido RT, Notário AFO, Silveira ACA, da Silva CV. Subversion strategies of lysosomal killing by intracellular pathogens. Microbiol Res 2023; 277:127503. [PMID: 37748260 DOI: 10.1016/j.micres.2023.127503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
Many pathogenic organisms need to reach either an intracellular compartment or the cytoplasm of a target cell for their survival, replication or immune system evasion. Intracellular pathogens frequently penetrate into the cell through the endocytic and phagocytic pathways (clathrin-mediated endocytosis, phagocytosis and macropinocytosis) that culminates in fusion with lysosomes. However, several mechanisms are triggered by pathogenic microorganisms - protozoan, bacteria, virus and fungus - to avoid destruction by lysosome fusion, such as rupture of the phagosome and thereby release into the cytoplasm, avoidance of autophagy, delaying in both phagolysosome biogenesis and phagosomal maturation and survival/replication inside the phagolysosome. Here we reviewed the main data dealing with phagosome maturation and evasion from lysosomal killing by different bacteria, protozoa, fungi and virus.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Thaise Lara Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | | | - Aline Alves da Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Bruna Cristina Borges
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Flávia Alves Martins
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Marlus Alves Dos Santos
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Patrícia de Castilhos
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | | | | | - Claudio Vieira da Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
18
|
Chen H, Xu L, Xu Z, Wu S, Zhang X, Liu S, Zhan Z, Xu Q, Lei X, Cao H, Qin Q, Wei J. Grouper Atg14 promotes Singapore grouper iridovirus (SGIV) replication by inhibiting the host innate immune response. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109067. [PMID: 37689226 DOI: 10.1016/j.fsi.2023.109067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/26/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
As one of the important members of the autophagy-related protein family, Atg14 plays a key role in the formation and maturation of autophagosomes. However, little is known about the potential roles of fish Atg14 and its roles in virus infection. In the present study, the homolog of Atg14 (EcAtg14) from the orange-spotted grouper (Epinephelus coioides) was cloned and characterized. The open reading frame (ORF) of EcAtg14 consists of 1530 nucleotides, encoding 509 amino acids, with a predicted molecular weight of 56.9 kDa. EcAtg14 was distributed in all tested tissues, with higher expression in liver, blood and spleen. The expression of EcAtg14 was increased in grouper spleen (GS) cells after Singapore grouper iridovirus (SGIV) infection. EcAtg14 was distributed in the cytoplasm of GS cells. Overexpression of EcAtg14 promoted SGIV replication in GS cells and inhibited IFN3, ISRE and NF-κB promoter activities. Co-immunoprecipitation results showed that there was an interaction between EcAtg14 and EcBeclin. EcAtg14 also promoted the synthesis of LC3-II in GS cells. These findings provide a basis for understanding the innate immune mechanism of grouper against viral infection.
Collapse
Affiliation(s)
- Hong Chen
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China
| | - Linting Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China
| | - Zhuqing Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China
| | - Siting Wu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China
| | - Xin Zhang
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China; Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Shaoli Liu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China
| | - Zhouling Zhan
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China
| | - Qiongyue Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China
| | - Xiaoxia Lei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China
| | - Helong Cao
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China.
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511400, China; Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
19
|
Liang J, Cai H, Hou C, Song F, Jiang Y, Wang Z, Qiu D, Zhu Y, Wang F, Yu D, Hou J. METTL14 inhibits malignant progression of oral squamous cell carcinoma by targeting the autophagy-related gene RB1CC1 in an m6A-IGF2BP2-dependent manner. Clin Sci (Lond) 2023; 137:1373-1389. [PMID: 37615536 PMCID: PMC10500204 DOI: 10.1042/cs20230219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
N6-methyladenosine (m6A) plays crucial roles in tumorigenesis and autophagy. However, the underlying mechanisms mediated by m6A and autophagy in the malignant progression of oral squamous cell carcinoma (OSCC) remain unclear. In the present study, we revealed that down-regulated expression of METTL14 was correlated with advanced clinicopathological characteristics and poor prognosis in OSCC. METTL14 knockdown significantly inhibited autophagy and facilitated malignant progression in vitro, and promoted tumor growth and metastasis in vivo. A cell model of rapamycin-induced autophagy was established to identify RB1CC1 as a potential target gene involved in m6A-regulated autophagy in OSCC, through RNA sequencing and methylated RNA immunoprecipitation sequencing (meRIP-seq) analysis. Mechanistically, we confirmed that METTL14 posttranscriptionally enhanced RB1CC1 expression in an m6A-IGF2BP2-dependent manner, thereby affecting autophagy and progression in OSCC, through methylated RNA immunoprecipitation qRT-PCR (meRIP-qPCR), RNA stability assays, mutagenesis assays and dual-luciferase reporter. Collectively, our findings demonstrated that METTL14 serves as an OSCC suppressor by regulating the autophagy-related gene RB1CC1 through m6A modification, which may provide a new insight for the diagnosis and therapy of OSCC.
Collapse
Affiliation(s)
- Jianfeng Liang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Hongshi Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Chen Hou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Fan Song
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yaoqi Jiang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Ziyi Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Danqi Qiu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yue Zhu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Fang Wang
- Department of Oral Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Dongsheng Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Jinsong Hou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
20
|
Wang Y, Fu Y, Lu Y, Chen S, Zhang J, Liu B, Yuan Y. Unravelling the complexity of lncRNAs in autophagy to improve potential cancer therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188932. [PMID: 37329993 DOI: 10.1016/j.bbcan.2023.188932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
Autophagy is well-known as an internal catabolic process that is evolutionarily conserved and performs the key biological function in maintaining cellular homeostasis. It is tightly controlled by several autophagy-related (ATG) proteins, which are closely associated with many types of human cancers. However, what has remained controversial is the janus roles of autophagy in cancer progression. Interestingly, the biological function of long non-coding RNAs (lncRNAs) in autophagy has been gradually understood in different types of human cancers. More recently, numerous studies have demonstrated that several lncRNAs may regulate some ATG proteins and autophagy-related signaling pathways to either activate or inhibit the autophagic process in cancer. Thus, in this review, we summarize the latest advance in the knowledge of the complicated relationships between lncRNAs and autophagy in cancer. Also, the in-depth dissection of the lncRNAs-autophagy-cancers axis involved in this review would shed new light on discovery of more potential cancer biomarkers and therapeutic targets in the future.
Collapse
Affiliation(s)
- Yi Wang
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuqi Fu
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yingying Lu
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Siwei Chen
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Bo Liu
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Yuan
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
21
|
Wang Y, Li J, Wang S, Pang Y, Liu P, Xie B, Dou S, Yang T, Liu X, Shi Y, Chen D. The hepatitis B virus promotes the progression of non-alcoholic fatty liver disease through incomplete autophagy. Free Radic Biol Med 2023:S0891-5849(23)00436-7. [PMID: 37244371 DOI: 10.1016/j.freeradbiomed.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Hepatitis B virus (HBV) infection is still a serious public health problem. In recent years, with the increasing incidence of chronic hepatitis B (CHB) combined with nonalcoholic fatty liver disease (NAFLD), a more in-depth exploration of the pathogenesis of CHB combined with NAFLD is required. HBV can induce autophagy and use to increase replication. The removal of fat by autophagy, also known as lipophagy, is also currently considered an alternative pathway for lipid metabolism in liver cells. This degradation of autophagy prevents hepatotoxicity and steatosis. However, it is not known whether there is a correlation between HBV-related autophagy and the progression of NAFLD. We explored how HBV affects disease progression in NAFLD should be " and determined whether it is associated with HBV-associated autophagy. In this study, we constructed HBV-TG mouse high-fat diet (HFD) models and controls, and the results showed that the presence of HBV promoted the occurrence of NAFLD. We also demonstrated that HBV promotes lipid droplet accumulation in hepatocytes using HBV-stable expression cell lines HepG2.2.15 and AML12-HBV. In addition, this study also found that exogenous OA supplementation reduced HBV replication. We further studied the mechanism and found that HBV-related autophagy can promote the absorption of liver cells to lipid droplets. It can reduce the decomposition of lipid droplets by inhibiting the function of autophagolysosome, and eventually lead to the accumulation of lipid droplets in hepatocytes. In a word, HBV promotes the progression of NAFLD by increasing lipid accumulation in hepatocytes through incomplete autophagy.
Collapse
Affiliation(s)
- Yang Wang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Jiaxi Li
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Shanshan Wang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Yuheng Pang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China; Harbin Medical University Cancer Hospital, Harbin, China
| | - Pengxiang Liu
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Bangxiang Xie
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Shuangshuang Dou
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Tongwang Yang
- Academician Workstation, Changsha Medical University, Changsha, China; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Xiaoni Liu
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Ying Shi
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China.
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
22
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Pathogenesis of Hepatocellular Carcinoma: The Interplay of Apoptosis and Autophagy. Biomedicines 2023; 11:1166. [PMID: 37189787 PMCID: PMC10135776 DOI: 10.3390/biomedicines11041166] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is a multifactorial process that has not yet been fully investigated. Autophagy and apoptosis are two important cellular pathways that are critical for cell survival or death. The balance between apoptosis and autophagy regulates liver cell turnover and maintains intracellular homeostasis. However, the balance is often dysregulated in many cancers, including HCC. Autophagy and apoptosis pathways may be either independent or parallel or one may influence the other. Autophagy may either inhibit or promote apoptosis, thus regulating the fate of the liver cancer cells. In this review, a concise overview of the pathogenesis of HCC is presented, with emphasis on new developments, including the role of endoplasmic reticulum stress, the implication of microRNAs and the role of gut microbiota. The characteristics of HCC associated with a specific liver disease are also described and a brief description of autophagy and apoptosis is provided. The role of autophagy and apoptosis in the initiation, progress and metastatic potential is reviewed and the experimental evidence indicating an interplay between the two is extensively analyzed. The role of ferroptosis, a recently described specific pathway of regulated cell death, is presented. Finally, the potential therapeutic implications of autophagy and apoptosis in drug resistance are examined.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, PAGNI University Hospital, University of Crete School of Medicine, 71500 Heraklion, Crete, Greece
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| |
Collapse
|
23
|
Wu Y, Tan HWS, Lin JY, Shen HM, Wang H, Lu G. Molecular mechanisms of autophagy and implications in liver diseases. LIVER RESEARCH 2023; 7:56-70. [PMID: 39959698 PMCID: PMC11792062 DOI: 10.1016/j.livres.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/03/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Autophagy is a highly conserved process in which cytosolic contents are degraded by the lysosome, which plays an important role in energy and nutrient balance, and protein or organelle quality control. The liver is the most important organ for metabolism. Studies to date have revealed a significant role of autophagy in the maintenance of liver homeostasis under basal and stressed conditions, and the impairment of autophagy has been closely linked to various liver diseases. Therefore, a comprehensive understanding of the roles of autophagy in liver diseases may help in the development of therapeutic strategies via targeting autophagy. In this review, we will summarize the latest understanding of the molecular mechanisms of autophagy and systematically discuss its implications in various liver diseases, including alcohol-related liver disease, non-alcoholic fatty liver disease, viral hepatitis, hepatocellular carcinoma, and acetaminophen-induced liver injury.
Collapse
Affiliation(s)
- Yuankai Wu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hayden Weng Siong Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jin-Yi Lin
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Han-Ming Shen
- Department of Biomedical Sciences, Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guang Lu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Transcription of Autophagy Associated Gene Expression as Possible Predictors of a Colorectal Cancer Prognosis. Biomedicines 2023; 11:biomedicines11020418. [PMID: 36830954 PMCID: PMC9952998 DOI: 10.3390/biomedicines11020418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Autophagy plays a dual role in oncogenesis-it contributes to the growth of the tumor and can inhibit its development. The aim of this study was to assess changes in the transcriptional activity of LAMP-2, BECN1, PINK1, and FOXO1 genes involved in the autophagy process in histopathologically confirmed adenocarcinoma sections of colorectal cancer: (2) Methods: A gene expression profile analysis was performed using HG-U133A and the RT-qPCR reaction. The transcriptional activity of genes was compared in sections of colorectal cancer in the four clinical stages (CSI-CSIV) concerning the control group; (3) Results: In CSI, the transcriptional activity of the PINK1 gene is highest; in CS II, the LAMP-2 gene is highest, while FOXO1 increases gradually from CSI reaching a maximum in CSIII. There is no BECN1 gene expression in colorectal cancer cells; (4) Conclusions: The observed differences in the mRNA concentration profile of autophagy-related genes in colon cancer specimens may indicate the role of autophagy in the pathogenesis of this cancer. Genes involved in autophagy may be diagnostic tools for colorectal cancer screening and personalized therapy in the future.
Collapse
|
25
|
Morishita H, Komatsu M. Role of autophagy in liver diseases. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Zhu M, Zhan M, Xi C, Gong J, Shen H. Molecular characterization and expression of the autophagy-related gene Atg14 in WSSV-infected Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2022; 125:200-211. [PMID: 35513250 DOI: 10.1016/j.fsi.2022.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Atg14 (autophagy-related gene 14), also known as Atg14L or Barkor (Beclin-1 associated autophagy-related key regulator), plays an important role in a variety of biological processes including immunity, development, tumor inhibition, longevity, and protection against some cardiac and neurodegenerative diseases. However, very few studies have characterized Atg14 expression in invertebrates, particularly crustaceans. Here, a novel Atg14 gene from Procambarus clarkii (named PcAtg14) was characterized via RACE technology. Bioinformatics analysis showed that the total length of the PcAtg14 gene sequence was 2,880 bp, and it was predicted to encode 488 amino acids. The results of homology comparison showed that PcAtg14 exhibited the highest homology with crustacean the American lobster (Homarus americanus). Quantitative real-time PCR expression analysis showed that PcAtg14 was expressed in all tissues of P. clarkii, with the hepatopancreas having the highest expression and the eyestalk exhibiting the lowest expression. Upon white spot syndrome virus (WSSV) infection, the relative expression of PcAtg14 in the hepatopancreas, muscle, hemocyte, gill, heart and epidermis were significantly up-regulated at different time periods. After PcAtg14 gene silencing via RNA interference (RNAi), the proliferation of WSSV in P. clarkii was significantly inhibited, which coincided with a significant increase in P. clarkii mortality and an increase in the expression of autophagy-related genes (ATGs). Transmission electron microscopy analysis demonstrated an increase in the number of autophagosomes in the hepatopancreas of the PcAtg14 gene silencing group compared to the control group after WSSV infection. Collectively, these results indicated that PcAtg14 suppressed autophagy by reduce the fusion of autophagosomes and lysosomes, thereby promoting WSSV replication in P. clarkii. The findings here therefore provide novel insights into the immune mechanisms through which P. clarkii responds to WSSV infection.
Collapse
Affiliation(s)
- Mengru Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Ming Zhan
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Changjun Xi
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jie Gong
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Huaishun Shen
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
27
|
Bębnowska D, Niedźwiedzka-Rystwej P. The Interplay between Autophagy and Virus Pathogenesis-The Significance of Autophagy in Viral Hepatitis and Viral Hemorrhagic Fevers. Cells 2022; 11:871. [PMID: 35269494 PMCID: PMC8909602 DOI: 10.3390/cells11050871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022] Open
Abstract
Autophagy is a process focused on maintaining the homeostasis of organisms; nevertheless, the role of this process has also been widely documented in viral infections. Thus, xenophagy is a selective form of autophagy targeting viruses. However, the relation between autophagy and viruses is ambiguous-this process may be used as a strategy to fight with a virus, but is also in favor of the virus's replication. In this paper, we have gathered data on autophagy in viral hepatitis and viral hemorrhagic fevers and the relations impacting its viral pathogenesis. Thus, autophagy is a potential therapeutic target, but research is needed to fully understand the mechanisms by which the virus interacts with the autophagic machinery. These studies must be performed in specific research models other than the natural host for many reasons. In this paper, we also indicate Lagovirus europaeus virus as a potentially good research model for acute liver failure and viral hemorrhagic disease.
Collapse
Affiliation(s)
- Dominika Bębnowska
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland
| | | |
Collapse
|
28
|
Shang D, Wang P, Tang W, Mo R, Lai R, Lu J, Li Z, Wang X, Cai W, Wang H, Zhao G, Xie Q, Xiang X. Genetic Variations of ALDH (rs671) Are Associated With the Persistence of HBV Infection Among the Chinese Han Population. Front Med (Lausanne) 2022; 9:811639. [PMID: 35237626 PMCID: PMC8882735 DOI: 10.3389/fmed.2022.811639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Alcohol dehydrogenase 1B (ADH1B) and aldehyde dehydrogenase 2 (ALDH2), members of the alcohol dehydrogenase family, have important roles in liver diseases. The roles of the polymorphisms of ADH1B rs1229984 and ALDH2 rs671 in hepatitis B virus (HBV) susceptibility and persistent infection were investigated in the present study. Total 1,034 patients with hepatitis B [99 acute hepatitis B (AHB), 521 chronic hepatitis B (CHB), 158 acute-on-chronic liver failure (ACLF), 159 liver cirrhosis (LC), and 97 hepatocellular carcinoma (HCC)] and 1,262 healthy controls (HCs) of the Chinese Han population were recruited, and single nucleotide polymorphisms (SNPs) of rs671 and rs1229984 were genotyped. Independent and joint roles of rs671 and rs1229984 in HBV infection were analyzed. The results showed that rs671 genotypes had a significantly different distribution among different subgroups. Compared with HCs, the frequency of rs671-AA genotype was higher in hepatitis B individuals, especially in the CHB group [adjusted OR (95%CI) = 1.899 (1.232–2.928), p = 0.003, in the co-dominant model], which showed a significant positive association. It was further confirmed that CHB individuals who carried ALDH2 rs671-AA genotype had a higher risk of persistent HBV infection and higher HBV-DNA quantitation compared with those with GG/GA genotype. In addition, the rs671-AA genotype might predict HCC incidence in patients with CHB. There were no different distributions of alleles or genotypes in rs671 mutant among AHB, ACLF, LC, or HCC groups compared with HCs. These data suggested the possible hazardous role of rs671-AA variant in HBV infection and persistence.
Collapse
Affiliation(s)
- Dabao Shang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Peng Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Hepatobiliary Medicine, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Weiliang Tang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruidong Mo
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Rongtao Lai
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ziqiang Li
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaolin Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Cai
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Gangde Zhao
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Gangde Zhao
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Qing Xie
| | - Xiaogang Xiang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Translational Laboratory of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Xiaogang Xiang
| |
Collapse
|
29
|
Liang W, Liu H, He J, Ai L, Meng Q, Zhang W, Yu C, Wang H, Liu H. Studies Progression on the Function of Autophagy in Viral Infection. Front Cell Dev Biol 2022; 9:772965. [PMID: 34977022 PMCID: PMC8716779 DOI: 10.3389/fcell.2021.772965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a conservative lysosomal catabolic pathway commonly seen in eukaryotic cells. It breaks down proteins and organelles by forming a two-layer membrane structure of autophagosomes and circulating substances and maintaining homeostasis. Autophagy can play a dual role in viral infection and serve either as a pro-viral factor or an antiviral defense element dependent on the virus replication cycle. Recent studies have suggested the complicated and multidirectional role of autophagy in the process of virus infection. On the one hand, autophagy can orchestrate immunity to curtail infection. On the other hand, some viruses have evolved strategies to evade autophagy degradation, facilitating their replication. In this review, we summarize recent progress of the interaction between autophagy and viral infection. Furthermore, we highlight the link between autophagy and SARS-CoV-2, which is expected to guide the development of effective antiviral treatments against infectious diseases.
Collapse
Affiliation(s)
| | - Huimin Liu
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junli He
- Department of Pediatrics, Shenzhen University General Hospital, Shenzhen, China
| | - Lisha Ai
- Department of Teaching and Research, Shenzhen University General Hospital, Shenzhen, China
| | - Qingxue Meng
- Department of Science, Southern University of Science and Technology, Shenzhen, China
| | - Weiwen Zhang
- Department of Gynaecology and Obstetrics, Shenzhen University General Hospital, Shenzhen, China
| | - Chengwei Yu
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Hao Wang
- Department of Science, Southern University of Science and Technology, Shenzhen, China.,Department of Gynaecology and Obstetrics, Shenzhen University General Hospital, Shenzhen, China
| | - Hui Liu
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital, Shenzhen, China
| |
Collapse
|
30
|
Sadri Nahand J, Salmaninejad A, Mollazadeh S, Tamehri Zadeh SS, Rezaee M, Sheida AH, Sadoughi F, Dana PM, Rafiyan M, Zamani M, Taghavi SP, Dashti F, Mirazimi SMA, Bannazadeh Baghi H, Moghoofei M, Karimzadeh M, Vosough M, Mirzaei H. Virus, Exosome, and MicroRNA: New Insights into Autophagy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:97-162. [DOI: 10.1007/5584_2022_715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Son J, Kim MJ, Lee JS, Kim JY, Chun E, Lee KY. Hepatitis B virus X Protein Promotes Liver Cancer Progression through Autophagy Induction in Response to TLR4 Stimulation. Immune Netw 2021; 21:e37. [PMID: 34796041 PMCID: PMC8568915 DOI: 10.4110/in.2021.21.e37] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/28/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus X (HBx) protein has been reported as a key protein regulating the pathogenesis of HBV-induced hepatocellular carcinoma (HCC). Recent evidence has shown that HBx is implicated in the activation of autophagy in hepatic cells. Nevertheless, the precise molecular and cellular mechanism by which HBx induces autophagy is still controversial. Herein, we investigated the molecular and cellular mechanism by which HBx is involved in the TRAF6-BECN1-Bcl-2 signaling for the regulation of autophagy in response to TLR4 stimulation, therefore influencing the HCC progression. HBx interacts with BECN1 (Beclin 1) and inhibits the association of the BECN1-Bcl-2 complex, which is known to prevent the assembly of the pre-autophagosomal structure. Furthermore, HBx enhances the interaction between VPS34 and TRAF6-BECN1 complex, increases the ubiquitination of BECN1, and subsequently enhances autophagy induction in response to LPS stimulation. To verify the functional role of HBx in liver cancer progression, we utilized different HCC cell lines, HepG2, SK-Hep-1, and SNU-761. HBx-expressing HepG2 cells exhibited enhanced cell migration, invasion, and cell mobility in response to LPS stimulation compared to those of control HepG2 cells. These results were consistently observed in HBx-expressed SK-Hep-1 and HBx-expressed SNU-761 cells. Taken together, our findings suggest that HBx positively regulates the induction of autophagy through the inhibition of the BECN1-Bcl-2 complex and enhancement of the TRAF6-BECN1-VPS34 complex, leading to enhance liver cancer migration and invasion.
Collapse
Affiliation(s)
- Juhee Son
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Mi-Jeong Kim
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ji Su Lee
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ji Young Kim
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | | | - Ki-Young Lee
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
32
|
A Decade of Mighty Lipophagy: What We Know and What Facts We Need to Know? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5539161. [PMID: 34777688 PMCID: PMC8589519 DOI: 10.1155/2021/5539161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/30/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022]
Abstract
Lipids are integral cellular components that act as substrates for energy provision, signaling molecules, and essential constituents of biological membranes along with a variety of other biological functions. Despite their significance, lipid accumulation may result in lipotoxicity, impair autophagy, and lysosomal function that may lead to certain diseases and metabolic syndromes like obesity and even cell death. Therefore, these lipids are continuously recycled and redistributed by the process of selective autophagy specifically termed as lipophagy. This selective form of autophagy employs lysosomes for the maintenance of cellular lipid homeostasis. In this review, we have reviewed the current literature about how lipid droplets (LDs) are recruited towards lysosomes, cross-talk between a variety of autophagy receptors present on LD surface and lysosomes, and lipid hydrolysis by lysosomal enzymes. In addition to it, we have tried to answer most of the possible questions related to lipophagy regulation at different levels. Moreover, in the last part of this review, we have discussed some of the pathological states due to the accumulation of these LDs and their possible treatments under the light of currently available findings.
Collapse
|
33
|
Prizad H, Sheikholeslami F, Mahmoudi M, Fazeli M, Fadajan Z. The role of assaying recombinant Beclin1 by in vitro and in vivo tests. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Wei Z, Li X, Li W, Fu Q, Mu Y, Chen X. Molecular characterization and role in virus infection of Beclin-1 in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2021; 116:30-41. [PMID: 34147615 DOI: 10.1016/j.fsi.2021.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/03/2021] [Accepted: 06/14/2021] [Indexed: 06/12/2023]
Abstract
Beclin-1, the ortholog of yeast autophagy-related gene 6 (Atg6), has a central role in autophagy, which has been linked to diverse biological processes including immunity, development, tumor suppression, and lifespan extension. However, understanding of function of fish Beclin-1 is limited now. In this study, the complete Beclin-1 cDNA of large yellow croaker Larimichthys crocea (LcBeclin-1) was cloned, whose open reading frame (ORF) is 1344 bp long and encodes a protein of 447 amino acids (aa). The deduced LcBeclin-1 possesses a typical Bcl-2 homology domain 3(BH3) and an APG6 domain that contains a central coiled-coil domain (CCD, residues 174 to 231) and a C-terminal evolutionarily conserved domain (ECD, residues 241 to 334). LcBeclin-1 shared a high amino acid identity of 81.66-98.66% with reported Beclin-1 molecules from other vertebrate species. LcBeclin-1 gene was constitutively expressed in all tissues tested, with the highest levels in heart. LcBeclin-1 transcripts were also detected in primary head kidney granulocytes (PKGs), primary head kidney macrophages (PKMs), primary head kidney leukocytes (PKLs), and large yellow croaker head kidney cell line (LYCK), and were significantly upregulated by poly (I:C) in PKMs and LYCK cells. Subcellular localization showed that LcBeclin-1 was evenly distributed in the cytoplasm and nucleus of LYCK cells. Overexpression of LcBeclin-1 significantly increased the replication of SVCV, as evidenced by increased severity of the cytopathic effects, enhanced viral titre, and upregulated transcriptional levels of viral genes. Further studies showed that LcBeclin-1 induced the occurrence of autophagy in LYCK cells. Additionally, LcBeclin-1 also decreased the expression levels of large yellow croaker interferons (IFNs; IFNc, IFNd, and IFNh), interferon regulatory factor 3 (IRF3) and IRF7, IFN-stimulated genes (ISGs; Mx, PKR, and Viperin) in LYCK cells. All these data suggest that LcBeclin-1 promoted the viral replication possibly by inducing autophagy or negatively modulating IFN response, which will help us to further understand the function of fish Beclin-1.
Collapse
Affiliation(s)
- Zuyun Wei
- Key Laboratory of Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaofeng Li
- Key Laboratory of Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wanru Li
- Key Laboratory of Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiuling Fu
- Key Laboratory of Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yinnan Mu
- Key Laboratory of Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- Key Laboratory of Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
35
|
Zhao F, Xie X, Tan X, Yu H, Tian M, Lv H, Qin C, Qi J, Zhu Q. The Functions of Hepatitis B Virus Encoding Proteins: Viral Persistence and Liver Pathogenesis. Front Immunol 2021; 12:691766. [PMID: 34456908 PMCID: PMC8387624 DOI: 10.3389/fimmu.2021.691766] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
About 250 million people worldwide are chronically infected with Hepatitis B virus (HBV), contributing to a large burden on public health. Despite the existence of vaccines and antiviral drugs to prevent infection and suppress viral replication respectively, chronic hepatitis B (CHB) cure remains a remote treatment goal. The viral persistence caused by HBV is account for the chronic infection which increases the risk for developing liver cirrhosis and hepatocellular carcinoma (HCC). HBV virion utilizes various strategies to escape surveillance of host immune system therefore enhancing its replication, while the precise mechanisms involved remain elusive. Accumulating evidence suggests that the proteins encoded by HBV (hepatitis B surface antigen, hepatitis B core antigen, hepatitis B envelope antigen, HBx and polymerase) play an important role in viral persistence and liver pathogenesis. This review summarizes the major findings in functions of HBV encoding proteins, illustrating how these proteins affect hepatocytes and the immune system, which may open new venues for CHB therapies.
Collapse
Affiliation(s)
- Fenglin Zhao
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
| | - Xiaoyu Xie
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xu Tan
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongli Yu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
| | - Miaomiao Tian
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Huanran Lv
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chengyong Qin
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jianni Qi
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiang Zhu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
36
|
Schoeman D, Fielding BC. Human Coronaviruses: Counteracting the Damage by Storm. Viruses 2021; 13:1457. [PMID: 34452323 PMCID: PMC8402835 DOI: 10.3390/v13081457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022] Open
Abstract
Over the past 18 years, three highly pathogenic human (h) coronaviruses (CoVs) have caused severe outbreaks, the most recent causative agent, SARS-CoV-2, being the first to cause a pandemic. Although much progress has been made since the COVID-19 pandemic started, much about SARS-CoV-2 and its disease, COVID-19, is still poorly understood. The highly pathogenic hCoVs differ in some respects, but also share some similarities in clinical presentation, the risk factors associated with severe disease, and the characteristic immunopathology associated with the progression to severe disease. This review aims to highlight these overlapping aspects of the highly pathogenic hCoVs-SARS-CoV, MERS-CoV, and SARS-CoV-2-briefly discussing the importance of an appropriately regulated immune response; how the immune response to these highly pathogenic hCoVs might be dysregulated through interferon (IFN) inhibition, antibody-dependent enhancement (ADE), and long non-coding RNA (lncRNA); and how these could link to the ensuing cytokine storm. The treatment approaches to highly pathogenic hCoV infections are discussed and it is suggested that a greater focus be placed on T-cell vaccines that elicit a cell-mediated immune response, using rapamycin as a potential agent to improve vaccine responses in the elderly and obese, and the potential of stapled peptides as antiviral agents.
Collapse
Affiliation(s)
| | - Burtram C. Fielding
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, University of the Western Cape, Cape Town 7535, South Africa;
| |
Collapse
|
37
|
Wu H, Xue Y, Zhang Y, Wang Y, Hou J. PTH1-34 promotes osteoblast formation through Beclin1-dependent autophagic activation. J Bone Miner Metab 2021; 39:572-582. [PMID: 33818629 DOI: 10.1007/s00774-021-01212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/08/2021] [Indexed: 12/08/2022]
Abstract
INTRODUCTION PTH1-34 can stimulate osteoblast formation, which contributes to the improvement of bone loss. PTH1-34 can activate autophagy, and autophagy plays a key role in osteoblast formation. This study aimed to explore the role of autophagy in PTH1-34-regulated osteoblastogenesis. MATERIALS AND METHODS In this study, the mice treated with ovariectomy (OVX mice) were used to observe the effect of PTH1-34 on the formation and autophagy of osteoblasts in trabecular bone in vivo. Osteoblast precursor cell line MC3T3-E1 was treated with PTH1-34, and then the autophagic parameters of osteoblast precursors (including autophagic proteins and autophagosome formation) were detected using Western Blotting and Transmission Electron Microscopy. Next, after using autophagic pharmacological inhibitor (3-MA) and silencing vectors of autophagic molecule Beclin1 to downregulate autophagic activity, the parameters related to osteogenesis (including ALP staining intensity, ALP activity, cell proliferation and osteoblastic protein expression) were evaluated using corresponding assays. RESULTS In vivo results showed that PTH1-34 not only improved bone loss caused by OVX but also restored Beclin1 expression and autophagic activity of immature osteoblasts in bone tissues. In vitro assays also showed that treatment of PTH1-34 enhanced the autophagy in osteoblast precursors. Moreover, under PTH1-34 intervention, the upregulated osteogenic parameters were reversed by autophagic inhibition with 3-MA. Of note, Beclin1 silencing can recover the osteogenic activity enhanced by PTH1-34. CONCLUSION PTH1-34 can enhance the autophagic activity of osteoblast precursors, which is involved in PTH1-34-regulated osteoblast formation. Furthermore, Beclin1, as a key autophagic regulator, plays a pivotal role in PTH1-34-regulated osteoblast precursor autophagy and osteoblastogenesis.
Collapse
Affiliation(s)
- Haojie Wu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Ying Xue
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
- Department of Internal Medicine, Fujian Provincial Hospital South Branch, Fuzhou, 350001, Fujian, China
| | - Yang Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
- Department of Endocrinology, Fujian Provincial Hospital Key Laboratory of Endocrinology, No.134 Dong Jie Road, Fuzhou, 350001, Fujian, China
| | - Yongxuan Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
- Department of Endocrine, Sanming First Hospital, The Affiliated Sanming First Hospital of Fujian Medical University, Sanming, 365000, Fujian, China
| | - Jianming Hou
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China.
- Department of Endocrinology, Fujian Provincial Hospital Key Laboratory of Endocrinology, No.134 Dong Jie Road, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
38
|
Qian H, Chao X, Williams J, Fulte S, Li T, Yang L, Ding WX. Autophagy in liver diseases: A review. Mol Aspects Med 2021; 82:100973. [PMID: 34120768 DOI: 10.1016/j.mam.2021.100973] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023]
Abstract
The liver is a highly dynamic metabolic organ that plays critical roles in plasma protein synthesis, gluconeogenesis and glycogen storage, cholesterol metabolism and bile acid synthesis as well as drug/xenobiotic metabolism and detoxification. Research from the past decades indicate that autophagy, the cellular catabolic process mediated by lysosomes, plays an important role in maintaining cellular and metabolic homeostasis in the liver. Hepatic autophagy fluctuates with hormonal cues and the availability of nutrients that respond to fed and fasting states as well as circadian activities. Dysfunction of autophagy in liver parenchymal and non-parenchymal cells can lead to various liver diseases including non-alcoholic fatty liver diseases, alcohol associated liver disease, drug-induced liver injury, cholestasis, viral hepatitis and hepatocellular carcinoma. Therefore, targeting autophagy may be a potential strategy for treating these various liver diseases. In this review, we will discuss the current progress on the understanding of autophagy in liver physiology. We will also discuss several forms of selective autophagy in the liver and the molecular signaling pathways in regulating autophagy of different cell types and their implications in various liver diseases.
Collapse
Affiliation(s)
- Hui Qian
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Jessica Williams
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Sam Fulte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Tiangang Li
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Ling Yang
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA.
| |
Collapse
|
39
|
Siri M, Dastghaib S, Zamani M, Rahmani-Kukia N, Geraylow KR, Fakher S, Keshvarzi F, Mehrbod P, Ahmadi M, Mokarram P, Coombs KM, Ghavami S. Autophagy, Unfolded Protein Response, and Neuropilin-1 Cross-Talk in SARS-CoV-2 Infection: What Can Be Learned from Other Coronaviruses. Int J Mol Sci 2021; 22:5992. [PMID: 34206057 PMCID: PMC8199451 DOI: 10.3390/ijms22115992] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
The COVID-19 pandemic is caused by the 2019-nCoV/SARS-CoV-2 virus. This severe acute respiratory syndrome is currently a global health emergency and needs much effort to generate an urgent practical treatment to reduce COVID-19 complications and mortality in humans. Viral infection activates various cellular responses in infected cells, including cellular stress responses such as unfolded protein response (UPR) and autophagy, following the inhibition of mTOR. Both UPR and autophagy mechanisms are involved in cellular and tissue homeostasis, apoptosis, innate immunity modulation, and clearance of pathogens such as viral particles. However, during an evolutionary arms race, viruses gain the ability to subvert autophagy and UPR for their benefit. SARS-CoV-2 can enter host cells through binding to cell surface receptors, including angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP1). ACE2 blockage increases autophagy through mTOR inhibition, leading to gastrointestinal complications during SARS-CoV-2 virus infection. NRP1 is also regulated by the mTOR pathway. An increased NRP1 can enhance the susceptibility of immune system dendritic cells (DCs) to SARS-CoV-2 and induce cytokine storm, which is related to high COVID-19 mortality. Therefore, signaling pathways such as mTOR, UPR, and autophagy may be potential therapeutic targets for COVID-19. Hence, extensive investigations are required to confirm these potentials. Since there is currently no specific treatment for COVID-19 infection, we sought to review and discuss the important roles of autophagy, UPR, and mTOR mechanisms in the regulation of cellular responses to coronavirus infection to help identify new antiviral modalities against SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Morvarid Siri
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; (M.S.); (M.Z.)
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran;
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; (M.S.); (M.Z.)
| | - Nasim Rahmani-Kukia
- Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; (N.R.-K.); (S.F.); (F.K.)
| | | | - Shima Fakher
- Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; (N.R.-K.); (S.F.); (F.K.)
| | - Fatemeh Keshvarzi
- Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; (N.R.-K.); (S.F.); (F.K.)
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran;
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; (M.S.); (M.Z.)
- Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; (N.R.-K.); (S.F.); (F.K.)
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Saeid Ghavami
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; (M.S.); (M.Z.)
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Faculty of Medicine, Katowice School of Technology, 40-555 Katowice, Poland
| |
Collapse
|
40
|
Lei Y, Xu X, Liu H, Chen L, Zhou H, Jiang J, Yang Y, Wu B. HBx induces hepatocellular carcinogenesis through ARRB1-mediated autophagy to drive the G 1/S cycle. Autophagy 2021; 17:4423-4441. [PMID: 33866937 DOI: 10.1080/15548627.2021.1917948] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The hepatitis B virus X protein (HBx) is involved in the process of hepatocellular carcinoma via the activation of various oncogenes. Our previous study indicated that ARBB1 (arrestin beta 1) promotes hepatocellular carcinogenesis (HCC). However, the role of ARRB1 in HBx-related HCC remains unclear. Herein, we identified that ARRB1 was upregulated by HBx in vivo and in vitro. Arrb1 deficiency suppressed HBx-induced hepatocellular carcinogenesis in several mouse models. Furthermore, knockdown of ARRB1 blocked HBx-induced macroautophagic/autophagic flux and disrupted the formation of autophagosomes. ARRB1 interacted with HBx, and the autophagic core protein MAP1LC3/LC3, a scaffolding protein, was essential for complete autophagy. Inhibition of autophagy by 3-methyladenine or interference of ATG5 or ATG7 attenuated HBx-induced cell cycle acceleration and the subsequent proliferative response via the induction of G1/S arrest. The absence of autophagy abolished the phosphorylation of CDK2 and the activity of the CDK2-CCNE1 complex. Our results demonstrate that ARRB1 plays a critical role in HBV-related HCC via modulating autophagy and the CDKN1B-CDK2-CCNE1-E2F1 axis and indicate that ARRB1 may be a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Yiming Lei
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China
| | - Xuan Xu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China
| | - Huiling Liu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China
| | - Lingjun Chen
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China
| | - Haoxiong Zhou
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China
| | - Jie Jiang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China
| | - Yidong Yang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China
| | - Bin Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China
| |
Collapse
|
41
|
Suares A, Medina MV, Coso O. Autophagy in Viral Development and Progression of Cancer. Front Oncol 2021; 11:603224. [PMID: 33763351 PMCID: PMC7982729 DOI: 10.3389/fonc.2021.603224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a complex degradative process by which eukaryotic cells capture cytoplasmic components for subsequent degradation through lysosomal hydrolases. Although this catabolic process can be triggered by a great variety of stimuli, action in cells varies according to cellular context. Autophagy has been previously linked to disease development modulation, including cancer. Autophagy helps suppress cancer cell advancement in tumor transformation early stages, while promoting proliferation and metastasis in advanced settings. Oncoviruses are a particular type of virus that directly contribute to cell transformation and tumor development. Extensive molecular studies have revealed complex ways in which autophagy can suppress or improve oncovirus fitness while still regulating viral replication and determining host cell fate. This review includes recent advances in autophagic cellular function and emphasizes its antagonistic role in cancer cells.
Collapse
Affiliation(s)
- Alejandra Suares
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Victoria Medina
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Omar Coso
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
42
|
Suares A, Medina MV, Coso O. Autophagy in Viral Development and Progression of Cancer. Front Oncol 2021. [DOI: 10.3389/fonc.2021.603224
expr 816899697 + 824303767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Autophagy is a complex degradative process by which eukaryotic cells capture cytoplasmic components for subsequent degradation through lysosomal hydrolases. Although this catabolic process can be triggered by a great variety of stimuli, action in cells varies according to cellular context. Autophagy has been previously linked to disease development modulation, including cancer. Autophagy helps suppress cancer cell advancement in tumor transformation early stages, while promoting proliferation and metastasis in advanced settings. Oncoviruses are a particular type of virus that directly contribute to cell transformation and tumor development. Extensive molecular studies have revealed complex ways in which autophagy can suppress or improve oncovirus fitness while still regulating viral replication and determining host cell fate. This review includes recent advances in autophagic cellular function and emphasizes its antagonistic role in cancer cells.
Collapse
|
43
|
Deng F, Xu G, Cheng Z, Huang Y, Ma C, Luo C, Yu C, Wang J, Xu X, Liu S, Zhu Y. Hepatitis B Surface Antigen Suppresses the Activation of Nuclear Factor Kappa B Pathway via Interaction With the TAK1-TAB2 Complex. Front Immunol 2021; 12:618196. [PMID: 33717111 PMCID: PMC7947203 DOI: 10.3389/fimmu.2021.618196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis B is a major health problem worldwide, with more than 250 million chronic carriers. Hepatitis B virus interferes with the host innate immune system so as to evade elimination via almost all of its constituent proteins; nevertheless, the function of HBsAg with respect to immune escape remains unclear. This study aimed to determine the role HBsAg plays in assisting HBV to escape from immune responses. We found that HBsAg suppressed the activation of the nuclear factor kappa B (NF-кB) pathway, leading to downregulation of innate immune responses. HBsAg interacted with TAK1 and TAB2 specifically, inhibiting the phosphorylation and polyubiquitination of TAK1 and the K63-linked polyubiquitination of TAB2. Autophagy is a major catabolic process participating in many cellular processes, including the life cycle of HBV. We found that HBsAg promoted the autophagic degradation of TAK1 and TAB2 via the formation of complexes with TAK1 and TAB2, resulting in suppression of the NF-κB pathway. The expression of TAK1, TAB2, and the translocation of NF-κB inversely correlated with HBsAg levels in clinical liver tissues. Taken together, our findings suggest a novel mechanism by which HBsAg interacts with TAK1-TAB2 complex and suppresses the activation of NF-κB signaling pathway via reduction of the post-translational modifications and autophagic degradation.
Collapse
Affiliation(s)
- Feiyan Deng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Gang Xu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhikui Cheng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Huang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Caijiao Ma
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chuanjin Luo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chen Yu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jun Wang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiupeng Xu
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic, Huangshi, China
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
44
|
Kouroumalis E, Voumvouraki A, Augoustaki A, Samonakis DN. Autophagy in liver diseases. World J Hepatol 2021; 13:6-65. [PMID: 33584986 PMCID: PMC7856864 DOI: 10.4254/wjh.v13.i1.6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/10/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is the liver cell energy recycling system regulating a variety of homeostatic mechanisms. Damaged organelles, lipids and proteins are degraded in the lysosomes and their elements are re-used by the cell. Investigations on autophagy have led to the award of two Nobel Prizes and a health of important reports. In this review we describe the fundamental functions of autophagy in the liver including new data on the regulation of autophagy. Moreover we emphasize the fact that autophagy acts like a two edge sword in many occasions with the most prominent paradigm being its involvement in the initiation and progress of hepatocellular carcinoma. We also focused to the implication of autophagy and its specialized forms of lipophagy and mitophagy in the pathogenesis of various liver diseases. We analyzed autophagy not only in well studied diseases, like alcoholic and nonalcoholic fatty liver and liver fibrosis but also in viral hepatitis, biliary diseases, autoimmune hepatitis and rare diseases including inherited metabolic diseases and also acetaminophene hepatotoxicity. We also stressed the different consequences that activation or impairment of autophagy may have in hepatocytes as opposed to Kupffer cells, sinusoidal endothelial cells or hepatic stellate cells. Finally, we analyzed the limited clinical data compared to the extensive experimental evidence and the possible future therapeutic interventions based on autophagy manipulation.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71110, Greece
| | - Argryro Voumvouraki
- 1 Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54636, Greece
| | - Aikaterini Augoustaki
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece
| | - Dimitrios N Samonakis
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece.
| |
Collapse
|
45
|
Kimkong I, Kunanopparat A. Autophagy related protein 9A increase in hepatitis B virus-associated hepatocellular carcinoma and the role in apoptosis. World J Hepatol 2020; 12:1367-1371. [PMID: 33442462 PMCID: PMC7772733 DOI: 10.4254/wjh.v12.i12.1367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/29/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
The majority of hepatocellular carcinoma (HCC) cases are associated with the hepatitis B virus (HBV) infection. Autophagy related protein 9A (ATG9A) is a transmembrane protein required for autophagosome formation. In order to investigate the role of ATG9A in HBV-associated HCC, ATG9A protein expression was determined in tumor liver tissues and compared with adjacent nontumor tissues from HCC patients with or without HBV infection. In HBV-associated HCC tissues, ATG9A protein level was increased in tumor liver tissues, but not in cases of non-HBV HCC. Our findings suggested that ATG9A might be involved in HBV and cancer cell survival. Therefore, we aimed to analyze the function of ATG9A in HBV replication using RNA interference to evaluate the HBV DNA level using real-time PCR. In the present study, there were no significant differences between shATG9A-transfected HepG2.2.15 cells and the mock control. However, we found that silencing ATG9A affected apoptosis in HepG2.2.15 and HepG2 cell lines. Our results indicated that ATG9A might be partly involved in the survival of HCC. Thus, the inhibition of ATG9A together with other targets might be a potential drug target for HCC treatment.
Collapse
Affiliation(s)
- Ingorn Kimkong
- Department of Microbiology, Faculty of Science, Kasetsart University, Center for Advanced Studies in Tropical Natural Resources, National Research University – Kasetsart University, Bangkok 10900, Thailand
| | - Areerat Kunanopparat
- Department of Microbiology, Center of Excellence in Immunology and Immune Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
46
|
S6K1 inhibits HBV replication through inhibiting AMPK-ULK1 pathway and disrupting acetylation modification of H3K27. Life Sci 2020; 265:118848. [PMID: 33278383 DOI: 10.1016/j.lfs.2020.118848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 01/01/2023]
Abstract
AIMS To investigated the effect of S6K1 on the replication and transcription of HBV DNA using multiple cell models. MAIN METHODS The pgRNA, total HBV RNA and HBV DNA level were detected by Real-time PCR. The HBcAg expression by Western blot and the activity of four HBV promoters, such as preS1, preS2/S, core, and X promoters by using dual luciferase reporter assay. Moreover, we determined S6K1 interacted with HBcAg in both cytoplasm and nucleus through Immunofluorescence, co-immunoprecipitation (CoIP) and Western blot. KEY FINDINGS S6K1 inhibited HBV DNA replication and cccDNA-dependent transcription in HBV-expressing stable cell lines. The mechanistic study revealed that S6K1 suppressed HBV DNA replication by inhibiting AMPK-ULK1 autophagy pathway, and the nuclear S6K1 suppressed HBV cccDNA-dependent transcription by inhibiting the acetylation modification of H3K27. In addition, HBV capsid protein (HBcAg) suppressed the phosphorylation level of S6K1Thr389 by interacting with S6K1, indicating a viral antagonism of S6K1-mediated antiviral mechanism. SIGNIFICANCE The p70 ribosomal S6 kinase (S6K1) is a serine/threonine protein kinase, and it plays a significant role in different cellular processes. It has been previously reported that S6K1 affects hepatitis B virus (HBV) replication but the underlying mechanism remains unclear. In this study, our data suggested that the activation of S6K1 restricts HBV replication through inhibiting AMPK-ULK1 autophagy pathway and H3K27 acetylation. These findings indicated that S6K1 might be a potential therapeutic target for HBV infection.
Collapse
|
47
|
Zou H, Yuan J, Zhang Y, Wang T, Chen Y, Yuan Y, Bian J, Liu Z. Gap Junction Intercellular Communication Negatively Regulates Cadmium-Induced Autophagy and Inhibition of Autophagic Flux in Buffalo Rat Liver 3A Cells. Front Pharmacol 2020; 11:596046. [PMID: 33390984 PMCID: PMC7774522 DOI: 10.3389/fphar.2020.596046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/22/2020] [Indexed: 12/31/2022] Open
Abstract
Cadmium is an important environmental pollutant that poses a serious threat to the health of humans and animals. A large number of studies have shown that the liver is one of the important target organs of cadmium. Stimulation of cells can lead to rapid changes in gap junction intercellular communication (GJIC) and autophagy. Previous studies have shown that cadmium can inhibit GJIC and induce autophagy. In order to understand the dynamic changes of GJIC and autophagy in the process of cadmium-induced hepatotoxic injury and the effects of GJIC on autophagy, a time-gradient model of cadmium cytotoxicity was established. The results showed that within 24 h of cadmium exposure, 5 μmol/L cadmium inhibited GJIC by down regulating the expression levels of connexin 43 (Cx43) and disturbing the localization of Cx43 in Buffalo rat liver 3A (BRL 3A) cells. In addition, cadmium induced autophagy and then inhibited autophagic flux in the later stage. During this process, inhibiting of GJIC could exacerbate the cytotoxic damage of cadmium and induce autophagy, but further blocked autophagic flux, promoting GJIC in order to obtain the opposite results.
Collapse
Affiliation(s)
- Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Junzhao Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yi Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
48
|
Cocco S, Leone A, Piezzo M, Caputo R, Di Lauro V, Di Rella F, Fusco G, Capozzi M, Gioia GD, Budillon A, De Laurentiis M. Targeting Autophagy in Breast Cancer. Int J Mol Sci 2020; 21:E7836. [PMID: 33105796 PMCID: PMC7660056 DOI: 10.3390/ijms21217836] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is a heterogeneous disease consisting of different biological subtypes, with differences in terms of incidence, response to diverse treatments, risk of disease progression, and sites of metastases. In the last years, several molecular targets have emerged and new drugs, targeting PI3K/Akt/mTOR and cyclinD/CDK/pRb pathways and tumor microenvironment have been integrated into clinical practice. However, it is clear now that breast cancer is able to develop resistance to these drugs and the identification of the underlying molecular mechanisms is paramount to drive further drug development. Autophagy is a highly conserved homeostatic process that can be activated in response to antineoplastic agents as a cytoprotective mechanism. Inhibition of autophagy could enhance tumor cell death by diverse anti-cancer therapies, representing an attractive approach to control mechanisms of drug resistance. In this manuscript, we present a review of autophagy focusing on its interplay with targeted drugs used for breast cancer treatment.
Collapse
Affiliation(s)
- Stefania Cocco
- Breast Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (M.P.); (R.C.); (V.D.L.); (F.D.R.); (G.F.); (M.C.); (G.d.G.)
| | - Alessandra Leone
- Experimental Pharmacology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (A.L.); (A.B.)
| | - Michela Piezzo
- Breast Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (M.P.); (R.C.); (V.D.L.); (F.D.R.); (G.F.); (M.C.); (G.d.G.)
| | - Roberta Caputo
- Breast Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (M.P.); (R.C.); (V.D.L.); (F.D.R.); (G.F.); (M.C.); (G.d.G.)
| | - Vincenzo Di Lauro
- Breast Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (M.P.); (R.C.); (V.D.L.); (F.D.R.); (G.F.); (M.C.); (G.d.G.)
| | - Francesca Di Rella
- Breast Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (M.P.); (R.C.); (V.D.L.); (F.D.R.); (G.F.); (M.C.); (G.d.G.)
| | - Giuseppina Fusco
- Breast Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (M.P.); (R.C.); (V.D.L.); (F.D.R.); (G.F.); (M.C.); (G.d.G.)
| | - Monica Capozzi
- Breast Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (M.P.); (R.C.); (V.D.L.); (F.D.R.); (G.F.); (M.C.); (G.d.G.)
| | - Germira di Gioia
- Breast Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (M.P.); (R.C.); (V.D.L.); (F.D.R.); (G.F.); (M.C.); (G.d.G.)
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (A.L.); (A.B.)
| | - Michelino De Laurentiis
- Breast Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (M.P.); (R.C.); (V.D.L.); (F.D.R.); (G.F.); (M.C.); (G.d.G.)
| |
Collapse
|
49
|
Sun J. The hypothesis that SARS-CoV-2 affects male reproductive ability by regulating autophagy. Med Hypotheses 2020; 143:110083. [PMID: 32679425 PMCID: PMC7347466 DOI: 10.1016/j.mehy.2020.110083] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/04/2020] [Indexed: 12/11/2022]
Abstract
The outbreak of CoronaVirus Disease19 (COVID19) in December 2019 posed a serious threat to public safety, and its rapid spread caused a global health emergency. Clinical data show that in addition to respiratory system damage, some male patients with COVID-19 are also accompanied by abnormal renal function and even renal damage. As the main receptor of syndrome coronavirus 2 (SARS-CoV-2), angiotensin converting enzyme 2 (ACE2) is also found to be highly expressed not only in respiratory mucosa and alveolar epithelial cells, but also in renal tubule cells, testicular Leydig cells and seminiferous tubule cells. This suggests that SARS-CoV-2 has the possibility of infecting the male reproductive system, and the recent detection of SARS-CoV-2 in the patient's semen further confirms this theory. In previous studies, it has been found that ACE2 has the ability to regulate autophagy. Not only that, recent studies have also found that SARS-CoV-2 infection can also lead to a reduction in autophagy. All of these associate SARS-CoV-2 with autophagy. Furthermore, autophagy has been shown to have an effect on male reproduction in many studies. Based on these, we propose the hypothesis that SARS-CoV-2 affects male reproductive function by regulating autophagy. This hypothesis may provide a new idea for future treatment of COVID-19 male patients with reproductive function injury, and it can also prompt medical staff and patients to consciously check their reproductive function.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2
- Autophagy/physiology
- Betacoronavirus/pathogenicity
- COVID-19
- Coronavirus Infections/complications
- Coronavirus Infections/pathology
- Coronavirus Infections/physiopathology
- Genitalia, Male/pathology
- Genitalia, Male/physiopathology
- Genitalia, Male/virology
- Humans
- Infertility, Male/etiology
- Infertility, Male/pathology
- Infertility, Male/physiopathology
- Male
- Models, Biological
- Pandemics
- Peptidyl-Dipeptidase A/physiology
- Pneumonia, Viral/complications
- Pneumonia, Viral/pathology
- Pneumonia, Viral/physiopathology
- Reproduction/physiology
- SARS-CoV-2
- Spermatozoa/pathology
- Spermatozoa/virology
Collapse
Affiliation(s)
- Jun Sun
- Clinical Medicine (5+3 Integration, Pediatrics), School of Medicine, Zhengzhou University, Grade 2018, China.
| |
Collapse
|
50
|
Lin Y, Zhao Z, Huang A, Lu M. Interplay between Cellular Autophagy and Hepatitis B Virus Replication: A Systematic Review. Cells 2020; 9:cells9092101. [PMID: 32942717 PMCID: PMC7563265 DOI: 10.3390/cells9092101] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/18/2022] Open
Abstract
Autophagy, a conserved process in which cells break down and destroy old, damaged, or abnormal proteins and other substances in the cytoplasm through lysosomal degradation, occurs via autophagosome formation and aids in the maintenance of intracellular homeostasis. Autophagy is closely associated with hepatitis B virus (HBV) replication and assembly. Currently, HBV infection is still one of the most serious public health issues worldwide. The unavailability of satisfactory therapeutic strategies for chronic HBV infection indicates an urgent need to elucidate the mechanisms underlying the pathogenesis of HBV infection. Increasing evidence has shown that HBV not only possesses the ability to induce incomplete autophagy but also evades autophagic degradation, indicating that HBV utilizes or hijacks the autophagy machinery for its own replication. Therefore, autophagy might be a crucial target pathway for controlling HBV infection. The definite molecular mechanisms underlying the association between cellular autophagy and HBV replication require further clarification. In this review, we have summarized and discussed the latest findings on the interplay between autophagy and HBV replication.
Collapse
Affiliation(s)
- Yong Lin
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing 400016, China; (Z.Z.); (A.H.)
- Correspondence: (Y.L.); (M.L.); Tel./Fax: +86-236-848-6780 (Y.L.); Tel.: +49-2017233530 (M.L.); +49-2017235929 (M.L.)
| | - Zhenyu Zhao
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing 400016, China; (Z.Z.); (A.H.)
| | - Ailong Huang
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing 400016, China; (Z.Z.); (A.H.)
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
- Correspondence: (Y.L.); (M.L.); Tel./Fax: +86-236-848-6780 (Y.L.); Tel.: +49-2017233530 (M.L.); +49-2017235929 (M.L.)
| |
Collapse
|