1
|
Rackear M, Quijano E, Ianniello Z, Colón-Ríos DA, Krysztofiak A, Abdullah R, Liu Y, Rogers FA, Ludwig DL, Dwivedi R, Bleichert F, Glazer PM. Next-generation cell-penetrating antibodies for tumor targeting and RAD51 inhibition. Oncotarget 2024; 15:699-713. [PMID: 39352803 PMCID: PMC11444335 DOI: 10.18632/oncotarget.28651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Monoclonal antibody therapies for cancer have demonstrated extraordinary clinical success in recent years. However, these strategies are thus far mostly limited to specific cell surface antigens, even though many disease targets are found intracellularly. Here we report studies on the humanization of a full-length, nucleic acid binding, monoclonal lupus-derived autoantibody, 3E10, which exhibits a novel mechanism of cell penetration and tumor specific targeting. Comparing humanized variants of 3E10, we demonstrate that cell uptake depends on the nucleoside transporter ENT2, and that faster cell uptake and superior in vivo tumor targeting are associated with higher affinity nucleic acid binding. We show that one human variant retains the ability of the parental 3E10 to bind RAD51, serving as a synthetically lethal inhibitor of homology-directed repair in vitro. These results provide the basis for the rational design of a novel antibody platform for therapeutic tumor targeting with high specificity following systemic administration.
Collapse
Affiliation(s)
- Madison Rackear
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Elias Quijano
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Zaira Ianniello
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Daniel A Colón-Ríos
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Adam Krysztofiak
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Yanfeng Liu
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Faye A Rogers
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Rohini Dwivedi
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Franziska Bleichert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
2
|
Gao W, Zhou J, Morshedi M. MicroRNA-34 and gastrointestinal cancers: a player with big functions. Cancer Cell Int 2024; 24:163. [PMID: 38725047 PMCID: PMC11084024 DOI: 10.1186/s12935-024-03338-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
It is commonly assumed that gastrointestinal cancer is the most common form of cancer across the globe and is the leading contributor to cancer-related death. The intricate mechanisms underlying the growth of GI cancers have been identified. It is worth mentioning that both non-coding RNAs (ncRNAs) and certain types of RNA, such as circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and microRNAs (miRNAs), can have considerable impact on the development of gastrointestinal (GI) cancers. As a tumour suppressor, in the group of short non-coding regulatory RNAs is miR-34a. miR-34a silences multiple proto-oncogenes at the post-transcriptional stage by targeting them, which inhibits all physiologically relevant cell proliferation pathways. However, it has been discovered that deregulation of miR-34a plays important roles in the growth of tumors and the development of cancer, including invasion, metastasis, and the tumor-associated epithelial-mesenchymal transition (EMT). Further understanding of miR-34a's molecular pathways in cancer is also necessary for the development of precise diagnoses and effective treatments. We outlined the most recent research on miR-34a functions in GI cancers in this review. Additionally, we emphasize the significance of exosomal miR-34 in gastrointestinal cancers.
Collapse
Affiliation(s)
- Wei Gao
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, China
| | - Jianping Zhou
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, China.
| | - Mohammadamin Morshedi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Hua K, Wu C, Lin C, Chen C. E2F1 promotes cell migration in hepatocellular carcinoma via FNDC3B. FEBS Open Bio 2024; 14:687-694. [PMID: 38403291 PMCID: PMC10988749 DOI: 10.1002/2211-5463.13783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024] Open
Abstract
FNDC3B (fibronectin type III domain containing 3B) is highly expressed in hepatocellular carcinoma (HCC) and other cancer types, and fusion genes involving FNDC3B have been identified in HCC and leukemia. Growing evidence suggests the significance of FNDC3B in tumorigenesis, particularly in cell migration and tumor metastasis. However, its regulatory mechanisms remain elusive. In this study, we employed bioinformatic, gene regulation, and protein-DNA interaction screening to investigate the transcription factors (TFs) involved in regulating FNDC3B. Initially, 338 candidate TFs were selected based on previous chromatin immunoprecipitation (ChIP)-seq experiments available in public domain databases. Through TF knockdown screening and ChIP coupled with Droplet Digital PCR assays, we identified that E2F1 (E2F transcription factor 1) is crucial for the activation of FNDC3B. Overexpression or knockdown of E2F1 significantly impacts the expression of FNDC3B. In conclusion, our study elucidated the mechanistic link between FNDC3B and E2F1. These findings contribute to a better understanding of FNDC3B in tumorigenesis and provide insights into potential therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Kate Hua
- Cancer Progression Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Chen‐Tang Wu
- Cancer Progression Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Chin‐Hui Lin
- Cancer Progression Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Chian‐Feng Chen
- Cancer Progression Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| |
Collapse
|
4
|
Song HS, Ha SY, Kim JY, Kim M, Choi JH. The effect of genetic variants of SLC22A18 on proliferation, migration, and invasion of colon cancer cells. Sci Rep 2024; 14:3925. [PMID: 38366023 PMCID: PMC10873386 DOI: 10.1038/s41598-024-54658-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/15/2024] [Indexed: 02/18/2024] Open
Abstract
Solute carrier family (SLC) transporters are expressed in the digestive system and play important roles in maintaining physiological functions in the body. In addition, SLC transporters act as oncoproteins or tumor-suppressor proteins during the development, progression, and metastasis of various digestive system cancers. SLC22A18, a member of the SLC22 gene family, is an orphan transporter with an unknown endogenous substrate. Previous study revealed that SLC22A18 is downregulated in colorectal cancer tissues and that it acts as a suppressor in colorectal cancer, although the effects of SLC22A18 variants on colon cancer cell proliferation, migration, and invasion are unknown. Therefore, in this study, we identified SLC22A18 variants found in multiple populations by searching public databases and determined the in vitro effects of these missense variations on transporter expression and cancer progression. Our results indicated that three missense SLC22A18 variants-p.Ala6Thr, p.Arg12Gln, and p.Arg86His-had significantly lower cell expression than the wild type, possibly owing to intracellular degradation. Furthermore, these three variants caused significantly higher proliferation, migration, and invasion of colon cancer cells than the wild type. Our findings suggest that missense variants of SLC22A18 can potentially serve as biomarkers or prognostic tools that enable clinicians to predict colorectal cancer progression.
Collapse
Affiliation(s)
- Hyo Sook Song
- Department of Pharmacology, Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Seung Yeon Ha
- Department of Pharmacology, Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Jin-Young Kim
- Department of Pharmacology, Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Minsuk Kim
- Department of Pharmacology, Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Ji Ha Choi
- Department of Pharmacology, Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea.
| |
Collapse
|
5
|
Qin J, Cui Z, Zhou J, Zhang B, Lu R, Ding Y, Hu H, Cai J. IGF2BP3 drives gallbladder cancer progression by m6A-modified CLDN4 and inducing macrophage immunosuppressive polarization. Transl Oncol 2023; 37:101764. [PMID: 37643553 PMCID: PMC10472310 DOI: 10.1016/j.tranon.2023.101764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
INTRODUCTION N6-methyladenosine (m6A) is an emerging epigenetic modification, which plays a crucial role in the development of cancer. Nevertheless, the underlying mechanism of m6A-associated proteins and m6A modification in gallbladder cancer remains largely unknown. MATERIALS AND METHODS The Gene Expression Omnibus database and tissue microarray were used to identify the key m6A-related gene in gallbladder cancer. The function and mechanism of IGF2BP3 were further investigated by knockdown and overexpression techniques in vitro and in vivo. RESULTS We found that IGF2BP3 was elevated and correlated with poor prognosis in gallbladder cancer, which can be used as an independent prognostic factor for gallbladder cancer. IGF2BP3 accelerated the proliferation, invasion and migration of gallbladder cancer cells in vitro and in vivo. Mechanistically, IGF2BP3 interacted with and augmented the stability of CLDN4 mRNA by m6A modification. Enhancement of CLDN4 reversed the inhibitory effect of IGF2BP3 deficiency on gallbladder cancer. Furthermore, we demonstrated that IGF2BP3 promotes the activation of NF-κB signaling pathway by up-regulation of CLDN4. Overexpression of IGF2BP3 in gallbladder cancer cells obviously promoted the polarization of immunosuppressive phenotype in macrophages. Besides, Gallbladder cancer cells-derived IGF2BP3 up-regulated the levels of STAT3 in M2 macrophages, and promoted M2 polarization. CONCLUSIONS We manifested IGF2BP3 promotes the aggressive phenotype of gallbladder cancer by stabilizing CLDN4 mRNA in an m6A-dependent manner and induces macrophage immunosuppressive polarization, which might offer a new theoretical basis for against gallbladder cancer.
Collapse
Affiliation(s)
- Jian Qin
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Zheng Cui
- Department of Ultrasonic Medicine, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai 200120, China
| | - Jingyi Zhou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Bosen Zhang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai 200120, China
| | - Ruiqi Lu
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai 200120, China
| | - Youcheng Ding
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai 200120, China
| | - Hai Hu
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai 200120, China
| | - Jingli Cai
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
6
|
Nwosu ZC, Song MG, di Magliano MP, Lyssiotis CA, Kim SE. Nutrient transporters: connecting cancer metabolism to therapeutic opportunities. Oncogene 2023; 42:711-724. [PMID: 36739364 PMCID: PMC10266237 DOI: 10.1038/s41388-023-02593-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
Cancer cells rely on certain extracellular nutrients to sustain their metabolism and growth. Solute carrier (SLC) transporters enable cells to acquire extracellular nutrients or shuttle intracellular nutrients across organelles. However, the function of many SLC transporters in cancer is unknown. Determining the key SLC transporters promoting cancer growth could reveal important therapeutic opportunities. Here we summarize recent findings and knowledge gaps on SLC transporters in cancer. We highlight existing inhibitors for studying these transporters, clinical trials on treating cancer by blocking transporters, and compensatory transporters used by cancer cells to evade treatment. We propose targeting transporters simultaneously or in combination with targeted therapy or immunotherapy as alternative strategies for effective cancer therapy.
Collapse
Affiliation(s)
- Zeribe Chike Nwosu
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Mun Gu Song
- Department of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea
| | | | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Sung Eun Kim
- Department of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea.
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
7
|
Puris E, Fricker G, Gynther M. The Role of Solute Carrier Transporters in Efficient Anticancer Drug Delivery and Therapy. Pharmaceutics 2023; 15:pharmaceutics15020364. [PMID: 36839686 PMCID: PMC9966068 DOI: 10.3390/pharmaceutics15020364] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Transporter-mediated drug resistance is a major obstacle in anticancer drug delivery and a key reason for cancer drug therapy failure. Membrane solute carrier (SLC) transporters play a crucial role in the cellular uptake of drugs. The expression and function of the SLC transporters can be down-regulated in cancer cells, which limits the uptake of drugs into the tumor cells, resulting in the inefficiency of the drug therapy. In this review, we summarize the current understanding of low-SLC-transporter-expression-mediated drug resistance in different types of cancers. Recent advances in SLC-transporter-targeting strategies include the development of transporter-utilizing prodrugs and nanocarriers and the modulation of SLC transporter expression in cancer cells. These strategies will play an important role in the future development of anticancer drug therapies by enabling the efficient delivery of drugs into cancer cells.
Collapse
|
8
|
Wang X, Huang Y, Li S, Zhang H. Integrated machine learning methods identify FNDC3B as a potential prognostic biomarker and correlated with immune infiltrates in glioma. Front Immunol 2022; 13:1027154. [PMID: 36275754 PMCID: PMC9582524 DOI: 10.3389/fimmu.2022.1027154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Recent discoveries have revealed that fibronectin type III domain containing 3B (FNDC3B) acts as an oncogene in various cancers; however, its role in glioma remains unclear. Methods In this study, we comprehensively investigated the expression, prognostic value, and immune significance of FNDC3B in glioma using several databases and a variety of machine learning algorithms. RNA expression data and clinical information of 529 patients from the Cancer Genome Atlas (TCGA) and 1319 patients from Chinese Glioma Genome Atlas (CGGA) databases were downloaded for further investigation. To evaluate whether FNDC3B expression can predict clinical prognosis of glioma, we constructed a clinical nomogram to estimate long-term survival probabilities. The predicted nomogram was validated by CGGA cohorts. Differentially expressed genes (DEGs) were detected by the Wilcoxon test based on the TCGA-LGG dataset and the weighted gene co-expression network analysis (WGCNA) was implemented to identify the significant module associated with the expression level of FNDC3B. Furthermore, we investigated the correlation between FNDC3B with cancer immune infiltrates using TISIDB, ESTIMATE, and CIBERSORTx. Results Higher FNDC3B expression displayed a remarkably worse overall survival and the expression level of FNDC3B was an independent prognostic indicator for patients with glioma. Based on TCGA LGG dataset, a co-expression network was established and the hub genes were identified. FNDC3B expression was positively correlated to the tumor-infiltrating lymphocytes and immune infiltration score, and high FNDC3B expression was accompanied by the increased expression of B7-H3, PD-L1, TIM-3, PD-1, and CTLA-4. Moreover, expression of FNDC3B was significantly associated with infiltrating levels of several types of immune cells and most of their gene markers in glioma. Conclusion This study demonstrated that FNDC3B may be involved in the occurrence and development of glioma and can be regarded as a promising prognostic and immunotherapeutic biomarker for the treatment of glioma.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yeping Huang
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Shanshan Li
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Hong Zhang
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Hong Zhang,
| |
Collapse
|
9
|
Tang Y, Xiao S, Wang Z, Liang Y, Xing Y, Wu J, Lu M. A Prognostic Model for Acute Myeloid Leukemia Based on IL-2/STAT5 Pathway-Related Genes. Front Oncol 2022; 12:785899. [PMID: 35186733 PMCID: PMC8847395 DOI: 10.3389/fonc.2022.785899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
Accurate prognostic stratification of patients can provide guidance for personalized therapy. Many prognostic models for acute myeloid leukemia (AML) have been reported, but most have considerable inaccuracies due to contained variables with insufficient capacity of predicting survival and lack of adequate verification. Here, 235 genes strongly related to survival in AML were systematically identified through univariate Cox regression analysis of eight independent AML datasets. Pathway enrichment analysis of these 235 genes revealed that the IL-2/STAT5 signaling pathway was the most highly enriched. Through Cox proportional-hazards regression model and stepwise algorithm, we constructed a six-gene STAT5-associated signature based on the most robustly survival-related genes related to the IL-2/STAT5 signaling pathway. Good prognostic performance was observed in the training cohort (GSE37642-GPL96), and the signature was validated in seven other validation cohorts. As an independent prognostic factor, the STAT5-associated signature was positively correlated with patient age and ELN2017 risk levels. An integrated score based on these three prognostic factors had higher prognostic accuracy than the ELN2017 risk category. Characterization of immune cell infiltration indicated that impaired B-cell adaptive immunity, immunosuppressive effects, serious infection, and weakened anti-inflammatory function tended to accompany high-risk patients. Analysis of in-house clinical samples revealed that the STAT5-assocaited signature risk scores of AML patients were significantly higher than those of healthy people. Five chemotherapeutic drugs that were effective in these high-risk patients were screened in silico. Among the five drugs, MS.275, a known HDAC inhibitor, selectively suppressed the proliferation of cancer cells with high STAT5 phosphorylation levels in vitro. Taken together, the data indicate that the STAT5-associated signature is a reliable prognostic model that can be used to optimize prognostic stratification and guide personalized AML treatments.
Collapse
Affiliation(s)
- Yigang Tang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shujun Xiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengyuan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Liang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yangfei Xing
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiale Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Gouda G, Gupta MK, Donde R, Behera L, Vadde R. Metabolic pathway-based target therapy to hepatocellular carcinoma: a computational approach. THERANOSTICS AND PRECISION MEDICINE FOR THE MANAGEMENT OF HEPATOCELLULAR CARCINOMA, VOLUME 2 2022:83-103. [DOI: 10.1016/b978-0-323-98807-0.00003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|
11
|
Zhang L, Yu H, Deng T, Ling L, Wen J, Lv M, Ou R, Wang Q, Xu Y. FNDC3B and BPGM Are Involved in Human Papillomavirus-Mediated Carcinogenesis of Cervical Cancer. Front Oncol 2021; 11:783868. [PMID: 34976823 PMCID: PMC8716600 DOI: 10.3389/fonc.2021.783868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Human papillomavirus (HPV)-mediated cervical carcinogenesis is a multistep progressing from persistent infection, precancerous lesion to cervical cancer (CCa). Although molecular alterations driven by viral oncoproteins are necessary in cervical carcinogenesis, the key regulators behind the multistep process remain not well understood. It is pivotal to identify the key genes involved in the process for early diagnosis and treatment of this disease. Here we analyzed the mRNA expression profiles in cervical samples including normal, cervical intraepithelial neoplasia (CIN), and CCa. A co-expression network was constructed using weighted gene co-expression network analysis (WGCNA) to reveal the crucial modules in the dynamic process from HPV infection to CCa development. Furthermore, the differentially expressed genes (DEGs) that could distinguish all stages of progression of CCa were screened. The key genes involved in HPV-CCa were identified. It was found that the genes involved in DNA replication/repair and cell cycle were upregulated in CIN compared with normal control, and sustained in CCa, accompanied by substantial metabolic shifts. We found that upregulated fibronectin type III domain-containing 3B (FNDC3B) and downregulated bisphosphoglycerate mutase (BPGM) could differentiate all stages of CCa progression. In patients with CCa, a higher expression of FNDC3B or lower expression of BPGM was closely correlated with a shorter overall survival (OS) and disease-free survival (DFS). A receiver operating characteristic (ROC) analysis of CIN and CCa showed that FNDC3B had the highest sensitivity and specificity for predicting CCa development. Taken together, the current data showed that FNDC3B and BPGM were key genes involved in HPV-mediated transformation from normal epithelium to precancerous lesions and CCa.
Collapse
Affiliation(s)
- Luhan Zhang
- School of Basic Medicine, Southwest Medical University, Luzhou, China
- Department of Dermatovenerology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hong Yu
- School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Tian Deng
- Department of Stomatology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Li Ling
- Department of Stomatology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Juan Wen
- Department of Dermatovenerology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Mingfen Lv
- Department of Dermatovenerology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Rongying Ou
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qiaozhi Wang
- School of Basic Medicine, Southwest Medical University, Luzhou, China
- *Correspondence: Qiaozhi Wang, ; Yunsheng Xu,
| | - Yunsheng Xu
- Department of Dermatovenerology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Qiaozhi Wang, ; Yunsheng Xu,
| |
Collapse
|
12
|
Chen X, Xia Z, Wan Y, Huang P. Identification of hub genes and candidate drugs in hepatocellular carcinoma by integrated bioinformatics analysis. Medicine (Baltimore) 2021; 100:e27117. [PMID: 34596112 PMCID: PMC8483840 DOI: 10.1097/md.0000000000027117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 08/14/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the third cancer-related cause of death in the world. Until now, the involved mechanisms during the development of HCC are largely unknown. This study aims to explore the driven genes and potential drugs in HCC. METHODS Three mRNA expression datasets were used to analyze the differentially expressed genes (DEGs) in HCC. The bioinformatics approaches include identification of DEGs and hub genes, Gene Ontology terms analysis and Kyoto encyclopedia of genes and genomes enrichment analysis, construction of protein-protein interaction network. The expression levels of hub genes were validated based on The Cancer Genome Atlas, Gene Expression Profiling Interactive Analysis, and the Human Protein Atlas. Moreover, overall survival and disease-free survival analysis of HCC patients were further conducted by Kaplan-Meier plotter and Gene Expression Profiling Interactive Analysis. DGIdb database was performed to search the candidate drugs for HCC. RESULTS A total of 197 DEGs were identified. The protein-protein interaction network was constructed using Search Tool for the Retrieval of Interacting Genes software, 10 genes were selected by Cytoscape plugin cytoHubba and served as hub genes. These 10 genes were all closely related to the survival of HCC patients. DGIdb database predicted 29 small molecules as the possible drugs for treating HCC. CONCLUSION Our study provides some new insights into HCC pathogenesis and treatments. The candidate drugs may improve the efficiency of HCC therapy in the future.
Collapse
Affiliation(s)
- Xiaolong Chen
- National Key Clinical Department, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhixiong Xia
- Department of Pathology, The Center Hospital of Wuhan, Hubei, China
| | - Yafeng Wan
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ping Huang
- National Key Clinical Department, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Zhao X, Huang Q, Koller M, Linssen MD, Hooghiemstra WTR, de Jongh SJ, van Vugt MATM, Fehrmann RSN, Li E, Nagengast WB. Identification and Validation of Esophageal Squamous Cell Carcinoma Targets for Fluorescence Molecular Endoscopy. Int J Mol Sci 2021; 22:9270. [PMID: 34502178 PMCID: PMC8431213 DOI: 10.3390/ijms22179270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023] Open
Abstract
Dysplasia and intramucosal esophageal squamous cell carcinoma (ESCC) frequently go unnoticed with white-light endoscopy and, therefore, progress to invasive tumors. If suitable targets are available, fluorescence molecular endoscopy might be promising to improve early detection. Microarray expression data of patient-derived normal esophagus (n = 120) and ESCC samples (n = 118) were analyzed by functional genomic mRNA (FGmRNA) profiling to predict target upregulation on protein levels. The predicted top 60 upregulated genes were prioritized based on literature and immunohistochemistry (IHC) validation to select the most promising targets for fluorescent imaging. By IHC, GLUT1 showed significantly higher expression in ESCC tissue (30 patients) compared to the normal esophagus adjacent to the tumor (27 patients) (p < 0.001). Ex vivo imaging of GLUT1 with the 2-DG 800CW tracer showed that the mean fluorescence intensity in ESCC (n = 17) and high-grade dysplasia (HGD, n = 13) is higher (p < 0.05) compared to that in low-grade dysplasia (LGD) (n = 7) and to the normal esophagus adjacent to the tumor (n = 5). The sensitivity and specificity of 2-DG 800CW to detect HGD and ESCC is 80% and 83%, respectively (ROC = 0.85). We identified and validated GLUT1 as a promising molecular imaging target and demonstrated that fluorescent imaging after topical application of 2-DG 800CW can differentiate HGD and ESCC from LGD and normal esophagus.
Collapse
Affiliation(s)
- Xiaojuan Zhao
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (X.Z.); (M.A.T.M.v.V.); (R.S.N.F.)
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.D.L.); (W.T.R.H.); (S.J.d.J.)
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; (Q.H.); (E.L.)
| | - Qingfeng Huang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; (Q.H.); (E.L.)
| | - Marjory Koller
- Department of Surgery, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands;
| | - Matthijs D. Linssen
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.D.L.); (W.T.R.H.); (S.J.d.J.)
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| | - Wouter T. R. Hooghiemstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.D.L.); (W.T.R.H.); (S.J.d.J.)
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| | - Steven J. de Jongh
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.D.L.); (W.T.R.H.); (S.J.d.J.)
| | - Marcel A. T. M. van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (X.Z.); (M.A.T.M.v.V.); (R.S.N.F.)
| | - Rudolf S. N. Fehrmann
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (X.Z.); (M.A.T.M.v.V.); (R.S.N.F.)
| | - Enmin Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; (Q.H.); (E.L.)
| | - Wouter B. Nagengast
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.D.L.); (W.T.R.H.); (S.J.d.J.)
| |
Collapse
|
14
|
Bian J, Long J, Yang X, Yang X, Xu Y, Lu X, Guan M, Sang X, Zhao H. Construction and validation of a prognostic signature using CNV-driven genes for hepatocellular carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:765. [PMID: 34268378 PMCID: PMC8246234 DOI: 10.21037/atm-20-7101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/10/2021] [Indexed: 12/24/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the major causes of cancer-related deaths worldwide. Copy number variations (CNVs) affect the expression of genes and play critical roles in carcinogenesis. We aimed to identify specific CNV-driven genes and establish a prognostic model for HCC. Methods Integrative analysis of CNVs difference data and differentially expressed genes (DEGs) data from The Cancer Genome Atlas (TCGA) were conducted to identify critical CNV-driven genes for HCC. A risk model was constructed based on univariate Cox regression analysis, Least Absolute Shrinkage and Selection Operator (LASSO), and multivariate Cox regression analyses. The associations between CNV-driven genes signature and infiltrating immune cells were explored. The International Cancer Genome Consortium (ICGC) dataset was utilized to validate this model. Results After integrative analysis of CNVs and corresponding mRNA expression profiles, 568 CNV-driven genes were identified. Sixty-three CNV-driven genes were found to be markedly associated with overall survival (OS) after univariate Cox regression analysis. Finally, eight CNV-driven genes were screened to generate a prognostic risk model. Compared with low-risk group, the OS of patients in the high-risk group was significantly shorter in both the TCGA [hazard ratio (HR) =6.14, 95% confidence interval (CI): 2.72-13.86, P<0.001] and ICGC (HR =3.23, 95% CI: 1.17-8.92, P<0.001) datasets. Further analysis revealed the infiltrating neutrophils were positively correlated with risk score. Meanwhile, the high-risk group was associated with higher expression of immune checkpoint genes. Conclusions A novel signature based on CNV-driven genes was built to predict the survival of HCC patients and showed good performance. The results of our study may improve understanding of the mechanism that drives HCC, and provide an immunological perspective for individualized therapies.
Collapse
Affiliation(s)
- Jin Bian
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Junyu Long
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xu Yang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xiaobo Yang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yiyao Xu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xin Lu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Mei Guan
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xinting Sang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
15
|
Cui C, Dwyer BG, Liu C, Abegg D, Cai ZJ, Hoch DG, Yin X, Qiu N, Liu JQ, Adibekian A, Dai M. Total Synthesis and Target Identification of the Curcusone Diterpenes. J Am Chem Soc 2021; 143:4379-4386. [PMID: 33705657 DOI: 10.1021/jacs.1c00557] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The curcusone natural products are complex diterpenes featuring a characteristic [6-7-5] tricyclic carbon skeleton similar to the daphnane and tigliane diterpenes. Among them, curcusones A-D demonstrated potent anticancer activity against a broad spectrum of human cancer cell lines. Prior to this study, no total synthesis of the curcusones was achieved and their anticancer mode of action remained unknown. Herein, we report our synthetic and chemoproteomics studies of the curcusone diterpenes which culminate in the first total synthesis of several curcusone natural products and identification of BRCA1-associated ATM activator 1 (BRAT1) as a cellular target. Our efficient synthesis is highly convergent, builds upon cheap and abundant starting materials, features a thermal [3,3]-sigmatropic rearrangement and a novel FeCl3-promoted cascade reaction to rapidly construct the critical cycloheptadienone core of the curcusones, and led us to complete the first total synthesis of curcusones A and B in only 9 steps, C and D in 10 steps, and dimericursone A in 12 steps. The chemical synthesis of dimericursone A from curcusones C and D provided direct evidence to support the proposed Diels-Alder dimerization and cheletropic elimination biosynthetic pathway. Using an alkyne-tagged probe molecule, BRAT1, an important but previously "undruggable" oncoprotein, was identified as a key cellular target via chemoproteomics. We further demonstrate for the first time that BRAT1 can be inhibited by curcusone D, resulting in impaired DNA damage response, reduced cancer cell migration, potentiated activity of the DNA damaging drug etoposide, and other phenotypes similar to BRAT1 knockdown.
Collapse
Affiliation(s)
- Chengsen Cui
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brendan G Dwyer
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Chang Liu
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Daniel Abegg
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Zhong-Jian Cai
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dominic G Hoch
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Xianglin Yin
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nan Qiu
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jie-Qing Liu
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Alexander Adibekian
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Mingji Dai
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
16
|
Zhao J, Sun Y, Lin H, Chou F, Xiao Y, Jin R, Cai X, Chang C. Olaparib and enzalutamide synergistically suppress HCC progression via the AR-mediated miR-146a-5p/BRCA1 signaling. FASEB J 2020; 34:5877-5891. [PMID: 32134529 DOI: 10.1096/fj.201903045rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/26/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of most common cancers worldwide, however, the treatment for advanced HCC remains unsatisfactory. We focused on the function of the androgen receptor (AR) in HCC and tried to find new treatment strategy based on antiandrogen enzalutamide (Enz). Here, we found that olaparib, a FDA-approved PARP inhibitor, could enhance the cytotoxicity in HCC cells with a lower BRCA1 expression, and suppressing the AR with either Enz or AR-shRNA could further increase the olaparib sensitivity to better suppress the HCC cell growth via a synergistic mechanism that may involve suppressing the expression of BRCA1 and other DNA damage response (DDR) genes. Mechanism studies revealed that Enz/AR signaling might transcriptionally regulate the miR-146a-5p expression via binding to the Androgen Response Elements on its 5' promoter region, which could then lead to suppress the homologous recombination-related BRCA1 expression via direct binding to the mRNA 3'UTR. Preclinical studies using an in vivo mouse model also demonstrated that combining Enz plus olaparib led to better suppression of the HCC progression. Together, these in vitro/in vivo data suggest that combining Enz and olaparib may help in the development of a novel therapy to better suppress the HCC progression.
Collapse
Affiliation(s)
- Jie Zhao
- Department of General Surgery, Innovation Center for Minimally Invasive Technique and Device, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Urology, Innovation Center for Minimally Invasive Technique and Device, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,George Whipple Lab for Cancer Research, Departments of Pathology and Urology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Yin Sun
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Hui Lin
- Department of General Surgery, Innovation Center for Minimally Invasive Technique and Device, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Urology, Innovation Center for Minimally Invasive Technique and Device, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fuju Chou
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Yao Xiao
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Ren'an Jin
- Department of General Surgery, Innovation Center for Minimally Invasive Technique and Device, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Urology, Innovation Center for Minimally Invasive Technique and Device, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,George Whipple Lab for Cancer Research, Departments of Pathology and Urology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Xiujun Cai
- Department of General Surgery, Innovation Center for Minimally Invasive Technique and Device, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Urology, Innovation Center for Minimally Invasive Technique and Device, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.,Sex Hormone Research Center, China Medical University/Hospital, Taichung, Taiwan
| |
Collapse
|
17
|
Targeting the estrogen receptor alpha (ERα)-mediated circ-SMG1.72/miR-141-3p/Gelsolin signaling to better suppress the HCC cell invasion. Oncogene 2020; 39:2493-2508. [PMID: 31996784 DOI: 10.1038/s41388-019-1150-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 12/03/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023]
Abstract
Early studies indicated that estrogen receptor α (ERα) might impact the progression of hepatocellular carcinoma (HCC). However, the detailed mechanisms, especially its linkage to the gelsolin (GSN)-mediated cell invasion, remain unclear. Here we found that ERα could decrease HCC cell invasion via suppressing the circular RNA-SMG1.72 (circRNA-SMG1.72) expression via transcriptional regulation through directly binding to the 5' promoter region of its host gene SMG1, We showed that ERα-suppressed circ-SMG1.72 could sponge and inhibit the expression of the microRNA (miRNA, miR), miR-141-3p, which could then result in increasing the GSN messenger RNA translation via reduced miR binding to its 3' untranslated region (3'UTR). The preclinical study using an in vivo mouse model with orthotopic xenografts of HCC cells confirmed the in vitro data, and the human HCC clinical sample survey and tissue staining also confirmed the linkage of ERα/miR-141-3p/GSN signaling to the HCC progression. Together, our findings suggest that ERα can suppress HCC cell invasion via altering the ERα/circRNA-SMG1.72/miR-141-3p/GSN signaling, and targeting this newly identified signaling with small molecules may help in the development of novel therapies to better suppress the HCC progression.
Collapse
|
18
|
Alonso-Peña M, Espinosa-Escudero RA, Soto-Muñiz M, Sanchon-Sanchez P, Sanchez-Martin A, Marin JJ. Role of transportome in the pharmacogenomics of hepatocellular carcinoma and hepatobiliary cancer. Pharmacogenomics 2019; 20:957-970. [PMID: 31486734 DOI: 10.2217/pgs-2019-0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
An important factor determining the pharmacological response to antitumor drugs is their concentrations in cancer cells, which accounts for the net interaction with their intracellular molecular targets. Accordingly, mechanisms leading to reduced intracellular levels of active agents play a crucial role in cancer chemoresistance. These include impaired drug uptake through solute carrier (SLC) proteins and efficient drug export by ATP-dependent pumps belonging to the ATP-binding cassette (ABC) superfamily of proteins. Since the net movement of drugs in-and-out the cells depends on the overall expression of carrier proteins, defining the so-called transportome, special attention has been devoted to the study of transcriptome regarding these proteins. Nevertheless, genetic variants affecting SLC and ABC genes may markedly affect the bioavailability and, hence, the efficacy of anticancer drugs.
Collapse
Affiliation(s)
- Marta Alonso-Peña
- Experimental Hepatology & Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, 37007, Spain
| | - Ricardo A Espinosa-Escudero
- Experimental Hepatology & Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, 37007, Spain
| | - Meraris Soto-Muñiz
- Experimental Hepatology & Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, 37007, Spain
| | - Paula Sanchon-Sanchez
- Experimental Hepatology & Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, 37007, Spain
| | - Anabel Sanchez-Martin
- Experimental Hepatology & Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, 37007, Spain
| | - Jose Jg Marin
- Experimental Hepatology & Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, 37007, Spain.,Center for the Study of Liver & Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, 28029, Spain
| |
Collapse
|
19
|
Li C, Qin F, Hong H, Tang H, Jiang X, Yang S, Mei Z, Zhou D. Identification of Flap endonuclease 1 as a potential core gene in hepatocellular carcinoma by integrated bioinformatics analysis. PeerJ 2019; 7:e7619. [PMID: 31534853 PMCID: PMC6733258 DOI: 10.7717/peerj.7619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/05/2019] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common yet deadly form of malignant cancer. However, the specific mechanisms involved in HCC diagnosis have not yet fully elucidated. Herein, we screened four publically available Gene Expression Omnibus (GEO) expression profiles (GSE14520, GSE29721, GSE45267 and GSE60502), and used them to identify 409 differentially expressed genes (DEGs), including 142 and 267 up- and down-regulated genes, respectively. The DAVID database was used to look for functionally enriched pathways among DEGs, and the STRING database and Cytoscape platform were used to generate a protein-protein interaction (PPI) network for these DEGs. The cytoHubba plug-in was utilized to detect 185 hub genes, and three key clustering modules were constructed with the MCODE plug-in. Gene functional enrichment analyses of these three key clustering modules were further performed, and nine core genes including BIRC5, DLGAP5, DTL, FEN1, KIAA0101, KIF4A, MCM2, MKI67, and RFC4, were identified in the most critical cluster. Subsequently, the hierarchical clustering and expression of core genes in TCGA liver cancer tissues were analyzed using the UCSC Cancer Genomics Browser, and whether elevated core gene expression was linked to a poor prognosis in HCC patients was assessed using the GEPIA database. The PPI of the nine core genes revealed an interaction between FEN1, MCM2, RFC4, and BIRC5. Furthermore, the expression of FEN1 was positively correlated with that of three other core genes in TCGA liver cancer tissues. FEN1 expression in HCC and other tumor types was assessed with the FIREBROWSE and ONCOMINE databases, and results were verified in HCC samples and hepatoma cells. FEN1 levels were also positively correlated with tumor size, distant metastasis and vascular invasion. In conclusion, we identified nine core genes associated with HCC development, offering novel insight into HCC progression. In particular, the aberrantly elevated FEN1 may represent a potential biomarker for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Chuanfei Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Qin
- Department of Infectious Diseases, The People's Hospital of Shi Zhu, Chongqing, China
| | - Hao Hong
- Department of Orthopaedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Tang
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoling Jiang
- Tongnan District People's Hospital, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuangyan Yang
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Di Zhou
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
Wei J, Sheng Y, Li J, Gao X, Ren N, Dong Q, Qin L. Genome-Wide Association Study Identifies a Genetic Prediction Model for Postoperative Survival in Patients with Hepatocellular Carcinoma. Med Sci Monit 2019; 25:2452-2478. [PMID: 30945699 PMCID: PMC6461006 DOI: 10.12659/msm.915511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background As an important aspect of tumor heterogeneity, genetic variation may influence susceptibility and prognosis in different types of cancer. By exploring the prognostic value of genetic variation, this study aimed to establish a model for predicting postoperative survival and assessing the impact of variation on clinical outcomes in patients with hepatocellular carcinoma (HCC). Material/Methods A genome-wide association study of 367 patients with HCC was conducted to identify single nucleotide polymorphisms (SNPs) associated with prognosis. Identified predictors were further evaluated in 758 patients. Two prognostic models were established using Cox proportional hazards regression and Nomogram strategy, and validated in another 316 patients. The effect of the SNP rs2431 was analyzed in detail. Results A prognostic model including 5 SNPs (rs10893585, rs2431, rs34675408, rs6078460, and rs6766361) was established and exhibited high predictive accuracy for HCC prognosis. The panel combined with tumor node metastasis (TNM) stage resulted in a significantly higher c-index (0.723) than the individual c-index values. Stratified by the Nomogram prediction model, the median overall survival for the low-risk and high-risk groups were 100.1 versus 30.8 months (P<0.001) in the training set and 82.2 versus 22.5 months (P<0.001) in the validation set. A closer examination of rs2431 revealed that it may regulate the expression of FNDC3B by disrupting a microRNA-binding site. Conclusions This study established prediction models based on genetic factors alone or in combination with TNM stage for postoperative survival in patients with HCC, and identified FNDC3B as a potential therapeutic target for combating HCC metastasis.
Collapse
Affiliation(s)
- Jinwang Wei
- Department of General Surgery, Huashan Hospital; Cancer Metastasis Institute; Institutes of Biomedical Sciences, Fudan University, Shanghai, China (mainland)
| | - Yuanyuan Sheng
- Department of General Surgery, Huashan Hospital; Cancer Metastasis Institute; Institutes of Biomedical Sciences, Fudan University, Shanghai, China (mainland)
| | - Jianhua Li
- Department of General Surgery, Huashan Hospital; Cancer Metastasis Institute; Institutes of Biomedical Sciences, Fudan University, Shanghai, China (mainland)
| | - Xiaomei Gao
- Department of General Surgery, Huashan Hospital; Cancer Metastasis Institute; Institutes of Biomedical Sciences, Fudan University, Shanghai, China (mainland)
| | - Ning Ren
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China (mainland)
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital; Cancer Metastasis Institute; Institutes of Biomedical Sciences, Fudan University, Shanghai, China (mainland)
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital; Cancer Metastasis Institute; Institutes of Biomedical Sciences, Fudan University, Shanghai, China (mainland)
| |
Collapse
|
21
|
Oh CR, Kong SY, Im HS, Kim HJ, Kim MK, Yoon KA, Cho EH, Jang JH, Lee J, Kang J, Park SR, Ryoo BY. Genome-wide copy number alteration and VEGFA amplification of circulating cell-free DNA as a biomarker in advanced hepatocellular carcinoma patients treated with Sorafenib. BMC Cancer 2019; 19:292. [PMID: 30935424 PMCID: PMC6444867 DOI: 10.1186/s12885-019-5483-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
Background Although sorafenib is the global standard first-line systemic treatment for unresectable hepatocellular carcinoma (HCC), it does not have reliable predictive or prognostic biomarkers. Circulating cell-free DNA (cfDNA) has shown promise as a biomarker for various cancers. We investigated the use of cfDNA to predict clinical outcomes in HCC patients treated with sorafenib. Methods This prospective biomarker study analyzed plasma cfDNA from 151 HCC patients who received first-line sorafenib and 14 healthy controls. The concentration and VEGFA-to-EIF2C1 ratios (the VEGFA ratio) of cfDNA were measured. Low depth whole-genome sequencing of cfDNA was used to identify genome-wide copy number alteration (CNA), and the I-score was developed to express genomic instability. The I-score was defined as the sum of absolute Z-scores of sequenced reads on each chromosome. The primary aim of this study was to develop cfDNA biomarkers predicting treatment outcomes of sorafenib, and the primary study outcome was the association between biomarkers with treatment efficacy including disease control rate (DCR), time to progression (TTP) and overall survival (OS) in these patients. Results The cfDNA concentrations were significantly higher in HCC patients than in healthy controls (0.71 vs. 0.34 ng/μL; P < 0.0001). Patients who did not achieve disease control with sorafenib had significantly higher cfDNA levels (0.82 vs. 0.63 ng/μL; P = 0.006) and I-scores (3405 vs. 1024; P = 0.0017) than those achieving disease control. The cfDNA-high group had significantly worse TTP (2.2 vs. 4.1 months; HR = 1.71; P = 0.002) and OS (4.1 vs. 14.8 months; HR = 3.50; P < 0.0001) than the cfDNA-low group. The I-score-high group had poorer TTP (2.2 vs. 4.1 months; HR = 2.09; P < 0.0001) and OS (4.6 vs. 14.8 months; HR = 3.35; P < 0.0001). In the multivariable analyses, the cfDNA remained an independent prognostic factor for OS (P < 0.0001), and the I-score for both TTP (P = 0.011) and OS (P = 0.010). The VEGFA ratio was not significantly associated with treatment outcomes. Conclusion Pretreatment cfDNA concentration and genome-wide CNA in cfDNA are potential biomarkers predicting outcomes in advanced HCC patients receiving first-line sorafenib. Electronic supplementary material The online version of this article (10.1186/s12885-019-5483-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chung Ryul Oh
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun-Young Kong
- Department of Laboratory Medicine, Hospital, National Cancer Center, Goyang, Republic of Korea.,Cancer Biomedical Science, Graduate School of Cancer Science and Policy, Goyang, Republic of Korea
| | - Hyeon-Su Im
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hwa Jung Kim
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min Kyeong Kim
- Cancer Biomedical Science, Graduate School of Cancer Science and Policy, Goyang, Republic of Korea
| | - Kyong-Ah Yoon
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Eun-Hae Cho
- Genome Research Center, Green Cross Genome, Yongin, Republic of Korea
| | - Ja-Hyun Jang
- Genome Research Center, Green Cross Genome, Yongin, Republic of Korea
| | - Junnam Lee
- Genome Research Center, Green Cross Genome, Yongin, Republic of Korea
| | - Jihoon Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Sook Ryun Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| | - Baek-Yeol Ryoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
22
|
Bian T, Zheng L, Jiang D, Liu J, Zhang J, Feng J, Zhang Q, Qian L, Qiu H, Liu Y, Yao S. Overexpression of fibronectin type III domain containing 3B is correlated with epithelial-mesenchymal transition and predicts poor prognosis in lung adenocarcinoma. Exp Ther Med 2019; 17:3317-3326. [PMID: 30988707 PMCID: PMC6447801 DOI: 10.3892/etm.2019.7370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/11/2018] [Indexed: 12/25/2022] Open
Abstract
Fibronectin (FN) type III domain containing 3B (FNDC3B), a member of the FN family, regulates the invasion and metastasis of cells in numerous tumor types. However, the mechanisms through which FNDC3B regulates carcinogenesis in lung adenocarcinoma (LADC) tissues have remained elusive. The present study revealed that the protein levels of FNDC3B and vimentin were significantly elevated in LADC tissues compared with those in normal lung tissues. By contrast, the expression of E-cadherin was decreased in LADC tissues compared with that in normal lung tissues. Furthermore, the aberrant expression of FNDC3B and epithelial-mesenchymal transition (EMT) markers was significantly associated with histological differentiation, lymph node metastasis and tumor-nodes-metastasis stage. Kaplan-Meier analysis indicated that a high expression of FNDC3B may be associated with poor overall survival of patients with LADC. In addition, overexpression of FNDC3B promoted the protein expression of EMT-associated genes in the A549 lung adenocarcinoma cell line. In conclusion, the present results support the notion that FNDC3B acts as an oncogene in LADC; it may serve a pivotal role in the development and progression of LADC and may participate in the regulation of the EMT.
Collapse
Affiliation(s)
- Tingting Bian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Liangfeng Zheng
- Central Laboratory, Affiliated Hai'an Hospital of Nantong University, Hai'an, Jiangsu 226600, P.R. China
| | - Daishan Jiang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jian Liu
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jianguo Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jia Feng
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Qing Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Li Qian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hongmei Qiu
- Department of Respiration, Nantong Geriatric Rehabilitation Hospital, Branch of Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Sumei Yao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
23
|
Wu M, Liu Z, Zhang A, Li N. Identification of key genes and pathways in hepatocellular carcinoma: A preliminary bioinformatics analysis. Medicine (Baltimore) 2019; 98:e14287. [PMID: 30702595 PMCID: PMC6380748 DOI: 10.1097/md.0000000000014287] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most prevalent cancers worldwide. However, the precise mechanisms of the development and progression of HCC remain unclear. The present study attempted to identify and functionally analyze the differentially expressed genes between HCC and cirrhotic tissues by using comprehensive bioinformatics analyses. METHODS The GSE63898 gene expression profile was downloaded from the Gene Expression Omnibus (GEO) and analyzed using the online tool GEO2R to identify differentially expressed genes (DEGs). Gene ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the DEGs were performed in DAVID. The STRING database was used to evaluate the interactions of DEGs and to construct a protein-protein interaction (PPI) network using Cytoscape software. Hub genes were selected using the cytoHubba plugin and were validated with the cBioPortal database. RESULTS A total of 301 DEGs were identified between HCC and cirrhotic tissues. The GO analysis results showed that these DEGs were significantly enriched in certain biological processes including negative regulation of growth and cell chemotaxis. Several significant pathways, including the p53 signaling pathway, were identified as being closely associated with these DEGs. The top 12 hub genes were screened and included TTK, NCAPG, TOP2A, CCNB1, CDK1, PRC1, RRM2, UBE2C, ZWINT, CDKN3, AURKA, and RACGAP1. The cBioPortal analysis found that alterations in hub genes could result in significantly reduced disease-free survival in HCC. CONCLUSION The present study identified a series of key genes and pathways that may be involved in the tumorigenicity and progression of HCC, providing a new understanding of the underlying molecular mechanisms of carcinogenesis in HCC.
Collapse
Affiliation(s)
- Min Wu
- Department of General surgery
| | | | - Aiying Zhang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ning Li
- Department of General surgery
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Syed A, Lukacsovich T, Pomeroy M, Bardwell AJ, Decker GT, Waymire KG, Purcell J, Huang W, Gui J, Padilla EM, Park C, Paul A, Pham TBT, Rodriguez Y, Wei S, Worthge S, Zebarjedi R, Zhang B, Bardwell L, Marsh JL, MacGregor GR. Miles to go (mtgo) encodes FNDC3 proteins that interact with the chaperonin subunit CCT3 and are required for NMJ branching and growth in Drosophila. Dev Biol 2018; 445:37-53. [PMID: 30539716 DOI: 10.1016/j.ydbio.2018.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/01/2018] [Accepted: 10/17/2018] [Indexed: 11/17/2022]
Abstract
Analysis of mutants that affect formation and function of the Drosophila larval neuromuscular junction (NMJ) has provided valuable insight into genes required for neuronal branching and synaptic growth. We report that NMJ development in Drosophila requires both the Drosophila ortholog of FNDC3 genes; CG42389 (herein referred to as miles to go; mtgo), and CCT3, which encodes a chaperonin complex subunit. Loss of mtgo function causes late pupal lethality with most animals unable to escape the pupal case, while rare escapers exhibit an ataxic gait and reduced lifespan. NMJs in mtgo mutant larvae have dramatically reduced branching and growth and fewer synaptic boutons compared with control animals. Mutant larvae show normal locomotion but display an abnormal self-righting response and chemosensory deficits that suggest additional functions of mtgo within the nervous system. The pharate lethality in mtgo mutants can be rescued by both low-level pan- and neuronal-, but not muscle-specific expression of a mtgo transgene, supporting a neuronal-intrinsic requirement for mtgo in NMJ development. Mtgo encodes three similar proteins whose domain structure is most closely related to the vertebrate intracellular cytosolic membrane-anchored fibronectin type-III domain-containing protein 3 (FNDC3) protein family. Mtgo physically and genetically interacts with Drosophila CCT3, which encodes a subunit of the TRiC/CCT chaperonin complex required for maturation of actin, tubulin and other substrates. Drosophila larvae heterozygous for a mutation in CCT3 that reduces binding between CCT3 and MTGO also show abnormal NMJ development similar to that observed in mtgo null mutants. Hence, the intracellular FNDC3-ortholog MTGO and CCT3 can form a macromolecular complex, and are both required for NMJ development in Drosophila.
Collapse
Affiliation(s)
- Adeela Syed
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Tamás Lukacsovich
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Miles Pomeroy
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - A Jane Bardwell
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Gentry Thomas Decker
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211-7400, USA
| | - Katrina G Waymire
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Judith Purcell
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Weijian Huang
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - James Gui
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Emily M Padilla
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Cindy Park
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Antor Paul
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Thai Bin T Pham
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Yanete Rodriguez
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Stephen Wei
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Shane Worthge
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Ronak Zebarjedi
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Bing Zhang
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211-7400, USA
| | - Lee Bardwell
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - J Lawrence Marsh
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA.
| | - Grant R MacGregor
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697-2300, USA.
| |
Collapse
|
25
|
Pastor-Anglada M, Pérez-Torras S. Emerging Roles of Nucleoside Transporters. Front Pharmacol 2018; 9:606. [PMID: 29928232 PMCID: PMC5997781 DOI: 10.3389/fphar.2018.00606] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/21/2018] [Indexed: 01/02/2023] Open
Abstract
Since human Nucleoside Transporters (hNTs) were identified by their activity as transport systems, extensive work has been done to fully characterize them at the molecular and physiological level. Many efforts have been addressed to the identification of their selectivity for natural substrates and nucleoside analogs used to treat several diseases. hNTs belong to two different gene families, SLC28 and SLC29, encoding human Concentrative Nucleoside Transporters (hCNTs) and human Equilibrative Nucleoside Transporters (hENTs), respectively. hCNTs and hENTs are integral membrane proteins, albeit structurally unrelated. Both families share common features as substrate selectivity and often tissue localization. This apparent biological redundancy may anticipate some different roles for hCNTs and hENTs in cell physiology. Thus, hENTs may have a major role in maintaining nucleoside homeostasis, whereas hCNTs could contribute to nucleoside sensing and signal transduction. In this sense, the ascription of hCNT1 to a transceptor reinforces this hypothesis. Moreover, some evidences could suggest a putative role of hCNT2 and hCNT3 as transceptors. The interacting proteins identified for hCNT2 suggest a link to energy metabolism. Moreover, the ability of hCNT2 and hCNT3 to transport adenosine links both proteins to purinergic signaling. On the other hand, the broad selectivity transporters hENTs have a crucial role in salvage pathways and purinergic signaling by means of nucleoside pools regulation. In particular, the two new hENT2 isoforms recently described together with hENT2 seem to be key elements controlling nucleoside and nucleotide pools for DNA synthesis. This review focuses on all these NTs functions beyond their mere translocation ability.
Collapse
Affiliation(s)
- Marçal Pastor-Anglada
- Biochemistry and Molecular Pharmacology Section, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Sandra Pérez-Torras
- Biochemistry and Molecular Pharmacology Section, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
26
|
Yeh HW, Hsu EC, Lee SS, Lang YD, Lin YC, Chang CY, Lee SY, Gu DL, Shih JH, Ho CM, Chen CF, Chen CT, Tu PH, Cheng CF, Chen RH, Yang RB, Jou YS. PSPC1 mediates TGF-β1 autocrine signalling and Smad2/3 target switching to promote EMT, stemness and metastasis. Nat Cell Biol 2018; 20:479-491. [PMID: 29593326 DOI: 10.1038/s41556-018-0062-y] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/12/2018] [Indexed: 02/06/2023]
Abstract
Activation of metastatic reprogramming is critical for tumour metastasis. However, more detailed knowledge of the underlying mechanism is needed to enable targeted intervention. Here, we show that paraspeckle component 1 (PSPC1), identified in an aberrant 13q12.11 locus, is upregulated and associated with poor survival in patients with cancer. PSPC1 promotes tumorigenesis, epithelial-to-mesenchymal transition (EMT), stemness and metastasis in multiple cell types and in spontaneous mouse cancer models. PSPC1 is the master activator for transcription factors of EMT and stemness and accompanies c-Myc activation to facilitate tumour growth. PSPC1 increases transforming growth factor-β1 (TGF-β1) secretion through an interaction with phosphorylated and nuclear Smad2/3 to potentiate TGF-β1 autocrine signalling. Moreover, PSPC1 acts as a contextual determinant of the TGF-β1 pro-metastatic switch to alter Smad2/3 binding preference from tumour-suppressor to pro-metastatic genes. Having validated the PSPC1-Smads-TGF-β1 axis in various cancers, we conclude that PSPC1 is a master activator of pro-metastatic switches and a potential target for anti-metastasis drugs.
Collapse
Affiliation(s)
- Hsi-Wen Yeh
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - En-Chi Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Szu-Shuo Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Yaw-Dong Lang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuh-Charn Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chieh-Yu Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Suz-Yi Lee
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - De-Leung Gu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jou-Ho Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| | - Chun-Ming Ho
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Chian-Feng Chen
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Pang-Hsien Tu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Feng Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Pediatrics, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuh-Shan Jou
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan. .,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan. .,Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan. .,Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan. .,Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
27
|
Lin CH, Lin YW, Chen YC, Liao CC, Jou YS, Hsu MT, Chen CF. FNDC3B promotes cell migration and tumor metastasis in hepatocellular carcinoma. Oncotarget 2018; 7:49498-49508. [PMID: 27385217 PMCID: PMC5226524 DOI: 10.18632/oncotarget.10374] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/13/2016] [Indexed: 01/07/2023] Open
Abstract
Recurrence and metastasis are common in hepatocellular carcinoma (HCC) and correlate with poor prognosis. We investigated the role of fibronectin type III domain containing 3B (FNDC3B) in HCC metastasis. Overexpression of FNDC3B in HCC cell lines enhanced cell migration and invasion. On the other hand, knockdown of FNDC3B using short-hairpin RNA reduced tumor nodule formation in both intra- and extra-hepatic metastasis. High levels of FNDC3B were observed in metastatic HCCs and correlated with poor patient survival and shorter recurrence time. Mutagenesis and LC-MS/MS analyses showed that FNDC3B promotes cell migration by cooperating with annexin A2 (ANXA2). Furthermore, FNDC3B and ANXA2 expression correlated negatively with patient survival. Our results indicate that FNDC3B behaves like an oncogene by promoting cell migration. This suggests FNDC3B could serve as a biomarker and therapeutic target for HCC metastasis.
Collapse
Affiliation(s)
- Chin-Hui Lin
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yao-Wen Lin
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ying-Chun Chen
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chen-Chung Liao
- Proteomics Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yuh-Shan Jou
- Institutes of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Ta Hsu
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chian-Feng Chen
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
28
|
Yang X, Wang HL, Liang HW, Liang L, Wen DY, Zhang R, Chen G, Wei DM. Clinical significance of microRNA-449a in hepatocellular carcinoma with microarray data mining together with initial bioinformatics analysis. Exp Ther Med 2018; 15:3247-3258. [PMID: 29545842 PMCID: PMC5841030 DOI: 10.3892/etm.2018.5836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence has demonstrated that microRNA (miR)-449a expression is reduced in various types of tumors and that it serves as a tumor suppressor. However, the molecular mechanism of miR-449a in hepatocellular carcinoma (HCC) has not been thoroughly elucidated and is disputed. Therefore, the aim of the present work was to systematically review the current literature and to utilize the public Gene Expression Omnibus database to determine the role of miR-449a and its significance in HCC. A total of eight original papers and seven microarrays were included in the present study. Based on the evidence, miR-449a was reduced in HCC. miR-449a is likely involved in various signaling pathways and is targeted to multiple mRNA as part of its function in HCC. In addition, a preliminary bioinformatic analysis was conducted for miR-449a to investigate the novel potential pathways that miR-449a may participate in regarding HCC.
Collapse
Affiliation(s)
- Xia Yang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Han-Lin Wang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hai-Wei Liang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Liang Liang
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530007, P.R. China
| | - Dong-Yue Wen
- Department of Ultrasonography, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rui Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dan-Ming Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
29
|
Xie J, Zhu XY, Liu LM, Meng ZQ. Solute carrier transporters: potential targets for digestive system neoplasms. Cancer Manag Res 2018; 10:153-166. [PMID: 29416375 PMCID: PMC5788932 DOI: 10.2147/cmar.s152951] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Digestive system neoplasms are the leading causes of cancer-related death all over the world. Solute carrier (SLC) superfamily is composed of a series of transporters that are ubiquitously expressed in organs and tissues of digestive systems and mediate specific uptake of small molecule substrates in facilitative manner. Given the important role of SLC proteins in maintaining normal functions of digestive system, dysregulation of these protein in digestive system neoplasms may deliver biological and clinical significance that deserves systemic studies. In this review, we critically summarized the recent advances in understanding the role of SLC proteins in digestive system neoplasms. We highlighted that several SLC subfamilies, including metal ion transporters, transporters of glucose and other sugars, transporters of urea, neurotransmitters and biogenic amines, ammonium and choline, inorganic cation/anion transporters, transporters of nucleotide, amino acid and oligopeptide organic anion transporters, transporters of vitamins and cofactors and mitochondrial carrier, may play important roles in mediating the initiation, progression, metastasis, and chemoresistance of digestive system neoplasms. Proteins in these SLC subfamilies may also have diagnostic and prognostic values to particular cancer types. Differential expression of SLC proteins in tumors of digestive system was analyzed by extracting data from human cancer database, which revealed that the roles of SLC proteins may either be dependent on the substrates they transport or be tissue specific. In addition, small molecule modulators that pharmacologically regulate the functions of SLC proteins were discussed for their possible application in the treatment of digestive system neoplasms. This review highlighted the potential of SLC family proteins as drug target for the treatment of digestive system neoplasms.
Collapse
Affiliation(s)
- Jing Xie
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Xiao Yan Zhu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Lu Ming Liu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Zhi Qiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
30
|
Zhou C, Zhang W, Chen W, Yin Y, Atyah M, Liu S, Guo L, Shi Y, Ye Q, Dong Q, Ren N. Integrated Analysis of Copy Number Variations and Gene Expression Profiling in Hepatocellular carcinoma. Sci Rep 2017; 7:10570. [PMID: 28874807 PMCID: PMC5585301 DOI: 10.1038/s41598-017-11029-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/18/2017] [Indexed: 01/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the top three cancer killers worldwide. To identify CNV-driven differentially expressed genes (DEGs) in HBV related HCC, this study integrated analysis of copy number variations (CNVs) and gene expression profiling. Significant genes in regions of CNVs were overlapped with those obtained from the expression profiling. 93 CNV-driven genes exhibiting increased expression in the duplicated regions and 45 showing decreased expression in the deleted regions were obtained, which duplications and deletions were mainly documented at chromosome 1 and 4. Functional and pathway enrichment analyses were performed using DAVID and KOBAS, respectively. They were mainly enriched in metabolic process and cell cycle. Protein-protein interaction (PPI) network was constructed by Cytoscape, then four hub genes were identified. Following, survival analyses indicated that only high NPM1 expression was significantly and independently associated with worse survival and increased recurrence in HCC patients. Moreover, this correlation remained significant in patients with early stage of HCC. In addition, we showed that NPM1 was overexpressed in HCC cells and in HCC versus adjacent non-tumor tissues. In conclusion, these results showed that integrated analysis of genomic and expression profiling might provide a powerful potential for identifying CNV-driven genes in HBV related HCC pathogenesis.
Collapse
Affiliation(s)
- Chenhao Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Wentao Zhang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Wanyong Chen
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Yirui Yin
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Manar Atyah
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Shuang Liu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Lei Guo
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Yi Shi
- Biomedical Research Centre, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qinghai Ye
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Qiongzhu Dong
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Zhongshan Hospital, Fudan University, Shanghai, China. .,Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Ning Ren
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China. .,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Zhongshan Hospital, Fudan University, Shanghai, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China.
| |
Collapse
|
31
|
Yang L, Song X, Zhu J, Li M, Ji Y, Wu F, Chen Y, Cui X, Hu J, Wang L, Cao Y, Wei Y, Zhang W, Li F. Tumor suppressor microRNA-34a inhibits cell migration and invasion by targeting MMP-2/MMP-9/FNDC3B in esophageal squamous cell carcinoma. Int J Oncol 2017; 51:378-388. [PMID: 28534990 DOI: 10.3892/ijo.2017.4015] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/12/2017] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are a large family of small, non-coding RNAs that play a pivotal role in tumorigenesis. miR‑34a, which is a member of the miR-34 family, is a downstream target of p53. Increasing evidence shows that miR-34a dysregulation may contribute to tumor development and progression in numerous cancers, including esophageal squamous cell carcinoma (ESCC). However, the mechanism of miR-34a in the regulation of ESCC cells need to be further elucidated because of the complex regulative network of miRNAs. The miR-34a expression in ESCC samples has been confirmed using quantitative reverse transcription polymerase chain reaction. The effects of miR-34a on cell migration and invasion were examined in ESCC cell lines using wound healing and Transwell assays, respectively. The effects of miR-34a on matrix metalloproteinase (MMP)-2 and -9 and fibronectin type III domain containing 3B (FNDC3B) expression levels were detected by luciferase reporter assays and western blot analysis. Quantitative polymerase chain reaction revealed that the miR‑34a expression is significantly downregulated in the ESCC tissues compared to that in the adjacent normal tissues. miR-34a overexpression was significantly suppressed migration and invasion in the ESCC cells and simultaneously inhibited the MMP-2, MMP-9 and FNDC3B expression levels by targeting the coding and 3'-untranslated regions, respectively. The findings indicated that microRNA‑34a suppresses cell migration and invasion by targeting MMP-2, MMP-9, and FNDC3B in ESCC.
Collapse
Affiliation(s)
- Lan Yang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, P.R. China
| | - Xiaoyue Song
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, P.R. China
| | - Jianbo Zhu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, P.R. China
| | - Mei Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, P.R. China
| | - Yu Ji
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, P.R. China
| | - Fei Wu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, P.R. China
| | - Yunzhao Chen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, P.R. China
| | - Xiaobin Cui
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, P.R. China
| | - Jianming Hu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, P.R. China
| | - Lianghai Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, P.R. China
| | - Yuwen Cao
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, P.R. China
| | - Yutao Wei
- The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, P.R. China
| | - Wenjie Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, P.R. China
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, P.R. China
| |
Collapse
|
32
|
Hua K, Lin CH, Chen YL, Lin CH, Ping YH, Jou YS, Chen CF. Identification of novel cancer fusion genes using chromosome breakpoint screening. Oncol Rep 2017; 37:2101-2108. [DOI: 10.3892/or.2017.5492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/22/2016] [Indexed: 11/06/2022] Open
|
33
|
Grañé-Boladeras N, Spring CM, Hanna WJB, Pastor-Anglada M, Coe IR. Novel nuclear hENT2 isoforms regulate cell cycle progression via controlling nucleoside transport and nuclear reservoir. Cell Mol Life Sci 2016; 73:4559-4575. [PMID: 27271752 PMCID: PMC11108336 DOI: 10.1007/s00018-016-2288-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 10/25/2022]
Abstract
Nucleosides participate in many cellular processes and are the fundamental building blocks of nucleic acids. Nucleoside transporters translocate nucleosides across plasma membranes although the mechanism by which nucleos(t)ides are translocated into the nucleus during DNA replication is unknown. Here, we identify two novel functional splice variants of equilibrative nucleoside transporter 2 (ENT2), which are present at the nuclear envelope. Under proliferative conditions, these splice variants are up-regulated and recruit wild-type ENT2 to the nuclear envelope to translocate nucleosides into the nucleus for incorporation into DNA during replication. Reduced presence of hENT2 splice variants resulted in a dramatic decrease in cell proliferation and dysregulation of cell cycle due to a lower incorporation of nucleotides into DNA. Our findings support a novel model of nucleoside compartmentalisation at the nuclear envelope and translocation into the nucleus through hENT2 and its variants, which are essential for effective DNA synthesis and cell proliferation.
Collapse
Affiliation(s)
- Natalia Grañé-Boladeras
- Department of Biochemistry and Molecular Biology, Institute of Biomedicine (IBUB), University of Barcelona, 08028, Barcelona, Spain.
- Oncology Program, CIBER EHD, Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada.
| | - Christopher M Spring
- Research Core Facilities, Keenan Research Centre, Li Ka Shing Knowledge Institute, Saint Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| | - W J Brad Hanna
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Marçal Pastor-Anglada
- Department of Biochemistry and Molecular Biology, Institute of Biomedicine (IBUB), University of Barcelona, 08028, Barcelona, Spain
- Oncology Program, CIBER EHD, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Imogen R Coe
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada
| |
Collapse
|
34
|
Grañé-Boladeras N, Pérez-Torras S, Lozano JJ, Romero MR, Mazo A, Marín JJ, Pastor-Anglada M. Pharmacogenomic analyzis of the responsiveness of gastrointestinal tumor cell lines to drug therapy: A transportome approach. Pharmacol Res 2016; 113:364-375. [DOI: 10.1016/j.phrs.2016.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/17/2016] [Accepted: 09/07/2016] [Indexed: 01/20/2023]
|
35
|
Cao Y, Mitchell EB, Gorski JL, Hollinger C, Hoppman NL. Two cases with de novo 3q26.31 microdeletion suggest a role forFNDC3Bin human craniofacial development. Am J Med Genet A 2016; 170:3276-3281. [DOI: 10.1002/ajmg.a.37892] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 07/31/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Yang Cao
- Cytogenetics Laboratory; Department of Laboratory Medicine and Pathology; Mayo Clinic; Rochester Minnesota
| | - Elyse B. Mitchell
- Cytogenetics Laboratory; Department of Laboratory Medicine and Pathology; Mayo Clinic; Rochester Minnesota
| | - Jerome L. Gorski
- Departments of Child Health and Pathology and Anatomical Sciences; University of Missouri School of Medicine; Columbia Missouri
| | - Cassandra Hollinger
- Department of Child Health; University of Missouri School of Medicine; Columbia Missouri
| | - Nicole L. Hoppman
- Cytogenetics Laboratory; Department of Laboratory Medicine and Pathology; Mayo Clinic; Rochester Minnesota
| |
Collapse
|
36
|
Shi L, Lin H, Li G, Jin RA, Xu J, Sun Y, Ma WL, Yeh S, Cai X, Chang C. Targeting Androgen Receptor (AR)→IL12A Signal Enhances Efficacy of Sorafenib plus NK Cells Immunotherapy to Better Suppress HCC Progression. Mol Cancer Ther 2016; 15:731-742. [PMID: 26939703 DOI: 10.1158/1535-7163.mct-15-0706] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 02/03/2016] [Indexed: 12/22/2022]
Abstract
Gender disparity has long been considered as a key to fully understand hepatocellular carcinoma (HCC) development. At the same time, immunotherapy related to IL12 still need more investigation before being applied in clinical settings. The aim of this study is to investigate the influence of the androgen receptor (AR) on natural killer (NK) cell-related innate immune surveillance in liver cancer, and provide a novel therapeutic approach to suppress HCC via altering IL12A. By using in vitro cell cytotoxicity test and in vivo liver orthotopic xenograft mouse model, we identified the role of AR in modulating NK cell cytotoxicity. Luciferase report assay and chromatin immunoprecipitation assay were applied for mechanism dissection. IHC was performed for sample staining. Our results showed AR could suppress IL12A expression at the transcriptional level via direct binding to the IL12A promoter region that resulted in repressing efficacy of NK cell cytotoxicity against HCC, and sorafenib treatment could enhance IL12A signals via suppressing AR signals. These results not only help to explain the AR roles in the gender disparity of HCC but also provide a potential new therapy to better suppress HCC via combining sorafenib with NK cell-related immunotherapy. Mol Cancer Ther; 15(4); 731-42. ©2016 AACR.
Collapse
Affiliation(s)
- Liang Shi
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.,George Whipple Lab for Cancer Research, Departments of Pathology, Urology and Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hui Lin
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Gonghui Li
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Ren-An Jin
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Junjie Xu
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.,George Whipple Lab for Cancer Research, Departments of Pathology, Urology and Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yin Sun
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology and Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Wen-Lung Ma
- Sex Hormone Research Center, China Medical University/Hospital, Taichung 404, Taiwan
| | - Shuyuan Yeh
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology and Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Xiujun Cai
- Chawnshang Chang Liver Cancer Center, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology and Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA.,Sex Hormone Research Center, China Medical University/Hospital, Taichung 404, Taiwan
| |
Collapse
|
37
|
Qu LS, Jin F, Guo YM, Liu TT, Xue RY, Huang XW, Xu M, Chen TY, Ni ZP, Shen XZ. Nine susceptibility loci for hepatitis B virus-related hepatocellular carcinoma identified by a pilot two-stage genome-wide association study. Oncol Lett 2015; 11:624-632. [PMID: 26870257 PMCID: PMC4727098 DOI: 10.3892/ol.2015.3958] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 10/26/2015] [Indexed: 12/12/2022] Open
Abstract
Previous studies have indicated that complex interactions among viral, environmental and genetic factors lead to hepatocellular carcinoma (HCC). To identify susceptibility alleles for hepatitis B virus (HBV)-related HCC, the present study conducted a pilot two-phase genome-wide association study (GWAS) in 660 Han Chinese individuals. In phase 1, a total of 500,447 single-nucleotide polymorphisms (SNPs) were genotyped in 50 HCC cases and 50 controls using Affymetrix GeneChip 500k Array Set. In phase 2, 1,152 SNPs were selected from phase 1 and genotyped in 282 cases and 278 controls using the Illumina GoldenGate platform. The prior probability of HCC in control subjects was assigned at 0.01, and false-positive report probability (FPRP) was utilized to evaluate the statistical significance. In phase 1, one SNP (rs2212522) showed a significant association with HCC (Pallele=5.23×10−8; ORallele=4.96; 95% CI, 2.72–9.03). In phase 2, among 27 SNPs with unadjusted Pallele<0.05, 9 SNPs were associated with HCC based on FPRP criteria (FPRP <0.20). The strongest statistical evidence for an association signal was with rs2120243 (combined ORallele=1.76; 95% CI, 1.39–2.22; P=2.00×10−6), which maps within the fourth intron of VEPH1. The second strongest statistical evidence for an association was identified for rs1350171 (combined ORallele=1.66; 95% CI, 1.33–2.07; P=6.48×10−6), which maps to the region downstream of the FZD4 gene. The other potential susceptibility genes included PCDH9, PRMT6, LHX1, KIF2B and L3MBTL4. In conclusion, this pilot two-phase GWAS provides the evidence for the existence of common susceptibility loci for HCC. These genes involved various signaling pathways, including those associated with transforming growth factor β, insulin/phosphoinositide 3 kinase, Wnt and epidermal growth factor receptor. These associations must be replicated and validated in larger studies.
Collapse
Affiliation(s)
- Li-Shuai Qu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Fei Jin
- Department of Gastroenterology, Shanghai Xuhui Central Hospital, Shanghai 200032, P.R. China
| | - Yan-Mei Guo
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Tao-Tao Liu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Ru-Yi Xue
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Xiao-Wu Huang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Min Xu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Tao-Yang Chen
- Department of Liver Surgery, Qidong Liver Cancer Institute, Qidong, Jiangsu 226200, P.R. China
| | - Zheng-Ping Ni
- Department of Liver Surgery, Qidong Liver Cancer Institute, Qidong, Jiangsu 226200, P.R. China
| | - Xi-Zhong Shen
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
38
|
Ewald F, Nörz D, Grottke A, Bach J, Herzberger C, Hofmann BT, Nashan B, Jücker M. Vertical Targeting of AKT and mTOR as Well as Dual Targeting of AKT and MEK Signaling Is Synergistic in Hepatocellular Carcinoma. J Cancer 2015; 6:1195-205. [PMID: 26535060 PMCID: PMC4622849 DOI: 10.7150/jca.12452] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/23/2015] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer, and the third most common cause of cancer related death worldwide. The multi-kinase inhibitor Sorafenib represents the only systemic treatment option until today, and results from clinical trials with allosteric mTOR inhibitors were sobering. Since the PI3K/AKT/mTOR and RAF/MEK/ERK signaling pathways are frequently upregulated in HCC, we have analyzed the effects of AKT inhibitor MK-2206, MEK inhibitor AZD6244 (ARRY 142886) and mTOR kinase inhibitor AZD8055, given as single drugs or in combination, on proliferation and apoptosis of three HCC cell lines in vitro. We show that all three inhibitor combinations synergistically inhibit proliferation of the three HCC cell lines, with the strongest synergistic effect observed after vertical inhibition of AKT and mTORC1/2. We demonstrate that AKT kinase activity is restored 24h after blockade of mTORC1/2 by increased phosphorylation of T308, providing a rationale for combined targeting of AKT and mTOR inhibition in HCC. Our data suggest that a combination of inhibitors targeting those respective pathways may be a viable approach for future application in patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Florian Ewald
- 1. Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf
| | - Dominik Nörz
- 2. Center of Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Astrid Grottke
- 2. Center of Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Johanna Bach
- 2. Center of Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Christiane Herzberger
- 2. Center of Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Bianca T Hofmann
- 2. Center of Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Björn Nashan
- 1. Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf
| | - Manfred Jücker
- 2. Center of Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
39
|
Kim JH, Jang YJ, An SY, Son J, Lee J, Lee G, Park JY, Park HJ, Hwang DY, Kim JH, Han J. Enhanced Metabolizing Activity of Human ES Cell-Derived Hepatocytes Using a 3D Culture System with Repeated Exposures to Xenobiotics. Toxicol Sci 2015; 147:190-206. [DOI: 10.1093/toxsci/kfv121] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
40
|
Yasui K, Konishi C, Gen Y, Endo M, Dohi O, Tomie A, Kitaichi T, Yamada N, Iwai N, Nishikawa T, Yamaguchi K, Moriguchi M, Sumida Y, Mitsuyoshi H, Tanaka S, Arii S, Itoh Y. EVI1, a target gene for amplification at 3q26, antagonizes transforming growth factor-β-mediated growth inhibition in hepatocellular carcinoma. Cancer Sci 2015; 106:929-37. [PMID: 25959919 PMCID: PMC4520646 DOI: 10.1111/cas.12694] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/27/2015] [Accepted: 05/02/2015] [Indexed: 02/01/2023] Open
Abstract
EVI1 (ecotropic viral integration site 1) is one of the most aggressive oncogenes associated with myeloid leukemia. We investigated DNA copy number aberrations in human hepatocellular carcinoma (HCC) cell lines using a high-density oligonucleotide microarray. We found that a novel amplification at the chromosomal region 3q26 occurs in the HCC cell line JHH-1, and that MECOM (MDS1 and EVI1 complex locus), which lies within the 3q26 region, was amplified. Quantitative PCR analysis of the three transcripts transcribed from MECOM indicated that only EVI1, but not the fusion transcript MDS1-EVI1 or MDS1, was overexpressed in JHH-1 cells and was significantly upregulated in 22 (61%) of 36 primary HCC tumors when compared with their non-tumorous counterparts. A copy number gain of EVI1 was observed in 24 (36%) of 66 primary HCC tumors. High EVI1 expression was significantly associated with larger tumor size and higher level of des-γ-carboxy prothrombin, a tumor marker for HCC. Knockdown of EVI1 resulted in increased induction of the cyclin-dependent kinase inhibitor p15(INK) (4B) by transforming growth factor (TGF)-β and decreased expression of c-Myc, cyclin D1, and phosphorylated Rb in TGF-β-treated cells. Consequently, knockdown of EVI1 led to reduced DNA synthesis and cell viability. Collectively, our results suggest that EVI1 is a probable target gene that acts as a driving force for the amplification at 3q26 in HCC and that the oncoprotein EVI1 antagonizes TGF-β-mediated growth inhibition of HCC cells.
Collapse
Affiliation(s)
- Kohichiroh Yasui
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chika Konishi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuyuki Gen
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mio Endo
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Osamu Dohi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akira Tomie
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoko Kitaichi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Nobuhisa Yamada
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoto Iwai
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Taichiro Nishikawa
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kanji Yamaguchi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michihisa Moriguchi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshio Sumida
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hironori Mitsuyoshi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinji Tanaka
- Department of Hepato-Biliary Pancreatic Surgery, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Molecular Oncology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeki Arii
- Department of Hepato-Biliary Pancreatic Surgery, Tokyo Medical and Dental University, Tokyo, Japan.,Hamamatsu Rosai Hospital, Japan Labour Health and Welfare Organization, Hamamatsu, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
41
|
Sakoparnig T, Fried P, Beerenwinkel N. Identification of constrained cancer driver genes based on mutation timing. PLoS Comput Biol 2015; 11:e1004027. [PMID: 25569148 PMCID: PMC4287396 DOI: 10.1371/journal.pcbi.1004027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 11/05/2014] [Indexed: 12/18/2022] Open
Abstract
Cancer drivers are genomic alterations that provide cells containing them with a selective advantage over their local competitors, whereas neutral passengers do not change the somatic fitness of cells. Cancer-driving mutations are usually discriminated from passenger mutations by their higher degree of recurrence in tumor samples. However, there is increasing evidence that many additional driver mutations may exist that occur at very low frequencies among tumors. This observation has prompted alternative methods for driver detection, including finding groups of mutually exclusive mutations and incorporating prior biological knowledge about gene function or network structure. Dependencies among drivers due to epistatic interactions can also result in low mutation frequencies, but this effect has been ignored in driver detection so far. Here, we present a new computational approach for identifying genomic alterations that occur at low frequencies because they depend on other events. Unlike passengers, these constrained mutations display punctuated patterns of occurrence in time. We test this driver-passenger discrimination approach based on mutation timing in extensive simulation studies, and we apply it to cross-sectional copy number alteration (CNA) data from ovarian cancer, CNA and single-nucleotide variant (SNV) data from breast tumors and SNV data from colorectal cancer. Among the top ranked predicted drivers, we find low-frequency genes that have already been shown to be involved in carcinogenesis, as well as many new candidate drivers. The mutation timing approach is orthogonal and complementary to existing driver prediction methods. It will help identifying from cancer genome data the alterations that drive tumor progression.
Collapse
Affiliation(s)
- Thomas Sakoparnig
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Patrick Fried
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
- * E-mail:
| |
Collapse
|
42
|
Chiu LY, Kishnani PS, Chuang TP, Tang CY, Liu CY, Bali D, Koeberl D, Austin S, Boyette K, Weinstein DA, Murphy E, Yao A, Chen YT, Li LH. Identification of differentially expressed microRNAs in human hepatocellular adenoma associated with type I glycogen storage disease: a potential utility as biomarkers. J Gastroenterol 2014; 49:1274-84. [PMID: 24129885 DOI: 10.1007/s00535-013-0890-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 09/18/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND It is known that malignant transformation to hepatocellular carcinoma (HCC) occurs at a higher frequency in hepatocellular adenoma (HCA) from type I glycogen storage disease (GSD I) compared to HCA from other etiologies. In this study, we aimed to identify differentially expressed miRNAs in GSD Ia HCA as candidates that could serve as putative biomarkers for detection of GSD Ia HCA and/or risk assessment of malignant transformation. METHODS Utilizing massively parallel sequencing, the miRNA profiling was performed for paired adenomas and normal liver tissues from seven GSD Ia patients. Differentially expressed miRNAs were validated in liver tumor tissues, HCC cell lines and serum using quantitative RT-PCR. RESULTS miR-34a, miR-34a, miR-224, miR-224, miR-424, miR-452 and miR-455-5p were found to be commonly deregulated in GSD Ia HCA, general population HCA, and HCC cell lines at compatible levels. In comparison with GSD Ia HCA, the upregulation of miR-130b and downregulation of miR-199a-5p, miR-199b-5p, and miR-214 were more significant in HCC cell lines. Furthermore, serum level of miR-130b in GSD Ia patients with HCA was moderately higher than that in either GSD Ia patients without HCA or healthy individuals. CONCLUSION We make the first observation of distinct miRNA deregulation in HCA associated with GSD Ia. We also provide evidence that miR-130b could serve as a circulating biomarker for detection of GSD Ia HCA. This work provides prominent candidate miRNAs worth evaluating as biomarkers for monitoring the development and progress of liver tumors in GSD Ia patients in the future.
Collapse
Affiliation(s)
- Li-Ya Chiu
- National Center for Genome Medicine, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mehra R, Vats P, Kalyana-Sundaram S, Udager AM, Roh M, Alva A, Pan J, Lonigro RJ, Siddiqui J, Weizer A, Lee C, Cao X, Wu YM, Robinson DR, Dhanasekaran SM, Chinnaiyan AM. Primary urethral clear-cell adenocarcinoma: comprehensive analysis by surgical pathology, cytopathology, and next-generation sequencing. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:584-91. [PMID: 24389164 PMCID: PMC3936309 DOI: 10.1016/j.ajpath.2013.11.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/18/2013] [Accepted: 11/19/2013] [Indexed: 12/11/2022]
Abstract
Primary clear-cell adenocarcinoma of the urethra, a rare tumor that histomorphologically resembles clear-cell carcinoma of the female genital tract, occurs predominantly in women and is associated with a relatively poor prognosis. The histogenesis of this rare urethral neoplasm has not been completely resolved, but it is thought to arise from either müllerian rests or metaplastic urothelium. Herein, we present comprehensive surgical pathological and cytopathological findings from a patient with primary urethral clear-cell adenocarcinoma and describe next-generation sequencing results for this patient's unique tumor-the first such reported characterization of molecular aberrations in urethral clear-cell adenocarcinoma at the transcriptomic and genomic levels. Transcriptome analysis revealed novel gene fusion candidates, including ANKRD28-FNDC3B. Whole-exome analysis demonstrated focal copy number loss at the SMAD4 and ARID2 loci and 38 somatic mutations, including a truncating mutation in ATM and a novel nonsynonymous mutation in ALK.
Collapse
Affiliation(s)
- Rohit Mehra
- Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan; Comprehensive Cancer Center, University of Michigan Health System, Ann Arbor, Michigan; Michigan Center for Translational Pathology, Ann Arbor, Michigan.
| | - Pankaj Vats
- Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan; Michigan Center for Translational Pathology, Ann Arbor, Michigan
| | - Shanker Kalyana-Sundaram
- Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan; Michigan Center for Translational Pathology, Ann Arbor, Michigan
| | - Aaron M Udager
- Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan
| | - Michael Roh
- Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan
| | - Ajjai Alva
- Comprehensive Cancer Center, University of Michigan Health System, Ann Arbor, Michigan; Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Jincheng Pan
- Michigan Center for Translational Pathology, Ann Arbor, Michigan; Department of Urology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Robert J Lonigro
- Comprehensive Cancer Center, University of Michigan Health System, Ann Arbor, Michigan; Michigan Center for Translational Pathology, Ann Arbor, Michigan
| | - Javed Siddiqui
- Michigan Center for Translational Pathology, Ann Arbor, Michigan
| | - Alon Weizer
- Comprehensive Cancer Center, University of Michigan Health System, Ann Arbor, Michigan; Department of Urology, University of Michigan Health System, Ann Arbor, Michigan
| | - Cheryl Lee
- Comprehensive Cancer Center, University of Michigan Health System, Ann Arbor, Michigan; Department of Urology, University of Michigan Health System, Ann Arbor, Michigan
| | - Xuhong Cao
- Michigan Center for Translational Pathology, Ann Arbor, Michigan
| | - Yi-Mi Wu
- Michigan Center for Translational Pathology, Ann Arbor, Michigan
| | - Dan R Robinson
- Michigan Center for Translational Pathology, Ann Arbor, Michigan
| | | | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan; Comprehensive Cancer Center, University of Michigan Health System, Ann Arbor, Michigan; Michigan Center for Translational Pathology, Ann Arbor, Michigan; Department of Urology, University of Michigan Health System, Ann Arbor, Michigan; Howard Hughes Medical Institute, Ann Arbor, Michigan
| |
Collapse
|
44
|
Gu DL, Chen YH, Shih JH, Lin CH, Jou YS, Chen CF. Target genes discovery through copy number alteration analysis in human hepatocellular carcinoma. World J Gastroenterol 2013; 19:8873-8879. [PMID: 24379610 PMCID: PMC3870538 DOI: 10.3748/wjg.v19.i47.8873] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 12/06/2013] [Indexed: 02/06/2023] Open
Abstract
High-throughput short-read sequencing of exomes and whole cancer genomes in multiple human hepatocellular carcinoma (HCC) cohorts confirmed previously identified frequently mutated somatic genes, such as TP53, CTNNB1 and AXIN1, and identified several novel genes with moderate mutation frequencies, including ARID1A, ARID2, MLL, MLL2, MLL3, MLL4, IRF2, ATM, CDKN2A, FGF19, PIK3CA, RPS6KA3, JAK1, KEAP1, NFE2L2, C16orf62, LEPR, RAC2, and IL6ST. Functional classification of these mutated genes suggested that alterations in pathways participating in chromatin remodeling, Wnt/β-catenin signaling, JAK/STAT signaling, and oxidative stress play critical roles in HCC tumorigenesis. Nevertheless, because there are few druggable genes used in HCC therapy, the identification of new therapeutic targets through integrated genomic approaches remains an important task. Because a large amount of HCC genomic data genotyped by high density single nucleotide polymorphism arrays is deposited in the public domain, copy number alteration (CNA) analyses of these arrays is a cost-effective way to reveal target genes through profiling of recurrent and overlapping amplicons, homozygous deletions and potentially unbalanced chromosomal translocations accumulated during HCC progression. Moreover, integration of CNAs with other high-throughput genomic data, such as aberrantly coding transcriptomes and non-coding gene expression in human HCC tissues and rodent HCC models, provides lines of evidence that can be used to facilitate the identification of novel HCC target genes with the potential of improving the survival of HCC patients.
Collapse
|
45
|
Kim H, Kim K, Yu SJ, Jang ES, Yu J, Cho G, Yoon JH, Kim Y. Development of biomarkers for screening hepatocellular carcinoma using global data mining and multiple reaction monitoring. PLoS One 2013; 8:e63468. [PMID: 23717429 PMCID: PMC3661589 DOI: 10.1371/journal.pone.0063468] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/02/2013] [Indexed: 01/28/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and aggressive cancers and is associated with a poor survival rate. Clinically, the level of alpha-fetoprotein (AFP) has been used as a biomarker for the diagnosis of HCC. The discovery of useful biomarkers for HCC, focused solely on the proteome, has been difficult; thus, wide-ranging global data mining of genomic and proteomic databases from previous reports would be valuable in screening biomarker candidates. Further, multiple reaction monitoring (MRM), based on triple quadrupole mass spectrometry, has been effective with regard to high-throughput verification, complementing antibody-based verification pipelines. In this study, global data mining was performed using 5 types of HCC data to screen for candidate biomarker proteins: cDNA microarray, copy number variation, somatic mutation, epigenetic, and quantitative proteomics data. Next, we applied MRM to verify HCC candidate biomarkers in individual serum samples from 3 groups: a healthy control group, patients who have been diagnosed with HCC (Before HCC treatment group), and HCC patients who underwent locoregional therapy (After HCC treatment group). After determining the relative quantities of the candidate proteins by MRM, we compared their expression levels between the 3 groups, identifying 4 potential biomarkers: the actin-binding protein anillin (ANLN), filamin-B (FLNB), complementary C4-A (C4A), and AFP. The combination of 2 markers (ANLN, FLNB) improved the discrimination of the before HCC treatment group from the healthy control group compared with AFP. We conclude that the combination of global data mining and MRM verification enhances the screening and verification of potential HCC biomarkers. This efficacious integrative strategy is applicable to the development of markers for cancer and other diseases.
Collapse
Affiliation(s)
- Hyunsoo Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyunggon Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Su Jong Yu
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Sun Jang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jiyoung Yu
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Geunhee Cho
- Departments of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jung-Hwan Yoon
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- * E-mail: (JHY); (YK)
| | - Youngsoo Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea
- * E-mail: (JHY); (YK)
| |
Collapse
|
46
|
Bok J, Kim KJ, Park MH, Cho SH, Lee HJ, Lee EJ, Park C, Lee JY. Identification and extensive analysis of inverted-duplicated HBV integration in a human hepatocellular carcinoma cell line. BMB Rep 2012; 45:365-70. [PMID: 22732223 DOI: 10.5483/bmbrep.2012.45.6.279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B virus (HBV) DNA is often integrated into hepatocellular carcinoma (HCC). Although the relationship between HBV integration and HCC development has been widely studied, the role of HBV integration in HCC development is still not completely understood. In the present study, we constructed a pooled BAC library of 9 established cell lines derived from HCC patients with HBV infections. By amplifying viral genes and superpooling of BAC clones, we identified 2 clones harboring integrated HBV DNA. Screening of host-virus junctions by repeated sequencing revealed an HBV DNA integration site on chromosome 11q13 in the SNU-886 cell line. The structure and rearrangement of integrated HBV DNA were extensively analyzed. An inverted duplicated structure, with fusion of at least 2 HBV DNA molecules in opposite orientations, was identified in the region. The gene expression of cancer-related genes increased near the viral integration site in HCC cell line SNU-886.
Collapse
Affiliation(s)
- Jeong Bok
- Division of Structural and Functional Genomics, Center for Genome Science, National Institute of Health, Chungcheongbuk-do 363-951, Korea
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kim HE, Kim DG, Lee KJ, Son JG, Song MY, Park YM, Kim JJ, Cho SW, Chi SG, Cheong HS, Shin HD, Lee SW, Lee JK. Frequent amplification of CENPF, GMNN and CDK13 genes in hepatocellular carcinomas. PLoS One 2012; 7:e43223. [PMID: 22912832 PMCID: PMC3418236 DOI: 10.1371/journal.pone.0043223] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/18/2012] [Indexed: 01/13/2023] Open
Abstract
Genomic changes frequently occur in cancer cells during tumorigenesis from normal cells. Using the Illumina Human NS-12 single-nucleotide polymorphism (SNP) chip to screen for gene copy number changes in primary hepatocellular carcinomas (HCCs), we initially detected amplification of 35 genes from four genomic regions (1q21–41, 6p21.2–24.1, 7p13 and 8q13–23). By integrated screening of these genes for both DNA copy number and gene expression in HCC and colorectal cancer, we selected CENPF (centromere protein F/mitosin), GMNN (geminin, DNA replication inhibitor), CDK13 (cyclin-dependent kinase 13), and FAM82B (family with sequence similarity 82, member B) as common cancer genes. Each gene exhibited an amplification frequency of ∼30% (range, 20–50%) in primary HCC (n = 57) and colorectal cancer (n = 12), as well as in a panel of human cancer cell lines (n = 70). Clonogenic and invasion assays of NIH3T3 cells transfected with each of the four amplified genes showed that CENPF, GMNN, and CDK13 were highly oncogenic whereas FAM82B was not. Interestingly, the oncogenic activity of these genes (excluding FAM82B) was highly correlated with gene-copy numbers in tumor samples (correlation coefficient, r>0.423), indicating that amplifications of CENPF, GMNN, and CDK13 genes are tightly linked and coincident in tumors. Furthermore, we confirmed that CDK13 gene copy number was significantly associated with clinical onset age in patients with HCC (P = 0.0037). Taken together, our results suggest that coincidently amplified CDK13, GMNN, and CENPF genes can play a role as common cancer-driver genes in human cancers.
Collapse
Affiliation(s)
- Hye-Eun Kim
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Dae-Ghon Kim
- Department of Internal Medicine, Chonbuk National University Medical School and Hospital, Chonju, Chonbuk, Korea
| | - Kyung Jin Lee
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Jang Geun Son
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Min-Young Song
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Young-Mi Park
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae-Jung Kim
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung-Won Cho
- Ajou University School of Medicine, Suwon, Korea
| | - Sung-Gil Chi
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | | | - Hyoung Doo Shin
- SNP-genetics, Seoul, Korea
- Department of Life Science, Sogang University, Seoul, Korea
| | - Sang-Wook Lee
- Department of Radiation Oncology, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong-Keuk Lee
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
48
|
Lin KT, Wang YW, Chen CT, Ho CM, Su WH, Jou YS. HDAC inhibitors augmented cell migration and metastasis through induction of PKCs leading to identification of low toxicity modalities for combination cancer therapy. Clin Cancer Res 2012; 18:4691-701. [PMID: 22811583 DOI: 10.1158/1078-0432.ccr-12-0633] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Histone deacetylase inhibitors (HDACi) are actively explored as new-generation epigenetic drugs but have low efficacy in cancer monotherapy. To reveal new mechanism for combination therapy, we show that HDACi induce cell death but simultaneously activate tumor-progressive genes to ruin therapeutic efficacy. Combined treatments to target tumorigenesis and HDACi-activated metastasis with low toxic modalities could develop new strategies for long-term cancer therapy. EXPERIMENTAL DESIGN Because metastasis is the major cause of cancer mortality, we measured cell migration activity and profiled metastasis-related gene expressions in HDACi-treated cancer cells. We developed low toxic combination modalities targeting tumorigenesis and HDACi-activated metastasis for preclinical therapies in mice. RESULTS We showed that cell migration activity was dramatically and dose dependently enhanced by various classes of HDACi treatments in 13 of 30 examined human breast, gastric, liver, and lung cancer cell lines. Tumor metastasis was also enhanced in HDACi-treated mice. HDACi treatments activated multiple PKCs and downstream substrates along with upregulated proapoptotic p21. For targeting tumorigenesis and metastasis with immediate clinical impact, we showed that new modalities of HDACi combined drugs with PKC inhibitory agent, curcumin or tamoxifen, not only suppressed HDACi-activated tumor progressive proteins and cell migration in vitro but also inhibited tumor growth and metastasis in vivo. CONCLUSION Treatments of different structural classes of HDACi simultaneously induced cell death and promoted cell migration and metastasis in multiple cancer cell types. Suppression of HDACi-induced PKCs leads to development of low toxic and long-term therapeutic strategies to potentially treat cancer as a chronic disease.
Collapse
Affiliation(s)
- Kuen-Tyng Lin
- Institute of Biomedical Sciences, Bioinformatics Program, Taiwan
| | | | | | | | | | | |
Collapse
|
49
|
Han ZG. Functional genomic studies: insights into the pathogenesis of liver cancer. Annu Rev Genomics Hum Genet 2012; 13:171-205. [PMID: 22703171 DOI: 10.1146/annurev-genom-090711-163752] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Liver cancer is the sixth-most-common cancer overall but the third-most-frequent cause of cancer death. Among primary liver cancers, hepatocellular carcinoma (HCC), the major histological subtype, is associated with multiple risk factors, including hepatitis B and C virus infection, alcohol consumption, obesity, and diet contamination. Although previous studies have revealed that certain genetic and epigenetic changes, such as TP53 and β-catenin mutations, occur in HCC cells, the pathogenesis of this cancer remains obscure. Functional genomic approaches-including genome-wide association studies, whole-genome and whole-exome sequencing, array-based comparative genomic hybridization, global DNA methylome mapping, and gene or noncoding RNA expression profiling-have recently been applied to HCC patients with different clinical features to uncover the genetic risk factors and underlying molecular mechanisms involved in this cancer's initiation and progression. The genome-wide analysis of germline and somatic genetic and epigenetic events facilitates understanding of the pathogenesis and molecular classification of liver cancer as well as the identification of novel diagnostic biomarkers and therapeutic targets for cancer.
Collapse
Affiliation(s)
- Ze-Guang Han
- National Human Genome Center of Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
50
|
Marquardt JU, Galle PR, Teufel A. Molecular diagnosis and therapy of hepatocellular carcinoma (HCC): an emerging field for advanced technologies. J Hepatol 2012; 56:267-75. [PMID: 21782758 DOI: 10.1016/j.jhep.2011.07.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/07/2011] [Accepted: 07/10/2011] [Indexed: 12/28/2022]
Abstract
Despite great progress in diagnosis and management of hepatocellular carcinoma (HCC), the exact biology of the tumor remains poorly understood overall limiting the patients' outcome. Detailed analysis and characterization of the molecular mechanisms and subsequently individual prediction of corresponding prognostic traits would revolutionize both diagnosis and treatment of HCC and is the key goal of modern personalized medicine. Over the recent years systematic approaches for the analysis of whole tumor genomes and transcriptomes as well as epigenomes became affordable tools in translational research. This includes simultaneous analyses of thousands of molecular targets using microarray-based technologies as well as next-generation sequencing. Although currently diagnosis and classification of hepatocellular cancers still rely on histological examination of tumor sections, these technologies show great promise to advance the current knowledge of hepatocarcinogenesis, complement diagnostic classification in a setting of microarray-aided pathology, and rationalize the individual drug selection. This review aims to summarize recent progress of system biological approaches in hepatocarcinogenesis and outline potential areas for translational application in a clinical setting. Further, we give an update about known signaling pathways active in HCC, summarize the historical application of whole genomic approaches in liver cancer and indicate ongoing experimental research utilizing novel technologies in diagnosis and treatment of this deadly disease. This will also include the discussion and characterization of new molecular and cellular targets such as Cancer Stem Cells (CSCs).
Collapse
Affiliation(s)
- Jens U Marquardt
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany.
| | | | | |
Collapse
|