1
|
Wang S, Jiang S, Li X, Huang H, Qiu X, Yu M, Yang X, Liu F, Wang C, Shen W, Wang Y, Wang B. FGL2 172-220 peptides improve the antitumor effect of HCMV-IE1mut vaccine against glioblastoma by modulating immunosuppressive cells in the tumor microenvironment. Oncoimmunology 2024; 13:2423983. [PMID: 39508842 DOI: 10.1080/2162402x.2024.2423983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor characterized by poor prognosis and lack of effective treatments. In recent years, peptide vaccines that use sequences based on tumor-specific or tumor-associated antigens to activate immune responses against tumor cells have emerged as a new therapeutic strategy. In this study, we developed a novel therapeutic polypeptide vaccine targeting the tumor-associated antigen Fibrinogen-Like Protein 2 (FGL2), whose dominant epitope peptide was tandemly linked to the C-terminus of HCMV-IE1mut via a linker. We used this vaccine to compare the therapeutic efficacy of HCMV-IE1mut alone versus HCMV-IE1mut-FGL2172-220 and investigate the potential mechanism of action of HCMV-IE1mut-FGL2172-220 in glioma treatment. An in situ GBM model (GL261-IE1-luc cells) was used to determine the efficacy of the vaccine. Treatment with HCMV-IE1mut-FGL2172-220 exerted antitumor effects and extended the survival of the GL261 animal model. We observed reduced proportions of microglia, regulatory T cells (Treg), and myeloid-derived suppressor cells (MDSC) in the tumor microenvironment (TME) by immunofluorescence. Flow cytometry showed that compared to HCMV-IE1mut alone, treatment with HCMV-IE1mut-FGL2172-220 increased the proportion of CD8+ T cells and tissue-resident memory T cells (TRM). ELISA analysis showed that it improved the secretion of tumor-specific IFN-γ and TNF-α by these cells and downregulated the expression of IL-6 and IL-10. Our study demonstrates that the long-peptide FGL2172-220 improves the antitumor efficacy of HCMV-IE1mut, possibly by reshaping immune cells in the glioma microenvironment. These findings lay the groundwork for the development of therapeutic antigenic peptide vaccines to improve antitumor effects for cancer.
Collapse
Affiliation(s)
- Shan Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shasha Jiang
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xu Li
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Huan Huang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xu Qiu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Meng Yu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaoli Yang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | | | - Chen Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wen Shen
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yunyang Wang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Wang C, Sun H, Wang R, Ma X, Sun Y. FGL2: A new target molecule for coagulation and immune regulation in infectious disease. Int Immunopharmacol 2024; 143:113505. [PMID: 39488038 DOI: 10.1016/j.intimp.2024.113505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
Infectious diseases are complex inflammatory-immunologic host responses caused by various pathogens, such as viruses, bacteria, parasites, and fungi. In the process of infectious disease development, immune cells are activated, and a substantial number of inflammatory factors are released within the endothelium, which results in coagulation activation and the formation of intravascular thrombi. Furthermore, infection-induced hypercoagulability amplifies the inflammatory response and immune dysregulation. Emerging evidence suggests that fibrinogen-like protein 2 (FGL2) has a crucial role in facilitating procoagulant, pro-inflammatory, and immune-regulatory responses in various infectious diseases. This review illustrates the complex procoagulation and immunoregulatory roles of FGL2, suggesting it could be a target for novel immune interventions in intractable infectious diseases.
Collapse
Affiliation(s)
- Chaoyang Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - He Sun
- Department of Hepatobiliary Surgery and Transplantation, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Rui Wang
- Department of Pediatrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaochun Ma
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yini Sun
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Chen J, Wu L, Li Y. FGL1 and FGL2: emerging regulators of liver health and disease. Biomark Res 2024; 12:53. [PMID: 38816776 PMCID: PMC11141035 DOI: 10.1186/s40364-024-00601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Liver disease is a complex group of diseases with high morbidity and mortality rates, emerging as a major global health concern. Recent studies have highlighted the involvement of fibrinogen-like proteins, specifically fibrinogen-like protein 1 (FGL1) and fibrinogen-like protein 2 (FGL2), in the regulation of various liver diseases. FGL1 plays a crucial role in promoting hepatocyte growth, regulating lipid metabolism, and influencing the tumor microenvironment (TME), contributing significantly to liver repair, non-alcoholic fatty liver disease (NAFLD), and liver cancer. On the other hand, FGL2 is a multifunctional protein known for its role in modulating prothrombin activity and inducing immune tolerance, impacting viral hepatitis, liver fibrosis, hepatocellular carcinoma (HCC), and liver transplantation. Understanding the functions and mechanisms of fibrinogen-like proteins is essential for the development of effective therapeutic approaches for liver diseases. Additionally, FGL1 has demonstrated potential as a disease biomarker in radiation and drug-induced liver injury as well as HCC, while FGL2 shows promise as a biomarker in viral hepatitis and liver transplantation. The expression levels of these molecules offer exciting prospects for disease assessment. This review provides an overview of the structure and roles of FGL1 and FGL2 in different liver conditions, emphasizing the intricate molecular regulatory processes and advancements in targeted therapies. Furthermore, it explores the potential benefits and challenges of targeting FGL1 and FGL2 for liver disease treatment and the prospects of fibrinogen-like proteins as biomarkers for liver disease, offering insights for future research in this field.
Collapse
Affiliation(s)
- Jiongming Chen
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Lei Wu
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400030, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400030, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
4
|
Galpin KJC, Rodriguez GM, Maranda V, Cook DP, Macdonald E, Murshed H, Zhao S, McCloskey CW, Chruscinski A, Levy GA, Ardolino M, Vanderhyden BC. FGL2 promotes tumour growth and attenuates infiltration of activated immune cells in melanoma and ovarian cancer models. Sci Rep 2024; 14:787. [PMID: 38191799 PMCID: PMC10774293 DOI: 10.1038/s41598-024-51217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024] Open
Abstract
The tumour microenvironment is infiltrated by immunosuppressive cells, such as regulatory T cells (Tregs), which contribute to tumour escape and impede immunotherapy outcomes. Soluble fibrinogen-like protein 2 (sFGL2), a Treg effector protein, inhibits immune cell populations, via receptors FcγRIIB and FcγRIII, leading to downregulation of CD86 in antigen presenting cells and limiting T cell activation. Increased FGL2 expression is associated with tumour progression and poor survival in several different cancers, such as glioblastoma multiforme, lung, renal, liver, colorectal, and prostate cancer. Querying scRNA-seq human cancer data shows FGL2 is produced by cells in the tumour microenvironment (TME), particularly monocytes and macrophages as well as T cells and dendritic cells (DCs), while cancer cells have minimal expression of FGL2. We studied the role of FGL2 exclusively produced by cells in the TME, by leveraging Fgl2 knockout mice. We tested two murine models of cancer in which the role of FGL2 has not been previously studied: epithelial ovarian cancer and melanoma. We show that absence of FGL2 leads to a more activated TME, including activated DCs (CD86+, CD40+) and T cells (CD25+, TIGIT+), as well as demonstrating for the first time that the absence of FGL2 leads to more activated natural killer cells (DNAM-1+, NKG2D+) in the TME. Furthermore, the absence of FGL2 leads to prolonged survival in the B16F10 melanoma model, while the absence of FGL2 synergizes with oncolytic virus to prolong survival in the ID8-p53-/-Brca2-/- ovarian cancer model. In conclusion, targeting FGL2 is a promising cancer treatment strategy alone and in combination immunotherapies.
Collapse
Affiliation(s)
- Kristianne J C Galpin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Galaxia M Rodriguez
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Vincent Maranda
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - David P Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Elizabeth Macdonald
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Humaira Murshed
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Shan Zhao
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Curtis W McCloskey
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Andrzej Chruscinski
- Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Gary A Levy
- Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Michele Ardolino
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
5
|
Zhang S, Rao G, Heimberger A, Li S. Fibrinogen-like protein 2: Its biological function across cell types and the potential to serve as an immunotherapy target for brain tumors. Cytokine Growth Factor Rev 2023; 69:73-79. [PMID: 36085259 DOI: 10.1016/j.cytogfr.2022.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 02/07/2023]
Abstract
Brain tumors are among the 10 leading causes of cancer-related death and present unique treatment challenges due to their critical location, genetic heterogeneity, and the blood-brain barrier. Recent advances in targeted immunotherapy and immune checkpoint blocking therapy provide alternative therapeutic strategies for brain tumors. Fibrinogen-like protein 2 (FGL2), which induces transformation from low-grade glioma to high-grade glioblastoma, is a type II membrane protein that is highly expressed in both host immune cells and tumor cells. Studies have uncovered multiple forms of FGL2 proteins with a broad range of roles in inducing immune tolerance and avoiding immune surveillance in tumor cells. Of note, presence of FGL2 transforms low grade to high grade brain tumors via promoting Treg, macrophages, and perhaps stemness. Absence (knockout) of FGL2 in tumor cells (not in host cells) induces CD103 DC cells, which triggers tumor specific CD8 +T cell activity to reject brain tumor progression. Immunotherapies targeting FGL2 have shown great promise in improving survival time in murine models. In this article, we will summarize the biological function of FGL2 in immune and tumor cells.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amy Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shulin Li
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Mass spectrometry analysis of gut tissue in acute SIV-infection in rhesus macaques identifies early proteome alterations preceding the interferon inflammatory response. Sci Rep 2023; 13:690. [PMID: 36639424 PMCID: PMC9839751 DOI: 10.1038/s41598-022-27112-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/26/2022] [Indexed: 01/15/2023] Open
Abstract
HIV infection damages the gut mucosa leading to chronic immune activation, increased morbidities and mortality, and antiretroviral therapies, do not completely ameliorate mucosal dysfunction. Understanding early molecular changes in acute infection may identify new biomarkers underlying gut dysfunction. Here we utilized a proteomics approach, coupled with flow cytometry, to characterize early molecular and immunological alterations during acute SIV infection in gut tissue of rhesus macaques. Gut tissue biopsies were obtained at 2 times pre-infection and 4 times post-infection from 6 macaques. The tissue proteome was analyzed by mass spectrometry, and immune cell populations in tissue and blood by flow cytometry. Significant proteome changes (p < 0.05) occurred at 3 days post-infection (dpi) (13.0%), 14 dpi (13.7%), 28 dpi (16.9%) and 63 dpi (14.8%). At 3 dpi, proteome changes included cellular structural activity, barrier integrity, and activation of epithelial to mesenchymal transition (EMT) (FDR < 0.0001) prior to the antiviral response at 14 dpi (IFNa/g pathways, p < 0.001). Novel EMT proteomic biomarkers (keratins 2, 6A and 20, collagen 12A1, desmoplakin) and inflammatory biomarkers (PSMB9, FGL2) were associated with early infection and barrier dysfunction. These findings identify new biomarkers preceding inflammation in SIV infection involved with EMT activation. This warrants further investigation of the role of these biomarkers in chronic infection, mucosal inflammation, and disease pathogenesis of HIV.
Collapse
|
7
|
Jiao S, Tan N, Zhu C, Fu Y, Zhang K, Ding Y, Xu W. The distinctive role of membrane fibrinogen-like protein 2 in the liver stage of rodent malaria infections. Parasite Immunol 2023; 45:e12956. [PMID: 36300695 DOI: 10.1111/pim.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 01/09/2023]
Abstract
Viral infection often induce the expression of murine fibrinogen-like protein 2 (mFGL2) triggering immune coagulation, which causes severe liver pathogenesis via increased fibrin deposition and thrombosis in the microvasculature. We aimed to investigate the role of mFGL2 in the liver stage of malaria infections. We reveal that infection with malaria sporozoites also induces increased expression of mFGL2 and that this expression is primarily located within the liver Kupffer and endothelial cells. In addition, we report that inhibition of FGL2 has no significant effect on immune coagulation but increases the expression of inflammatory cytokines in the livers of infected mice. Interestingly, FGL2 deficiency had no significant impact on the development of liver stage malaria parasites or the pathogenesis of the infected liver. In contrast to viral infections, we conclude that mFGL2 does not contribute to either parasite development or liver pathology during these infections, revealing the unique features of this protein in liver-stage malaria infections.
Collapse
Affiliation(s)
- Shiming Jiao
- The School of Medicine, Chongqing University, Chongqing, China.,Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Nie Tan
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chengyu Zhu
- The School of Medicine, Chongqing University, Chongqing, China.,Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yong Fu
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Kun Zhang
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Ding
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenyue Xu
- The School of Medicine, Chongqing University, Chongqing, China.,Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
8
|
Jiang HZ, Yang B, Jiang YL, Liu X, Chen DL, Long FX, Yang Z, Tang DX. Development and validation of prognostic models for colon adenocarcinoma based on combined immune-and metabolism-related genes. Front Oncol 2022; 12:1025397. [PMID: 36387195 PMCID: PMC9661394 DOI: 10.3389/fonc.2022.1025397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/30/2022] [Indexed: 11/02/2023] Open
Abstract
Background The heterogeneity of tumor tissue is one of the reasons for the poor effect of tumor treatment, which is mainly affected by the tumor immune microenvironment and metabolic reprogramming. But more research is needed to find out how the tumor microenvironment (TME) and metabolic features of colon adenocarcinoma (COAD) are related. Methods We obtained the transcriptomic and clinical data information of COAD patients from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Consensus clustering analysis was used to identify different molecular subtypes, identify differentially expressed genes (DEGs) associated with immune-and metabolism-related genes (IMRGs) prognosis. Univariate and multivariable Cox regression analysis and Lasso regression analysis were applied to construct the prognostic models based on the IMRG risk score. The correlations between risk scores and TME, immune cell infiltration, and immune checkpoint genes were investigated. Lastly, potential appropriate drugs related to the risk score were screened by drug sensitivity analysis. Results By consensus clustering analysis, we identified two distinct molecular subtypes. It was also found that the multilayered IMRG subtypes were associated with the patient's clinicopathological characteristics, prognosis, and TME cell infiltration characteristics. Meanwhile, a prognostic model based on the risk score of IMRGs was constructed and its predictive power was verified internally and externally. Clinicopathological analysis and nomogram give it better clinical guidance. The IMRG risk score plays a key role in immune microenvironment infiltration. Patients in the high-risk groups of microsatellite instability (MSI) and tumor mutational burden (TMB) were found to, although with poor prognosis, actively respond to immunotherapy. Furthermore, IMRG risk scores were significantly associated with immune checkpoint gene expression. The potential drug sensitivity study helps come up with and choose a chemotherapy treatment plan. Conclusion Our comprehensive analysis of IMRG signatures revealed a broad range of regulatory mechanisms affecting the tumor immune microenvironment (TIME), immune landscape, clinicopathological features, and prognosis. And to explore the potential drugs for immunotherapy. It will help to better understand the molecular mechanisms of COAD and provide new directions for disease treatment.
Collapse
Affiliation(s)
- Hui-zhong Jiang
- College of Graduate, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Bing Yang
- College of Graduate, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ya-li Jiang
- College of Graduate, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xun Liu
- College of Graduate, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Da-lin Chen
- College of Graduate, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Feng-xi Long
- College of Graduate, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhu Yang
- College of Graduate, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dong-xin Tang
- College of Graduate, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
9
|
Ma X, Zhu H, Cheng L, Chen X, Shu K, Zhang S. Targeting FGL2 in glioma immunosuppression and malignant progression. Front Oncol 2022; 12:1004700. [PMID: 36313679 PMCID: PMC9606621 DOI: 10.3389/fonc.2022.1004700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant type of glioma with the worst prognosis. Traditional therapies (surgery combined with radiotherapy and chemotherapy) have limited therapeutic effects. As a novel therapy emerging in recent years, immunotherapy is increasingly used in glioblastoma (GBM), so we expect to discover more effective immune targets. FGL2, a member of the thrombospondin family, plays an essential role in regulating the activity of immune cells and tumor cells in GBM. Elucidating the role of FGL2 in GBM can help improve immunotherapy efficacy and design treatment protocols. This review discusses the immunosuppressive role of FGL2 in the GBM tumor microenvironment and its ability to promote malignant tumor progression while considering FGL2-targeted therapeutic strategies. Also, we summarize the molecular mechanisms of FGL2 expression on various immune cell types and discuss the possibility of FGL2 and its related mechanisms as new GBM immunotherapy.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongtao Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lidong Cheng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suojun Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Suojun Zhang,
| |
Collapse
|
10
|
Sulimai NH, Brown J, Lominadze D. Fibrinogen, Fibrinogen-like 1 and Fibrinogen-like 2 Proteins, and Their Effects. Biomedicines 2022; 10:1712. [PMID: 35885017 PMCID: PMC9313381 DOI: 10.3390/biomedicines10071712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/05/2022] Open
Abstract
Fibrinogen (Fg) and its derivatives play a considerable role in many diseases. For example, increased levels of Fg have been found in many inflammatory diseases, such as Alzheimer's disease, multiple sclerosis, traumatic brain injury, rheumatoid arthritis, systemic lupus erythematosus, and cancer. Although associations of Fg, Fg chains, and its derivatives with various diseases have been established, their specific effects and the mechanisms of actions involved are still unclear. The present review is the first attempt to discuss the role of Fg, Fg chains, its derivatives, and other members of Fg family proteins, such as Fg-like protein 1 and 2, in inflammatory diseases and their effects in immunomodulation.
Collapse
Affiliation(s)
- Nurul H. Sulimai
- Departments of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (N.H.S.); (J.B.)
| | - Jason Brown
- Departments of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (N.H.S.); (J.B.)
| | - David Lominadze
- Departments of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (N.H.S.); (J.B.)
- Departments of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
11
|
Pulkka OP, Viisanen L, Tynninen O, Laaksonen M, Reichardt P, Reichardt A, Eriksson M, Hall KS, Wardelmann E, Nilsson B, Sihto H, Joensuu H. Fibrinogen-like protein 2 in gastrointestinal stromal tumour. J Cell Mol Med 2022; 26:1083-1094. [PMID: 35029030 PMCID: PMC8831987 DOI: 10.1111/jcmm.17163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022] Open
Abstract
Gastrointestinal stromal tumour (GIST), the most common sarcoma of the gastrointestinal tract, can be treated effectively with tyrosine kinase inhibitors, such as imatinib. Cancer immune therapy has limited efficacy, and little is known about the immune suppressive factors in GISTs. Fibrinogen‐like protein 2 (FGL2) is expressed either as a membrane‐associated protein or as a secreted soluble protein that has immune suppressive functions. We found that GISTs expressed FGL2 mRNA highly compared to other types of cancer in a large human cancer transcriptome database. GIST expressed FGL2 frequently also when studied using immunohistochemistry in two large clinical series, where 333 (78%) out of the 425 GISTs were FGL2 positive. The interstitial cells of Cajal, from which GISTs may originate, expressed FGL2. FGL2 expression was associated with small GIST size, low mitotic counts and low tumour‐infiltrating lymphocyte (TIL) counts. Patients whose GIST expressed FGL2 had better recurrence‐free survival than patients whose GIST lacked expression. Imatinib upregulated FGL2 in GIST cell lines, and the patients with FGL2‐negative GIST appeared to benefit most from long duration of adjuvant imatinib. We conclude that GISTs express FGL2 frequently and that FGL2 expression is associated with low TIL counts and favourable survival outcomes.
Collapse
Affiliation(s)
- Olli-Pekka Pulkka
- Laboratory of Molecular Oncology, Department of Oncology, University of Helsinki, Helsinki, Finland
| | - Leevi Viisanen
- Laboratory of Molecular Oncology, Department of Oncology, University of Helsinki, Helsinki, Finland
| | - Olli Tynninen
- Department of Pathology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Peter Reichardt
- Sarkomzentrum Berlin-Brandenburg, HELIOS Klinikum Berlin-Buch, Berlin, Germany
| | - Annette Reichardt
- Sarkomzentrum Berlin-Brandenburg, HELIOS Klinikum Berlin-Buch, Berlin, Germany
| | - Mikael Eriksson
- Department of Oncology, Skane University Hospital and Lund University, Lund, Sweden
| | - Kirsten Sundby Hall
- Department of Oncology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| | - Eva Wardelmann
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Bengt Nilsson
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Harri Sihto
- Rare Cancers Research Group, Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Heikki Joensuu
- Laboratory of Molecular Oncology, Department of Oncology, University of Helsinki, Helsinki, Finland.,Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
12
|
Hou XX, Wang XQ, Zhou WJ, Li DJ. Regulatory T cells induce polarization of pro-repair macrophages by secreting sFGL2 into the endometriotic milieu. Commun Biol 2021; 4:499. [PMID: 33893391 PMCID: PMC8065041 DOI: 10.1038/s42003-021-02018-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
An increased number of highly active regulatory T cells (Tregs) and macrophages has been found in peritoneal fluid from women with endometriosis. Here, we show that the level of Tregs-derived soluble fibrinogen-like protein 2 (sFGL2) increases in the peritoneal fluid of women with endometriosis. Higher expression of FGL2 and its receptor CD32B is observed in eutopic endometrium and ectopic tissues. The production of sFGL2 in Tregs may be enhanced by several cytokines. sFGL2 selectively induces pro-repair macrophage polarization mainly through the activation of the SHP2-ERK1/2-STAT3 signaling pathway, and the suppression of the NF-κB signaling pathway. Furthermore, sFGL2 induces a much higher level of metallothionein (MT) expression that in turn facilitates pro-repair macrophages polarization. sFGL2-induced pro-repair macrophages promote Th2 and Tregs differentiation, creating a positive feedback loop. These findings suggest that sFGL2 secreted by Tregs skews macrophages toward a pro-repair phenotype via SHP2-ERK1/2-STAT3 signaling pathway, which is involved in the progression of endometriosis. Hou et al. discover that regulatory T-cells secrete soluble fibrinogen-like protein 2 that induces endometrial macrophages to polarize towards a pro-repair phenotype through the SHP2-ERK1/2-STAT3 signaling pathway. These data provide insights into the immunology of endometriosis.
Collapse
Affiliation(s)
- Xin-Xin Hou
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital and Institute of Obstetrics and Gynecology, IRD, Fudan University Shanghai Medical College, Shanghai, China
| | - Xiao-Qiu Wang
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital and Institute of Obstetrics and Gynecology, IRD, Fudan University Shanghai Medical College, Shanghai, China
| | - Wen-Jie Zhou
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital and Institute of Obstetrics and Gynecology, IRD, Fudan University Shanghai Medical College, Shanghai, China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital and Institute of Obstetrics and Gynecology, IRD, Fudan University Shanghai Medical College, Shanghai, China.
| |
Collapse
|
13
|
Zhang X, Ma J, Li H, Zhou L, Liu Z, Lyu S, He Q, Li X. Overexpression of fibrinogen-like protein 2 alleviates acute rejection in rat models of liver transplantation. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:408. [PMID: 33842629 PMCID: PMC8033335 DOI: 10.21037/atm-20-7881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background The role of cluster of differentiation (CD)8+ regulatory T cells (Tregs) has previously been elucidated in tolerance models. Fibrinogen-like protein 2 (FGL2), that is secreted by Treg cells, which exhibited immunosuppressive functions, may alleviate acute rejection (AR). However, the precise role of CD8+ Tregs and FGL2 in the AR of rat liver transplantation remains unknown. Our previous study found that CD8+CD45RClow Tregs played crucial roles in maintaining immune tolerance. Here, we elucidated the role of CD8+ CD45RClowTreg and FGL2 in AR of rat liver transplantation. Methods A rat non-materialized AR of liver transplantation model was established using donors infected with no-load adeno-associated virus and adeno‐associated virus expressing FGL2. Results There was an accumulation of tolerogenic CD8+CD45RClow in allografts compared with blank groups. Moreover, the proportion of CD8+CD45RClow Tregs was increased with longer survival time. Furthermore, we detected higher levels of FGL2 in the allografts infected with AAV-FGL2 in rats with AR of liver transplantation. We found that FGL2 could alleviate AR, and the survival time was prolonged in the recipients of donors infected with AAV-FGL2. Conclusions Our data suggest that CD8+CD45RClow Tregs was accumulated in allografts. The presence of FGL2 alleviated AR and prolonged survival time in the AR of liver transplantation rat model, suggesting that FGL2 and CD8+CD45RClow Tregs may serves as novel therapeutic targets for AR in liver transplantation.
Collapse
Affiliation(s)
- Xinxue Zhang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jun Ma
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Han Li
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lin Zhou
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhe Liu
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Shaocheng Lyu
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Qiang He
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xianliang Li
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
El-Mesery M, El-Mowafy M, Youssef LF, El-Mesery A, Abed SY, Elgaml A. Serum Soluble Fibrinogen-Like Protein 2 Represents a Novel Biomarker for Differentiation Between Acute and Chronic Egyptian Hepatitis B Virus-Infected Patients. J Interferon Cytokine Res 2021; 41:52-59. [DOI: 10.1089/jir.2020.0118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohammed El-Mowafy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Laila F. Youssef
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed El-Mesery
- Department of Tropical Medicine, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sally Yussef Abed
- Department of Respiratory Care, College of Applied Medical Science in Jubail, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Abdelaziz Elgaml
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| |
Collapse
|
15
|
Yuan X, Li Y, Zhang AZ, Jiang CH, Li FP, Xie YF, Li JF, Liang WH, Zhang HJ, Liu CX, Pang LJ, Shen XH, Li F, Hu JM. Tumor-associated macrophage polarization promotes the progression of esophageal carcinoma. Aging (Albany NY) 2020; 13:2049-2072. [PMID: 33323552 PMCID: PMC7880404 DOI: 10.18632/aging.202201] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
The immune response facilitated by tumor-associated macrophages is a vital determinant of tumor progression. We identified differentially expressed genes between various macrophage phenotypes in the Gene Expression Omnibus, and used Kaplan-Meier Plotter to determine which of them altered the prognosis of esophageal carcinoma patients. Fibrinogen-like protein 2 (FGL2), an immunosuppressive factor in the tumor microenvironment of various cancers, was upregulated in M2 macrophages, and higher FGL2 expression was associated with poorer survival in esophageal carcinoma patients. Using the TIMER database, we found that FGL2 expression correlated positively with the levels of immune markers of infiltrating B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic cells in esophageal carcinoma samples. Correlation analyses in cBioPortal revealed that the mRNA levels of FGL2 correlated strongly with those of interleukin 10, matrix metalloproteinase 9, C-C motif chemokine ligand 5, T-cell immunoglobulin mucin 3, interleukin 13, vascular cell adhesion molecule 1, macrophage colony-stimulating factor and fibroblast growth factor 7 in esophageal carcinoma tissues. The same cytokines were upregulated when esophageal squamous cell carcinoma cells were co-cultured with M2-like tumor-associated macrophages. Thus, by secreting FGL2, M2-like tumor-associated macrophages may create an immunosuppressive tumor microenvironment that induces the occurrence and progression of esophageal carcinoma.
Collapse
Affiliation(s)
- Xin Yuan
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang 832000, China
| | - Ya Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang 832000, China
| | - An Zhi Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang 832000, China
| | - Chen Hao Jiang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang 832000, China
| | - Fan Ping Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang 832000, China
| | - Yu Fang Xie
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang 832000, China
| | - Jiang Fen Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang 832000, China
| | - Wei Hua Liang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang 832000, China
| | - Hai Jun Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang 832000, China
| | - Chun Xia Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang 832000, China
| | - Li Juan Pang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang 832000, China
| | - Xi Hua Shen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang 832000, China
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang 832000, China.,Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jian Ming Hu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang 832000, China
| |
Collapse
|
16
|
Yang Y, Chen J, Yang J, Yi C, Yang F, Gao W, Li Z, Bai X. Predictive value of soluble fibrinogen-like protein 2 for survival in traumatic patients with sepsis. Clin Chim Acta 2020; 510:196-202. [PMID: 32679128 DOI: 10.1016/j.cca.2020.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 11/15/2022]
Abstract
BACKGROUND Despite significant advances in the diagnosis and management of sepsis and trauma over the past few decades, severe infection and injury continue to represent major public health challenges. Fibrinogen-like protein 2 (FGL2), a member of the fibrinogen family, can be expressed as a membrane-associated protein with coagulation activity or in a secreted form possessing unique immune suppressive functions. In this study, we evaluated whether soluble fibrinogen-like protein 2 (sFGL2) can serve as a biomarker to predict the development of sepsis in trauma patients. METHODS sFGL2 concentrations were determined by ELISA assays in sera of 75 trauma patients clinically classified into non-sepsis group and sepsis group. For comparison, 15 age- and sex-matched healthy individuals were included. RESULTS sFGL2 concentrations were dramatically elevated in trauma patients compared to healthy controls. In the patient group, the patients with sepsis showed a significant increase in sFGL2 concentrations compared with non-septic patients. Moreover, non-survivors of septic patients displayed higher sFGL2 concentrations compared with survivors. In addition, sFGL2 concentrations were positively correlated with Sequential Organ Failure Assessment (SOFA) scores, serum IL-8 and IL-10 concentrations, but reversely correlated with Glasgow coma scale (GCS) scores, platelet and lymphocyte counts. Furthermore, sFGL2 was found to be an independent predictor of 28-day mortality in traumatic patients with sepsis by logistic regression analysis. CONCLUSION sFGL2 concentrations were significantly correlated with the development and mortality of sepsis in traumatic patients. Thus, sFGL2 may serve as a potential indicator for traumatic patients with sepsis.
Collapse
Affiliation(s)
- Yang Yang
- Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajun Chen
- Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiashen Yang
- Second Clinical College, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengla Yi
- Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Yang
- Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Gao
- Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhanfei Li
- Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiangjun Bai
- Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
17
|
Latha K, Yan J, Yang Y, Gressot LV, Kong LY, Manyam G, Ezhilarasan R, Wang Q, Sulman EP, Eric Davis R, Huang S, Fuller GN, Rao A, Heimberger AB, Li S, Rao G. The Role of Fibrinogen-Like Protein 2 on Immunosuppression and Malignant Progression in Glioma. J Natl Cancer Inst 2020; 111:292-300. [PMID: 29947810 DOI: 10.1093/jnci/djy107] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/10/2018] [Accepted: 05/21/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Virtually all low-grade gliomas (LGGs) will progress to high-grade gliomas (HGGs), including glioblastoma, the most common malignant primary brain tumor in adults. A key regulator of immunosuppression, fibrinogen-like protein 2 (FGL2), may play an important role in the malignant transformation of LGG to HGG. We sought to determine the mechanism of FGL2 on tumor progression and to show that inhibiting FGL2 expression had a therapeutic effect. METHODS We analyzed human gliomas that had progressed from low- to high-grade for FGL2 expression. We modeled FGL2 overexpression in an immunocompetent genetically engineered mouse model to determine its effect on tumor progression. Tumors and their associated microenvironments were analyzed for their immune cell infiltration. Mice were treated with an FGL2 antibody to determine a therapeutic effect. Statistical tests were two-sided. RESULTS We identified increased expression of FGL2 in surgically resected tumors that progressed from low to high grade (n = 10). The Cancer Genome Atlas data showed that LGG cases with overexpression of FGL2 (n = 195) had statistically significantly shorter survival (median = 62.9 months) compared with cases with low expression (n = 325, median = 94.4 months, P < .001). In a murine glioma model, HGGs induced with FGL2 exhibited a mesenchymal phenotype and increased CD4+ forkhead box P3 (FoxP3)+ Treg cells, implicating immunosuppression as a mechanism for tumor progression. Macrophages in these tumors were skewed toward the immunosuppressive M2 phenotype. Depletion of Treg cells with anti-FGL2 statistically significantly prolonged survival in mice compared with controls (n = 11 per group, median survival = 90 days vs 62 days, P = .004), shifted the phenotype from mesenchymal HGG to proneural LGG, and decreased M2 macrophage skewing. CONCLUSIONS FGL2 facilitates glioma progression from low to high grade. Suppressing FGL2 expression holds therapeutic promise for halting malignant transformation in glioma.
Collapse
Affiliation(s)
- Khatri Latha
- Departments of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jun Yan
- Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yuhui Yang
- Departments of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Loyola V Gressot
- Departments of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ling-Yuan Kong
- Departments of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ganiraju Manyam
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Qianghu Wang
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Erik P Sulman
- Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - R Eric Davis
- Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Suyun Huang
- Departments of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gregory N Fuller
- Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Arvind Rao
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Amy B Heimberger
- Departments of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shulin Li
- Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ganesh Rao
- Departments of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
18
|
Fu Y, Ding Y, Wang Q, Zhu F, Tan Y, Lu X, Guo B, Zhang Q, Cao Y, Liu T, Cui L, Xu W. Blood-stage malaria parasites manipulate host innate immune responses through the induction of sFGL2. SCIENCE ADVANCES 2020; 6:eaay9269. [PMID: 32133407 PMCID: PMC7043914 DOI: 10.1126/sciadv.aay9269] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Malaria parasites suppress host immune responses to facilitate their survival, but the underlying mechanism remains elusive. Here, we found that blood-stage malaria parasites predominantly induced CD4+Foxp3+CD25+ regulatory T cells to release soluble fibrinogen-like protein 2 (sFGL2), which substantially enhanced the infection. This was attributed to the capacity of sFGL2 to inhibit macrophages from releasing monocyte chemoattractant protein-1 (MCP-1) and to sequentially reduce the recruitment of natural killer/natural killer T cells to the spleen and the production of interferon-γ. sFGL2 inhibited c-Jun N-terminal kinase phosphorylation in the Toll-like receptor 2 signaling pathway of macrophages dependent on FcγRIIB receptor to release MCP-1. Notably, sFGL2 were markedly elevated in the sera of patients with malaria, and recombinant FGL2 substantially suppressed Plasmodium falciparum from inducing macrophages to release MCP-1. Therefore, we highlight a previously unrecognized immune suppression strategy of malaria parasites and uncover the fundamental mechanism of sFGL2 to suppress host innate immune responses.
Collapse
Affiliation(s)
- Yong Fu
- Department of Pathogenic Biology, Army Medical University (The Third Military Medical University), Chongqing 400038, P.R. China
| | - Yan Ding
- Department of Pathogenic Biology, Army Medical University (The Third Military Medical University), Chongqing 400038, P.R. China
| | - Qinghui Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, P.R. China
| | - Feng Zhu
- Department of Pathogenic Biology, Army Medical University (The Third Military Medical University), Chongqing 400038, P.R. China
| | - Yulong Tan
- Department of Tropical Medicine, Army Medical University (The Third Military Medical University), Chongqing 400038, P.R. China
| | - Xiao Lu
- Department of Pathogenic Biology, Army Medical University (The Third Military Medical University), Chongqing 400038, P.R. China
| | - Bo Guo
- Department of Pathogenic Biology, Army Medical University (The Third Military Medical University), Chongqing 400038, P.R. China
| | - Qingfeng Zhang
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, P.R. China
| | - Taiping Liu
- Department of Pathogenic Biology, Army Medical University (The Third Military Medical University), Chongqing 400038, P.R. China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Wenyue Xu
- Department of Pathogenic Biology, Army Medical University (The Third Military Medical University), Chongqing 400038, P.R. China
| |
Collapse
|
19
|
Hasan A, Kochumon S, Al-Ozairi E, Tuomilehto J, Al-Mulla F, Ahmad R. Correlation Profile of Suppression of Tumorigenicity 2 and/or Interleukin-33 with Biomarkers in the Adipose Tissue of Individuals with Different Metabolic States. Diabetes Metab Syndr Obes 2020; 13:3839-3859. [PMID: 33116731 PMCID: PMC7586022 DOI: 10.2147/dmso.s251978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 08/01/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The suppression of tumorigenicity 2 (ST2) has two main splice variants including a membrane bound (ST2) form, which activates the myeloid differentiation primary response 88 (MyD88)/nuclear factor-kappa B (NF-κB) signaling pathway, and a secreted soluble form (sST2), which acts as a decoy receptor for ST2 ligand, interleukin (IL)-33. The IL-33/ST2 axis is protective against obesity, insulin resistance, and type 2 diabetes (T2D). In humans, adipose tissue IL-33 displays distinct correlation profiles with glycated hemoglobin, ST2, and other immunometabolic mediators, depending on the glycemic health of the individuals. We determined whether adipose tissue ST2 displays distinct correlation profiles with immunometabolic mediators and whether ST2 and/or IL-33 are correlated with intracellular signaling molecules. PATIENTS AND METHODS A total of 91 adults with normal glycemia, prediabetes, and T2D were included. After measuring their anthropometric and biochemical parameters, subcutaneous adipose tissues were isolated and mRNA expression of biomarkers was measured. RESULTS In individuals with normal glycemia, adipose tissue ST2 was directly correlated with chemokine (C-C motif) ligand (CCL)-2, CCL5, IL-12, fibrinogen-like protein 2 (FGL2) and interferon regulatory factor (IRF)-4, but inversely correlated with cytochrome C oxidase subunit 7A1. IL-33 and ST2 were directly correlated with tumor necrosis factor receptor-associated factor 6 (TRAF6), NF-κB, and nuclear factor of activated T-cells 5 (NFAT5). In individuals with prediabetes, ST2 was inversely correlated with IL-5, whereas IL-33 but not ST2 was directly correlated with MyD88 and NF-κB. In individuals with T2D, ST2 was directly correlated with CCL2, IL-1β, and IRF5. IL-33 and ST2 were directly correlated with MyD88, TRAF6, and NF-κB. CONCLUSION Adipose tissue ST2 and IL-33 show different correlation profiles with various immunometabolic biomarkers depending on the metabolic state of the individuals. Therefore, targeting the IL-33/ST2 axis might form the basis for novel therapies to combat metabolic disorders.
Collapse
Affiliation(s)
- Amal Hasan
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Kuwait City, Kuwait
- Correspondence: Amal Hasan Email
| | - Shihab Kochumon
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Ebaa Al-Ozairi
- Clinical Research Unit, Medical Division, Dasman Diabetes Institute, Kuwait City, Kuwait
- Department of Medicine, Faculty of Medicine, Kuwait City, Kuwait
| | - Jaakko Tuomilehto
- Research Division, Dasman Diabetes Institute, Kuwait City, Kuwait
- Department of Public Health, University of Helsinki, Helsinki, Finland
- National School of Public Health, Madrid, Spain
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Functional Genomics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
20
|
Flippe L, Bézie S, Anegon I, Guillonneau C. Future prospects for CD8 + regulatory T cells in immune tolerance. Immunol Rev 2019; 292:209-224. [PMID: 31593314 PMCID: PMC7027528 DOI: 10.1111/imr.12812] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CD8+ Tregs have been long described and significant progresses have been made about their phenotype, their functional mechanisms, and their suppressive ability compared to conventional CD4+ Tregs. They are now at the dawn of their clinical use. In this review, we will summarize their phenotypic characteristics, their mechanisms of action, the similarities, differences and synergies between CD8+ and CD4+ Tregs, and we will discuss the biology, development and induction of CD8+ Tregs, their manufacturing for clinical use, considering open questions/uncertainties and future technically accessible improvements notably through genetic modifications.
Collapse
Affiliation(s)
- Léa Flippe
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Séverine Bézie
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Ignacio Anegon
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Carole Guillonneau
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
21
|
Yang M, Zhang Z, Chen J, Xu M, Huang J, Wang M, Li W, Wan X, Yuen MF, Luo X, Xi D, Ning Q. Soluble fibrinogen-like protein 2 promotes the growth of hepatocellular carcinoma via attenuating dendritic cell-mediated cytotoxic T cell activity. J Exp Clin Cancer Res 2019; 38:351. [PMID: 31409352 PMCID: PMC6693134 DOI: 10.1186/s13046-019-1326-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Soluble fibrinogen-like protein 2 (sFGL2), a secretory protein expressed by regulatory T cells (Tregs) with immunosuppressive activity, is highly expressed in both the peripheral blood and tumor tissue of patients with hepatocellular carcinoma (HCC); however, sFGL2 function in HCC remains largely unknown. Here, we elucidated the potential role of sFGL2 in HCC progression. METHODS T cells, dendritic cells (DCs), and related cytokines in the tumor microenvironment were comparatively analyzed in BALB/c and C57BL/6 mice bearing transplanted hepatomas harboring Fgl2-knockout or receiving sFGL2-antibody treatment. Additionally, the effects of sFGL2 on DCs and T cells were evaluated in vivo and ex vivo. RESULTS The growth of both subcutaneously and orthotopically transplanted hepatomas was inhibited in Fgl2-knockout mice and those treated with the sFGL2 antibody, respectively, as compared with controls. Moreover, sFGL2 depletion enhanced the proportion and cytotoxicity of cytotoxic T cells, promoted DC maturation, and improved DC activity to proliferate T cells in the tumor microenvironment. Furthermore, we detected lower levels of interleukin (IL)-35 in both types of transplanted hepatomas and higher level of IL-6 in orthotopically transplanted hepatomas following sFGL2 depletion. Mechanistically, we found that sFGL2 impaired bone-marrow-derived DC (BMDCs) function by inhibiting phosphorylation of Akt, nuclear factor-kappaB, cAMP response element binding protein, and p38 and downregulating the expression of major histocompatibility complex II, CD40, CD80, CD86, and CD83 on BMDCs in vitro. CONCLUSIONS Our data suggest that sFGL2 promotes hepatoma growth by attenuating DC activity and subsequent CD8+ T cell cytotoxicity, suggesting sFGL2 as a novel potential therapeutic target for HCC treatment.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Biomarkers
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cytokines/metabolism
- Cytotoxicity, Immunologic/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Disease Models, Animal
- Female
- Fibrinogen/antagonists & inhibitors
- Fibrinogen/genetics
- Fibrinogen/metabolism
- Fibrinogen/pharmacology
- Heterografts
- Humans
- Immunophenotyping
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Mice
- Mice, Knockout
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Muyang Yang
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Zhongwei Zhang
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Jiajia Chen
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Mengying Xu
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Jiaquan Huang
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Ming Wang
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Weina Li
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xiaoyang Wan
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Man-Fung Yuen
- Department of Medicine, the University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Xi
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Qin Ning
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
22
|
Abstract
Although cluster of differentiation (CD)8 regulatory T (Treg) cells have been in the last 20 years more studied since evidences of their role in tolerance as been demonstrated in transplantation, autoimmune diseases and cancer, their characteristics are still controversial. In this review, we will focus on recent advances on CD8 Treg cells and description of a role for CD8 Treg cells in tolerance in both solid organ transplantation and graft-versus-host disease and their potential for clinical trials.
Collapse
|
23
|
Association between Adipose Tissue Interleukin-33 and Immunometabolic Markers in Individuals with Varying Degrees of Glycemia. DISEASE MARKERS 2019; 2019:7901062. [PMID: 31073344 PMCID: PMC6470453 DOI: 10.1155/2019/7901062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/17/2018] [Indexed: 12/24/2022]
Abstract
Introduction Interleukin-33 (IL-33), the ligand for the receptor ST2, is abundant in adipose tissue, including preadipocytes, adipocytes, and endothelial cells. The IL-33/ST2 axis is protective against obesity, insulin resistance, and type 2 diabetes (T2D) in animal models. We determined whether adipose tissue IL-33 was associated with glycated hemoglobin (HbA1c), as well as mediators of inflammation and immune regulation and beiging of adipose tissue, among individuals with varying degrees of glycemia. Materials and Methods A total of 91 adults with normoglycemia, prediabetes, and T2D were included. After measuring their anthropometric and biochemical parameters, subcutaneous adipose tissue samples were isolated and mRNA expression of cytokines, chemokines, chemokine receptors, pattern recognition receptors, and mediators involved in beiging of adipose tissue were measured. Results Adipose tissue IL-33 was inversely associated with HbA1c in individuals with normoglycemia and T2D but not in those with prediabetes and was inversely correlated with fasting plasma glucose in individuals with T2D and with a better glycemic control. IL-33-to-ST2 ratio was inversely correlated with HbA1c in individuals with normoglycemia but not in those with prediabetes or T2D. IL-33 was directly associated with ST2, CD302, fibrinogen-like protein 2 (FGL2), and PR domain containing 16 (PRDM16) but inversely correlated with chemokine (C-C motif) ligand (CCL) 7 and CCL8 in individuals with normoglycemia. Similarly, IL-33 was directly associated with ST2, CD302, FGL2, PRDM16, and, additionally, toll-like receptor (TLR) 3 and IL-12A in individuals with T2D. However, IL-33 was not associated with any of these mediators but was directly and strongly associated with TLR9 in individuals with prediabetes. Conclusions IL-33 and/or IL-33/ST2 dynamics and biological functions may play a role in overall glycemia among humans and may represent a novel target by which glucose-lowering managements confer their beneficial effects.
Collapse
|
24
|
Xu WB, Hu QH, Wu CN, Fan ZK, Song ZF. Serum soluble fibrinogen-like protein 2 concentration predicts delirium after acute pancreatitis. Brain Behav 2019; 9:e01261. [PMID: 30884164 PMCID: PMC6456778 DOI: 10.1002/brb3.1261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/20/2019] [Accepted: 02/23/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Inflammation can cause delirium. Soluble fibrinogen-like protein 2 (sFGL2) is a modulator of the immune response and more recently found to be a biomarker for brain injury. This study was designed to discover the predictive capability of serum sFGL2 concentrations for delirium after acute pancreatitis (AP). MATERIALS AND METHODS In this prospective, observational study, serum sFGL2 concentrations were quantified in 184 healthy controls and in 184 AP patients. Disease severity was assessed by Acute Physiology and Chronic Health Care Evaluation II score, Ranson score, multiple organ dysfunction score, and sequential organ failure assessment score. Delirium was recorded during hospital stay. Predictors of delirium were identified using multivariate analysis. RESULTS Serum sFGL2 concentrations were substantially higher in AP patients than in controls. Serum sFGL2 concentrations were intimately correlated with the preceding severity parameters. Serum sFGL2 and the aforementioned severity parameters were independent predictors for delirium. Under receiver operating characteristic curve, the discriminatory ability of serum sFGL2 was equivalent to those of the above-mentioned severity parameters. Moreover, serum sFGL2 dramatically improved the predictive value of the aforementioned severity parameters. CONCLUSIONS Elevation of serum sFGL2 concentrations is strongly associated with the AP severity and has the potential to distinguish delirium after AP.
Collapse
Affiliation(s)
- Wen-Bin Xu
- Department of General Surgery, The Zhejiang Xiaoshan Hospital, Hangzhou, China
| | - Qian-Hua Hu
- Department of General Surgery, The Zhejiang Xiaoshan Hospital, Hangzhou, China
| | - Chan-Ni Wu
- Department of Gastroenterology, The Zhejiang Xiaoshan Hospital, Hangzhou, China
| | - Zhi-Kun Fan
- Department of General Surgery, The Zhejiang Xiaoshan Hospital, Hangzhou, China
| | - Zhang-Fa Song
- Department of Anorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Prognosis, Prevention and Research Prospects of Progression to Severe Hepatitis B (Liver Failure). ACUTE EXACERBATION OF CHRONIC HEPATITIS B 2019. [PMCID: PMC7498886 DOI: 10.1007/978-94-024-1603-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This chapter describes the factors involved in the disease prognosis, parameters of outcome evaluations, principles and techniques for progression prevention. In last section, the future perspectives in both basic and clinical investigations towards unmet medical needs in AECHB and HBV ACLF are discussed.Factors affecting the prognosis of patients with severe hepatitis B include those related to the virus (including viral load, HBeAg expression, and gene mutation), patient age, co-morbidity, TBil, INR, serum Cr, and the host genetic background. Indicators associated with patient prognosis include TBil, total cholesterol, albumin and prealbumin, hepatic encephalopathy, kidney damage, alpha-fetoprotein and vitamin D binding protein, blood sodium level, virus HBeAg expression and genotype, and blood glucose. In addition to TBil, INR, hepatic encephalopathy, Cr level and AFP as indicators for prognosis of severe hepatitis, some other parameters such as clinical signs, symptoms, serum levels of total cholesterol and albumin and natrium, and coagulation factors are all valuable in assessment. The roles of cell apoptosis, liver regeneration and immunological parameters in assessing patient prognosis are under study. Prognostic evaluating systems include MELD score, MELD-Na score, iMELD score, KCI and CTP score. Prevention of severe hepatitis B should be started in asymptomatic patients. Close observation, sufficient rest, adequate nutrition, meticulous nursing and psychological care, preventing and removing exacerbating factors, treating concomitant diseases, reasonable antiviral and comprehensive therapies are helpful to prevent CHB patients from developing to severe hepatitis. For patients who already have severe hepatitis B, the prevention and management of complications is important for lowering mortality rate. New research directions in acute-on-chronic liver failure include: (1) Additional well controlled studies using present or new liver systems are warranted. Other approaches include the use of granulocyte colony stimulating factor to treat infections as well as the potential of use of stem cells to restore immune integrity and enhance liver regeneration. (2) Using new cell lines and animal models to understand the molecular biology of HBV, the immune response and to develop novel therapies. (3) Development of new anti-HBV strategies, e.g. silencing or remove cccDNA, enhancing immunologic clearance of HBV infection, inhibiting virus entry or HBc expression and using CRISP to disrupt cccDNA.
Collapse
|
26
|
Yu H, Liu Y, Wang H, Wan X, Huang J, Yan W, Xi D, Luo X, Shen G, Ning Q. Clara Cell 10 kDa Protein Alleviates Murine Hepatitis Virus Strain 3-Induced Fulminant Hepatitis by Inhibiting Fibrinogen-Like Protein 2 Expression. Front Immunol 2018; 9:2935. [PMID: 30619295 PMCID: PMC6300492 DOI: 10.3389/fimmu.2018.02935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022] Open
Abstract
Background: Fulminant hepatitis (FH) is a serious threat to human life, accompanied by massive and rapid necroinflammation. Kupffer cells, the major immune cell population involved in innate immune responses, are considered to be central for FH. Fibrinogen-like protein 2 (Fgl2) is a pro-coagulant protein that is substantially induced in macrophages upon viral infection, and Fgl2 depletion represses murine hepatitis virus strain 3 (MHV-3) infection. Clara cell 10 kDa (CC10) protein is a secretory protein with anti-inflammatory properties in allergic rhinitis and asthma. However, its mechanisms of action and pathogenic roles in other disease are still unclear. In this study, we aimed to determine the role of CC10 in FH and the regulation of Fgl2 by CC10. Methods: A mouse FH model was established by peritoneal injection of MHV-3. The mice received CC10 protein through tail vein injection before viral infection. Survival rate, liver function, liver histology, fibrin deposition, and necrosis were examined. The regulatory effect of CC10 on Fgl2 expression was investigated using THP-1 cells and mouse peritoneal macrophages in vitro. Results: In the mouse FH model induced by MHV-3, the survival rate increased from 0 to 12.5% in the CC10 group compared to that in the saline-only control group. Meanwhile, the levels of ALT and AST in serum were significantly decreased and liver damage was reduced. Furthermore, hepatic Fgl2, TNF-α, and IL-1β expression was obviously downregulated together with fibrin deposition, and hepatocyte apoptosis was reduced after administration of CC10 protein. In vitro, CC10 was found to significantly inhibit the expression of Fgl2 in IFN-γ-treated THP-1 cells and MHV-3-infected mouse peritoneal macrophages by western blot and real-time PCR. However, there was no direct interaction between CC10 and Fgl2 as shown by co-immunoprecipitation. Microarray investigations suggested that HMG-box transcription factor 1 (HBP1) was significantly low in CC10-treated and IFN-γ-primed THP-1 cells. HBP1-siRNA treatment abrogated the inhibitory effect of CC10 on Fgl2 expression in Human Umbilical Vein Endothelial cells (HUVECs). Conclusion:CC10 protects against MHV-3-induced FH via suppression of Fgl2 expression in macrophages. Such effects may be mediated by the transcription factor HBP1.
Collapse
Affiliation(s)
- Haijing Yu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongwu Wang
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyang Wan
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaquan Huang
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiming Yan
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Xi
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanxin Shen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Chen TJ, Ji MX, Tao ZQ, Fu QY, Xiong K, Cheng B. The relationship between serum fibrinogen-like protein 2 concentrations and 30-day mortality of patients with traumatic brain injury. Clin Chim Acta 2018; 489:53-57. [PMID: 30503273 DOI: 10.1016/j.cca.2018.11.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Fibrinogen-like protein 2 (FGL2) is an inflammatory procoagulant protein. We discerned the impact of serum FGL2 on trauma severity and 30-day mortality in patients with traumatic brain injury (TBI). METHODS A total of 114 severe TBI patients were subjected to assessment of trauma severity using the Glasgow coma scale (GCS). Measurement of the serum concentrations of FGL2 was done. 114 matched control subjects for their age and sex were included for comparison of serum concentration of FGL2. RESULTS The concentration of FGL2 was dramatically increased in the patients as compared with the control subjects. FGL2 concentration was inversely correlated with GCS score among the patients. The non-survivors within 30 days exhibited substantially higher FGL2 concentrations than the alive. FGL2 concentrations discriminated the patients at risk of 30-day death with significantly high area under receiver operating characteristic curve. Serum FGL2 emerged as an independent predictor for mortality and overall survival at 30 days after head trauma. CONCLUSIONS Serum FGL2 is a promising biomarker for assessing the severity and prognosis in severe TBI.
Collapse
Affiliation(s)
- Tie-Jiang Chen
- Department of Emergency Surgery, Yiwu Central Hospital, 699 Jiangdong Road, Yiwu 322000, Zhejiang Province, China.
| | - Ming-Xia Ji
- Department of Emergency Surgery, Yiwu Central Hospital, 699 Jiangdong Road, Yiwu 322000, Zhejiang Province, China
| | - Zhi-Qiang Tao
- Department of Emergency Surgery, Yiwu Central Hospital, 699 Jiangdong Road, Yiwu 322000, Zhejiang Province, China
| | - Qing-Yang Fu
- Department of Emergency Surgery, Yiwu Central Hospital, 699 Jiangdong Road, Yiwu 322000, Zhejiang Province, China
| | - Kai Xiong
- Department of Emergency Surgery, Yiwu Central Hospital, 699 Jiangdong Road, Yiwu 322000, Zhejiang Province, China
| | - Bin Cheng
- Department of Emergency Surgery, Yiwu Central Hospital, 699 Jiangdong Road, Yiwu 322000, Zhejiang Province, China
| |
Collapse
|
28
|
Van Tong H, Van Ba N, Hoan NX, Binh MT, Quyen DT, Son HA, Van Luong H, Quyet D, Meyer CG, Song LH, Toan NL, Velavan TP. Soluble fibrinogen-like protein 2 levels in patients with hepatitis B virus-related liver diseases. BMC Infect Dis 2018; 18:553. [PMID: 30419833 PMCID: PMC6233598 DOI: 10.1186/s12879-018-3473-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/31/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Clinical progression of HBV-related liver diseases is largely associated with the activity of HBV-specific T cells. Soluble fibrinogen-like protein 2 (sFGL2), mainly secreted by T cells, is an important effector molecule of the immune system. METHODS sFGL2 levels were determined by ELISA assays in sera of 296 HBV patients clinically classified into the subgroups of acute hepatitis B (AHB), chronic hepatitis B (CHB), liver cirrhosis (LC), hepatocellular carcinoma (HCC) and patients with LC plus HCC. As control group, 158 healthy individuals were included. FGL2 mRNA was quantified by qRT-PCR in 32 pairs of tumor and adjacent non-tumor liver tissues. RESULTS sFGL2 levels were elevated in HBV patients compared to healthy controls (P < 0.0001). In the patient group, sFGL2 levels were increased in AHB compared to CHB patients (P = 0.017). sFGL2 levels were higher in LC patients compared to those without LC (P = 0.006) and were increased according to the development of cirrhosis as staged by Child-Pugh scores (P = 0.024). Similarly, HCC patients had increased sFGL2 levels compared to CHB patients (P = 0.033) and FGL2 mRNA was up-regulated in tumor tissues compared to adjacent non-tumor tissues (P = 0.043). In addition, sFGL2 levels were positively correlated with HBV-DNA loads and AST (Spearman's rho = 0.21, 0.25 and P = 0.006, 0.023, respectively), but reversely correlated with platelet counts and albumin levels (Spearman's rho = - 0.27, - 0.24 and P = 0.014, 0.033, respectively). CONCLUSIONS sFGL2 levels are induced by HBV infection and correlated with the progression and clinical outcome of HBV-related liver diseases. Thus, sFGL2 may serve as a potential indicator for HBV-related liver diseases.
Collapse
Affiliation(s)
- Hoang Van Tong
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, 222 Phung Hung, Ha Dong, Hanoi, Vietnam. .,Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam. .,Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany.
| | - Nguyen Van Ba
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, 222 Phung Hung, Ha Dong, Hanoi, Vietnam
| | - Nghiem Xuan Hoan
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany.,108 Military Central Hospital, Hanoi, Vietnam.,Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam
| | - Mai Thanh Binh
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany.,108 Military Central Hospital, Hanoi, Vietnam.,Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam
| | - Dao Thanh Quyen
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany.,108 Military Central Hospital, Hanoi, Vietnam.,Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam
| | - Ho Anh Son
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, 222 Phung Hung, Ha Dong, Hanoi, Vietnam.,Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Hoang Van Luong
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, 222 Phung Hung, Ha Dong, Hanoi, Vietnam
| | - Do Quyet
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, 222 Phung Hung, Ha Dong, Hanoi, Vietnam
| | - Christian G Meyer
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany.,Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam.,Medical Faculty, Duy Tan University, Da Nang, Vietnam
| | - Le Huu Song
- 108 Military Central Hospital, Hanoi, Vietnam.,Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam
| | - Nguyen Linh Toan
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany. .,Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam. .,Medical Faculty, Duy Tan University, Da Nang, Vietnam.
| |
Collapse
|
29
|
Ai G, Yan W, Yu H, Xiao F, Xi D, Ma K, Huang J, Luo X, Wan X, Ning Q. Soluble Fgl2 restricts autoimmune hepatitis progression via suppressing Tc17 and conventional CD8+ T cell function. J Gene Med 2018; 20:e3023. [PMID: 29756667 DOI: 10.1002/jgm.3023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 12/28/2022] Open
Affiliation(s)
- Guo Ai
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College; Wuhan China
| | - Weiming Yan
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College; Wuhan China
| | - Haijing Yu
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Fang Xiao
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College; Wuhan China
| | - Dong Xi
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College; Wuhan China
| | - Ke Ma
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Jiaquan Huang
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital of Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Xiaoyang Wan
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College; Wuhan China
| | - Qin Ning
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College; Wuhan China
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|
30
|
Serrano I, Luque A, Aran JM. Exploring the Immunomodulatory Moonlighting Activities of Acute Phase Proteins for Tolerogenic Dendritic Cell Generation. Front Immunol 2018; 9:892. [PMID: 29760704 PMCID: PMC5936965 DOI: 10.3389/fimmu.2018.00892] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/10/2018] [Indexed: 12/20/2022] Open
Abstract
The acute phase response is generated by an overwhelming immune-inflammatory process against infection or tissue damage, and represents the initial response of the organism in an attempt to return to homeostasis. It is mediated by acute phase proteins (APPs), an assortment of highly conserved plasma reactants of seemingly different functions that, however, share a common protective role from injury. Recent studies have suggested a crosstalk between several APPs and the mononuclear phagocyte system (MPS) in the resolution of inflammation, to restore tissue integrity and function. In fact, monocyte-derived dendritic cells (Mo-DCs), an integral component of the MPS, play a fundamental role both in the regulation of antigen-specific adaptive responses and in the development of immunologic memory and tolerance, particularly in inflammatory settings. Due to their high plasticity, Mo-DCs can be modeled in vitro toward a tolerogenic phenotype for the treatment of aberrant immune-inflammatory conditions such as autoimmune diseases and allotransplantation, with the phenotypic outcome of these cells depending on the immunomodulatory agent employed. Yet, recent immunotherapy trials have emphasized the drawbacks and challenges facing tolerogenic Mo-DC generation for clinical use, such as reduced therapeutic efficacy and limited in vivo stability of the tolerogenic activity. In this review, we will underline the potential relevance and advantages of APPs for tolerogenic DC production with respect to currently employed immunomodulatory/immunosuppressant compounds. A further understanding of the mechanisms of action underlying the moonlighting immunomodulatory activities exhibited by several APPs over DCs could lead to more efficacious, safe, and stable protocols for precision tolerogenic immunotherapy.
Collapse
Affiliation(s)
- Inmaculada Serrano
- Immune-Inflammatory Processes and Gene Therapeutics Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ana Luque
- Immune-Inflammatory Processes and Gene Therapeutics Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep M Aran
- Immune-Inflammatory Processes and Gene Therapeutics Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
31
|
Liu XG, Liu Y, Chen F. Soluble fibrinogen like protein 2 (sFGL2), the novel effector molecule for immunoregulation. Oncotarget 2018; 8:3711-3723. [PMID: 27732962 PMCID: PMC5356913 DOI: 10.18632/oncotarget.12533] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/29/2016] [Indexed: 02/07/2023] Open
Abstract
Soluble fibrinogen-like protein 2 (sFGL2) is the soluble form of fibrinogen-like protein 2 belonging to the fibrinogen-related protein superfamily. It is now well characterized that sFGL2 is mainly secreted by regulatory T cell (Treg) populations, and exerts potently immunosuppressive activities. By repressing not only the differentiation and proliferation of T cells but also the maturation of dendritic cells (DCs), sFGL2 acts largely as an immunosuppressant. Moreover, sFGL2 also induces apoptosis of B cells, tubular epithelial cells (TECs), sinusoidal endothelial cells (SECs), and hepatocytes. This mini-review focuses primarily on the recent literature with respect to the signaling mechanism of sFGL2 in immunomodulation, and discusses the clinical implications of sFGL2 in transplantation, hepatitis, autoimmunity, and tumors.
Collapse
Affiliation(s)
- Xin-Guang Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, P. R. China
| | - Yu Liu
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, P. R. China
| | - Feng Chen
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, P. R. China.,Capital Medical University Cancer Center, Beijing Shijitan Hospital, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing, China
| |
Collapse
|
32
|
Luft O, Khattar R, Farrokhi K, Ferri D, Yavorska N, Zhang J, Sadozai H, Adeyi O, Chruscinski A, Levy GA, Selzner N. Inhibition of the Fibrinogen-Like Protein 2:FcγRIIB/RIII immunosuppressive pathway enhances antiviral T-cell and B-cell responses leading to clearance of lymphocytic choriomeningitis virus clone 13. Immunology 2018; 154:476-489. [PMID: 29341118 DOI: 10.1111/imm.12897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/31/2017] [Accepted: 01/10/2018] [Indexed: 12/26/2022] Open
Abstract
Persistent viruses evade immune detection by interfering with virus-specific innate and adaptive antiviral immune responses. Fibrinogen-like protein-2 (FGL2) is a potent effector molecule of CD4+ CD25+ FoxP3+ regulatory T cells and exerts its immunosuppressive activity following ligation to its cognate receptor, FcγRIIB/RIII. The role of FGL2 in the pathogenesis of chronic viral infection caused by lymphocytic choriomeningitis virus clone-13 (LCMV cl-13) was assessed in this study. Chronically infected fgl2+/+ mice had increased plasma levels of FGL2, with reduced expression of the maturation markers, CD80, CD86 and MHC-II on macrophages and dendritic cells and impaired production of neutralizing antibody. In contrast, fgl2-/- mice or fgl2+/+ mice that had been pre-treated with antibodies to FGL2 and FcγRIIB/RIII and then infected with LCMV cl-13 developed a robust CD4+ and CD8+ antiviral T-cell response, produced high titred neutralizing antibody to LCMV and cleared LCMV. Treatment of mice with established chronic infection with antibodies to FGL2 and FcγRIIB/RIII was shown to rescue the number and functionality of virus-specific CD4+ and CD8+ T cells with reduced total and virus-specific T-cell expression of programmed cell death protein 1 leading to viral clearance. These results demonstrate an important role for FGL2 in viral immune evasion and provide a rationale to target FGL2 to treat patients with chronic viral infection.
Collapse
Affiliation(s)
- Olga Luft
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Ramzi Khattar
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Kaveh Farrokhi
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Dario Ferri
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Nataliya Yavorska
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Jianhua Zhang
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Hassan Sadozai
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Oyedele Adeyi
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Andrzej Chruscinski
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| | - Gary A Levy
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Nazia Selzner
- Toronto General Hospital, Multi Organ Transplant Programme, Toronto, ON, Canada
| |
Collapse
|
33
|
Zheng Z, Yu L, Wu Y, Wu H. FGL2 knockdown improves heart function through regulation of TLR9 signaling in the experimental autoimmune myocarditis rats. Immunol Res 2018; 66:52-58. [PMID: 29128901 PMCID: PMC11025570 DOI: 10.1007/s12026-017-8965-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Fibrinogen-like protein 2 (FGL2) is an important immune regulator of both innate and adaptive response. It is present on the surface of macrophages and endothelial cells, and can be constitutively secreted by CD4+CD8+ T cells. Previous studies showed that FGL2 is a potential target for the treatment of experimental autoimmune myocarditis. However, the molecular mechanism of the roles of FGL2 in experimental autoimmune myocarditis is poorly understood. Here, we silenced FGL2 gene by using FGL2-RNAi lentivirus to reveal the heart function in experimental autoimmune myocarditis rats. We found that the cardiac myosin of pigs' hearts induced Lewis rats to come into being as autoimmune myocarditis. TLR9 was upregulated in the heart of experimental autoimmune myocarditis rats. After primary immunization (21 day), the cardiac function of the myocarditis model group improved (P < 0.05). Significantly, the levels of INF-α and NF-κB in the FGL2-RNAi-treated group were lower compared to those in the myocarditis model (EAM) group (P < 0.05). Notably, the inflammation score correspondence with the protein and mRNA levels of TLR9 in myocardial tissues was markedly reduced compared to that in the EAM group (P < 0.05). These results support a role of FGL2 to alleviate inflammatory situation in the myocardium through regulation of the TLR9 signaling pathway in the experimental autoimmune myocarditis rats.
Collapse
Affiliation(s)
- Zhenzhong Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Longhui Yu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yujing Wu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Hao Wu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
34
|
Zhu Y, Zhou J, Feng Y, Chen L, Zhang L, Yang F, Zha H, Wang X, Han X, Shu C, Wan YY, Li QJ, Guo B, Zhu B. Control of Intestinal Inflammation, Colitis-Associated Tumorigenesis, and Macrophage Polarization by Fibrinogen-Like Protein 2. Front Immunol 2018; 9:87. [PMID: 29441068 PMCID: PMC5797584 DOI: 10.3389/fimmu.2018.00087] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/11/2018] [Indexed: 12/12/2022] Open
Abstract
Fibrinogen-like protein 2 (Fgl2) is critical for immune regulation in the inflammatory state. Elevated Fgl2 levels are observed in patients with inflammatory bowel disease (IBD), but little is known about its functional significance. In this study, we sought to investigate the role of Fgl2 in the development of intestinal inflammation and colitis-associated colorectal cancer (CAC). Here, we report that Fgl2 deficiency increased susceptibility to dextran sodium sulfate-induced colitis and CAC in a mouse model. During colitis development, the expression of the membrane-bound and secreted forms of Fgl2 (mFgl2 and sFgl2, respectively) in the colon were increased and predominantly expressed by colonic macrophages. In addition, using bone marrow chimeric mice, we determined that Fgl2 function in colitis is strictly related to its expression in the hematopoietic cells. Loss of Fgl2 induced the polarization of M1, but suppressed that of M2 both in vivo and in vitro, independent of intestinal inflammation. Thus, Fgl2 suppresses intestinal inflammation and CAC development through its role in macrophage polarization and may serve as a therapeutic target in inflammatory diseases, including IBD.
Collapse
Affiliation(s)
- Ying Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jie Zhou
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yi Feng
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Liying Chen
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Longhui Zhang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Fei Yang
- Department of Pathogenic Biology, Third Military Medical University, Chongqing, China
| | - Haoran Zha
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xinxin Wang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiao Han
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Chi Shu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yisong Y Wan
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Qi-Jing Li
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Bo Guo
- Department of Pathogenic Biology, Third Military Medical University, Chongqing, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
35
|
Tang M, Cao X, Li P, Zhang K, Li Y, Zheng QY, Li GQ, Chen J, Xu GL, Zhang KQ. Increased expression of Fibrinogen-Like Protein 2 is associated with poor prognosis in patients with clear cell renal cell carcinoma. Sci Rep 2017; 7:12676. [PMID: 28978925 PMCID: PMC5627263 DOI: 10.1038/s41598-017-13149-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/19/2017] [Indexed: 12/19/2022] Open
Abstract
Fibrinogen-like protein 2 (FGL2) is highly expressed in various tumour tissues and plays a vital role in tumour initiation and progression. This study evaluated the clinical significance of FGL2 in patients with clear cell renal cell carcinoma (ccRCC). FGL2 expression in fresh and 170 archived paraffin-embedded ccRCC tissues was measured by quantitative RT-PCR, western blotting, and immunohistochemitry. FGL2 expression was significantly upregulated in ccRCC. Statistical analyses by using Kaplan-Meier method showed that high FGL2 expression was associated with poor overall survival (OS) and recurrence-free survival (RFS) of patients with ccRCC. Multivariate analyses indicated that FGL2 was as an independent prognostic factor of survivaland that tumoural FGL2 levels could significantly predict the prognosis of patients with early-stage ccRCC. Nomogram systems, which integrated FGL2 expression and other clinical parameters, were established and were found to be better than TNM staging in predicting the OS and RFS of patients with ccRCC. FGL2 silencing led to a significant reduction in cells viability and increase in cells apoptosis, accompanied with a reduced ERK1/2 and p38 MAPK activation, in ccRCC cells. Thus, our results suggest that high FGL2 expression is a novel, independent, and an adverse prognostic factor of clinical outcomes in patients with ccRCC.
Collapse
Affiliation(s)
- Ming Tang
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Xu Cao
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Peng Li
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Kun Zhang
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - You Li
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Quan-You Zheng
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Gui-Qing Li
- Department of Immunology, Third Military Medical University, Chongqing, 400038, China
| | - Jian Chen
- Department of Immunology, Third Military Medical University, Chongqing, 400038, China
| | - Gui-Lian Xu
- Department of Immunology, Third Military Medical University, Chongqing, 400038, China
| | - Ke-Qin Zhang
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
36
|
Lin H, Chen R, Jiang X, Wu X, Huang X, Dong X, Yang X, Lin X, Chen X, Chen X, Huang Z. Elevated fibrinogen-like protein 2 in TNBS-induced colitis mice: Association with Th17 and regulatory T cells. Mol Med Rep 2017; 16:3445-3454. [DOI: 10.3892/mmr.2017.7005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 05/11/2017] [Indexed: 11/05/2022] Open
|
37
|
Zhu Y, Zhang L, Zha H, Yang F, Hu C, Chen L, Guo B, Zhu B. Stroma-derived Fibrinogen-like Protein 2 Activates Cancer-associated Fibroblasts to Promote Tumor Growth in Lung Cancer. Int J Biol Sci 2017; 13:804-814. [PMID: 28656005 PMCID: PMC5485635 DOI: 10.7150/ijbs.19398] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/10/2017] [Indexed: 12/16/2022] Open
Abstract
Fibrinogen-like protein 2 (Fgl2), a member of the fibrinogen super family, is a pleiotropic cytokine that impacts diverse cellular functions. Previous studies have shown that tumor cell-derived Fgl2 promotes tumorigenesis and metastasis in immune-deficient mice, and it also functions as an immune-suppressive modulator in glioblastoma multiform (GMB). This study aimed to evaluate whether and how tumor stroma-derived Fgl2 affects tumorigenesis and tumor progression. We established the syngeneic transplantable Lewis lung carcinoma (LLC) model in Fgl2-knock-out (Fgl2-KO) mice and we found that deficiency of host Fgl2 is associated with reduced growth of syngeneic LLC tumors. Furthermore, we confirmed that host Fgl2 deficiency significantly decreased the accumulation of myeloid-derived suppressor cells (MDSCs) through down-regulation of chemokine (C-X-C motif) ligand 12 (CXCL12) expression. More importantly, we demonstrated that Fgl2 induced an activated and pro-tumorigenic phenotype of cancer-associated fibroblasts (CAFs) which are the principal source of CXCL12 in the tumor microenvironment (TME). Our results present a novel role of stroma-derived Fgl2 in CAF activation and function, suggesting that Fgl2 is an effective therapeutic target for treating lung cancer.
Collapse
Affiliation(s)
- Ying Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P. R. China.,Chongqing Key Laboratory of Immunotherapy, Chongqing 400037, P. R. China
| | - Longhui Zhang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P. R. China.,Chongqing Key Laboratory of Immunotherapy, Chongqing 400037, P. R. China
| | - Haoran Zha
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P. R. China.,Chongqing Key Laboratory of Immunotherapy, Chongqing 400037, P. R. China
| | - Fei Yang
- Department of Pathogenic Biology, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Chunyan Hu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P. R. China.,Chongqing Key Laboratory of Immunotherapy, Chongqing 400037, P. R. China
| | - Lin Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, P. R. China
| | - Bo Guo
- Department of Pathogenic Biology, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P. R. China.,Chongqing Key Laboratory of Immunotherapy, Chongqing 400037, P. R. China
| |
Collapse
|
38
|
Yu H, Liu Y, Huang J, Wang H, Yan W, Xi D, Shen G, Luo X, Ning Q. IL-33 protects murine viral fulminant hepatitis by targeting coagulation hallmark protein FGL2/fibroleukin expression. Mol Immunol 2017; 87:171-179. [PMID: 28494352 DOI: 10.1016/j.molimm.2017.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 04/21/2017] [Accepted: 04/22/2017] [Indexed: 12/13/2022]
Abstract
Fulminant hepatitis (FH) is characterized by rapid liver failure and high mortality. The pathogenesis of viral FH includes virus-induced immune activation, inflammation, and subsequent hepatic apoptosis and necrosis. However, the mechanisms that underlie FH progression are unclear. IL-33 is a member of the IL-1-related cytokines, considered to be an "alarmin" that participates in various diseases, but its precise role in the coagulation of FH is not very clear. In our study, we found that IL-33 is significantly elevated in mice infected with murine hepatitis virus strain 3 (MHV-3). This is accompanied by an increase in pro-coagulant fibrinogen-like protein 2 (FGL2) in the liver. Previous studies have suggested that an increase in FGL2 is diagnostic of FH and liver necrosis, and animals with no FGL2 had better survivorship during FH. Our studies showed that IL-33 administration in a MHV-3 infection promoted survival during FH, with a significant reduction in FGL2 expression and liver inflammation. In vitro IL-33 treatment abrogated MHV-3 and IFN-γ induced FGL2 expression in RAW264.7 and THP-1 cells, respectively. In conclusion, our research suggests that IL-33 protects against viral fulminant hepatitis in mice by antagonizing expression of the pro-coagulant protein FGL2.
Collapse
Affiliation(s)
- Haijing Yu
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaquan Huang
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongwu Wang
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiming Yan
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Xi
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanxin Shen
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Ning
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
39
|
A disparate subset of double-negative T cells contributes to the outcome of murine fulminant viral hepatitis via effector molecule fibrinogen-like protein 2. Immunol Res 2016; 64:518-30. [PMID: 26482053 DOI: 10.1007/s12026-015-8727-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The underlying immune-mediated mechanisms involved in virus-induced severe hepatitis have not been well elucidated. In this study, we investigated the role of CD3(+)CD4(-)CD8(-) double-negative T (DN T) cells in the pathogenesis of fulminant viral hepatitis (FVH) induced by murine hepatitis virus strain 3 (MHV-3). After MHV-3 infection, the proportions of DN T cells increased significantly in BALB/cJ mice, and splenic DN T cells expressing high levels of CD69 were recruited by MHV-3-infected hepatocytes to the liver. Serum levels of alanine aminotransferase, aspartate aminotransferase and total bilirubin increased, accompanied by massive hepatocyte necrosis. These DN T cells were predominantly consisted of a TCRαβ(+) subset expressing high levels of CD44 and did not produce cytokine except IL-2. Adoptive transfer of this subset of DN T cells to the MHV-3-infected mice resulted in an increase in murine fibrinogen-like protein 2 (mfgl2) expressions in association with massive fibrin deposition in the liver. Following MHV-3 infection, membrane mfgl2 expression and functional procoagulant activity increased remarkably in the DN T cells. Introduction of a recombinant adenovirus which encoded a microRNA specifically targeting mfgl2 gene (Ad-mfgl2-miRNA) in vivo significantly inhibited the hepatic expression of mfgl2 and improved survival in mice. However, under this condition, adoptive transfer of the DN T cells accelerated the disease progression and reversed the benefit from mfgl2 gene silence, leading to a 100 % death rate. Our results demonstrate that DN T cells contribute to the outcome of MHV-3-induced FVH via an important effector molecule mfgl2.
Collapse
|
40
|
Bartczak A, Chruscinski A, Mendicino M, Liu H, Zhang J, He W, Amir AZ, Nguyen A, Khattar R, Sadozai H, Lobe CG, Adeyi O, Phillips MJ, Zhang L, Gorczynski RM, Grant D, Levy GA. Overexpression of Fibrinogen-Like Protein 2 Promotes Tolerance in a Fully Mismatched Murine Model of Heart Transplantation. Am J Transplant 2016; 16:1739-50. [PMID: 26718313 DOI: 10.1111/ajt.13696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 12/15/2015] [Accepted: 12/27/2015] [Indexed: 01/25/2023]
Abstract
Fibrinogen-like protein 2 (FGL2) is an immunomodulatory protein that is expressed by regulatory T cells (Tregs). The objective of this study was to determine if recombinant FGL2 (rFGL2) treatment or constitutive FGL2 overexpression could promote transplant tolerance in mice. Although rFGL2 treatment prevented rejection of fully mismatched cardiac allografts, all grafts were rejected after stopping treatment. Next, we generated FGL2 transgenic mice (fgl2(Tg) ) that ubiquitously overexpressed FGL2. These mice developed normally and had no evidence of the autoimmune glomerulonephritis seen in fgl2(-/-) mice. Immune characterization showed fgl2(Tg) T cells were hypoproliferative to stimulation with alloantigens or anti-CD3 and anti-CD28 stimulation, and fgl2(Tg) Tregs had increased immunosuppressive activity compared with fgl2(+/+) Tregs. To determine if FGL2 overexpression can promote tolerance, we transplanted fully mismatched cardiac allografts into fgl2(Tg) recipients. Fifty percent of cardiac grafts were accepted indefinitely in fgl2(Tg) recipients without any immunosuppression. Tolerant fgl2(Tg) grafts had increased numbers and proportions of Tregs and tolerant fgl2(Tg) mice had reduced proliferation to donor but not third party antigens. These data show that tolerance in fgl2(Tg) recipients involves changes in Treg and T cell activity that contribute to a higher intragraft Treg-to-T cell ratio and acceptance of fully mismatched allografts.
Collapse
Affiliation(s)
- A Bartczak
- Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Institute of Medial Science, University of Toronto, Toronto, Ontario, Canada
| | - A Chruscinski
- Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | - H Liu
- Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of General Surgery and Organ Transplantation, First Hospital, China Medical University, Shen Yang, Liao Ning, China
| | - J Zhang
- Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - W He
- Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - A Z Amir
- Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada.,The GI, Hepatology and Nutrition Division, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - A Nguyen
- Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - R Khattar
- Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - H Sadozai
- Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - C G Lobe
- Cancer Research Division, Sunnybrook Health Science Centre and the Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - O Adeyi
- Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - M J Phillips
- Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - L Zhang
- Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - R M Gorczynski
- Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - D Grant
- Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - G A Levy
- Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Liu K, Li T, Huang S, Long R, You Y, Liu J, Wang Z. The reduced soluble fibrinogen-like protein 2 and regulatory T cells in acute coronary syndrome. Exp Biol Med (Maywood) 2015; 241:421-5. [PMID: 26515143 DOI: 10.1177/1535370215612138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/23/2015] [Indexed: 12/11/2022] Open
Abstract
Soluble fibrinogen-like protein 2, sfgl2, is the new effector of CD4(+)CD25(+)FOXP3(+) regulatory T cell (Treg) and exerts immunosuppressive activity. We design this study to investigate the possible role of sfgl2 in atherosclerosis. A total of 58 acute coronary syndrome (ACS) patients, together with 22 stable angina (SA) patients and 31 normal coronary artery (NCA) people were enrolled in our study. Serum level of sfgl2 and plasma level of Treg were respectively measured. In line with the change of Treg, serum level of sfgl2 in ACS (8.70 ng/mL) was significantly decreased (P = 0.003), compared with that in SA (11.86 ng/mL) and NCA (17.55 ng/mL). Both sfgl2 and Treg level were obviously decreased in ACS; Sfgl2 may play a protective role in atherosclerosis.
Collapse
Affiliation(s)
- Kun Liu
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 0086, China
| | - Ting Li
- Department of Geriatrics, Institute of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 0086, China
| | - Shiyuan Huang
- Department of Geriatrics, Institute of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 0086, China
| | - Rui Long
- Department of Geriatrics, Institute of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 0086, China
| | - Ya You
- Department of Geriatrics, Institute of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 0086, China
| | - Jinping Liu
- Department of Cardiac Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 0086, China
| | - Zhaohui Wang
- Department of Geriatrics, Institute of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 0086, China
| |
Collapse
|
42
|
Guo S, Yang C, Diao B, Huang X, Jin M, Chen L, Yan W, Ning Q, Zheng L, Wu Y, Chen Y. The NLRP3 Inflammasome and IL-1β Accelerate Immunologically Mediated Pathology in Experimental Viral Fulminant Hepatitis. PLoS Pathog 2015; 11:e1005155. [PMID: 26367131 PMCID: PMC4569300 DOI: 10.1371/journal.ppat.1005155] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/18/2015] [Indexed: 02/06/2023] Open
Abstract
Viral fulminant hepatitis (FH) is a severe disease with high mortality resulting from excessive inflammation in the infected liver. Clinical interventions have been inefficient due to the lack of knowledge for inflammatory pathogenesis in the virus-infected liver. We show that wild-type mice infected with murine hepatitis virus strain-3 (MHV-3), a model for viral FH, manifest with severe disease and high mortality in association with a significant elevation in IL-1β expression in the serum and liver. Whereas, the viral infection in IL-1β receptor-I deficient (IL-1R1-/-) or IL-1R antagonist (IL-1Ra) treated mice, show reductions in virus replication, disease progress and mortality. IL-1R1 deficiency appears to debilitate the virus-induced fibrinogen-like protein-2 (FGL2) production in macrophages and CD45+Gr-1high neutrophil infiltration in the liver. The quick release of reactive oxygen species (ROS) by the infected macrophages suggests a plausible viral initiation of NLRP3 inflammasome activation. Further experiments show that mice deficient of p47phox, a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit that controls acute ROS production, present with reductions in NLRP3 inflammasome activation and subsequent IL-1β secretion during viral infection, which appears to be responsible for acquiring resilience to viral FH. Moreover, viral infected animals in deficiencies of NLRP3 and Caspase-1, two essential components of the inflammasome complex, also have reduced IL-1β induction along with ameliorated hepatitis. Our results demonstrate that the ROS/NLRP3/IL-1β axis institutes an essential signaling pathway, which is over activated and directly causes the severe liver disease during viral infection, which sheds light on development of efficient treatments for human viral FH and other severe inflammatory diseases. The NLRP3 inflammasome and IL-1β play essential roles in mediating the primary inflammatory responses against pathogen invasions in the host. Hyperactivation of this signaling pathway can lead to life-threatening diseases under certain circumstances. However, it is not clear if NLRP3 inflammasome activation participates in the pathogenesis of viral fulminant hepatitis (FH), a clinical severe syndrome characterized by acute inflammation in the liver along with massive necrosis of hepatocytes and hepatic encephalopathy during viral infection. Using a mouse viral FH model by infection with murine hepatitis virus strain-3 (MHV-3), we observed a significant macrophage induction and the serum and liver massive accumulation of IL-1β. Conversely, interruption of IL-1β signals results in attenuation of the MHV-3-induced hepatitis and mortality. Blocking IL-1β activity reduces the virus-induced expression of fibrinogen-like protein-2 (FGL2) in macrophages, and limits the liver recruitment of CD45+Gr-1high neutrophils upon the virus infection. We further show that proIL-1β is bioprocessed by NLRP3 inflammasome. Deletion of the components in the inflammasome complex, including NLRP3 and Caspase-1, leads to reduction in the virus-induced IL-1β production and lessening of disease progression. Further studies show that macrophages in deficiency of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit p47phox, a protein that controls acute ROS production, prevents NLRP3 inflammasome activation and IL-1β secretion, suggesting that the virus-induced ROS production can directly initiate NLRP3 inflammasome activation. Therefore, p47phox-/- mice exhibited certain degrees of MHV-3 resistance. Taken together, these results demonstrate that ROS/NLRP3/IL-1β is the key pathway signaling exacerbated inflammatory responses that cause viral FH in mice, suggesting that mediation of this signal cascade may benefit on the disease treatment.
Collapse
Affiliation(s)
- Sheng Guo
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Chengying Yang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Bo Diao
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Xiaoyong Huang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Meihua Jin
- Department of Pharmacology, Yanbian University, Yanji, Jilin province, China
| | - Lili Chen
- Department of Basic Medicine, Yanbian University, Yanji, Jilin province, China
| | - Weiming Yan
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Ning
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lixin Zheng
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Yongwen Chen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| |
Collapse
|
43
|
Care MA, Westhead DR, Tooze RM. Gene expression meta-analysis reveals immune response convergence on the IFNγ-STAT1-IRF1 axis and adaptive immune resistance mechanisms in lymphoma. Genome Med 2015; 7:96. [PMID: 26362649 PMCID: PMC4566848 DOI: 10.1186/s13073-015-0218-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/17/2015] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Cancers adapt to immune-surveillance through evasion. Immune responses against carcinoma and melanoma converge on cytotoxic effectors and IFNγ-STAT1-IRF1 signalling. Local IFN-driven immune checkpoint expression can mediate feedback inhibition and adaptive immune resistance. Whether such coupled immune polarization and adaptive resistance is generalisable to lymphoid malignancies is incompletely defined. The host response in diffuse large B-cell lymphoma (DLBCL), the commonest aggressive lymphoid malignancy, provides an empirical model. METHODS Using ten publicly available gene expression data sets encompassing 2030 cases we explore the nature of host response in DLBCL. Starting from the "cell of origin" paradigm for DLBCL classification, we use the consistency of differential expression to define polarized patterns of immune response genes in DLBCL, and derive a linear classifier of immune response gene expression. We validate and extend the results in an approach independent of "cell of origin" classification based on gene expression correlations across all data sets. RESULTS T-cell and cytotoxic gene expression with polarization along the IFNγ-STAT1-IRF1 axis provides a defining feature of the immune response in DLBCL. This response is associated with improved outcome, particularly in the germinal centre B-cell subsets of DLBCL. Analysis of gene correlations across all data sets, independent of "cell of origin" class, demonstrates a consistent association with a hierarchy of immune-regulatory gene expression that places IDO1, LAG3 and FGL2 ahead of PD1-ligands CD274 and PDCD1LG2. CONCLUSION Immune responses in DLBCL converge onto the IFNγ-STAT1-IRF1 axis and link to diverse potential mediators of adaptive immune resistance identifying future therapeutic targets.
Collapse
Affiliation(s)
- Matthew A Care
- Section of Experimental Haematology, Wellcome Trust Brenner Building, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, LS9 7TF, UK
- Bioinformatics Group, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - David R Westhead
- Bioinformatics Group, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Reuben M Tooze
- Section of Experimental Haematology, Wellcome Trust Brenner Building, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, LS9 7TF, UK.
| |
Collapse
|
44
|
Chruscinski A, Sadozai H, Rojas-Luengas V, Bartczak A, Khattar R, Selzner N, Levy GA. Role of Regulatory T Cells (Treg) and the Treg Effector Molecule Fibrinogen-like Protein 2 in Alloimmunity and Autoimmunity. Rambam Maimonides Med J 2015; 6:RMMJ.10209. [PMID: 26241231 PMCID: PMC4524397 DOI: 10.5041/rmmj.10209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg) are critical to the maintenance of immune tolerance. Treg are known to utilize a number of molecular pathways to control immune responses and maintain immune homeostasis. Fibrinogen-like protein 2 (FGL2) has been identified by a number of investigators as an important immunosuppressive effector of Treg, which exerts its immunoregulatory activity by binding to inhibitory FcγRIIB receptors expressed on antigen-presenting cells including dendritic cells, endothelial cells, and B cells. More recently, it has been suggested that FGL2 accounts for the immunosuppressive activity of a highly suppressive subset of Treg that express T cell immunoreceptor with Ig and ITIM domains (TIGIT). Here we discuss the important role of Treg and FGL2 in preventing alloimmune and autoimmune disease. The FGL2-FcγRIIB pathway is also known to be utilized by viruses and tumor cells to evade immune surveillance. Moving forward, therapies based on modulation of the FGL2-FcγRIIB pathway hold promise for the treatment of a wide variety of conditions ranging from autoimmunity to cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gary A. Levy
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Research Progress on Regulatory T Cells in Acute Kidney Injury. J Immunol Res 2015; 2015:174164. [PMID: 26273681 PMCID: PMC4529954 DOI: 10.1155/2015/174164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/02/2015] [Indexed: 02/06/2023] Open
Abstract
Immune inflammation is crucial in mediating acute kidney injury (AKI). Immune cells of both the innate and adaptive immune systems substantially contribute to overall renal damage in AKI. Regulatory T cells (Tregs) are key regulator of immunological function and have been demonstrated to ameliorate injury in several murine experimental models of renal inflammation. Recent studies have illuminated the renal-protective function of Tregs in AKI. Tregs appear to exert beneficial effects in both the acute injury phase and the recovery phase of AKI. Additionally, Tregs-based immunotherapy may represent a promising approach to ameliorate AKI and promote recovery from AKI. This review will highlight the recent insights into the role of Tregs and their therapeutic potential in AKI.
Collapse
|
46
|
Yan J, Kong LY, Hu J, Gabrusiewicz K, Dibra D, Xia X, Heimberger AB, Li S. FGL2 as a Multimodality Regulator of Tumor-Mediated Immune Suppression and Therapeutic Target in Gliomas. J Natl Cancer Inst 2015; 107:djv137. [PMID: 25971300 DOI: 10.1093/jnci/djv137] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Fibrinogen-like protein 2 (FGL2) may promote glioblastoma multiforme (GBM) cancer development by inducing multiple immune-suppression mechanisms. METHODS The biological significance of FGL2 expression was assessed using the The Cancer Genome Atlast (TCGA) glioma database and tumor lysates analysis. The therapeutic effects of an anti-Fgl2 antibody and the role of immune suppression regulation by Fgl2 were determined in immune-competent, NOD-scid IL2Rgammanull (NSG), and FcɣRIIB-/- mice (n = 3-18 per group). Data were analyzed with two-way analysis of variance, log-rank survival analysis, and Pearson correlation. All statistical tests were two-sided. RESULTS In low-grade gliomas, 72.5% of patients maintained two copies of the FGL2 gene, whereas 83.8% of GBM patients had gene amplification or copy gain. Patients with high levels of FGL2 mRNA in glioma tissues had a lower overall survival (P = .009). Protein levels of FGL2 in GBM lysates were higher relative to low-grade glioma lysates (11.48±5.75ng/mg vs 3.96±1.01ng/mg, P = .003). In GL261 mice treated with an anti-FGL2 antibody, median survival was 27 days compared with only 17 days for mice treated with an isotype control antibody (P = .01). The anti-FGL2 antibody treatment reduced CD39(+) Tregs, M2 macrophages, programmed cell death protein 1 (PD-1), and myeloid-derived suppressor cells (MDSCs). FGL2-induced increases in M2, CD39, and PD-1 were ablated in FcɣRIIB-/- mice. CONCLUSIONS FGL2 augments glioma immunosuppression by increasing the expression levels of PD-1 and CD39, expanding the frequency of tumor-supportive M2 macrophages via the FcγRIIB pathway, and enhancing the number of MDSCs and CD39(+) regulatory T cells. Collectively, these results show that FGL2 functions as a key immune-suppressive modulator and has potential as an immunotherapeutic target for treating GBM.
Collapse
Affiliation(s)
- Jun Yan
- Department of Pediatric Research (JY, JH, DD, XX, SL) and Department of Neurosurgery (LYK, KG, ABH), The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Ling-Yuan Kong
- Department of Pediatric Research (JY, JH, DD, XX, SL) and Department of Neurosurgery (LYK, KG, ABH), The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Jiemiao Hu
- Department of Pediatric Research (JY, JH, DD, XX, SL) and Department of Neurosurgery (LYK, KG, ABH), The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Konrad Gabrusiewicz
- Department of Pediatric Research (JY, JH, DD, XX, SL) and Department of Neurosurgery (LYK, KG, ABH), The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Denada Dibra
- Department of Pediatric Research (JY, JH, DD, XX, SL) and Department of Neurosurgery (LYK, KG, ABH), The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Xueqing Xia
- Department of Pediatric Research (JY, JH, DD, XX, SL) and Department of Neurosurgery (LYK, KG, ABH), The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Amy B Heimberger
- Department of Pediatric Research (JY, JH, DD, XX, SL) and Department of Neurosurgery (LYK, KG, ABH), The University of Texas M.D. Anderson Cancer Center, Houston, TX.
| | - Shulin Li
- Department of Pediatric Research (JY, JH, DD, XX, SL) and Department of Neurosurgery (LYK, KG, ABH), The University of Texas M.D. Anderson Cancer Center, Houston, TX.
| |
Collapse
|
47
|
Deletion of Fibrinogen-like Protein 2 (FGL-2), a Novel CD4+ CD25+ Treg Effector Molecule, Leads to Improved Control of Echinococcus multilocularis Infection in Mice. PLoS Negl Trop Dis 2015; 9:e0003755. [PMID: 25955764 PMCID: PMC4425495 DOI: 10.1371/journal.pntd.0003755] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/13/2015] [Indexed: 02/07/2023] Open
Abstract
Background The growth potential of the tumor-like Echinococcus multilocularis metacestode (causing alveolar echinococcosis, AE) is directly linked to the nature/function of the periparasitic host immune-mediated processes. We previously showed that Fibrinogen-like-protein 2 (FGL2), a novel CD4+CD25+ Treg effector molecule, was over-expressed in the liver of mice experimentally infected with E. multilocularis. However, little is known about its contribution to the control of this chronic helminth infection. Methods/Findings Key parameters for infection outcome in E. multilocularis-infected fgl2-/- (AE-fgl2-/-) and wild type (AE-WT) mice at 1 and 4 month(s) post-infection were (i) parasite load (i. e. wet weight of parasitic metacestode tissue), and (ii) parasite cell proliferation as assessed by determining E. multilocularis 14-3-3 gene expression levels. Serum FGL2 levels were measured by ELISA. Spleen cells cultured with ConA for 48h or with E. multilocularis Vesicle Fluid (VF) for 96h were analyzed ex-vivo and in-vitro. In addition, spleen cells from non-infected WT mice were cultured with rFGL2/anti-FGL2 or rIL-17A/anti-IL-17A for further functional studies. For Treg-immune-suppression-assays, purified CD4+CD25+ Treg suspensions were incubated with CD4+ effector T cells in the presence of ConA and irradiated spleen cells as APCs. Flow cytometry and qRT-PCR were used to assess Treg, Th17-, Th1-, Th2-type immune responses and maturation of dendritic cells. We showed that AE-fgl2-/- mice exhibited (as compared to AE-WT-animals) (a) a significantly lower parasite load with reduced proliferation activity, (b) an increased T cell proliferative response to ConA, (c) reduced Treg numbers and function, and (d) a persistent capacity of Th1 polarization and DC maturation. Conclusions FGL2 appears as one of the key players in immune regulatory processes favoring metacestode survival by promoting Treg cell activity and IL-17A production that contributes to FGL2-regulation. Prospectively, targeting FGL2 could be an option to develop an immunotherapy against AE and other chronic parasitic diseases. In larval E. multilocularis infection causing alveolar echinococcosis (AE) in humans as well as mice, immune tolerance and/or down-regulation of protective immunity is a marked characteristic of this chronic disease. Our study provides a comprehensive evidence for a major involvement of the recently identified CD4+ CD25+ Regulatory T Cell Effector Molecule FGL2 to the outcome of AE. Our major findings are as follows: 1) FGL2 is mostly secreted by Tregs and partly contributes to their functions; 2) FGL2 can down-regulate the maturation of DCs, suppress Th1 and Th17 immune responses, and support Th2 and Treg immune responses, and finally 3) IL-17A contributes to FGL2 secretion. Based on the present findings in mice, we will investigate FGL2 as a potential marker of progression of AE in human patients, or as a potential immunotherapeutical target. Early prediction of parasite regression (currently not yet possible) would allow clinicians to plan for withdrawing benzimidazole treatment, which is currently administered for life. Then, FGL2 should be investigated as a target for an anticipated immunomodulatory treatment of patients with progressive AE, especially of those who are non- or low-responders to benzimidazole treatment, or who suffer from side-effects due to chemotherapy.
Collapse
|
48
|
Bézie S, Picarda E, Tesson L, Renaudin K, Durand J, Ménoret S, Mérieau E, Chiffoleau E, Guillonneau C, Caron L, Anegon I. Fibrinogen-like protein 2/fibroleukin induces long-term allograft survival in a rat model through regulatory B cells. PLoS One 2015; 10:e0119686. [PMID: 25763980 PMCID: PMC4357433 DOI: 10.1371/journal.pone.0119686] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/15/2015] [Indexed: 01/15/2023] Open
Abstract
We previously described that in a rat model of heart transplantation tolerance was dependent on CD8+CD45RClow Tregs that over-expressed fibrinogen-like protein 2 (FGL2)/fibroleukin. Little is known on the immunoregulatory properties of FGL2. Here we analyzed the transplantation tolerance mechanisms that are present in Lewis 1A rats treated with FGL2. Over-expression of FGL2 in vivo through adenovirus associated virus -mediated gene transfer without any further treatment resulted in inhibition of cardiac allograft rejection. Adoptive cell transfer of splenocytes from FGL2-treated rats with long-term graft survival (> 80 days) in animals that were transplanted with cardiac allografts inhibited acute and chronic organ rejection in a donor-specific and transferable tolerance manner, since iterative adoptive transfer up to a sixth consecutive recipient resulted in transplantation tolerance. Adoptive cell transfer also efficiently inhibited anti-donor antibody production. Analysis of all possible cell populations among splenocytes revealed that B lymphocytes were sufficient for this adoptive cell tolerance. These B cells were also capable of inhibiting the proliferation of CD4+ T cells in response to allogeneic stimuli. Moreover, gene transfer of FGL2 in B cell deficient rats did not prolong graft survival. Thus, this is the first description of FGL2 resulting in long-term allograft survival. Furthermore, allograft tolerance was transferable and B cells were the main cells responsible for this effect.
Collapse
Affiliation(s)
- Séverine Bézie
- INSERM UMR 1064-ITUN, Centre Hospitalier Universitaire de Nantes, Faculté de Médecine, Nantes, France
| | - Elodie Picarda
- INSERM UMR 1064-ITUN, Centre Hospitalier Universitaire de Nantes, Faculté de Médecine, Nantes, France
| | - Laurent Tesson
- INSERM UMR 1064-ITUN, Centre Hospitalier Universitaire de Nantes, Faculté de Médecine, Nantes, France
| | - Karine Renaudin
- Centre Hospitalier Universitaire de Nantes, Faculté de Médecine. Nantes, France
| | - Justine Durand
- INSERM UMR 1064-ITUN, Centre Hospitalier Universitaire de Nantes, Faculté de Médecine, Nantes, France
| | - Séverine Ménoret
- INSERM UMR 1064-ITUN, Centre Hospitalier Universitaire de Nantes, Faculté de Médecine, Nantes, France
| | - Emmanuel Mérieau
- INSERM UMR 1064-ITUN, Centre Hospitalier Universitaire de Nantes, Faculté de Médecine, Nantes, France
| | - Elise Chiffoleau
- INSERM UMR 1064-ITUN, Centre Hospitalier Universitaire de Nantes, Faculté de Médecine, Nantes, France
| | - Carole Guillonneau
- INSERM UMR 1064-ITUN, Centre Hospitalier Universitaire de Nantes, Faculté de Médecine, Nantes, France
| | - Lise Caron
- INSERM UMR 1064-ITUN, Centre Hospitalier Universitaire de Nantes, Faculté de Médecine, Nantes, France
| | - Ignacio Anegon
- INSERM UMR 1064-ITUN, Centre Hospitalier Universitaire de Nantes, Faculté de Médecine, Nantes, France
| |
Collapse
|
49
|
Urbanellis P, Shyu W, Khattar R, Wang J, Zakharova A, He W, Sadozai H, Amir AZ, Shalev I, Phillips MJ, Adeyi O, Ross H, Grant D, Levy GA, Chruscinski A. The regulatory T cell effector molecule fibrinogen-like protein 2 is necessary for the development of rapamycin-induced tolerance to fully MHC-mismatched murine cardiac allografts. Immunology 2015; 144:91-106. [PMID: 24990517 DOI: 10.1111/imm.12354] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 06/11/2014] [Accepted: 07/01/2014] [Indexed: 12/17/2022] Open
Abstract
Therapies that promote tolerance in solid organ transplantation will improve patient outcomes by eliminating the need for long-term immunosuppression. To investigate mechanisms of rapamycin-induced tolerance, C3H/HeJ mice were heterotopically transplanted with MHC-mismatched hearts from BALB/cJ mice and were monitored for rejection after a short course of rapamycin treatment. Mice that had received rapamycin developed tolerance with indefinite graft survival, whereas untreated mice all rejected their grafts within 9 days. In vitro, splenic mononuclear cells from tolerant mice maintained primary CD4(+) and CD8(+) immune responses to donor antigens consistent with a mechanism that involves active suppression of immune responses. Furthermore, infection with lymphocytic choriomeningitis virus strain WE led to loss of tolerance suggesting that tolerance could be overcome by infection. Rapamycin-induced, donor-specific tolerance was associated with an expansion of regulatory T (Treg) cells in both the spleen and allograft and elevated plasma levels of fibrinogen-like protein 2 (FGL2). Depletion of Treg cells with anti-CD25 (PC61) and treatment with anti-FGL2 antibody both prevented tolerance induction. Tolerant allografts were populated with Treg cells that co-expressed FGL2 and FoxP3, whereas rejecting allografts and syngeneic grafts were nearly devoid of dual-staining cells. We examined the utility of an immunoregulatory gene panel to discriminate between tolerance and rejection. We observed that Treg-associated genes (foxp3, lag3, tgf-β and fgl2) had increased expression and pro-inflammatory genes (ifn-γ and gzmb) had decreased expression in tolerant compared with rejecting allografts. Taken together, these data strongly suggest that Treg cells expressing FGL2 mediate rapamycin-induced tolerance. Furthermore, a gene biomarker panel that includes fgl2 can distinguish between rejecting and tolerant grafts.
Collapse
Affiliation(s)
- Peter Urbanellis
- Multi-Organ Transplant Program, University Health Network, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hu J, Yan J, Rao G, Latha K, Overwijk WW, Heimberger AB, Li S. The Duality of Fgl2 - Secreted Immune Checkpoint Regulator Versus Membrane-Associated Procoagulant: Therapeutic Potential and Implications. Int Rev Immunol 2014; 35:325-339. [PMID: 25259408 DOI: 10.3109/08830185.2014.956360] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fibrinogen-like protein 2 (Fgl2), a member of the fibrinogen family, can be expressed as a membrane-associated protein with coagulation activity or in a secreted form possessing unique immune suppressive functions. The biological importance of Fgl2 is evident within viral-induced fibrin depositing inflammatory diseases and malignancies and provides a compelling rationale for Fgl2 expression to not only be considered as a disease biomarker but also as a therapeutic target. This article will provide a comprehensive review of the currently known biological properties of Fgl2 and clarifies future scientific directives.
Collapse
Affiliation(s)
- Jiemiao Hu
- a Department of Pediatrics-Research , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Jun Yan
- a Department of Pediatrics-Research , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Ganesh Rao
- b Department of Neurosurgery , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Khatri Latha
- b Department of Neurosurgery , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Willem W Overwijk
- c Department of Melanoma Medical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Amy B Heimberger
- b Department of Neurosurgery , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Shulin Li
- a Department of Pediatrics-Research , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|