1
|
Chen M, Chen W, Sun S, Lu Y, Wu G, Xu H, Yang H, Li C, He W, Xu M, Li X, Jiang D, Cai Y, Liu C, Zhang W, He Z. CDK4/6 inhibitor PD-0332991 suppresses hepatocarcinogenesis by inducing senescence of hepatic tumor-initiating cells. J Adv Res 2024:S2090-1232(24)00374-6. [PMID: 39218249 DOI: 10.1016/j.jare.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION Owing to the limited treatment options for hepatocellular carcinoma (HCC), interventions targeting pre-HCC stages have attracted increasing attention. In the pre-HCC stage, hepatic tumor-initiating cells (hTICs) proliferate abnormally and contribute to hepatocarcinogenesis. Numerous studies have investigated targeted senescence induction as an HCC intervention. However, it remains to be clarified whether senescence induction of hTICs could serve as a pre-HCC intervention. OBJECTIVES This study was designed to investigate whether senescence induction of hTICs in the precancerous stage inhibit HCC initiation. METHODS AND RESULTS HCC models developed from chronic liver injury (CLI) were established by using Fah-/- mice and N-Ras + AKT mice. PD-0332991, a selective CDK4/6 inhibitor that blocks the G1/S transition in proliferating cells, was used to induce senescence during the pre-HCC stage. Upon administration of PD-0332991, we observed a significant reduction in HCC incidence following selective senescence induction in hTICs, and an alleviation liver injury in the CLI-HCC models. PD-0332991 also induced senescence in vitro in cultured hTICs isolated from CLI-HCC models. Moreover, RNA sequencing (RNA-seq) analysis delineated that the "Cyclin D-CDK4/6-INK4-Rb" pathway was activated in both mouse and human liver samples during the pre-HCC stage, while PD-0332991 exhibited substantial inhibition of this pathway, thereby inducing cellular senescence in hTICs. Regarding the immune microenvironment, we demonstrated that senescent hTICs secrete key senescence-associated secretory phenotypic (SASP) factors, CXCL10 and CCL2, to activate and recruit macrophages, and contribute to immune surveillance. CONCLUSION We found that hTICs can be targeted and induced into a senescent state during the pre-HCC stage. The SASP factors released by senescent hTICs further activate the immune response, facilitating the clearance of hTICs, and consequently suppressing HCC occurrence. We highlight the importance of pre-HCC interventions and propose that senescence-inducing drugs hold promise for preventing HCC initiation under CLI.
Collapse
Affiliation(s)
- Miaomiao Chen
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Wenjian Chen
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Shiwen Sun
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Yanli Lu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Guoxiu Wu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Hongyu Xu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Huiru Yang
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Chong Li
- Zhoupu Community Health Service Center of Pudong New Area, Shanghai, China
| | - Weizhi He
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Mingyang Xu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Xiuhua Li
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Dong Jiang
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Yongchao Cai
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Changcheng Liu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Wencheng Zhang
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China
| | - Zhiying He
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P. R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P. R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, P. R. China.
| |
Collapse
|
2
|
Bartolini D, Stabile AM, Migni A, Gurrado F, Lioci G, De Franco F, Mandarano M, Svegliati-Baroni G, Di Cristina M, Bellezza G, Rende M, Galli F. Subcellular distribution and Nrf2/Keap1-interacting properties of Glutathione S-transferase P in hepatocellular carcinoma. Arch Biochem Biophys 2024; 757:110043. [PMID: 38789086 DOI: 10.1016/j.abb.2024.110043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
The oncogene and drug metabolism enzyme glutathione S-transferase P (GSTP) is also a GSH-dependent chaperone of signal transduction and transcriptional proteins with key role in liver carcinogenesis. In this study, we explored this role of GSTP in hepatocellular carcinoma (HCC) investigating the possible interaction of this protein with one of its transcription factor and metronome of the cancer cell redox, namely the nuclear factor erythroid 2-related factor 2 (Nrf2). Expression, cellular distribution, and function as glutathionylation factor of GSTP1-1 isoform were investigated in the mouse model of N-nitrosodiethylamine (DEN)-induced HCC and in vitro in human HCC cell lines. The physical and functional interaction of GSTP protein with Nrf2 and Keap1 were investigated by immunoprecipitation and gene manipulation experiments. GSTP protein increased its liver expression, enzymatic activity and nuclear levels during DEN-induced tumor development in mice; protein glutathionylation (PSSG) was increased in the tumor masses. Higher levels and a preferential nuclear localization of GSTP protein were also observed in HepG2 and Huh-7 hepatocarcinoma cells compared to HepaRG non-cancerous cells, along with increased basal and Ebselen-stimulated levels of free GSH and PSSG. GSTP activity inhibition with the GSH analogue EZT induced apoptotic cell death in HCC cells. Hepatic Nrf2 and c-Jun, two transcription factors involved in GSTP expression and GSH biosynthesis, were induced in DEN-HCC compared to control animals; the Nrf2 inhibitory proteins Keap1 and β-TrCP also increased and oligomeric forms of GSTP co-immunoprecipitated with both Nrf2 and Keap1. Nrf2 nuclear translocation and β-TrCP expression also increased in HCC cells, and GSTP transfection in HepaRG cells induced Nrf2 activation. In conclusion, GSTP expression and subcellular distribution are modified in HCC cells and apparently contribute to the GSH-dependent reprogramming of the cellular redox in this type of cancer directly influencing the transcriptional system Nrf2/Keap1.
Collapse
Affiliation(s)
- Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, 06126, Perugia, Italy.
| | - Anna Maria Stabile
- Department of Medicine and Surgery, University of Perugia, 06132, Perugia, Italy.
| | - Anna Migni
- Department of Pharmaceutical Sciences, University of Perugia, 06126, Perugia, Italy.
| | - Fabio Gurrado
- Department of Gastroenterology, Marche Polytechnic University, Ancona, Italy.
| | - Gessica Lioci
- Department of Gastroenterology, Marche Polytechnic University, Ancona, Italy.
| | | | - Martina Mandarano
- Department of Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
| | - Gianluca Svegliati-Baroni
- Department of Gastroenterology, Marche Polytechnic University, Ancona, Italy; Obesity Center, Marche Polytechnic University, Ancona, Italy and Liver Injury and Transplant Unit, Ancona, Italy.
| | - Manlio Di Cristina
- Department of Medicine and Surgery, University of Perugia, 06132, Perugia, Italy.
| | - Guido Bellezza
- Department of Medicine and Surgery, University of Perugia, 06132, Perugia, Italy.
| | - Mario Rende
- Department of Medicine and Surgery, University of Perugia, 06132, Perugia, Italy.
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, 06126, Perugia, Italy.
| |
Collapse
|
3
|
Romualdo GR, Heidor R, Bacil GP, Moreno FS, Barbisan LF. Past, present, and future of chemically induced hepatocarcinogenesis rodent models: Perspectives concerning classic and new cancer hallmarks. Life Sci 2023; 330:121994. [PMID: 37543357 DOI: 10.1016/j.lfs.2023.121994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Hepatocellular carcinoma (HCC), the main primary liver cancer, accounts for 5 % of all incident cases and 8.4 % of all cancer-related deaths worldwide. HCC displays a spectrum of environmental risk factors (viral chronic infections, aflatoxin exposure, alcoholic- and nonalcoholic fatty liver diseases) that result in molecular complexity and heterogeneity, contributing to a rising epidemiological burden, poor prognosis, and non-satisfactory treatment options. The emergence of HCC (i.e., hepatocarcinogenesis) is a multistep and complex process that addresses many (epi)genetic alterations and phenotypic traits, the so-called cancer hallmarks. "Polymorphic microbiomes", "epigenetic reprogramming", "senescent cells" and "unlocking phenotypic plasticity" are trending hallmarks/enabling features in cancer biology. As the main molecular drivers of HCC are still undruggable, chemically induced in vivo models of hepatocarcinogenesis are useful tools in preclinical research. Thus, this narrative review aimed at recapitulating the basic features of chemically induced rodent models of hepatocarcinogenesis, eliciting their permanent translational value regarding the "classic" and the "new" cancer hallmarks/enabling features. We gathered state-of-art preclinical evidence on non-cirrhotic, inflammation-, alcoholic liver disease- and nonalcoholic fatty liver-associated HCC models, demonstrating that these bioassays indeed express the recently added hallmarks, as well as reflect the interplay between classical and new cancer traits. Our review demonstrated that these protocols remain valuable for translational preclinical application, as they recapitulate trending features of cancer science. Further "omics-based" approaches are warranted while multimodel investigations are encouraged in order to avoid "model-biased" responses.
Collapse
Affiliation(s)
- Guilherme Ribeiro Romualdo
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically Induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Laboratory of Chemically Induced and Experimental Carcinogenesis (LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Botucatu, SP, Brazil
| | - Renato Heidor
- University of São Paulo (USP), Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Laboratory of Diet, Nutrition, and Cancer, São Paulo, SP, Brazil
| | - Gabriel Prata Bacil
- São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Laboratory of Chemically Induced and Experimental Carcinogenesis (LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Botucatu, SP, Brazil
| | - Fernando Salvador Moreno
- University of São Paulo (USP), Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Laboratory of Diet, Nutrition, and Cancer, São Paulo, SP, Brazil
| | - Luís Fernando Barbisan
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically Induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Laboratory of Chemically Induced and Experimental Carcinogenesis (LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Botucatu, SP, Brazil.
| |
Collapse
|
4
|
Desert R, Chen W, Ge X, Viel R, Han H, Athavale D, Das S, Song Z, Lantvit D, Cano L, Naba A, Musso O, Nieto N. Hepatocellular carcinomas, exhibiting intratumor fibrosis, express cancer-specific extracellular matrix remodeling and WNT/TGFB signatures, associated with poor outcome. Hepatology 2023; 78:741-757. [PMID: 36999534 DOI: 10.1097/hep.0000000000000362] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/14/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND AND AIMS HCC, the third leading cause of cancer-related death, arises in the context of liver fibrosis. Although HCC is generally poorly fibrogenic, some tumors harbor focal intratumor extracellular matrix (ECM) deposits called "fibrous nests." To date, the molecular composition and clinical relevance of these ECM deposits have not been fully defined. APPROACH AND RESULTS We performed quantitative matrisome analysis by tandem mass tags mass spectrometry in 20 human cancer specific matrisome (HCCs) with high or low-grade intratumor fibrosis and matched nontumor tissues, as well as in 12 livers from mice treated with vehicle, carbon tetrachloride, or diethylnitrosamine. We found 94 ECM proteins differentially abundant between high and low-grade fibrous nests, including interstitial and basement membrane components, such as several collagens, glycoproteins, proteoglycans, enzymes involved in ECM stabilization and degradation, and growth factors. Pathway analysis revealed a metabolic switch in high-grade fibrosis, with enhanced glycolysis and decreased oxidative phosphorylation. Integrating the quantitative proteomics with transcriptomics from HCCs and nontumor livers (n = 2,285 samples), we identified a subgroup of fibrous nest HCCs, characterized by cancer-specific ECM remodeling, expression of the WNT/TGFB (S1) subclass signature, and poor patient outcome. Fibrous nest HCCs abundantly expressed an 11-fibrous-nest - protein signature, associated with poor patient outcome, by multivariate Cox analysis, and validated by multiplex immunohistochemistry. CONCLUSIONS Matrisome analysis highlighted cancer-specific ECM deposits, typical of the WNT/TGFB HCC subclass, associated with poor patient outcomes. Hence, histologic reporting of intratumor fibrosis in HCC is of clinical relevance.
Collapse
Affiliation(s)
- Romain Desert
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Wei Chen
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Xiaodong Ge
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Roselyne Viel
- Univ Rennes, CNRS, INSERM, UMS Biosit, Rennes, France
| | - Hui Han
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Dipti Athavale
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sukanta Das
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Zhuolun Song
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Daniel Lantvit
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Luis Cano
- INSERM, Univ Rennes, Nutrition, Métabolismes et Cancer (NuMeCan), 2 Rue Henri le Guilloux, Rennes, France
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
- University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Orlando Musso
- INSERM, Univ Rennes, Nutrition, Métabolismes et Cancer (NuMeCan), 2 Rue Henri le Guilloux, Rennes, France
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
- University of Illinois Cancer Center, Chicago, Illinois, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
5
|
Vucur M, Ghallab A, Schneider AT, Adili A, Cheng M, Castoldi M, Singer MT, Büttner V, Keysberg LS, Küsgens L, Kohlhepp M, Görg B, Gallage S, Barragan Avila JE, Unger K, Kordes C, Leblond AL, Albrecht W, Loosen SH, Lohr C, Jördens MS, Babler A, Hayat S, Schumacher D, Koenen MT, Govaere O, Boekschoten MV, Jörs S, Villacorta-Martin C, Mazzaferro V, Llovet JM, Weiskirchen R, Kather JN, Starlinger P, Trauner M, Luedde M, Heij LR, Neumann UP, Keitel V, Bode JG, Schneider RK, Tacke F, Levkau B, Lammers T, Fluegen G, Alexandrov T, Collins AL, Nelson G, Oakley F, Mann DA, Roderburg C, Longerich T, Weber A, Villanueva A, Samson AL, Murphy JM, Kramann R, Geisler F, Costa IG, Hengstler JG, Heikenwalder M, Luedde T. Sublethal necroptosis signaling promotes inflammation and liver cancer. Immunity 2023; 56:1578-1595.e8. [PMID: 37329888 DOI: 10.1016/j.immuni.2023.05.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/30/2022] [Accepted: 05/22/2023] [Indexed: 06/19/2023]
Abstract
It is currently not well known how necroptosis and necroptosis responses manifest in vivo. Here, we uncovered a molecular switch facilitating reprogramming between two alternative modes of necroptosis signaling in hepatocytes, fundamentally affecting immune responses and hepatocarcinogenesis. Concomitant necrosome and NF-κB activation in hepatocytes, which physiologically express low concentrations of receptor-interacting kinase 3 (RIPK3), did not lead to immediate cell death but forced them into a prolonged "sublethal" state with leaky membranes, functioning as secretory cells that released specific chemokines including CCL20 and MCP-1. This triggered hepatic cell proliferation as well as activation of procarcinogenic monocyte-derived macrophage cell clusters, contributing to hepatocarcinogenesis. In contrast, necrosome activation in hepatocytes with inactive NF-κB-signaling caused an accelerated execution of necroptosis, limiting alarmin release, and thereby preventing inflammation and hepatocarcinogenesis. Consistently, intratumoral NF-κB-necroptosis signatures were associated with poor prognosis in human hepatocarcinogenesis. Therefore, pharmacological reprogramming between these distinct forms of necroptosis may represent a promising strategy against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany.
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University Dortmund, Dortmund, Germany; Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Anne T Schneider
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Arlind Adili
- Department of Chronic Inflammation and Cancer, German Cancer Research Institute (DKFZ), Heidelberg, Germany
| | - Mingbo Cheng
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Mirco Castoldi
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Michael T Singer
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Veronika Büttner
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Leonie S Keysberg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Lena Küsgens
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Marlene Kohlhepp
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Boris Görg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Suchira Gallage
- Department of Chronic Inflammation and Cancer, German Cancer Research Institute (DKFZ), Heidelberg, Germany; The M3 Research Institute, Eberhard Karls University, Tübingen, Germany
| | - Jose Efren Barragan Avila
- Department of Chronic Inflammation and Cancer, German Cancer Research Institute (DKFZ), Heidelberg, Germany
| | - Kristian Unger
- Research Unit of Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Claus Kordes
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Anne-Laure Leblond
- Department for pathology and molecular pathology, Zürich University Hospital, Zürich, Switzerland
| | - Wiebke Albrecht
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University Dortmund, Dortmund, Germany
| | - Sven H Loosen
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Carolin Lohr
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Markus S Jördens
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Anne Babler
- Institute of Experimental Medicine and Systems Biology and Department of Nephrology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Sikander Hayat
- Institute of Experimental Medicine and Systems Biology and Department of Nephrology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - David Schumacher
- Institute of Experimental Medicine and Systems Biology and Department of Nephrology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Maria T Koenen
- Department of Medicine, Rhein-Maas-Klinikum, Würselen, Germany
| | - Olivier Govaere
- Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Mark V Boekschoten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Simone Jörs
- Second Department of Internal Medicine, Klinikum Rechts der Isar, Technische Universität München, Germany
| | - Carlos Villacorta-Martin
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vincenzo Mazzaferro
- Gastrointestinal Surgery and Liver Transplantation Unit, National Cancer Institute, University of Milan, Milan, Italy
| | - Josep M Llovet
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Liver Cancer Translational Research Laboratory, Barcelona-Clínic Liver Cancer Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Liver Unit, CIBEREHD, Hospital Clínic, Barcelona, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital RWTH Aachen, Aachen, Germany
| | - Jakob N Kather
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Patrick Starlinger
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Mark Luedde
- Department of Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lara R Heij
- Visceral and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Ulf P Neumann
- Visceral and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany; Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Magdeburg, Medical Faculty of Otto Von Guericke University Magdeburg, Magdeburg, Germany
| | - Johannes G Bode
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Rebekka K Schneider
- Department of Cell Biology, Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Bodo Levkau
- Institute of Molecular Medicine III, University Hospital Dusseldorf, Heinrich Heine University, Dusseldorf, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Georg Fluegen
- Department of Surgery (A), University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University, Dusseldorf, Germany
| | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Amy L Collins
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Glyn Nelson
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Derek A Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Christoph Roderburg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Achim Weber
- Department for pathology and molecular pathology, Zürich University Hospital, Zürich, Switzerland
| | - Augusto Villanueva
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andre L Samson
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology and Department of Nephrology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Fabian Geisler
- Second Department of Internal Medicine, Klinikum Rechts der Isar, Technische Universität München, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University Dortmund, Dortmund, Germany
| | - Mathias Heikenwalder
- Department of Chronic Inflammation and Cancer, German Cancer Research Institute (DKFZ), Heidelberg, Germany; The M3 Research Institute, Eberhard Karls University, Tübingen, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich Heine University Dusseldorf, Dusseldorf, Germany.
| |
Collapse
|
6
|
Hernandez JC, Chen CL, Machida T, Uthaya Kumar DB, Tahara SM, Montana J, Sher L, Liang J, Jung JU, Tsukamoto H, Machida K. LIN28 and histone H3K4 methylase induce TLR4 to generate tumor-initiating stem-like cells. iScience 2023; 26:106254. [PMID: 36949755 PMCID: PMC10025994 DOI: 10.1016/j.isci.2023.106254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/09/2022] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Chemoresistance and plasticity of tumor-initiating stem-like cells (TICs) promote tumor recurrence and metastasis. The gut-originating endotoxin-TLR4-NANOG oncogenic axis is responsible for the genesis of TICs. This study investigated mechanisms as to how TICs arise through transcriptional, epigenetic, and post-transcriptional activation of oncogenic TLR4 pathways. Here, we expressed constitutively active TLR4 (caTLR4) in mice carrying pLAP-tTA or pAlb-tTA, under a tetracycline withdrawal-inducible system. Liver progenitor cell induction accelerated liver tumor development in caTLR4-expressing mice. Lentiviral shRNA library screening identified histone H3K4 methylase SETD7 as central to activation of TLR4. SETD7 combined with hypoxia induced TLR4 through HIF2 and NOTCH. LIN28 post-transcriptionally stabilized TLR4 mRNA via de-repression of let-7 microRNA. These results supported a LIN28-TLR4 pathway for the development of HCCs in a hypoxic microenvironment. These findings not only advance our understanding of molecular mechanisms responsible for TIC generation in HCC, but also represent new therapeutic targets for the treatment of HCC.
Collapse
Affiliation(s)
- Juan Carlos Hernandez
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
- MS Biotechnology Program, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Chia-Lin Chen
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
- Department of Life Sciences & Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 110, Taiwan
| | - Tatsuya Machida
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Dinesh Babu Uthaya Kumar
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Stanley M. Tahara
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jared Montana
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Linda Sher
- Department of Surgery, University of Southern California, Los Angeles, CA 90033, USA
| | | | - Jae U. Jung
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Hidekazu Tsukamoto
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA, USA
- Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Keigo Machida
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA, USA
| |
Collapse
|
7
|
Serra M, Pal R, Puliga E, Sulas P, Cabras L, Cusano R, Giordano S, Perra A, Columbano A, Kowalik MA. mRNA-miRNA networks identify metabolic pathways associated to the anti-tumorigenic effect of thyroid hormone on preneoplastic nodules and hepatocellular carcinoma. Front Oncol 2022; 12:941552. [PMID: 36203462 PMCID: PMC9530455 DOI: 10.3389/fonc.2022.941552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Thyroid hormones (THs) inhibit hepatocellular carcinoma (HCC) through different mechanisms. However, whether microRNAs play a role in the antitumorigenic effect of THs remains unknown. Methods By next generation sequencing (NGS) we performed a comprehensive comparative miRNomic and transcriptomic analysis of rat hepatic preneoplastic lesions exposed or not to a short-term treatment with triiodothyronine (T3). The expression of the most deregulated miRs was also investigated in rat HCCs, and in human hepatoma cell lines, treated or not with T3. Results Among miRs down-regulated in preneoplastic nodules following T3, co-expression networks revealed those targeting thyroid hormone receptor-β (Thrβ) and deiodinase1, and Oxidative Phosphorylation. On the other hand, miRs targeting members of the Nrf2 Oxidative Pathway, Glycolysis, Pentose Phosphate Pathway and Proline biosynthesis – all involved in the metabolic reprogramming displayed by preneoplastic lesions– were up-regulated. Notably, while the expression of most miRs deregulated in preneoplastic lesions was not altered in HCC or in hepatoma cells, miR-182, a miR known to target Dio1 and mitochondrial complexes, was down-deregulated by T3 treatment at all stages of hepatocarcinogenesis and in hepatocarcinoma cell lines. In support to the possible critical role of miR-182 in hepatocarcinogenesis, exogenous expression of this miR significantly impaired the inhibitory effect of T3 on the clonogenic growth capacity of human HCC cells. Conclusions This work identified several miRNAs, so far never associated to T3. In addition, the precise definition of the miRNA-mRNA networks elicited by T3 treatment gained in this study may provide a better understanding of the key regulatory events underlying the inhibitory effect of T3 on HCC development. In this context, T3-induced down-regulation of miR-182 appears as a promising tool.
Collapse
Affiliation(s)
- Marina Serra
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Rajesh Pal
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Elisabetta Puliga
- Department of Oncology, University of Turin, Turin, Italy
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Italy
| | - Pia Sulas
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Lavinia Cabras
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Roberto Cusano
- Centro di Ricerca, Sviluppo e Studi Superiori in Sardegna (CRS4), Pula, Italy
| | - Silvia Giordano
- Department of Oncology, University of Turin, Turin, Italy
- Candiolo Cancer Institute-Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Amedeo Columbano
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
- *Correspondence: Amedeo Columbano, ; Marta Anna Kowalik,
| | - Marta Anna Kowalik
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
- *Correspondence: Amedeo Columbano, ; Marta Anna Kowalik,
| |
Collapse
|
8
|
Qian Y, Itzel T, Ebert M, Teufel A. Deep View of HCC Gene Expression Signatures and Their Comparison with Other Cancers. Cancers (Basel) 2022; 14:cancers14174322. [PMID: 36077860 PMCID: PMC9454845 DOI: 10.3390/cancers14174322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Gene expression signatures correlate genetic alterations with specific clinical features, providing the potential for clinical usage. A plethora of HCC-dependent gene signatures have been developed in the last two decades. However, none of them has made its way into clinical practice. Thus, we investigated the specificity of public gene signatures to HCC by establishing a comparative transcriptomic analysis, as this may be essential for clinical applications. METHODS We collected 10 public HCC gene signatures and evaluated them by utilizing four different (commercial and non-commercial) gene expression profile comparison tools: Oncomine Premium, SigCom LINCS, ProfileChaser (modified version), and GENEVA, which can assign similar pre-analyzed profiles of patients with tumors or cancer cell lines to our gene signatures of interests. Among the query results of each tool, different cancer entities were screened. In addition, seven breast and colorectal cancer gene signatures were included in order to further challenge tumor specificity of gene expression signatures. RESULTS Although the specificity of the evaluated HCC gene signatures varied considerably, none of the gene signatures showed strict specificity to HCC. All gene signatures exhibited potential significant specificity to other cancers, particularly for colorectal and breast cancer. Since signature specificity proved challenging, we furthermore investigated common core genes and overlapping enriched pathways among all gene signatures, which, however, showed no or only very little overlap, respectively. CONCLUSION Our study demonstrates that specificity, independent validation, and clinical use of HCC genetic signatures solely relying on gene expression remains challenging. Furthermore, our work made clear that standards in signature generation and statistical methods but potentially also in tissue preparation are urgently needed.
Collapse
Affiliation(s)
- Yuquan Qian
- Division of Hepatology, Division of Clinical Bioinformatics, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Timo Itzel
- Division of Hepatology, Division of Clinical Bioinformatics, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Matthias Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Clinical Cooperation Unit Healthy Metabolism, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPDBW), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Andreas Teufel
- Division of Hepatology, Division of Clinical Bioinformatics, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Clinical Cooperation Unit Healthy Metabolism, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPDBW), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Correspondence: ; Tel.: +49-(0)621-383-4983; Fax: +49-(0)621-383-1467
| |
Collapse
|
9
|
Individual and joint influence of cytokeratin 19 and microvascular invasion on the prognosis of patients with hepatocellular carcinoma after hepatectomy. World J Surg Oncol 2022; 20:209. [PMID: 35725470 PMCID: PMC9210815 DOI: 10.1186/s12957-022-02632-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/03/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVES To evaluate the individual and combined associations of cytokeratin 19 (CK19) and microvascular invasion (MVI) with prognosis of patients with hepatocellular carcinoma (HCC). METHODS Clinicopathological data on 352 patients with HCC who underwent radical resection at our hospital between January 2013 and December 2015 were retrospectively analyzed. Patients were divided into four groups: CK19(-)/MVI(-), CK19(-)/MVI(+), CK19(+)/MVI(-), and CK19(+)/MVI(+). RESULTS Of the 352 HCC patients, 154 (43.8%) were CK19(-)/MVI(-); 116 (33.0%), CK19(-)/MVI(+); 31 (8.8%), CK19(+)/MVI(-); and 51 (14.5%), CK19(+)/MVI(+). The disease-free survival of CK19(-)/MVI(-) patients was significantly higher than that of CK19(-)/MVI(+) patients and CK19(+)/MVI(+) patients. Similar results were observed for overall survival. CK19(+)/MVI(+) patients showed significantly lower overall survival than the other three groups. CONCLUSIONS CK19 expression and MVI predict poor prognosis after radical resection of HCC, and the two markers jointly contribute to poor OS. Combining CK19 and MVI may predict post-resection prognosis better than using either factor on its own.
Collapse
|
10
|
Arman T, Baron JA, Lynch KD, White LA, Aldan J, Clarke JD. MCLR-elicited hepatic fibrosis and carcinogenic gene expression changes persist in rats with diet-induced nonalcoholic steatohepatitis through a 4-week recovery period. Toxicology 2021; 464:153021. [PMID: 34740672 PMCID: PMC8629135 DOI: 10.1016/j.tox.2021.153021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/08/2021] [Accepted: 10/29/2021] [Indexed: 12/30/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) causes liver extracellular matrix (ECM) remodeling and is a risk factor for fibrosis and hepatocellular carcinoma (HCC). Microcystin-LR (MCLR) is a hepatotoxin produced by fresh-water cyanobacteria that causes a NASH-like phenotype, liver fibrosis, and is also a risk factor for HCC. The focus of the current study was to investigate and compare hepatic recovery after cessation of MCLR exposure in healthy versus NASH animals. Male Sprague-Dawley rats were fed either a control or a high fat/high cholesterol (HFHC) diet for eight weeks. Animals received either vehicle or 30 μg/kg MCLR (i.p: 2 weeks, alternate days). Animals were euthanized at one of three time points: at the completion of the MCLR exposure period and after 2 and 4 weeks of recovery. Histological staining suggested that after four weeks of recovery the MCLR-exposed HFHC group had less steatosis and more fibrosis compared to the vehicle-exposed HFHC group and MCLR-exposed control group. RNA-Seq analysis revealed dysregulation of ECM genes after MCLR exposure in both control and HFHC groups that persisted only in the HFHC groups during recovery. After 4 weeks of recovery, MCLR hepatotoxicity in pre-existing NASH persistently dysregulated genes related to cellular differentiation and HCC. These data demonstrate impaired hepatic recovery and persistent carcinogenic changes after MCLR toxicity in pre-existing NASH.
Collapse
Affiliation(s)
- Tarana Arman
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States
| | - J Allen Baron
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States
| | - Katherine D Lynch
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States
| | - Laura A White
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, 99164, United States
| | - Johnny Aldan
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States
| | - John D Clarke
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States.
| |
Collapse
|
11
|
Romualdo GR, Leroy K, Costa CJS, Prata GB, Vanderborght B, da Silva TC, Barbisan LF, Andraus W, Devisscher L, Câmara NOS, Vinken M, Cogliati B. In Vivo and In Vitro Models of Hepatocellular Carcinoma: Current Strategies for Translational Modeling. Cancers (Basel) 2021; 13:5583. [PMID: 34771745 PMCID: PMC8582701 DOI: 10.3390/cancers13215583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the third leading cause of cancer-related death globally. HCC is a complex multistep disease and usually emerges in the setting of chronic liver diseases. The molecular pathogenesis of HCC varies according to the etiology, mainly caused by chronic hepatitis B and C virus infections, chronic alcohol consumption, aflatoxin-contaminated food, and non-alcoholic fatty liver disease associated with metabolic syndrome or diabetes mellitus. The establishment of HCC models has become essential for both basic and translational research to improve our understanding of the pathophysiology and unravel new molecular drivers of this disease. The ideal model should recapitulate key events observed during hepatocarcinogenesis and HCC progression in view of establishing effective diagnostic and therapeutic strategies to be translated into clinical practice. Despite considerable efforts currently devoted to liver cancer research, only a few anti-HCC drugs are available, and patient prognosis and survival are still poor. The present paper provides a state-of-the-art overview of in vivo and in vitro models used for translational modeling of HCC with a specific focus on their key molecular hallmarks.
Collapse
Affiliation(s)
- Guilherme Ribeiro Romualdo
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Kaat Leroy
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (K.L.); (M.V.)
| | - Cícero Júlio Silva Costa
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| | - Gabriel Bacil Prata
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Bart Vanderborght
- Gut-Liver Immunopharmacology Unit, Basic and Applied Medical Sciences, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
- Hepatology Research Unit, Internal Medicine and Paediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Tereza Cristina da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| | - Luís Fernando Barbisan
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
| | - Wellington Andraus
- Department of Gastroenterology, Clinics Hospital, School of Medicine, University of São Paulo (HC-FMUSP), São Paulo 05403-000, Brazil;
| | - Lindsey Devisscher
- Hepatology Research Unit, Internal Medicine and Paediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (K.L.); (M.V.)
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| |
Collapse
|
12
|
Zhuo J, Lu D, Wang J, Lian Z, Zhang J, Li H, Cen B, Wei X, Wei Q, Xie H, Xu X. Molecular phenotypes reveal heterogeneous engraftments of patient-derived hepatocellular carcinoma xenografts. Chin J Cancer Res 2021; 33:470-479. [PMID: 34584372 PMCID: PMC8435819 DOI: 10.21147/j.issn.1000-9604.2021.04.04] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/20/2021] [Indexed: 12/21/2022] Open
Abstract
Objective Patient-derived xenograft (PDX) models provide a promising preclinical platform for hepatocellular carcinoma (HCC). However, the molecular features associated with successful engraftment of PDX models have not been revealed. Methods HCC tumor samples from 76 patients were implanted in immunodeficient mice. The molecular expression was evaluated by immunohistochemistry. Patient and tumor characteristics as well as tumor molecular expressions were compared for PDX engraftment using the Chi-square test. The independent prediction parameters were identified by logistic regression analyses. Results The engraftment rate for PDX models from patients with HCC was 39.47% (30/76). Tumors from younger patients and patients with elevated preoperative alpha-fetoprotein level had higher engraftment rates. Tumors with poor differentiation and vascular invasion were related to engraftment success. The positive expression of CK19, CD133, glypican-3 (GPC3), and Ki67 in tumor samples was associated with engraftment success. Logistic regression analyses indicated that GPC3 and Ki67 were two of the strongest predictors of PDX engraftment. Tumors with GPC3/Ki67 phenotypes showed heterogeneous engraftment rates, with 71.9% in GPC3+/Ki67+ tumors, 30.8% in GPC3−/Ki67+ tumors, 15.0% in GPC3+/Ki67− tumors, and 0 in GPC3−/Ki67− tumors.
Conclusions Successful engraftment of HCC PDXs was significantly related to molecular features. Tumors with the GPC3+/Ki67+ phenotype were the most likely to successfully establish HCC PDXs.
Collapse
Affiliation(s)
- Jianyong Zhuo
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,National Health Commission Key Laboratory of Combined Multi-organ Transplantation; Institute of Organ Transplantation, Zhejiang University, Hangzhou 310003, China
| | - Di Lu
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianguo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhengxing Lian
- National Health Commission Key Laboratory of Combined Multi-organ Transplantation; Institute of Organ Transplantation, Zhejiang University, Hangzhou 310003, China
| | - Jiali Zhang
- National Health Commission Key Laboratory of Combined Multi-organ Transplantation; Institute of Organ Transplantation, Zhejiang University, Hangzhou 310003, China
| | - Huihui Li
- National Health Commission Key Laboratory of Combined Multi-organ Transplantation; Institute of Organ Transplantation, Zhejiang University, Hangzhou 310003, China
| | - Beini Cen
- National Health Commission Key Laboratory of Combined Multi-organ Transplantation; Institute of Organ Transplantation, Zhejiang University, Hangzhou 310003, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qiang Wei
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Haiyang Xie
- National Health Commission Key Laboratory of Combined Multi-organ Transplantation; Institute of Organ Transplantation, Zhejiang University, Hangzhou 310003, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,National Health Commission Key Laboratory of Combined Multi-organ Transplantation; Institute of Organ Transplantation, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
13
|
Lv D, Chen L, Du L, Zhou L, Tang H. Emerging Regulatory Mechanisms Involved in Liver Cancer Stem Cell Properties in Hepatocellular Carcinoma. Front Cell Dev Biol 2021; 9:691410. [PMID: 34368140 PMCID: PMC8339910 DOI: 10.3389/fcell.2021.691410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/01/2021] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of primary liver cancer and one of the leading causes of cancer-related deaths worldwide. A growing body of evidence supports the hypothesis that HCC is driven by a population of cells called liver cancer stem cells (LCSCs). LCSCs have been proposed to contribute to malignant HCC progression, including promoting tumor occurrence and growth, mediating tumor metastasis, and treatment resistance, but the regulatory mechanism of LCSCs in HCC remains unclear. Understanding the signaling pathways responsible for LCSC maintenance and survival may provide opportunities to improve patient outcomes. Here, we review the current literature about the origin of LCSCs and the niche composition, describe the current evidence of signaling pathways that mediate LCSC stemness, then highlight several mechanisms that modulate LCSC properties in HCC progression, and finally, summarize the new developments in therapeutic strategies targeting LCSCs markers and regulatory pathways.
Collapse
Affiliation(s)
- Duoduo Lv
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Liyu Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lingyao Du
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lingyun Zhou
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Center of Infectious Diseases, Division of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Castro‐Gil MP, Sánchez‐Rodríguez R, Torres‐Mena JE, López‐Torres CD, Quintanar‐Jurado V, Gabiño‐López NB, Villa‐Treviño S, del‐Pozo‐Jauner L, Arellanes‐Robledo J, Pérez‐Carreón JI. Enrichment of progenitor cells by 2-acetylaminofluorene accelerates liver carcinogenesis induced by diethylnitrosamine in vivo. Mol Carcinog 2021; 60:377-390. [PMID: 33765333 PMCID: PMC8251613 DOI: 10.1002/mc.23298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/24/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
The potential role of hepatocytes versus hepatic progenitor cells (HPC) on the onset and pathogenesis of hepatocellular carcinoma (HCC) has not been fully clarified. Because the administration of 2-acetylaminofluorene (2AAF) followed by a partial hepatectomy, selectively induces the HPC proliferation, we investigated the effects of chronic 2AAF administration on the HCC development caused by the chronic administration of the carcinogen diethylnitrosamine (DEN) for 16 weeks in the rat. DEN + 2AAF protocol impeded weight gain of animals but promoted prominent hepatomegaly and exacerbated liver alterations compared to DEN protocol alone. The tumor areas detected by γ-glutamyl transferase, prostaglandin reductase-1, and glutathione S-transferase Pi-1 liver cancer markers increased up to 80% as early as 12 weeks of treatment, meaning 6 weeks earlier than DEN alone. This protocol also increased the number of Ki67-positive cells and those of CD90 and CK19, two well-known progenitor cell markers. Interestingly, microarray analysis revealed that DEN + 2AAF protocol differentially modified the global gene expression signature and induced the differential expression of 30 genes identified as HPC markers as early as 6 weeks of treatment. In conclusion, 2AAF induces the early appearance of HPC markers and as a result, accelerates the hepatocarcinogenesis induced by DEN in the rat. Thus, since 2AAF simultaneously administrated with DEN enriches HPC during hepatocarcinogenesis, we propose that DEN + 2AAF protocol might be a useful tool to investigate the cellular origin of HCC with progenitor features.
Collapse
Affiliation(s)
| | - Ricardo Sánchez‐Rodríguez
- Foundation Istituto di Ricerca Pediatrica‐Città della SperanzaPadovaItaly
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | | | | | | | | | - Saúl Villa‐Treviño
- Department of Cell BiologyCenter for Research and Advanced Studies of the National Polytechnic InstituteCiudad de MéxicoMexico
| | | | - Jaime Arellanes‐Robledo
- Laboratory of Liver DiseasesNational Institute of Genomic MedicineCiudad de MéxicoMexico
- Directorate of CátedrasNational Council of Science and TechnologyCiudad de MéxicoMexico
| | | |
Collapse
|
15
|
Festa Ortega JF, Heidor R, Auriemo AP, Marques Affonso J, Pereira D' Amico T, Herz C, de Conti A, Ract J, Gioieli LA, Purgatto E, Lamy E, P Pogribny I, Salvador Moreno F. Butyrate-containing structured lipids act on HDAC4, HDAC6, DNA damage and telomerase activity during promotion of experimental hepatocarcinogenesis. Carcinogenesis 2021; 42:1026-1036. [PMID: 33999989 DOI: 10.1093/carcin/bgab039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) presents with a high treatment resistance and poor prognosis. Early diagnosis and preventive approaches such as chemoprevention are essential for the HCC control. Therefore, we evaluated the chemopreventive effects of butyrate-containing structured lipids (STLs) administered during the promotion stage of hepatocarcinogenesis in rats submitted to the 'resistant hepatocyte' (RH) model. Administration of butyrate-containing STLs inhibited the incidence and mean number of visible hepatic nodules per rat and reduced the number and area of glutathione S-transferase placental form-positive (GST-P+) preneoplastic focal lesions in the livers. This was accompanied by the induction of apoptosis and an increased level of hepatic butyric acid. Treatment with butyrate-containing STLs resulted in increased histone H3 lysine 9 (H3K9) acetylation, reduction of total histone deacetylase (HDAC) activity, and lower levels of HDAC4 and HDAC6 proteins. The chemopreventive effect of butyrate-containing STLs was also associated with the increased nuclear compartmentalization of p53 protein and reduced expression of the Bcl-2 protein. In addition, rats treated with butyrate-containing STLs showed decreased DNA damage and telomerase activity in the livers. These results demonstrate that the suppressive activity of butyrate-containing STLs is associated with inhibition of elevated during hepatocarcinogenesis chromatin-modifying proteins HDAC4 and HDAC6, subcellular redistribution of the p53 protein, and decreased DNA damage and telomerase activity.
Collapse
Affiliation(s)
- Juliana Festa Festa Ortega
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Renato Heidor
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Food Research Center (FORC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Paula Auriemo
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Juliana Marques Affonso
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thais Pereira D' Amico
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Corinna Herz
- Molecular Preventive Medicine, University of Freiburg, Breisacherstraße 115b, 79106 Freiburg im Breisgau, Germany
| | - Aline de Conti
- Division of Biochemical Toxicology, FDA National Center for Toxicological Research, Jefferson, AR, USA
| | - Juliana Ract
- Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luiz Antônio Gioieli
- Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eduardo Purgatto
- Food Research Center (FORC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Food Chemistry and Biochemistry, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Evelyn Lamy
- Molecular Preventive Medicine, University of Freiburg, Breisacherstraße 115b, 79106 Freiburg im Breisgau, Germany
| | - Igor P Pogribny
- Division of Biochemical Toxicology, FDA National Center for Toxicological Research, Jefferson, AR, USA
| | - Fernando Salvador Moreno
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Food Research Center (FORC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Rosan Fortunato Seixas F, Kempfer Bassoli B, Borghi Virgolin L, Chancare Garcia L, Soares Janzantti N. Physicochemical Properties and Effects of Fruit Pulps from the Amazon Biome on Physiological Parameters in Rats. Nutrients 2021; 13:nu13051484. [PMID: 33924791 PMCID: PMC8146226 DOI: 10.3390/nu13051484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 01/04/2023] Open
Abstract
This study aimed to analyze the physicochemical characteristics and the effects of Amazonian pulp fruits consumption, such as araçá-boi (Eugenia stipitata), abiu grande (Pouteria caimito), araticum (Annona crassiflora), biri-biri (Averrhoa bilimbi L.), and yellow mangosteen (Garcinia xanthochymus), on hematologic, metabolic, renal, and hepatic function parameters in Wistar rats (n = 10 rats/group). The pulp of abiu had the highest levels of soluble solids, sugars, and pH. Biri-biri pulp had the highest levels of ascorbic acid and total titratable acidity, and a low pH. The araticum pulp had higher (p ≤ 0.05) ash content, total phenolic compounds, and antioxidant activity than the pulp of other analyzed fruits. No significant increase in hematocrit, nor reduction of blood glucose, plasma cholesterol, and serum levels of glutamic-pyruvic transaminase (TGP), creatinine, and urea was observed in experimental groups relative to the control group of rats after the consumption of fruits pulp. The intake of abiu and araticum pulps promoted a significant reduction (p ≤ 0.05) in total leukocytes of the experimental groups as compared to the control group and only the intake of araticum significantly increased (p ≤ 0.05) triglyceride blood levels in rats (99.50 mg/dL). The regular consumption of biri-biri pulp for 30 days significantly (p ≤ 0.05) increased serum glutamic-oxaloacetic transaminase (TGO) levels in rats (116.83 U/L) compared to the control group (98.00 U/L). More researches are needed to generate knowledge about these promising Amazonian fruits, supporting the native fruit production, in addition to promoting health in the population and sustainability in the Amazon region.
Collapse
Affiliation(s)
- Fernanda Rosan Fortunato Seixas
- Department of Health Science, Federal University of Grande Dourados, Highway Dourados/Itahum, Km 12—Unit II, 79804-970 Dourados, Brazil;
- Department of Engineering and Food Technology, São Paulo State University, R. Cristóvão Colombo, 2265—Jardim Nazareth, 15054-000 São José do Rio Preto, Brazil; (L.B.V.); (N.S.J.)
- Correspondence: ; Tel.: +55-(69)-981351440
| | - Bruna Kempfer Bassoli
- Medical School, Federal University of Roraima, Avenida Capitão Ene Garcês, n° 2413—Aeroporto, 69310-000 Boa Vista, Brazil;
| | - Lara Borghi Virgolin
- Department of Engineering and Food Technology, São Paulo State University, R. Cristóvão Colombo, 2265—Jardim Nazareth, 15054-000 São José do Rio Preto, Brazil; (L.B.V.); (N.S.J.)
| | - Laís Chancare Garcia
- Department of Health Science, Federal University of Grande Dourados, Highway Dourados/Itahum, Km 12—Unit II, 79804-970 Dourados, Brazil;
| | - Natália Soares Janzantti
- Department of Engineering and Food Technology, São Paulo State University, R. Cristóvão Colombo, 2265—Jardim Nazareth, 15054-000 São José do Rio Preto, Brazil; (L.B.V.); (N.S.J.)
| |
Collapse
|
17
|
Rhee H, Kim H, Park YN. Clinico-Radio-Pathological and Molecular Features of Hepatocellular Carcinomas with Keratin 19 Expression. Liver Cancer 2020; 9:663-681. [PMID: 33442539 PMCID: PMC7768132 DOI: 10.1159/000510522] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/28/2020] [Indexed: 02/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous neoplasm, both from the molecular and histomorphological aspects. One example of heterogeneity is the expression of keratin 19 (K19) in a subset (4-28%) of HCCs. The presence of K19 expression in HCCs has important clinical implications, as K19-positive HCCs have been associated with aggressive tumor biology and poor prognosis. Histomorphologically, K19-positive HCCs demonstrate a more infiltrative appearance, poor histological differentiation, more frequent vascular invasion, and more intratumoral fibrous stroma than K19-negative conventional HCCs. From the molecular aspect, K19-positive HCCs have been matched with various gene signatures that have been associated with stemness and poor prognosis, including the G1-3 groups, S2 class, cluster A, proliferation signature, and vascular invasion signature. K19-positive HCCs also show upregulated signatures related to transforming growth factor-β pathway and epithelial-to-mesenchymal transition. The main regulators of K19 expression include hepatocyte growth factor-MET paracrine signaling by cancer-associated fibroblast, epidermal growth factor-epidermal growth factor receptor signaling, laminin, and DNA methylation. Clinically, higher serum alpha-fetoprotein levels, frequent association with chronic hepatitis B, more invasive growth, and lymph node metastasis have been shown to be characteristics of K19-positive HCCs. Radiologic features including atypical enhancement patterns, absence of tumor capsules, and irregular tumor margins can be a clue for K19-positive HCCs. From a therapeutic standpoint, K19-positive HCCs have been associated with poor outcomes after curative resection or liver transplantation, and resistance to systemic chemotherapy and locoregional treatment, including transarterial chemoembolization and radiofrequency ablation. In this review, we summarize the currently available knowledge on the clinico-radio-pathological and molecular features of K19-expressing HCCs, including a detailed discussion on the regulation mechanism of these tumors.
Collapse
Affiliation(s)
- Hyungjin Rhee
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Haeryoung Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Nyun Park
- Department of Pathology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea,*Young Nyun Park, Department of Pathology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul 03722 (Republic of Korea),
| |
Collapse
|
18
|
Animal Models: A Useful Tool to Unveil Metabolic Changes in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12113318. [PMID: 33182674 PMCID: PMC7696782 DOI: 10.3390/cancers12113318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) represents an important health problem. At the moment, systemic therapies offered only modest clinical benefits. Thus, HCC represents a cancer extremely difficult to treat, and therapeutic breakthroughs are urgently needed. Metabolic reprogramming of neoplastic cells has been recognized as one of the core hallmarks of cancer. Experimental animal models represent an important tool that allows to investigate metabolic changes underlying HCC development and progression. In the present review, we characterize available rodent models of hepatocarcinogenesis. Moreover, we discuss the possibility that pharmacological targeting of Warburg metabolism may represent an additional tool to improve already available therapeutic approaches for HCC. Abstract Hepatocellular carcinoma (HCC) is one the most frequent and lethal human cancers. At present, no effective treatment for advanced HCC exist; therefore, the overall prognosis for HCC patients remains dismal. In recent years, a better knowledge of the signaling pathways involved in the regulation of HCC development and progression, has led to the identification of novel potential targets for therapeutic strategies. However, the obtained benefits from current therapeutic options are disappointing. Altered cancer metabolism has become a topic of renewed interest in the last decades, and it has been included among the core hallmarks of cancer. In the light of growing evidence for metabolic reprogramming in cancer, a wide number of experimental animal models have been exploited to study metabolic changes characterizing HCC development and progression and to further expand our knowledge of this tumor. In the present review, we discuss several rodent models of hepatocarcinogenesis, that contributed to elucidate the metabolic profile of HCC and the implications of these changes in modulating the aggressiveness of neoplastic cells. We also highlight the apparently contrasting results stemming from different animal models. Finally, we analyze whether these observations could be exploited to improve current therapeutic strategies for HCC.
Collapse
|
19
|
Nrf2 in Neoplastic and Non-Neoplastic Liver Diseases. Cancers (Basel) 2020; 12:cancers12102932. [PMID: 33053665 PMCID: PMC7599585 DOI: 10.3390/cancers12102932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Although the Keap1-Nrf2 pathway represents a powerful cell defense mechanism against a variety of toxic insults, its role in acute or chronic liver damage and tumor development is not completely understood. This review addresses how Nrf2 is involved in liver pathophysiology and critically discusses the contrasting results emerging from the literature. The aim of the present report is to stimulate further investigation on the role of Nrf2 that could lead to define the best strategies to therapeutically target this pathway. Abstract Activation of the Keap1/Nrf2 pathway, the most important cell defense signal, triggered to neutralize the harmful effects of electrophilic and oxidative stress, plays a crucial role in cell survival. Therefore, its ability to attenuate acute and chronic liver damage, where oxidative stress represents the key player, is not surprising. On the other hand, while Nrf2 promotes proliferation in cancer cells, its role in non-neoplastic hepatocytes is a matter of debate. Another topic of uncertainty concerns the nature of the mechanisms of Nrf2 activation in hepatocarcinogenesis. Indeed, it remains unclear what is the main mechanism behind the sustained activation of the Keap1/Nrf2 pathway in hepatocarcinogenesis. This raises doubts about the best strategies to therapeutically target this pathway. In this review, we will analyze and discuss our present knowledge concerning the role of Nrf2 in hepatic physiology and pathology, including hepatocellular carcinoma. In particular, we will critically examine and discuss some findings originating from animal models that raise questions that still need to be adequately answered.
Collapse
|
20
|
Bassaganyas L, Pinyol R, Esteban-Fabró R, Torrens L, Torrecilla S, Willoughby CE, Franch-Expósito S, Vila-Casadesús M, Salaverria I, Montal R, Mazzaferro V, Camps J, Sia D, Llovet JM. Copy-Number Alteration Burden Differentially Impacts Immune Profiles and Molecular Features of Hepatocellular Carcinoma. Clin Cancer Res 2020; 26:6350-6361. [PMID: 32873569 DOI: 10.1158/1078-0432.ccr-20-1497] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/08/2020] [Accepted: 08/28/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE Chromosomal instability is a hallmark of cancer that results in broad and focal copy-number alterations (CNAs), two events associated with distinct molecular, immunologic, and clinical features. In hepatocellular carcinoma (HCC), the role of CNAs has not been thoroughly assessed. Thus, we dissected the impact of CNA burdens on HCC molecular and immune features. EXPERIMENTAL DESIGN We analyzed SNP array data from 452 paired tumor/adjacent resected HCCs and 25 dysplastic nodules. For each sample, broad and focal CNA burdens were quantified using CNApp, and the resulting broad scores (BS) and focal scores (FS) were correlated with transcriptomic, mutational, and methylation profiles, tumor immune composition, and clinicopathologic data. RESULTS HCCs with low broad CNA burdens (defined as BS ≤ 4; 17%) presented high inflammation, active infiltrate signaling, high cytolytic activity, and enrichment of the "HCC immune class" and gene signatures related to antigen presentation. Conversely, tumors with chromosomal instability (high broad CNA loads, BS ≥ 11; 40%), displayed immune-excluded traits and were linked to proliferation, TP53 dysfunction, and DNA repair. Candidate determinants of the low cytotoxicity and immune exclusion features of high-BS tumors included alterations in antigen-presenting machinery (i.e., HLA), widespread hypomethylation, and decreased rates of observed/expected neoantigenic mutations. High FSs were independent of tumor immune features, but were related to proliferation, TP53 dysfunction, and progenitor cell traits. CONCLUSIONS HCCs with high chromosomal instability exhibit features of immune exclusion, whereas tumors displaying low burdens of broad CNAs present an immune active profile. These CNA scores can be tested to predict response to immunotherapies.
Collapse
Affiliation(s)
- Laia Bassaganyas
- Liver Cancer Translational Research Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Roser Pinyol
- Liver Cancer Translational Research Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Roger Esteban-Fabró
- Liver Cancer Translational Research Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Laura Torrens
- Liver Cancer Translational Research Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Sara Torrecilla
- Liver Cancer Translational Research Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Catherine E Willoughby
- Liver Cancer Translational Research Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Sebastià Franch-Expósito
- Gastrointestinal and Pancreatic Oncology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | | | - Itziar Salaverria
- Lymphoid Neoplasms Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Tumores Hematológicos, Centro de Investigación Biomédica en Red de Cáncer (CIBERonc), Madrid, Spain
| | - Robert Montal
- Liver Cancer Translational Research Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Vincenzo Mazzaferro
- Gastrointestinal Surgery and Liver Transplantation Unit, National Cancer Institute, Milan, Italy
| | - Jordi Camps
- Gastrointestinal and Pancreatic Oncology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Daniela Sia
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Josep M Llovet
- Liver Cancer Translational Research Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain. .,Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
21
|
Takasu S, Ishii Y, Kijima A, Ogawa K, Nakane S, Umemura T. Furan Induced Characteristic Glutathione S-Transferase Placental Form-Positive Foci in Terms of Cell Kinetics and Gene Expression. Toxicol Pathol 2020; 48:756-765. [PMID: 32833602 DOI: 10.1177/0192623320948782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glutathione S-transferase placental form-positive (GST-P+) foci are markers of preneoplastic lesions in rat hepatocarcinogenesis. Our previous studies using reporter gene transgenic rats showed that furan, a hepatocarcinogen in rodents, rapidly induces the formation of GST-P+ foci after short exposure without reporter gene mutation. We hypothesized that GST-P+ foci induced by furan may have biological characteristics different from those induced by diethylnitrosamine (DEN), a genotoxic hepatocarcinogen. Accordingly, we compared the cell kinetics of GST-P+ foci after cessation of DEN treatment and performed comprehensive gene expression in DEN- or furan-induced GST-P+ foci. The number and area of DEN-induced GST-P+ foci were increased after cessation of treatment, whereas furan decreased these parameters. Size distribution analysis showed that large furan-induced GST-P+ foci disappeared after cessation of treatment. Hierarchical cluster analysis showed that all samples from GST-P+ foci induced by furan were separated from those induced by DEN. SOX9 expression was upregulated in furan-induced GST-P+ foci and was detected by immunohistochemistry in large furan-induced GST-P+ foci. Our results indicated that large furan-induced GST-P+ foci were quite different from DEN-induced GST-P+ foci at the molecular and cellular levels. And one of the properties of disappearing large GST-P+ foci were characterized by inclusion of hepatocytes expressing SOX9.
Collapse
Affiliation(s)
- Shinji Takasu
- Division of Pathology, 26360National Institute of Health Sciences, Kanagawa, Japan
| | - Yuji Ishii
- Division of Pathology, 26360National Institute of Health Sciences, Kanagawa, Japan
| | - Aki Kijima
- Division of Pathology, 26360National Institute of Health Sciences, Kanagawa, Japan
| | - Kumiko Ogawa
- Division of Pathology, 26360National Institute of Health Sciences, Kanagawa, Japan
| | - Sae Nakane
- Division of Pathology, 26360National Institute of Health Sciences, Kanagawa, Japan.,Faculty of Animal Health Technology, 183800Yamazaki University of Animal Health Technology, Tokyo, Japan
| | - Takashi Umemura
- Division of Pathology, 26360National Institute of Health Sciences, Kanagawa, Japan.,Faculty of Animal Health Technology, 183800Yamazaki University of Animal Health Technology, Tokyo, Japan
| |
Collapse
|
22
|
Zhuo JY, Lu D, Tan WY, Zheng SS, Shen YQ, Xu X. CK19-positive Hepatocellular Carcinoma is a Characteristic Subtype. J Cancer 2020; 11:5069-5077. [PMID: 32742454 PMCID: PMC7378918 DOI: 10.7150/jca.44697] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022] Open
Abstract
The heterogeneity of hepatocellular carcinoma (HCC) commonly leads to therapeutic failure of HCC. Cytokeratin 19 (CK19) is well acknowledged as a biliary/progenitor cell marker and a marker of tumor stem cell. CK19-positive HCCs demonstrate aggressive behaviors and poor outcomes which including worse overall survival and early tumor recurrence after hepatectomy and liver transplantation. CK19-positive HCCs are resistant to chemotherapies as well as local treatment. This subset of HCC is thought to derive from liver progenitor cells and can be induced by extracellular stimulation such as hypoxia. Besides being a stemness marker, CK19 plays an important role in promoting malignant property of HCC. The regulatory network associated with CK19 expression has been summarized that extracellular stimulations which transmit into cytoplasm through signal transduction pathways (TGF-β, MAKP/JNK and MEK-ERK1/2), further induce important nuclear transcriptional factors (SALL4, AP1, SP1) to activate CK19 promoter. Novel noncoding RNAs are also involved in the regulation of CK19 expression. TGFβR1 becomes a therapeutic target for CK19-positive HCC. In conclusion, CK19 can be a potential biomarker for predicting poor prognosis after surgical and adjuvant therapies. CK19-pisitive HCCs exhibit distinctive molecular profiling, should be diagnosed and treated as a separate subtype of HCCs.
Collapse
Affiliation(s)
- Jian-Yong Zhuo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, 310003, Zhejiang Province, China
| | - Di Lu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, 310003, Zhejiang Province, China
| | - Win-Yen Tan
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, 310003, Zhejiang Province, China
| | - Shu-Sen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, 310003, Zhejiang Province, China.,Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, 310003, Zhejiang Province, China
| | - You-Qing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, 310003, Zhejiang Province, China
| |
Collapse
|
23
|
Strauss RP, Audsley KM, Passman AM, van Vuuren JH, Finch-Edmondson ML, Callus BA, Yeoh GC. Loss of ARF/INK4A Promotes Liver Progenitor Cell Transformation Toward Tumorigenicity Supporting Their Role in Hepatocarcinogenesis. Gene Expr 2020; 20:39-52. [PMID: 32317048 PMCID: PMC7284103 DOI: 10.3727/105221620x15874935364268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Liver progenitor cells (LPCs) contribute to liver regeneration during chronic damage and are implicated as cells of origin for liver cancers including hepatocellular carcinoma (HCC). The CDKN2A locus, which encodes the tumor suppressors alternate reading frame protein (ARF) and INK4A, was identified as one of the most frequently altered genes in HCC. This study demonstrates that inactivation of CDKN2A enhances tumorigenic transformation of LPCs. The level of ARF and INK4A expression was determined in a panel of transformed and nontransformed wild-type LPC lines. Moreover, the transforming potential of LPCs with inactivated CDKN2A was shown to be enhanced in LPCs derived from Arf-/- and CDKN2Afl/fl mice and in wild-type LPCs following CRISPR-Cas9 suppression of CDKN2A. ARF and INK4A abundance is consistently reduced or ablated following LPC transformation. Arf-/- and CDKN2A-/- LPCs displayed hallmarks of transformation such as anchorage-independent and more rapid growth than control LPC lines with unaltered CDKN2A. Transformation was not immediate, suggesting that the loss of CDKN2A alone is insufficient. Further analysis revealed decreased p21 expression as well as reduced epithelial markers and increased mesenchymal markers, indicative of epithelial-to-mesenchymal transition, following inactivation of the CDKN2A gene were required for tumorigenic transformation. Loss of ARF and INK4A enhances the propensity of LPCs to undergo a tumorigenic transformation. As LPCs represent a cancer stem cell candidate, identifying CDKN2A as a driver of LPC transformation highlights ARF and INK4A as viable prognostic markers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Robyn P. Strauss
- *School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
- †Centre for Medical Research, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Katherine M. Audsley
- *School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Adam M. Passman
- *School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
- †Centre for Medical Research, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Joanne H. van Vuuren
- †Centre for Medical Research, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | | | - Bernard A. Callus
- *School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - George C. Yeoh
- *School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
- †Centre for Medical Research, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| |
Collapse
|
24
|
The Cancer Stem Cell in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12030684. [PMID: 32183251 PMCID: PMC7140091 DOI: 10.3390/cancers12030684] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
The recognition of intra-tumoral cellular heterogeneity has given way to the concept of the cancer stem cell (CSC). According to this concept, CSCs are able to self-renew and differentiate into all of the cancer cell lineages present within the tumor, placing the CSC at the top of a hierarchical tree. The observation that these cells—in contrast to bulk tumor cells—are able to exclusively initiate new tumors, initiate metastatic spread and resist chemotherapy implies that CSCs are solely responsible for tumor recurrence and should be therapeutically targeted. Toward this end, dissecting and understanding the biology of CSCs should translate into new clinical therapeutic approaches. In this article, we review the CSC concept in cancer, with a special focus on hepatocellular carcinoma.
Collapse
|
25
|
Machida K. Cell fate, metabolic reprogramming and lncRNA of tumor-initiating stem-like cells induced by alcohol. Chem Biol Interact 2020; 323:109055. [PMID: 32171851 DOI: 10.1016/j.cbi.2020.109055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/13/2019] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
Abstract
Alcoholism synergizes the development of the hepatocellular carcinoma (HCC) in patients infected with hepatitis B or C virus (HBV or HCV). Tumor-initiating stem-like cells (TICs) are refractory to therapy and have expression of stemness transcription factors. Leaky-gut-derived endotoxin stimulates TLR4-NANOG pathway that skews asymmetric cell division and that metabolically reprograms hepatocytes/liver progenitor cells, leading to self-renewal. TICs isolated from mouse HCC models or human HCCs are tumorigenic and have p53 degradation via phosphorylation of the protective protein NUMB and its dissociation from p53 by the oncofetal protein TBC1D15. Furthermore, dysregulation of lncRNA promotes genesis of TICs, leading to HCC development. This review describes roles of cell fate decision, metabolic reprogramming and lncRNA for TIC genesis and liver oncogenesis. This project was supported by NIH grants 1R01AA018857-01, 5R21AA025470, P50AA11999 (Animal Core, Morphology Core, and Pilot Project Program), R24AA012885 (Non-Parenchymal Liver Cell Core) and pilot project funding (5P30DK048522-13).
Collapse
Affiliation(s)
- Keigo Machida
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA, USA; Department of Molecular Microbiology and Immunology, Los Angeles, CA, USA.
| |
Collapse
|
26
|
Tsuchida T, Murata S, Matsuki K, Mori A, Matsuo M, Mikami S, Okamoto S, Ueno Y, Tadokoro T, Zheng YW, Taniguchi H. The Regenerative Effect of Portal Vein Injection of Liver Organoids by Retrorsine/Partial Hepatectomy in Rats. Int J Mol Sci 2019; 21:ijms21010178. [PMID: 31887985 PMCID: PMC6981799 DOI: 10.3390/ijms21010178] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022] Open
Abstract
In this study, we reveal that liver organoid transplantation through the portal vein is a safe and effective method for the treatment of chronic liver damage. The liver organoids significantly reconstituted the hepatocytes; hence, the liver was significantly enlarged in this group, compared to the monolayer cell transplantation group in the retrorsine/partial hepatectomy (RS/PH) model. In the liver organoid transplantation group, the bile ducts were located in the donor area and connected to the recipient bile ducts. Thus, the rate of bile reconstruction in the liver was significantly higher compared to that in the monolayer group. By transplanting liver organoids, we saw a level of 70% replacement of the damaged liver. Consequently, in the transplantation group, diminished ductular reaction and a decrease of placental glutathione S-transferase (GST-p) precancerous lesions were observed. After trans-portal injection, the human induced pluripotent stem cell (hiPSC)-derived liver organoids revealed no translocation outside the liver; in contrast, the monolayer cells had spread to the lungs. The hiPSC-derived liver organoids were attached to the liver in the immunodeficient RS/PH rats. This study clearly demonstrates that liver organoid transplantation through the portal vein is a safe and effective method for the treatment of chronic liver damage in rats.
Collapse
Affiliation(s)
- Tomonori Tsuchida
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (T.T.); (K.M.); (A.M.); (M.M.); (S.M.); (S.O.); (Y.U.); (T.T.); (Y.-W.Z.)
| | - Soichiro Murata
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (T.T.); (K.M.); (A.M.); (M.M.); (S.M.); (S.O.); (Y.U.); (T.T.); (Y.-W.Z.)
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, the University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Correspondence: (S.M.); (H.T.); Tel./Fax: +81-45-787-8963 (S.M. & H.T.)
| | - Koichiro Matsuki
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (T.T.); (K.M.); (A.M.); (M.M.); (S.M.); (S.O.); (Y.U.); (T.T.); (Y.-W.Z.)
| | - Akihiro Mori
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (T.T.); (K.M.); (A.M.); (M.M.); (S.M.); (S.O.); (Y.U.); (T.T.); (Y.-W.Z.)
| | - Megumi Matsuo
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (T.T.); (K.M.); (A.M.); (M.M.); (S.M.); (S.O.); (Y.U.); (T.T.); (Y.-W.Z.)
| | - Satoshi Mikami
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (T.T.); (K.M.); (A.M.); (M.M.); (S.M.); (S.O.); (Y.U.); (T.T.); (Y.-W.Z.)
| | - Satoshi Okamoto
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (T.T.); (K.M.); (A.M.); (M.M.); (S.M.); (S.O.); (Y.U.); (T.T.); (Y.-W.Z.)
| | - Yasuharu Ueno
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (T.T.); (K.M.); (A.M.); (M.M.); (S.M.); (S.O.); (Y.U.); (T.T.); (Y.-W.Z.)
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, the University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomomi Tadokoro
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (T.T.); (K.M.); (A.M.); (M.M.); (S.M.); (S.O.); (Y.U.); (T.T.); (Y.-W.Z.)
| | - Yun-Wen Zheng
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (T.T.); (K.M.); (A.M.); (M.M.); (S.M.); (S.O.); (Y.U.); (T.T.); (Y.-W.Z.)
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, the University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; (T.T.); (K.M.); (A.M.); (M.M.); (S.M.); (S.O.); (Y.U.); (T.T.); (Y.-W.Z.)
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, the University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Correspondence: (S.M.); (H.T.); Tel./Fax: +81-45-787-8963 (S.M. & H.T.)
| |
Collapse
|
27
|
Li Z, Lou Y, Tian G, Wu J, Lu A, Chen J, Xu B, Shi J, Yang J. Discovering master regulators in hepatocellular carcinoma: one novel MR, SEC14L2 inhibits cancer cells. Aging (Albany NY) 2019; 11:12375-12411. [PMID: 31851620 PMCID: PMC6949064 DOI: 10.18632/aging.102579] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
Abstract
Identification of master regulator (MR) genes offers a relatively rapid and efficient way to characterize disease-specific molecular programs. Since strong consensus regarding commonly altered MRs in hepatocellular carcinoma (HCC) is lacking, we generated a compendium of HCC datasets from 21 studies and identified a comprehensive signature consisting of 483 genes commonly deregulated in HCC. We then used reverse engineering of transcriptional networks to identify the MRs that underpin the development and progression of HCC. After cross-validation in different HCC datasets, systematic assessment using patient-derived data confirmed prognostic predictive capacities for most HCC MRs and their corresponding regulons. Our HCC signature covered well-established liver cancer hallmarks, and network analyses revealed coordinated interaction between several MRs. One novel MR, SEC14L2, exerted an anti-proliferative effect in HCC cells and strongly suppressed tumor growth in a mouse model. This study advances our knowledge of transcriptional MRs potentially involved in HCC development and progression that may be targeted by specific interventions.
Collapse
Affiliation(s)
- Zhihui Li
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Yi Lou
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China.,Department of Occupational Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Guoyan Tian
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Jianyue Wu
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Anqian Lu
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Jin Chen
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Beibei Xu
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Junping Shi
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Jin Yang
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| |
Collapse
|
28
|
MicroRNAs in Animal Models of HCC. Cancers (Basel) 2019; 11:cancers11121906. [PMID: 31805631 PMCID: PMC6966618 DOI: 10.3390/cancers11121906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality. Molecular heterogeneity and absence of biomarkers for patient allocation to the best therapeutic option contribute to poor prognosis of advanced stages. Aberrant microRNA (miRNA) expression is associated with HCC development and progression and influences drug resistance. Therefore, miRNAs have been assayed as putative biomarkers and therapeutic targets. miRNA-based therapeutic approaches demonstrated safety profiles and antitumor efficacy in HCC animal models; nevertheless, caution should be used when transferring preclinical findings to the clinics, due to possible molecular inconsistency between animal models and the heterogeneous pattern of the human disease. In this context, models with defined genetic and molecular backgrounds might help to identify novel therapeutic options for specific HCC subgroups. In this review, we describe rodent models of HCC, emphasizing their representativeness with the human pathology and their usefulness as preclinical tools for assessing miRNA-based therapeutic strategies.
Collapse
|
29
|
Kim MY, Choi S, Lee SE, Kim JS, Son SH, Lim YS, Kim BJ, Ryu BY, Uversky VN, Lee YJ, Kim CG. Development of a MEL Cell-Derived Allograft Mouse Model for Cancer Research. Cancers (Basel) 2019; 11:cancers11111707. [PMID: 31683958 PMCID: PMC6895914 DOI: 10.3390/cancers11111707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 11/22/2022] Open
Abstract
Murine erythroleukemia (MEL) cells are often employed as a model to dissect mechanisms of erythropoiesis and erythroleukemia in vitro. Here, an allograft model using MEL cells resulting in splenomegaly was established to develop a diagnostic model for isolation/quantification of metastatic cells, anti-cancer drug screening, and evaluation of the tumorigenic or metastatic potentials of molecules in vivo. In this animal model, circulating MEL cells from the blood stream were successfully isolated and quantified with an additional in vitro cultivation step. In terms of the molecular-pathological analysis, we were able to successfully evaluate the functional discrimination between methyl-CpG-binding domain 2 (Mbd2) and p66α in erythroid differentiation, and tumorigenic potential in spleen and blood stream of allograft model mice. In addition, we found that the number of circulating MEL cells in anti-cancer drug-treated mice was dose-dependently decreased. Our data demonstrate that the newly established allograft model is useful to dissect erythroleukemia pathologies and non-invasively provides valuable means for isolation of metastatic cells, screening of anti-cancer drugs, and evaluation of the tumorigenic potentials.
Collapse
Affiliation(s)
- Min Young Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Sungwoo Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Seol Eui Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Ji Sook Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
- Department of Clinical Pathology, Hanyang University Seoul Hospital, Seoul 04763, Korea.
| | - Seung Han Son
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Young Soo Lim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Bang-Jin Kim
- Department of Animal Science & Technology, Chung-Ang University, Ansung, Gyeonggi-do 17546, Korea.
| | - Buom-Yong Ryu
- Department of Animal Science & Technology, Chung-Ang University, Ansung, Gyeonggi-do 17546, Korea.
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russia.
| | - Young Jin Lee
- Institute of Pharmaceutical Science and Technology, Department of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
| | - Chul Geun Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea.
| |
Collapse
|
30
|
Pascale RM, Simile MM, Peitta G, Seddaiu MA, Feo F, Calvisi DF. Experimental Models to Define the Genetic Predisposition to Liver Cancer. Cancers (Basel) 2019; 11:cancers11101450. [PMID: 31569678 PMCID: PMC6826893 DOI: 10.3390/cancers11101450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/24/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a frequent human cancer and the most frequent liver tumor. The study of genetic mechanisms of the inherited predisposition to HCC, implicating gene-gene and gene-environment interaction, led to the discovery of multiple gene loci regulating the growth and multiplicity of liver preneoplastic and neoplastic lesions, thus uncovering the action of multiple genes and epistatic interactions in the regulation of the individual susceptibility to HCC. The comparative evaluation of the molecular pathways involved in HCC development in mouse and rat strains differently predisposed to HCC indicates that the genes responsible for HCC susceptibility control the amplification and/or overexpression of c-Myc, the expression of cell cycle regulatory genes, and the activity of Ras/Erk, AKT/mTOR, and of the pro-apoptotic Rassf1A/Nore1A and Dab2IP/Ask1 pathways, the methionine cycle, and DNA repair pathways in mice and rats. Comparative functional genetic studies, in rats and mice differently susceptible to HCC, showed that preneoplastic and neoplastic lesions of resistant mouse and rat strains cluster with human HCC with better prognosis, while the lesions of susceptible mouse and rats cluster with HCC with poorer prognosis, confirming the validity of the studies on the influence of the genetic predisposition to hepatocarinogenesis on HCC prognosis in mouse and rat models. Recently, the hydrodynamic gene transfection in mice provided new opportunities for the recognition of genes implicated in the molecular mechanisms involved in HCC pathogenesis and prognosis. This method appears to be highly promising to further study the genetic background of the predisposition to this cancer.
Collapse
Affiliation(s)
- Rosa M Pascale
- Department of Medical, Surgical and Experimental Sciences, Via P. Manzella 4, 07100 Sassari, Italy.
| | - Maria M Simile
- Department of Medical, Surgical and Experimental Sciences, Via P. Manzella 4, 07100 Sassari, Italy.
| | - Graziella Peitta
- Department of Medical, Surgical and Experimental Sciences, Via P. Manzella 4, 07100 Sassari, Italy.
| | - Maria A Seddaiu
- Department of Medical, Surgical and Experimental Sciences, Via P. Manzella 4, 07100 Sassari, Italy.
| | - Francesco Feo
- Department of Medical, Surgical and Experimental Sciences, Via P. Manzella 4, 07100 Sassari, Italy.
| | - Diego F Calvisi
- Department of Medical, Surgical and Experimental Sciences, Via P. Manzella 4, 07100 Sassari, Italy.
| |
Collapse
|
31
|
Yokomichi N, Nishida N, Umeda Y, Taniguchi F, Yasui K, Toshima T, Mori Y, Nyuya A, Tanaka T, Yamada T, Yagi T, Fujiwara T, Yamaguchi Y, Goel A, Kudo M, Nagasaka T. Heterogeneity of Epigenetic and Epithelial Mesenchymal Transition Marks in Hepatocellular Carcinoma with Keratin 19 Proficiency. Liver Cancer 2019; 8:239-254. [PMID: 31602368 PMCID: PMC6738240 DOI: 10.1159/000490806] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/09/2018] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE Keratin 19 (K19) expression is a potential predictor of poor prognosis in patients with hepatocellular carcinoma (HCC). To clarify the feature of K19-proficient HCC, we traced epigenetic footprints in cultured cells and clinical materials. PATIENTS AND METHODS In vitro, KRT19 promoter methylation was analyzed and 5-aza-2'-deoxycytidine with trichostatin A (TSA) treatment was performed. Among 564 surgically resected HCCs, the clinicopathological relevance of K19-proficent HCCs was performed in comparison with hepatocytic (HepPar-1 and arginase-1), epithelial-mesenchymal transition (E-cadherin and vimentin), biliary differentiation-associated (K7 and NOTCH-1) markers, and epigenetic markers (KRT19 promoter/long interspersed nucleotide element-1 [LINE-1] methylation status). RESULTS KRT19 promoter methylation was clearly associated with K19 deficiency and 5-aza-2'-deoxycytidine with TSA treatment-stimulated K19 re-expression, implicating DNA methylation as a potential epigenetic process for K19 expression. After excluding HCCs with recurrence, TNM stage as IIIB or greater, preoperative therapy, transplantation, and combined hepatocellular cholangiocarcinoma, we assessed 125 of 564 HCC cases. In this cohort, K19 expression was found in 29 HCCs (23.2%) and corresponded with poor survival following surgery (p = 0.025) and extrahepatic recurrence-free survival (p = 0.017). Compared with K19-deficient HCCs, lower KRT19 promoter methylation level was observed in K19-proficient HCCs (p < 0.0001). Conversely, HCC with genome-wide LINE-1 hypermethylation was frequently observed in K19-proficient HCCs (p = 0.0079). Additionally, K19 proficiency was associated with K7 proficiency (p = 0.043), and reduced E-cadherin and HepPar-1 expression (p = 0.043 and p < 0.0001, respectively). CONCLUSIONS K19-proficient HCC exhibited poor prognosis owing to extrahepatic recurrence, with molecular signatures differing from those in conventional cancer stem cells, providing novel insights of the heterogeneity underlying tumor development.
Collapse
Affiliation(s)
- Naosuke Yokomichi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yuzo Umeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Fumitaka Taniguchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuya Yasui
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiaki Toshima
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshiko Mori
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiro Nyuya
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan,Department of Clinical Oncology, Kawasaki Medical School, Kurashiki, Japan
| | - Takehiro Tanaka
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takeshi Yamada
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Takahito Yagi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Ajay Goel
- Center for Gastrointestinal Cancer Research, Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Takeshi Nagasaka
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan,Department of Clinical Oncology, Kawasaki Medical School, Kurashiki, Japan,*Takeshi Nagasaka, MD, PhD, Department of Clinical Oncology, Kawasaki Medical School, Kurashiki City, Okayama 701-0192 (Japan), E-Mail
| |
Collapse
|
32
|
Zhu GQ, Yang Y, Chen EB, Wang B, Xiao K, Shi SM, Zhou ZJ, Zhou SL, Wang Z, Shi YH, Fan J, Zhou J, Liu TS, Dai Z. Development and validation of a new tumor-based gene signature predicting prognosis of HBV/HCV-included resected hepatocellular carcinoma patients. J Transl Med 2019; 17:203. [PMID: 31215439 PMCID: PMC6582497 DOI: 10.1186/s12967-019-1946-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/03/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Due to the phenotypic and molecular diversity of hepatocellular carcinomas (HCC), it is still a challenge to determine patients' prognosis. We aim to identify new prognostic markers for resected HCC patients. METHODS 274 patients were retrospectively identified and samples collected from Zhongshan hospital, Fudan University. We analyzed the gene expression patterns of tumors and compared expression patterns with patient survival times. We identified a "9-gene signature" associated with survival by using the coefficient and regression formula of multivariate Cox model. This molecular signature was then validated in three patients cohorts from internal cohort (n = 69), TCGA (n = 369) and GEO dataset (n = 80). RESULTS We identified 9-gene signature consisting of ZC2HC1A, MARCKSL1, PTGS1, CDKN2B, CLEC10A, PRDX3, PRKCH, MPEG1 and LMO2. The 9-gene signature was used, combined with clinical parameters, to fit a multivariable Cox model to the training cohort (concordance index, ci = 0.85), which was successfully validated (ci = 0.86 for internal cohort; ci = 0.78 for in silico cohort). The signature showed improved performance compared with clinical parameters alone (ci = 0.70). Furthermore, the signature predicted patient prognosis than previous gene signatures more accurately. It was also used to stratify early-stage, HBV or HCV-infected patients into low and high-risk groups, leading to significant differences in survival in training and validation (P < 0.001). CONCLUSIONS The 9-gene signature, in which four were upregulated (ZC2HC1A, MARCKSL1, PTGS1, CDKN2B) and five (CLEC10A, PRDX3, PRKCH, MPEG1, LMO2) were downregulated in HCC with poor prognosis, stratified HCC patients into low and high risk group significantly in different clinical settings, including receiving adjuvant transarterial chemoembolization and especially in early stage disease. This new signature should be validated in prospective studies to stratify patients in clinical decisions.
Collapse
Affiliation(s)
- Gui-Qi Zhu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Yi Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Er-Bao Chen
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Biao Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Kun Xiao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Shi-Ming Shi
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zheng-Jun Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Shao-Lai Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Zheng Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Ying-Hong Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Tian-Shu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhi Dai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
33
|
Fa B, Luo C, Tang Z, Yan Y, Zhang Y, Yu Z. Pathway-based biomarker identification with crosstalk analysis for robust prognosis prediction in hepatocellular carcinoma. EBioMedicine 2019; 44:250-260. [PMID: 31101593 PMCID: PMC6606892 DOI: 10.1016/j.ebiom.2019.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Although many prognostic single-gene (SG) lists have been identified in cancer research, application of these features is hampered due to poor robustness and performance on independent datasets. Pathway-based approaches have thus emerged which embed biological knowledge to yield reproducible features. METHODS Pathifier estimates pathways deregulation score (PDS) to represent the extent of pathway deregulation based on expression data, and most of its applications treat pathways as independent without addressing the effect of gene overlap between pathway pairs which we refer to as crosstalk. Here, we propose a novel procedure based on Pathifier methodology, which for the first time has been utilized with crosstalk accommodated to identify disease-specific features to predict prognosis in patients with hepatocellular carcinoma (HCC). FINDINGS With the cohort (N = 355) of HCC patients from The Cancer Genome Atlas (TCGA), cross validation (CV) revealed that PDSs identified were more robust and accurate than the SG features by deep learning (DL)-based approach. When validated on external HCC datasets, these features outperformed the SGs consistently. INTERPRETATION On average, we provide 10.2% improvement of prediction accuracy. Importantly, governing genes in these features provide valuable insight into the cancer hallmarks of HCC. We develop an R package PATHcrosstalk (available from GitHub https://github.com/fabotao/PATHcrosstalk) with which users can discover pathways of interest with crosstalk effect considered.
Collapse
Affiliation(s)
- Botao Fa
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; SJTU-Yale Joint Centre for Biostatistics, Shanghai Jiao Tong University, Shanghai, China
| | - Chengwen Luo
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; SJTU-Yale Joint Centre for Biostatistics, Shanghai Jiao Tong University, Shanghai, China
| | - Zhou Tang
- SJTU-Yale Joint Centre for Biostatistics, Shanghai Jiao Tong University, Shanghai, China
| | - Yuting Yan
- SJTU-Yale Joint Centre for Biostatistics, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; SJTU-Yale Joint Centre for Biostatistics, Shanghai Jiao Tong University, Shanghai, China
| | - Zhangsheng Yu
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; SJTU-Yale Joint Centre for Biostatistics, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
34
|
Machida K. NANOG-Dependent Metabolic Reprogramming and Symmetric Division in Tumor-Initiating Stem-like Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1032:105-113. [PMID: 30362094 PMCID: PMC6687510 DOI: 10.1007/978-3-319-98788-0_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alcohol abuse synergistically heightens the development of the third most deadliest cancer hepatocellular carcinoma (HCC) in patients infected with hepatitis C virus (HCV). Ectopically expressed TLR4 promotes liver tumorigenesis in alcohol-fed HCV Ns5a or Core transgenic mice. CD133+/CD49f + tumor-initiating stem cell-like cells (TICs) isolated from these models are tumorigenic have p53 degradation via phosphorylation of the protective protein NUMB and its dissociation from p53 by the oncoprotein TBC1D15. Nutrient deprivation reduces overexpressed TBC1D15 in TICs via autophagy-mediated degradation, suggesting a possible role of this oncoprotein in linking metabolic reprogramming and self-renewal.
Collapse
Affiliation(s)
- Keigo Machida
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA, USA.
- Department of Molecular Microbiology and Immunology, Los Angeles, CA, USA.
| |
Collapse
|
35
|
Zhang L, Chen Y, Zhang LJ, Wang M, Chang DL, Wan WW, Zhang BX, Zhang WG, Chen XP. HBV induces different responses of the hepatocytes and oval cells during HBV-related hepatic cirrhosis. Cancer Lett 2018; 443:47-55. [PMID: 30503551 DOI: 10.1016/j.canlet.2018.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/20/2018] [Accepted: 11/24/2018] [Indexed: 12/26/2022]
Abstract
Although hepatitis B virus (HBV)-related cirrhosis and hepatocellular carcinoma (HCC) cause a sever health problem worldwide, the underlying mechanisms are still elusive. This study aimed to investigate the responses of different cell types isolated from HBV transgenic mice. A cross-sectional set of hepatocytes and oval cells were obtained from HBV transgenic and control mice. Flow cytometry, immunohistochemistry and microarray were applied to investigate the cell biology of the hepatocytes and oval cells. Our results showed that HBV induced the proliferation of both cell oval cells and hepatocytes, and induced cell death of HBV hepatocytes while had minimal effects on oval cells. Further molecular and pathways analysis identified some genes and signaling pathways may be responsible for the different responses between oval cells and hepatocytes. In addition, analyses of selectively ten genes by IHC staining in human samples were consistent with microarray data. In summary, HBV transgenic mice is a useful model for studying the biological behaviors of oval cells affected by HBV and HBV-cirrhosis. Also, our results help better understand the mechanisms of HBV induced cirrhosis, and provide novel progenitor markers or prognostic/therapeutic markers.
Collapse
Affiliation(s)
- Lei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yan Chen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Li-Jun Zhang
- Institute for Personalized Medicine, Pennsylvania State University-College of Medicine, Hershey, PA, 17033, USA
| | - Ming Wang
- Public Health Sciences, Pennsylvania State University-College of Medicine, Hershey, PA, 17033, USA
| | - Dong-Lei Chang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Wei-Wei Wan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Wan-Guang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Xiao-Ping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
36
|
Chaudhary K, Poirion OB, Lu L, Garmire LX. Deep Learning-Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer. Clin Cancer Res 2018; 24:1248-1259. [PMID: 28982688 PMCID: PMC6050171 DOI: 10.1158/1078-0432.ccr-17-0853] [Citation(s) in RCA: 556] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/18/2017] [Accepted: 10/02/2017] [Indexed: 02/07/2023]
Abstract
Identifying robust survival subgroups of hepatocellular carcinoma (HCC) will significantly improve patient care. Currently, endeavor of integrating multi-omics data to explicitly predict HCC survival from multiple patient cohorts is lacking. To fill this gap, we present a deep learning (DL)-based model on HCC that robustly differentiates survival subpopulations of patients in six cohorts. We built the DL-based, survival-sensitive model on 360 HCC patients' data using RNA sequencing (RNA-Seq), miRNA sequencing (miRNA-Seq), and methylation data from The Cancer Genome Atlas (TCGA), which predicts prognosis as good as an alternative model where genomics and clinical data are both considered. This DL-based model provides two optimal subgroups of patients with significant survival differences (P = 7.13e-6) and good model fitness [concordance index (C-index) = 0.68]. More aggressive subtype is associated with frequent TP53 inactivation mutations, higher expression of stemness markers (KRT19 and EPCAM) and tumor marker BIRC5, and activated Wnt and Akt signaling pathways. We validated this multi-omics model on five external datasets of various omics types: LIRI-JP cohort (n = 230, C-index = 0.75), NCI cohort (n = 221, C-index = 0.67), Chinese cohort (n = 166, C-index = 0.69), E-TABM-36 cohort (n = 40, C-index = 0.77), and Hawaiian cohort (n = 27, C-index = 0.82). This is the first study to employ DL to identify multi-omics features linked to the differential survival of patients with HCC. Given its robustness over multiple cohorts, we expect this workflow to be useful at predicting HCC prognosis prediction. Clin Cancer Res; 24(6); 1248-59. ©2017 AACR.
Collapse
Affiliation(s)
| | - Olivier B Poirion
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Liangqun Lu
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
- Molecular Biosciences and Bioengineering Graduate Program, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Lana X Garmire
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii.
- Molecular Biosciences and Bioengineering Graduate Program, University of Hawaii at Manoa, Honolulu, Hawaii
| |
Collapse
|
37
|
Adebayo Michael AO, Ahsan N, Zabala V, Francois-Vaughan H, Post S, Brilliant KE, Salomon AR, Sanders JA, Gruppuso PA. Proteomic analysis of laser capture microdissected focal lesions in a rat model of progenitor marker-positive hepatocellular carcinoma. Oncotarget 2018; 8:26041-26056. [PMID: 28199961 PMCID: PMC5432236 DOI: 10.18632/oncotarget.15219] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/27/2017] [Indexed: 12/19/2022] Open
Abstract
We have shown previously that rapamycin, the canonical inhibitor of the mechanistic target of rapamycin (mTOR) complex 1, markedly inhibits the growth of focal lesions in the resistant hepatocyte (Solt-Farber) model of hepatocellular carcinoma (HCC) in the rat. In the present study, we characterized the proteome of persistent, pre-neoplastic focal lesions in this model. One group was administered rapamycin by subcutaneous pellet for 3 weeks following partial hepatectomy and euthanized 4 weeks after the cessation of rapamycin. A second group received placebo pellets. Results were compared to unmanipulated control animals and to animals that underwent an incomplete Solt-Farber protocol to activate hepatic progenitor cells. Regions of formalin-fixed, paraffin-embedded tissue were obtained by laser capture microdissection (LCM). Proteomic analysis yielded 11,070 unique peptides representing 2,227 proteins. Quantitation of the peptides showed increased abundance of known HCC markers (e.g., glutathione S-transferase-P, epoxide hydrolase, 6 others) and potential markers (e.g., aflatoxin aldehyde reductase, glucose 6-phosphate dehydrogenase, 10 others) in foci from placebo-treated and rapamycin-treated rats. Peptides derived from cytochrome P450 enzymes were generally reduced. Comparisons of the rapamycin samples to normal liver and to the progenitor cell model indicated that rapamycin attenuated a loss of differentiation relative to placebo. We conclude that early administration of rapamycin in the Solt-Farber model not only inhibits the growth of pre-neoplastic foci but also attenuates the loss of differentiated function. In addition, we have demonstrated that the combination of LCM and mass spectrometry-based proteomics is an effective approach to characterize focal liver lesions.
Collapse
Affiliation(s)
- Adeola O Adebayo Michael
- Department of Pediatrics, Rhode Island Hospital and Brown University, Providence, RI, USA.,Current address: Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nagib Ahsan
- Division of Biology and Medicine, Brown University, Providence, RI, USA.,Center for Cancer Research Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI, USA
| | - Valerie Zabala
- Department of Pediatrics, Rhode Island Hospital and Brown University, Providence, RI, USA
| | | | - Stephanie Post
- Department of Environmental and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Kate E Brilliant
- Center for Cancer Research Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI, USA
| | - Arthur R Salomon
- Center for Cancer Research Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI, USA.,Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Jennifer A Sanders
- Department of Pediatrics, Rhode Island Hospital and Brown University, Providence, RI, USA.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Philip A Gruppuso
- Department of Pediatrics, Rhode Island Hospital and Brown University, Providence, RI, USA.,Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| |
Collapse
|
38
|
Kowalik MA, Guzzo G, Morandi A, Perra A, Menegon S, Masgras I, Trevisan E, Angioni MM, Fornari F, Quagliata L, Ledda-Columbano GM, Gramantieri L, Terracciano L, Giordano S, Chiarugi P, Rasola A, Columbano A. Metabolic reprogramming identifies the most aggressive lesions at early phases of hepatic carcinogenesis. Oncotarget 2017; 7:32375-93. [PMID: 27070090 PMCID: PMC5078020 DOI: 10.18632/oncotarget.8632] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/28/2016] [Indexed: 01/07/2023] Open
Abstract
Metabolic changes are associated with cancer, but whether they are just bystander effects of deregulated oncogenic signaling pathways or characterize early phases of tumorigenesis remains unclear. Here we show in a rat model of hepatocarcinogenesis that early preneoplastic foci and nodules that progress towards hepatocellular carcinoma (HCC) are characterized both by inhibition of oxidative phosphorylation (OXPHOS) and by enhanced glucose utilization to fuel the pentose phosphate pathway (PPP). These changes respectively require increased expression of the mitochondrial chaperone TRAP1 and of the transcription factor NRF2 that induces the expression of the rate-limiting PPP enzyme glucose-6-phosphate dehydrogenase (G6PD), following miR-1 inhibition. Such metabolic rewiring exclusively identifies a subset of aggressive cytokeratin-19 positive preneoplastic hepatocytes and not slowly growing lesions. No such metabolic changes were observed during non-neoplastic liver regeneration occurring after two/third partial hepatectomy. TRAP1 silencing inhibited the colony forming ability of HCC cells while NRF2 silencing decreased G6PD expression and concomitantly increased miR-1; conversely, transfection with miR-1 mimic abolished G6PD expression. Finally, in human HCC patients increased G6PD expression levels correlates with grading, metastasis and poor prognosis. Our results demonstrate that the metabolic deregulation orchestrated by TRAP1 and NRF2 is an early event restricted to the more aggressive preneoplastic lesions.
Collapse
Affiliation(s)
- Marta Anna Kowalik
- Department of Biomedical Sciences, University of Cagliari, 09124, Cagliari, Italy
| | - Giulia Guzzo
- Department of Biomedical Sciences, University of Padova, 35122, Padova, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Firenze and Tuscan Tumor Institute, 50134, Florence, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, University of Cagliari, 09124, Cagliari, Italy
| | - Silvia Menegon
- Department of Oncology, University of Torino School of Medicine, Candiolo Cancer Institute-FPO, IRCCS, 10060, Candiolo, Italy
| | - Ionica Masgras
- Department of Biomedical Sciences, University of Padova, 35122, Padova, Italy
| | - Elena Trevisan
- Department of Biomedical Sciences, University of Padova, 35122, Padova, Italy
| | | | - Francesca Fornari
- Azienda Ospedaliero-Universitaria Policlinico S. Orsola Malpighi, 40138, Bologna, Italy
| | - Luca Quagliata
- Molecular Pathology Division, Institute of Pathology, University Hospital of Basel, CH-4003, Basel, Switzerland
| | | | - Laura Gramantieri
- Azienda Ospedaliero-Universitaria Policlinico S. Orsola Malpighi, 40138, Bologna, Italy
| | - Luigi Terracciano
- Molecular Pathology Division, Institute of Pathology, University Hospital of Basel, CH-4003, Basel, Switzerland
| | - Silvia Giordano
- Department of Oncology, University of Torino School of Medicine, Candiolo Cancer Institute-FPO, IRCCS, 10060, Candiolo, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Firenze and Tuscan Tumor Institute, 50134, Florence, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences, University of Padova, 35122, Padova, Italy
| | - Amedeo Columbano
- Department of Biomedical Sciences, University of Cagliari, 09124, Cagliari, Italy
| |
Collapse
|
39
|
Acquisition of Cholangiocarcinoma Traits during Advanced Hepatocellular Carcinoma Development in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:656-671. [PMID: 29248454 DOI: 10.1016/j.ajpath.2017.11.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/01/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
Abstract
Past studies have identified hepatic tumors with mixed hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC) characteristics that have a more aggressive behavior and a poorer prognosis than classic HCC. Whether this pathologic heterogeneity is due to a cell of origin of bipotent liver progenitors or the plasticity of cellular constituents comprising these tumors remains debated. In this study, we investigated the potential acquisition of CC-like traits during advanced development of HCC in mice. Primary and rare high-grade HCC developed in a genetic mouse model. A mouse model of highly efficient HCC invasion and metastasis by orthotopic transplantation of liver cancer organoids propagated from primary tumors in the genetic model was further developed. Invasive/metastatic tumors developed in both models closely recapitulated advanced human HCC and displayed a striking acquisition of CC-related pathologic and molecular features, which was absent in the primary HCC tumors. Our study directly demonstrates the pathologic evolution of HCC during advanced tumor development, providing the first evidence that tumors with mixed HCC and CC features, or at least a subset of these tumors, represent a more advanced developmental stage of HCC. Finally, liver cancer organoid-generated high-grade tumors exhibited significantly increased extracellular vesicle secretion, suggesting that identifying tumor-specific extracellular vesicle proteins in plasma may be a promising tool for liver cancer detection.
Collapse
|
40
|
Taouli B, Hoshida Y, Kakite S, Chen X, Tan PS, Sun X, Kihira S, Kojima K, Toffanin S, Fiel MI, Hirschfield H, Wagner M, Llovet JM. Imaging-based surrogate markers of transcriptome subclasses and signatures in hepatocellular carcinoma: preliminary results. Eur Radiol 2017; 27:4472-4481. [PMID: 28439654 PMCID: PMC5654702 DOI: 10.1007/s00330-017-4844-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/22/2017] [Accepted: 04/04/2017] [Indexed: 11/24/2022]
Abstract
OBJECTIVES In this preliminary study, we examined whether imaging-based phenotypes are associated with reported predictive gene signatures in hepatocellular carcinoma (HCC). METHODS Thirty-eight patients (M/F 30/8, mean age 61 years) who underwent pre-operative CT or MR imaging before surgery as well as transcriptome profiling were included in this IRB-approved single-centre retrospective study. Eleven qualitative and four quantitative imaging traits (size, enhancement ratios, wash-out ratio, tumour-to-liver contrast ratios) were assessed by three observers and were correlated with 13 previously reported HCC gene signatures using logistic regression analysis. RESULTS Thirty-nine HCC tumours (mean size 5.7 ± 3.2 cm) were assessed. Significant positive associations were observed between certain imaging traits and gene signatures of aggressive HCC phenotype (G3-Boyault, Proliferation-Chiang profiles, CK19-Villanueva, S1/S2-Hoshida) with odds ratios ranging from 4.44-12.73 (P <0.045). Infiltrative pattern at imaging was significantly associated with signatures of microvascular invasion and aggressive phenotype. Significant but weak associations were also observed between each enhancement ratio and tumour-to-liver contrast ratios and certain gene expression profiles. CONCLUSIONS This preliminary study demonstrates a correlation between phenotypic imaging traits with gene signatures of aggressive HCC, which warrants further prospective validation to establish imaging-based surrogate markers of molecular phenotypes in HCC. KEY POINTS • There are associations between imaging and gene signatures of aggressive hepatocellular carcinoma. • Infiltrative type is associated with gene signatures of microvascular invasion and aggressiveness. • Infiltrative type may be a surrogate marker of microvascular invasion gene signature.
Collapse
Affiliation(s)
- Bachir Taouli
- Department of Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Box 1234, New York, NY, 10029, USA.
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Yujin Hoshida
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Suguru Kakite
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, 36-1, Nishicho, Yonago City, 683-8504, Japan
| | - Xintong Chen
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Poh Seng Tan
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology and Hepatology, University Medicine Cluster, National University Health System, Singapore, Singapore
| | - Xiaochen Sun
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shingo Kihira
- Department of Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Box 1234, New York, NY, 10029, USA
| | - Kensuke Kojima
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sara Toffanin
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Isabel Fiel
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hadassa Hirschfield
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mathilde Wagner
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- UPMC, Department of Radiology, Hôpital Pitié-Salpêtrière, Sorbonne Universités, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Josep M Llovet
- Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- HCC Translational Research Laboratory, Barcelona-Clínic Liver Cancer Group Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Universitat de Barcelona (UB), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
41
|
Angioni MM, Bellofatto K, Merlin S, Menegon S, Perra A, Petrelli A, Sulas P, Giordano S, Columbano A, Follenzi A. A long term, non-tumorigenic rat hepatocyte cell line and its malignant counterpart, as tools to study hepatocarcinogenesis. Oncotarget 2017; 8:15716-15731. [PMID: 28157710 PMCID: PMC5362518 DOI: 10.18632/oncotarget.14984] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 01/03/2017] [Indexed: 01/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the second cause of cancer-related death. Search for genes/proteins whose expression can discriminate between normal and neoplastic liver is fundamental for diagnostic, prognostic and therapeutic purposes. Currently, the most used in vitro hepatocyte models to study molecular alterations underlying transformation include primary hepatocytes and transformed cell lines. However, each of these models presents limitations. Here we describe the isolation and characterization of two rat hepatocyte cell lines as tools to study liver carcinogenesis. Long-term stable cell lines were obtained from a HCC-bearing rat exposed to the Resistant-Hepatocyte protocol (RH cells) and from a rat subjected to the same model in the absence of carcinogenic treatment, thus not developing HCCs (RNT cells). The presence of several markers identified the hepatocytic origin of both cell lines and confirmed their purity. Although morphologically similar to normal primary hepatocytes, RNT cells were able to survive and grow in monolayer culture for months and were not tumorigenic in vivo. On the contrary, RH cells displayed tumor-initiating cell markers, formed numerous colonies in soft agar and spheroids when grown in 3D and were highly tumorigenic and metastatic after injection into syngeneic rats and immunocompromised mice. Moreover, RNT gene expression profile was similar to normal liver, while that of RH resembled HCC. In conclusion, the two cell lines here described represent a useful tool to investigate the molecular changes underlying hepatocyte transformation and to experimentally demonstrate their role in HCC development.
Collapse
Affiliation(s)
| | - Kevin Bellofatto
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Simone Merlin
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Silvia Menegon
- Department of Oncology, University of Torino School of Medicine, Candiolo Cancer Institute-FPO, IRCCS, 10060 Candiolo, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Annalisa Petrelli
- Department of Oncology, University of Torino School of Medicine, Candiolo Cancer Institute-FPO, IRCCS, 10060 Candiolo, Italy
| | - Pia Sulas
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Silvia Giordano
- Department of Oncology, University of Torino School of Medicine, Candiolo Cancer Institute-FPO, IRCCS, 10060 Candiolo, Italy
| | - Amedeo Columbano
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Antonia Follenzi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
42
|
Hu K, Huang P, Luo H, Yao Z, Wang Q, Xiong Z, Lin J, Huang H, Xu S, Zhang P, Liu B. Mammalian-enabled (MENA) protein enhances oncogenic potential and cancer stem cell-like phenotype in hepatocellular carcinoma cells. FEBS Open Bio 2017; 7:1144-1153. [PMID: 28781954 PMCID: PMC5537062 DOI: 10.1002/2211-5463.12254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 05/08/2017] [Accepted: 05/23/2017] [Indexed: 01/19/2023] Open
Abstract
Mammalian-enabled (MENA) protein is an actin-regulatory protein that influences cell motility and adhesion. It is known to play a role in tumorigenicity of hepatocellular carcinoma (HCC) but the underlying molecular mechanism remains unknown. This study aimed to investigate the oncogenic potential of MENA and its capacity to regulate cancer stem cell (CSC)-like phenotypes in HCC cells. Real-time-PCR and western blot were used to assess mRNA and protein levels of target genes in human HCC tissue specimens and HCC cell lines, respectively. Stable MENA-overexpressing HCC cells were generated from HCC cell lines. Transwell cell migration and colony formation assays were employed to evaluate tumorigenicity. Ectopic expression of MENA significantly enhanced cell migration and colony-forming ability in HCC cells. Overexpression of MENA upregulated several hepatic progenitor/stem cell markers in HCC cells. A high MENA protein level was associated with high mRNA levels of MENA, CD133, cytokeratin 19 (CK19), and epithelial cell adhesion molecule (EpCAM) in human HCC tissues. Overexpression of MENA enhanced epithelial-to-mesenchymal transition (EMT) markers, extracellular signal-regulated kinases (ERK) phosphorylation, and the level of β-catenin in HCC cells. This study demonstrated that overexpression of MENA in HCC cells promoted stem cell markers, EMT markers, and tumorigenicity. These effects may involve, at least partially, the ERK and β-catenin signaling pathways.
Collapse
Affiliation(s)
- Kunpeng Hu
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Pinzhu Huang
- Department of Gastrointestinal Surgery The Sixth Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Hui Luo
- Department of Operating Room The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Zhicheng Yao
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Qingliang Wang
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Zhiyong Xiong
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Jizong Lin
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - He Huang
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Shilei Xu
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Peng Zhang
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Bo Liu
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| |
Collapse
|
43
|
Cai J, Li B, Zhu Y, Fang X, Zhu M, Wang M, Liu S, Jiang X, Zheng J, Zhang X, Chen P. Prognostic Biomarker Identification Through Integrating the Gene Signatures of Hepatocellular Carcinoma Properties. EBioMedicine 2017; 19:18-30. [PMID: 28434945 PMCID: PMC5440601 DOI: 10.1016/j.ebiom.2017.04.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 02/06/2023] Open
Abstract
Many molecular classification and prognostic gene signatures for hepatocellular carcinoma (HCC) patients have been established based on genome-wide gene expression profiling; however, their generalizability is unclear. Herein, we systematically assessed the prognostic effects of these gene signatures and identified valuable prognostic biomarkers by integrating these gene signatures. With two independent HCC datasets (GSE14520, N = 242 and GSE54236, N = 78), 30 published gene signatures were evaluated, and 11 were significantly associated with the overall survival (OS) of postoperative HCC patients in both datasets. The random survival forest models suggested that the gene signatures were superior to clinical characteristics for predicting the prognosis of the patients. Based on the 11 gene signatures, a functional protein-protein interaction (PPI) network with 1406 nodes and 10,135 edges was established. With tissue microarrays of HCC patients (N = 60), we determined the prognostic values of the core genes in the network and found that RAD21, CDK1, and HDAC2 expression levels were negatively associated with OS for HCC patients. The multivariate Cox regression analyses suggested that CDK1 was an independent prognostic factor, which was validated in an independent case cohort (N = 78). In cellular models, inhibition of CDK1 by siRNA or a specific inhibitor, RO-3306, reduced cellular proliferation and viability for HCC cells. These results suggest that the prognostic predictive capacities of these gene signatures are reproducible and that CDK1 is a potential prognostic biomarker or therapeutic target for HCC patients. Eleven gene signatures have promising values for the OS prediction of HCC patients who undergo the surgical treatments. Prediction results for the 11 gene signatures were in moderate concordance, and genes included were functionally linked. CDK1 is an independent prognostic biomarker and a potential therapeutic target for HCC patients.
Various gene signatures for hepatocellular carcinoma (HCC) patients have been reported; however, their generalizability is unclear. Using two HCC patient datasets, we assessed the prognostic values of these gene signatures and identified 11 gene signatures that were associated with overall survival for postoperative HCC patients in both cohorts. Genes derived from these signatures formed a functional protein-protein interaction network with 1,406 nodes and 10,135 edges, and the expression levels of three core genes, RAD21, CDK1, and HDAC2, in the network were negatively associated with the overall survival of HCC patients. Further studies suggested that CDK1 is an independent prognostic factor and that it is a potential therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Jialin Cai
- Translational Medicine Research Center, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai 201821, PR China
| | - Bin Li
- Biliary Tract Surgery Department I, Eastern Hepatobiliary Surgery Hospital, Secondary Military Medical University, Shanghai 200433, PR China; Diagnosis and Treatment Center of Malignant Biliary Tract Diseases, Secondary Military Medical University, Shanghai 200433, PR China
| | - Yan Zhu
- Department of Pathology, Changhai Hospital, Secondary Military Medical University, Shanghai 200433, PR China
| | - Xuqian Fang
- Translational Medicine Research Center, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai 201821, PR China
| | - Mingyu Zhu
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, PR China
| | - Mingjie Wang
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, PR China
| | - Shupeng Liu
- Department of Pathology, Changhai Hospital, Secondary Military Medical University, Shanghai 200433, PR China
| | - Xiaoqing Jiang
- Biliary Tract Surgery Department I, Eastern Hepatobiliary Surgery Hospital, Secondary Military Medical University, Shanghai 200433, PR China; Diagnosis and Treatment Center of Malignant Biliary Tract Diseases, Secondary Military Medical University, Shanghai 200433, PR China
| | - Jianming Zheng
- Department of Pathology, Changhai Hospital, Secondary Military Medical University, Shanghai 200433, PR China.
| | - XinXin Zhang
- Translational Medicine Research Center, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai 201821, PR China; Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, PR China.
| | - Peizhan Chen
- Translational Medicine Research Center, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai 201821, PR China.
| |
Collapse
|
44
|
Cai X, Feng L, Liu H, Xu M, Qu Y, Wan X, Gao C, Lu L. Cytokeratin19 positive hepatocellular carcinoma is associated with increased peritumoral ductular reaction. Ann Hepatol 2017; 15:386-93. [PMID: 27049492 DOI: 10.5604/16652681.1198813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS Cytokeratin19 positive (CK19+) hepatocellular carcinoma (HCC) is thought to derive from liver progenitor cells (LPC). However, whether peritumoralductular reaction (DR) differs between CK19+ and CK19 negative (CK19-) HCC patients remains unclear. MATERIAL AND METHODS One hundred and twenty HBV-related HCC patients were enrolled in this study. Clinicopathological variables were collected, and immunohistochemistry staining for CK19, proliferating cell nuclear antigen (PCNA), interleukin-6 (IL-6) and β-catenin were performed in tumor and peritumor liver tissues. RESULTS CK19+ HCC patients had higher grade of peritumoral DR and proportion of proliferative DR than the CK19- group. The mean number or the proportion of cytoplasmic β-catenin+ DR was higher in the CK19+ group than in the CK19- group. Furthermore, there were more patients with nuclear β-catenin+ peritumoral DR in the CK19+ group as compared to the CK19- group. CONCLUSION Peritumoral DR was more abundant and proliferative in CK19+ HCC patients, with higher level of nuclear translocation of β-catenin. However, it is unclear whether peritumoral DR is the cause or result of poor prognosis in these patients.
Collapse
Affiliation(s)
- Xiaobo Cai
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Li Feng
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Heng Liu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mingyi Xu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yin Qu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xinjian Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chunfang Gao
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Lungen Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
45
|
Sánchez-Rodríguez R, Torres-Mena JE, Quintanar-Jurado V, Chagoya-Hazas V, Rojas Del Castillo E, Del Pozo Yauner L, Villa-Treviño S, Pérez-Carreón JI. Ptgr1 expression is regulated by NRF2 in rat hepatocarcinogenesis and promotes cell proliferation and resistance to oxidative stress. Free Radic Biol Med 2017; 102:87-99. [PMID: 27867096 DOI: 10.1016/j.freeradbiomed.2016.11.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/24/2016] [Accepted: 11/14/2016] [Indexed: 02/07/2023]
Abstract
Prostaglandin reductase-1 (Ptgr1) is an alkenal/one oxidoreductase that is involved in the catabolism of eicosanoids and lipid peroxidation such as 4-hydroxynonenal (4-HNE). Recently, we reported that Ptgr1 is overexpressed in human clinical and experimentally induced samples of hepatocellular carcinoma (HCC). However, how the expression of this gene is regulated and its role in carcinogenesis are not yet known. Here, we studied parameters associated with antioxidant responses and the mechanisms underlying the induction of Ptgr1 expression by the activation of Nuclear Factor (erythroid-derived-2)-like-2 (NRF2). For these experiments, we used two protocols of induced hepatocarcinogenesis in rats. Furthermore, we determined the effect of PTGR1 on cell proliferation and resistance to oxidative stress in cell cultures of the epithelial liver cell line, C9. Ptgr1 was overexpressed during the early phase in altered hepatocyte foci, and this high level of expression was maintained in persistent nodules until tumors developed. Ptgr1 expression was regulated by NRF2, which bound to an antioxidant response element at -653bp in the rat Ptgr1 gene. The activation of NRF2 induced the activation of an antioxidant response that included effects on proteins such as glutamate-cysteine ligase, catalytic subunit, NAD(P)H dehydrogenase quinone-1 (NQO1) and glutathione-S-transferase-P (GSTP1). These effects may have produced a reduced status that was associated with a high proliferation rate in experimental tumors. Indeed, when Ptgr1 was stably expressed, we observed a reduction in the time required for proliferation and a protective effect against hydrogen peroxide- and 4-HNE-induced cell death. These data were consistent with data showing colocalization between PTGR1 and 4-HNE protein adducts in liver nodules. These findings suggest that Ptgr1 and antioxidant responses act as a metabolic adaptation and could contribute to proliferation and cell-death evasion in liver tumor cells. Furthermore, these data indicate that Ptgr1 could be used to design early diagnostic tools or targeted therapies for HCC.
Collapse
Affiliation(s)
| | - Julia Esperanza Torres-Mena
- Instituto Nacional de Medicina Genómica, Mexico; Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico
| | | | | | | | | | - Saul Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico
| | | |
Collapse
|
46
|
Kowalik MA, Perra A, Ledda-Columbano GM, Ippolito G, Piacentini M, Columbano A, Falasca L. Induction of autophagy promotes the growth of early preneoplastic rat liver nodules. Oncotarget 2016; 7:5788-99. [PMID: 26735341 PMCID: PMC4868721 DOI: 10.18632/oncotarget.6810] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/23/2015] [Indexed: 11/25/2022] Open
Abstract
Although inhibition of autophagy has been implicated in the onset and progression of cancer cells, it is still unclear whether its dysregulation at early stages of tumorigenesis plays an oncogenic or a tumor suppressor role. To address this question, we employed the Resistant-Hepatocyte rat model to study the very early stages of hepatocellular carcinoma (HCC) development. We detected a different autophagy-related gene expression and changes in the ultrastructural profile comparing the most aggressive preneoplastic lesions, namely those positive for the putative progenitor cell marker cytokeratin-19 (KRT-19) with the negative ones. The ultrastructural and immunohistochemical analyses of KRT-19-positive preneoplastic hepatocytes showed the presence of autophagic vacuoles which was associated with p62, Ambra1 and Beclin1 protein accumulation suggesting that a differential modulation of autophagy occurs at early stages of the oncogenesis in KRT-19-positive vs negative lesions. We observed an overall decrease of the autophagy-related genes transcripts and a strong up-regulation of miR-224 in the KRT-19-positive nodules. Interestingly, the treatment with the autophagy inducer, Amiodarone, caused a marked increase in the proliferation of KRT-19 positive preneoplastic lesions associated with a strong increase of their size; by contrast, Chloroquine, an inhibitor of the autophagic process, led to their reduction. These results show that autophagy modulation is a very early event in hepatocarcinogenesis and is restricted to a hepatocytes subset in the most aggressive preneoplastic lesions. Our findings highlight the induction of autophagy as a permissive condition favouring cancer progression indicating in its inhibition a therapeutic goal to interfere with the development of HCC.
Collapse
Affiliation(s)
- Marta Anna Kowalik
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | - Giuseppe Ippolito
- National Institute for Infectious Disease, IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Mauro Piacentini
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy.,National Institute for Infectious Disease, IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Amedeo Columbano
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Laura Falasca
- National Institute for Infectious Disease, IRCCS "Lazzaro Spallanzani", Rome, Italy
| |
Collapse
|
47
|
Kowalik MA, Sulas P, Ledda-Columbano GM, Giordano S, Columbano A, Perra A. Cytokeratin-19 positivity is acquired along cancer progression and does not predict cell origin in rat hepatocarcinogenesis. Oncotarget 2016; 6:38749-63. [PMID: 26452031 PMCID: PMC4770734 DOI: 10.18632/oncotarget.5501] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 09/21/2015] [Indexed: 02/06/2023] Open
Abstract
Although the expression of the stem/progenitor cell marker cytokeratin-19 (CK-19) has been associated with the worst clinical prognosis among all HCC subclasses, it is yet unknown whether its presence in HCC is the result of clonal expansion of hepatic progenitor cells (HPCs) or of de-differentiation of mature hepatocytes towards a progenitor-like cell phenotype. We addressed this question by using two rat models of hepatocarcinogenesis: the Resistant-Hepatocyte (R-H) and the Choline-methionine deficient (CMD) models. Our data indicate that the expression of CK-19 is not the result of a clonal expansion of HPCs (oval cells in rodents), but rather of a further step of preneoplastic hepatocytes towards a less differentiated phenotype and a more aggressive behavior. Indeed, although HCCs were positive for CK-19, very early preneoplastic foci (EPFs) were completely negative for this marker. While a few weeks later the vast majority of preneoplastic nodules remained CK-19 negative, a minority became positive, suggesting that CK-19 expression is the result of de-differentiation of a subset of EPFs, rather than a marker of stem/progenitor cells. Moreover, the gene expression profile of CK-19-negative EPFs clustered together with CK-19-positive nodules, but was clearly distinct from CK-19 negative nodules and oval cells.
Collapse
Affiliation(s)
- Marta Anna Kowalik
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Pia Sulas
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | - Silvia Giordano
- University of Torino School of Medicine, Candiolo Cancer Institute-FPO, IRCCS Candiolo, Torino, Italy
| | - Amedeo Columbano
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
48
|
The Progress and Prospects of Putative Biomarkers for Liver Cancer Stem Cells in Hepatocellular Carcinoma. Stem Cells Int 2016; 2016:7614971. [PMID: 27610139 PMCID: PMC5005617 DOI: 10.1155/2016/7614971] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/06/2016] [Accepted: 07/04/2016] [Indexed: 01/30/2023] Open
Abstract
Accumulating evidence suggests that hepatocellular carcinoma (HCC) is organized by liver cancer stem cells (LCSCs), which are a subset of cells with “stem-like” characteristics. Identification of the LCSCs is a fundamental and important problem in HCC research. LCSCs have been investigated by various stem cell biomarkers. There is still lack of consensus regarding the existence of a “global” marker for LCSCs in HCC. In this review article, we summarize the progress and prospects of putative biomarkers for LCSCs in the past decades, which is essential to develop future therapies targeting CSCs and to predict prognosis and curative effect of these therapies.
Collapse
|
49
|
Mattu S, Fornari F, Quagliata L, Perra A, Angioni MM, Petrelli A, Menegon S, Morandi A, Chiarugi P, Ledda-Columbano GM, Gramantieri L, Terracciano L, Giordano S, Columbano A. The metabolic gene HAO2 is downregulated in hepatocellular carcinoma and predicts metastasis and poor survival. J Hepatol 2016; 64:891-8. [PMID: 26658681 DOI: 10.1016/j.jhep.2015.11.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS l-2-Hydroxy acid oxidases are flavin mononucleotide-dependent peroxisomal enzymes, responsible for the oxidation of l-2-hydroxy acids to ketoacids, resulting in the formation of hydrogen peroxide. We investigated the role of HAO2, a member of this family, in rat, mouse and human hepatocarcinogenesis. METHODS We evaluated Hao2 expression by qRT-PCR in the following rodent models of hepatocarcinogenesis: the Resistant-Hepatocyte, the CMD and the chronic DENA rat models, and the TCPOBOP/DENA and TCPOBOP only mouse models. Microarray and qRT-PCR analyses were performed on two cohorts of human hepatocellular carcinoma (HCC) patients. Rat HCC cells were transduced by a Hao2 encoding lentiviral vector and grafted in mice. RESULTS Downregulation of Hao2 was observed in all investigated rodent models of hepatocarcinogenesis. Interestingly, Hao2 mRNA levels were also profoundly downregulated in early preneoplastic lesions. Moreover, HAO2 mRNA levels were strongly downregulated in two distinct series of human HCCs, when compared to both normal and cirrhotic peri-tumoral liver. HAO2 levels were inversely correlated with grading, overall survival and metastatic ability. Finally, exogenous expression of Hao2 in rat cells impaired their tumorigenic ability. CONCLUSION Our work identifies for the first time the oncosuppressive role of the metabolic gene Hao2. Indeed, its expression is severely decreased in HCC of different species and etiology, and its reintroduction in HCC cells profoundly impairs tumorigenesis. We also demonstrate that dysregulation of HAO2 is a very early event in the development of HCC and it may represent a useful diagnostic and prognostic marker for human HCC.
Collapse
Affiliation(s)
- Sandra Mattu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | - Luca Quagliata
- Institute of Pathology, University Hospital, Basel, Switzerland
| | - Andrea Perra
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | - Annalisa Petrelli
- University of Torino School of Medicine, Candiolo Cancer Institute-FPO, IRCCS Candiolo (Torino), Italy
| | - Silvia Menegon
- University of Torino School of Medicine, Candiolo Cancer Institute-FPO, IRCCS Candiolo (Torino), Italy
| | - Andrea Morandi
- Department of Experimental and Biomedical Sciences, University of Firenze, Firenze, Italy
| | - Paola Chiarugi
- Department of Experimental and Biomedical Sciences, University of Firenze, Firenze, Italy
| | | | | | | | - Silvia Giordano
- University of Torino School of Medicine, Candiolo Cancer Institute-FPO, IRCCS Candiolo (Torino), Italy.
| | - Amedeo Columbano
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
50
|
Francois-Vaughan H, Adebayo AO, Brilliant KE, Parry NMA, Gruppuso PA, Sanders JA. Persistent effect of mTOR inhibition on preneoplastic foci progression and gene expression in a rat model of hepatocellular carcinoma. Carcinogenesis 2016; 37:408-419. [PMID: 26905589 DOI: 10.1093/carcin/bgw016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/30/2016] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous disease in which tumor subtypes can be identified based on the presence of adult liver progenitor cells. Having previously identified the mTOR pathway as critical to progenitor cell proliferation in a model of liver injury, we investigated the temporal activation of mTOR signaling in a rat model of hepatic carcinogenesis. The model employed chemical carcinogens and partial hepatectomy to induce progenitor marker-positive HCC. Immunohistochemical staining for phosphorylated ribosomal protein S6 indicated robust mTOR complex 1 (mTORC1) activity in early preneoplastic lesions that peaked during the first week and waned over the subsequent 10 days. Continuous administration of rapamycin by subcutaneous pellet for 70 days markedly reduced the development of focal lesions, but resulted in activation of the PI3K signaling pathway. To test the hypothesis that early mTORC1 activation was critical to the development and progression of preneoplastic foci, we limited rapamycin administration to the 3-week period at the start of the protocol. Focal lesion burden was reduced to a degree indistinguishable from that seen with continuous administration. Short-term rapamycin did not result in the activation of PI3K or mTORC2 pathways. Microarray analysis revealed a persistent effect of short-term mTORC1 inhibition on gene expression that resulted in a genetic signature reminiscent of normal liver. We conclude that mTORC1 activation during the early stages of hepatic carcinogenesis may be critical due to the development of preneoplastic focal lesions in progenitor marker-positive HCC. mTORC1 inhibition may represent an effective chemopreventive strategy for this form of liver cancer.
Collapse
Affiliation(s)
- Heather Francois-Vaughan
- Division of Pediatric Endocrinology , Department of Pediatrics , Rhode Island Hospital , Providence , RI 02903 , USA
| | - Adeola O Adebayo
- Division of Pediatric Endocrinology, Department of Pediatrics, Rhode Island Hospital, Providence, RI 02903, USA.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02905, USA
| | - Kate E Brilliant
- Division of Hematology/Oncology , Department of Medicine , Rhode Island Hospital , Providence , RI 02903USA
| | - Nicola M A Parry
- Midwest Veterinary Pathology , LLC , Lafayette , IN 47909 , USA and
| | - Philip A Gruppuso
- Division of Pediatric Endocrinology, Department of Pediatrics, Rhode Island Hospital, Providence, RI 02903, USA.,Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Jennifer A Sanders
- Division of Pediatric Endocrinology, Department of Pediatrics, Rhode Island Hospital, Providence, RI 02903, USA.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02905, USA
| |
Collapse
|