1
|
Rallapalli H, McCall EC, Koretsky AP. Genetic control of MRI contrast using the manganese transporter Zip14. Magn Reson Med 2024; 92:820-835. [PMID: 38573932 PMCID: PMC11142883 DOI: 10.1002/mrm.29993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/15/2023] [Accepted: 12/12/2023] [Indexed: 04/06/2024]
Abstract
PURPOSE Gene-expression reporter systems, such as green fluorescent protein, have been instrumental to understanding biological processes in living organisms at organ system, tissue, cell, and molecular scales. More than 30 years of work on developing MRI-visible gene-expression reporter systems has resulted in a variety of clever application-specific methods. However, these techniques have not yet been widely adopted, so a general-purpose expression reporter is still required. Here, we demonstrate that the manganese ion transporter Zip14 is an in vivo MRI-visible, flexible, and robust gene-expression reporter to meet this need. METHODS Plasmid constructs consisting of a cell type-specific promoter, gene coding for human Zip14, and a histology-visible tag were packaged into adeno-associated viruses. These viruses were intracranially injected into the mouse brain. Serial in vivo MRI was performed using a vendor-supplied 3D-MPRAGE sequence. No additional contrast agents were administered. Animals were sacrificed after the last imaging timepoint for immunohistological validation. RESULTS Neuron-specific overexpression of Zip14 produced substantial and long-lasting changes in MRI contrast. Using appropriate viruses enabled both anterograde and retrograde neural tracing. Expression of Zip14 in astrocytes also enabled MRI of glia populations in the living mammalian brain. CONCLUSIONS The flexibility of this system as an MRI-visible gene-expression reporter will enable many applications of serial, high-resolution imaging of gene expression for basic science and therapy development.
Collapse
Affiliation(s)
- Harikrishna Rallapalli
- Section on Plasticity and Imaging of the Nervous System, NINDS/NIH, Bethesda, Maryland, USA
| | - Eleanor C McCall
- Section on Plasticity and Imaging of the Nervous System, NINDS/NIH, Bethesda, Maryland, USA
| | - Alan P Koretsky
- Section on Plasticity and Imaging of the Nervous System, NINDS/NIH, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Ahmadi Badi S, Malek A, Seyedi SA, Bereimipour A, Irian S, Shojaie S, Sohouli MH, Rohani P, Masotti A, Khatami S, Siadat SD. Direct and macrophage stimulation mediated effects of active, inactive, and cell-free supernatant forms of Akkermansia muciniphila and Faecalibacterium duncaniae on hepcidin gene expression in HepG2 cells. Arch Microbiol 2024; 206:287. [PMID: 38833010 DOI: 10.1007/s00203-024-04007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
Hepcidin is a crucial regulator of iron homeostasis with protective effects on liver fibrosis. Additionally, gut microbiota can also affect liver fibrosis and iron metabolism. Although the hepatoprotective potential of Akkermansia muciniphila and Faecalibacterium duncaniae, formerly known as F. prausnitzii, has been reported, however, their effects on hepcidin expression remain unknown. We investigated the direct and macrophage stimulation-mediated effects of active, heat-inactivated, and cell-free supernatant (CFS) forms of A. muciniphila and F. duncaniae on hepcidin expression in HepG2 cells by RT-qPCR analysis. Following stimulation of phorbol-12-myristate-13-acetate (PMA) -differentiated THP-1 cells with A. muciniphila and F. duncaniae, IL-6 concentration was assessed via ELISA. Additionally, the resulting supernatant was treated with HepG2 cells to evaluate the effect of macrophage stimulation on hepcidin gene expression. The expression of genes mediating iron absorption and export was also examined in HepG2 and Caco-2 cells via RT-qPCR. All forms of F. duncaniae increased hepcidin expression while active and heat-inactivated/CFS forms of A. muciniphila upregulated and downregulated its expression, respectively. Active, heat-inactivated, and CFS forms of A. muciniphila and F. duncaniae upregulated hepcidin expression, consistent with the elevation of IL-6 released from THP-1-stimulated cells as a macrophage stimulation effect in HepG2 cells. A. muciniphila and F. duncaniae in active, inactive, and CFS forms altered the expression of hepatocyte and intestinal iron-mediated absorption /exporter genes, namely dcytb and dmt1, and fpn in HepG2 and Caco-2 cells, respectively. In conclusion, A. muciniphila and F. duncaniae affect not only directly but also through macrophage stimulation the expression of hepcidin gene in HepG2 cells. These findings underscore the potential of A. muciniphila and F. duncaniae as a potential therapeutic target for liver fibrosis by modulating hepcidin and intestinal and hepatocyte iron metabolism mediated gene expression.
Collapse
Affiliation(s)
- Sara Ahmadi Badi
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Amin Malek
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | | | - Ahmad Bereimipour
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Saeed Irian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Shima Shojaie
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Hassan Sohouli
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Pejman Rohani
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Shohreh Khatami
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran.
| | - Seyed Davar Siadat
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
Lv B, Fu P, Wang M, Cui L, Bao L, Wang X, Yu L, Zhou C, Zhu M, Wang F, Pang Y, Qi S, Zhang Z, Cui G. DMT1 ubiquitination by Nedd4 protects against ferroptosis after intracerebral hemorrhage. CNS Neurosci Ther 2024; 30:e14685. [PMID: 38634270 PMCID: PMC11024684 DOI: 10.1111/cns.14685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 04/19/2024] Open
Abstract
OBJECTIVE Neuronal precursor cells expressed developmentally down-regulated 4 (Nedd4) are believed to play a critical role in promoting the degradation of substrate proteins and are involved in numerous biological processes. However, the role of Nedd4 in intracerebral hemorrhage (ICH) remains unknown. This study aims to investigate the regulatory role of Nedd4 in the ICH model. METHODS Male C57BL/6J mice were induced with ICH. Subsequently, the levels of glutathione peroxidase 4 (GPX4), malondialdehyde (MDA) concentration, iron content, mitochondrial morphology, as well as the expression of divalent metal transporter 1 (DMT1) and Nedd4 were assessed after ICH. Furthermore, the impact of Nedd4 overexpression was evaluated through analyses of hematoma area, ferroptosis, and neurobehavioral function. The mechanism underlying Nedd4-mediated degradation of DMT1 was elecidated using immunoprecipitation (IP) after ICH. RESULTS Upon ICH, the level of DMT1 in the brain increased, but decreased when Nedd4 was overexpressed using Lentivirus, suggesting a negative correlation between Nedd4 and DMT1. Additionally, the degradation of DMT1 was inhibited after ICH. Furthermore, it was found that Nedd4 can interact with and ubiquitinate DMT1 at lysine residues 6, 69, and 277, facilitating the degradation of DMT1. Functional analysis indicated that overexpression of Nedd4 can alleviate ferroptosis and promote recovery following ICH. CONCLUSION The results demonstrated that ferroptosis occurs via the Nedd4/DMT1 pathway during ICH, suggesting it potential as a valuable target to inhibit ferroptosis for the treatment of ICH.
Collapse
Affiliation(s)
- Bingchen Lv
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke Research, Xuzhou Medical UniversityXuzhouChina
| | - Ping Fu
- School of Life Sciences, Nanjing UniversityNanjingChina
| | - Miao Wang
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Department of GeriatricsThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Likun Cui
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke Research, Xuzhou Medical UniversityXuzhouChina
| | - Lei Bao
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke Research, Xuzhou Medical UniversityXuzhouChina
| | - Xingzhi Wang
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke Research, Xuzhou Medical UniversityXuzhouChina
| | - Lu Yu
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke Research, Xuzhou Medical UniversityXuzhouChina
| | - Chao Zhou
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke Research, Xuzhou Medical UniversityXuzhouChina
| | - Mengxin Zhu
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke Research, Xuzhou Medical UniversityXuzhouChina
| | - Fei Wang
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke Research, Xuzhou Medical UniversityXuzhouChina
| | - Ye Pang
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke Research, Xuzhou Medical UniversityXuzhouChina
| | - Suhua Qi
- School of Medical Technology, Xuzhou Medical UniversityXuzhouChina
| | - Zuohui Zhang
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke Research, Xuzhou Medical UniversityXuzhouChina
| | - Guiyun Cui
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Institute of Stroke Research, Xuzhou Medical UniversityXuzhouChina
| |
Collapse
|
4
|
Solanki S, Shah YM. Hypoxia-Induced Signaling in Gut and Liver Pathobiology. ANNUAL REVIEW OF PATHOLOGY 2024; 19:291-317. [PMID: 37832943 DOI: 10.1146/annurev-pathmechdis-051122-094743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Oxygen (O2) is essential for cellular metabolism and biochemical reactions. When the demand for O2 exceeds the supply, hypoxia occurs. Hypoxia-inducible factors (HIFs) are essential to activate adaptive and survival responses following hypoxic stress. In the gut (intestines) and liver, the presence of oxygen gradients or physiologic hypoxia is necessary to maintain normal homeostasis. While physiologic hypoxia is beneficial and aids in normal functions, pathological hypoxia is harmful as it exacerbates inflammatory responses and tissue dysfunction and is a hallmark of many cancers. In this review, we discuss the role of gut and liver hypoxia-induced signaling, primarily focusing on HIFs, in the physiology and pathobiology of gut and liver diseases. Additionally, we examine the function of HIFs in various cell types during gut and liver diseases, beyond intestinal epithelial and hepatocyte HIFs. This review highlights the importance of understanding hypoxia-induced signaling in the pathogenesis of gut and liver diseases and emphasizes the potential of HIFs as therapeutic targets.
Collapse
Affiliation(s)
- Sumeet Solanki
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA;
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA;
- University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Muranov KO. Fenton Reaction in vivo and in vitro. Possibilities and Limitations. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S112-S126. [PMID: 38621747 DOI: 10.1134/s0006297924140074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 04/17/2024]
Abstract
The review considers the problem of hydrogen peroxide decomposition and hydroxyl radical formation in the presence of iron in vivo and in vitro. Analysis of the literature data allows us to conclude that, under physiological conditions, transport of iron, carried out with the help of carrier proteins, minimizes the possibility of appearance of free iron ions in cytoplasm of the cell. Under pathological conditions, when the process of transferring an iron ion from a donor protein to an acceptor protein can be disrupted due to modifications of the carrier proteins, iron ions can enter cytosol. However, at pH values close to neutral, which is typical for cytosol, iron ions are converted into water-insoluble hydroxides. This makes it impossible to decompose hydrogen peroxide according to the mechanism of the classical Fenton reaction. A similar situation is observed in vitro, since buffers with pH close to neutral are used to simulate free radical oxidation. At the same time, iron hydroxides are able to catalyze decomposition of hydrogen peroxide with formation of a hydroxyl radical. Decomposition of hydrogen peroxide with iron hydroxides is called Fenton-like reaction. Studying the features of Fenton-like reaction in biological systems is the subject of future research.
Collapse
Affiliation(s)
- Konstantin O Muranov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
6
|
Qiao O, Wang X, Wang Y, Li N, Gong Y. Ferroptosis in acute kidney injury following crush syndrome: A novel target for treatment. J Adv Res 2023; 54:211-222. [PMID: 36702249 PMCID: PMC10703611 DOI: 10.1016/j.jare.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/29/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Crush syndrome (CS) is a kind of traumatic and ischemic injury that seriously threatens life after prolonged compression. It is characterized by systemic inflammatory reaction, myoglobinuria, hyperkalemia and acute kidney injury (AKI). Especially AKI, it is the leading cause of death from CS. There are various cell death forms in AKI, among which ferroptosis is a typical form of cell death. However, the role of ferroptosis has not been fully revealed in CS-AKI. AIM OF REVIEW This review aimed to summarize the evidence of ferroptosis in CS-AKI and its related molecular mechanism, discuss the therapeutic significance of ferroptosis in CS-AKI, and open up new ideas for the treatment of CS-AKI. KEY SCIENTIFIC CONCEPTS OF REVIEW One of the main pathological manifestations of CS-AKI is renal tubular epithelial cell dysfunction and cell death, which has been attributed to massive deposition of myoglobin. Large amounts of myoglobin released from damaged muscle deposited in the renal tubules, impeding the normal renal tubules function and directly damaging the tubules with oxidative stress and elevated iron levels. Lipid peroxidation damage and iron overload are the distinguishing features of ferroptosis. Moreover, high levels of pro-inflammatory cytokines and damage-associated molecule pattern molecules (HMGB1, double-strand DNA, and macrophage extracellular trap) in renal tissue have been shown to promote ferroptosis. However, how ferroptosis occurs in CS-AKI and whether it can be a therapeutic target remains unclear. In our current work, we systematically reviewed the occurrence and underlying mechanism of ferroptosis in CS-AKI.
Collapse
Affiliation(s)
- Ou Qiao
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Xinyue Wang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yuru Wang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Ning Li
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China.
| | - Yanhua Gong
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China.
| |
Collapse
|
7
|
Chavoshinezhad S, Beirami E, Izadpanah E, Feligioni M, Hassanzadeh K. Molecular mechanism and potential therapeutic targets of necroptosis and ferroptosis in Alzheimer's disease. Biomed Pharmacother 2023; 168:115656. [PMID: 37844354 DOI: 10.1016/j.biopha.2023.115656] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative condition, is defined by neurofibrillary tangles, amyloid plaques, and gradual cognitive decline. Regardless of the advances in understanding AD's pathogenesis and progression, its causes are still contested, and there are currently no efficient therapies for the illness. The post-mortem analyses revealed widespread neuronal loss in multiple brain regions in AD, evidenced by a decrease in neuronal density and correlated with the disease's progression and cognitive deterioration. AD's neurodegeneration is complicated, and different types of neuronal cell death, alone or in combination, play crucial roles in this process. Recently, the involvement of non-apoptotic programmed cell death in the neurodegenerative mechanisms of AD has received a lot of attention. Aberrant activation of necroptosis and ferroptosis, two newly discovered forms of regulated non-apoptotic cell death, is thought to contribute to neuronal cell death in AD. In this review, we first address the main features of necroptosis and ferroptosis, cellular signaling cascades, and the mechanisms involved in AD pathology. Then, we discuss the latest therapies targeting necroptosis and ferroptosis in AD animal/cell models and human research to provide vital information for AD treatment.
Collapse
Affiliation(s)
- Sara Chavoshinezhad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Elmira Beirami
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Esmael Izadpanah
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Marco Feligioni
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, 00161 Rome, Italy; Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, 20144 Milan, Italy.
| | - Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
8
|
Liu Y, Li G, Lu F, Guo Z, Cai S, Huo T. Excess iron intake induced liver injury: The role of gut-liver axis and therapeutic potential. Biomed Pharmacother 2023; 168:115728. [PMID: 37864900 DOI: 10.1016/j.biopha.2023.115728] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023] Open
Abstract
Excessive iron intake is detrimental to human health, especially to the liver, which is the main organ for iron storage. Excessive iron intake can lead to liver injury. The gut-liver axis (GLA) refers to the bidirectional relationship between the gut and its microbiota and the liver, which is a combination of signals generated by dietary, genetic and environmental factors. Excessive iron intake disrupts the GLA at multiple interconnected levels, including the gut microbiota, gut barrier function, and the liver's innate immune system. Excessive iron intake induces gut microbiota dysbiosis, destroys gut barriers, promotes liver exposure to gut microbiota and its derived metabolites, and increases the pro-inflammatory environment of the liver. There is increasing evidence that excess iron intake alters the levels of gut microbiota-derived metabolites such as secondary bile acids (BAs), short-chain fatty acids, indoles, and trimethylamine N-oxide, which play an important role in maintaining homeostasis of the GLA. In addition to iron chelators, antioxidants, and anti-inflammatory agents currently used in iron overload therapy, gut barrier intervention may be a potential target for iron overload therapy. In this paper, we review the relationship between excess iron intake and chronic liver diseases, the regulation of iron homeostasis by the GLA, and focus on the effects of excess iron intake on the GLA. It has been suggested that probiotics, fecal microbiota transfer, farnesoid X receptor agonists, and microRNA may be potential therapeutic targets for iron overload-induced liver injury by protecting gut barrier function.
Collapse
Affiliation(s)
- Yu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Guangyan Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Fayu Lu
- School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Ziwei Guo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Shuang Cai
- The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Taoguang Huo
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
9
|
Banerjee S, Lu S, Jain A, Wang I, Tao H, Srinivasan S, Nemeth E, He P. Targeting PKC alleviates iron overload in diabetes and hemochromatosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569107. [PMID: 38076948 PMCID: PMC10705472 DOI: 10.1101/2023.11.28.569107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Diabetes is one of the most prevalent chronic diseases worldwide. Iron overload increases the incidence of diabetes and aggravates diabetic complications that cause mortality. Reciprocally, diabetes potentially promotes body iron loading, but the mechanism remains not well understood. In this study, we demonstrated systemic iron excess and the upregulation of iron exporter ferroportin (Fpn) in the enterocytes and macrophages of multiple diabetic mouse models. Increased Fpn expression and iron efflux was also seen in the enterocytes of type 2 diabetic human patients. We further showed that protein kinase C (PKC), which is activated in hyperglycemia, was responsible for the sustained membrane expression of Fpn in physiological and in diabetic settings. For the first time, we identified that PKCs were novel binding proteins and positive regulators of Fpn. Mechanistically, hyperactive PKC promoted exocytotic membrane insertion while inhibited the endocytic trafficking of Fpn in the resting state. PKC also protected Fpn from internalization and degradation by its ligand hepcidin dependent on decreased ubiquitination and increased phosphorylation of Fpn. Importantly, the loss-of-function and pharmacological inhibition of PKC alleviated systemic iron overload in diabetes and hemochromatosis. Our study thus highlights PKC as a novel target in the control of systemic iron homeostasis.
Collapse
|
10
|
Tao H, Dar HY, Tian C, Banerjee S, Glazer ES, Srinivasan S, Zhu L, Pacifici R, He P. Differences in hepatocellular iron metabolism underlie sexual dimorphism in hepatocyte ferroptosis. Redox Biol 2023; 67:102892. [PMID: 37741044 PMCID: PMC10519854 DOI: 10.1016/j.redox.2023.102892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023] Open
Abstract
Males show higher incidence and severity than females in hepatic injury and many liver diseases, but the mechanisms are not well understood. Ferroptosis, an iron-mediated lipid peroxidation-dependent death, plays an important role in the pathogenesis of liver diseases. We determined whether hepatocyte ferroptosis displays gender difference, accounting for sexual dimorphism in liver diseases. Compared to female hepatocytes, male hepatocytes were much more vulnerable to ferroptosis by iron and pharmacological inducers including RSL3 and iFSP1. Male but not female hepatocytes exhibited significant increases in mitochondrial Fe2+ and mitochondrial ROS (mtROS) contents. Female hepatocytes showed a lower expression of iron importer transferrin receptor 1 (TfR1) and mitochondrial iron importer mitoferrin 1 (Mfrn1), but a higher expression of iron storage protein ferritin heavy chain 1 (FTH1). It is well known that TfR1 expression is positively correlated with ferroptosis. Herein, we showed that silencing FTH1 enhanced while knockdown of Mfrn1 decreased ferroptosis in HepG2 cells. Removing female hormones by ovariectomy (OVX) did not dampen but rather enhanced hepatocyte resistance to ferroptosis. Mechanistically, OVX potentiated the decrease in TfR1 and increase in FTH1 expression. OVX also increased FSP1 expression in ERK-dependent manner. Elevation in FSP1 suppressed mitochondrial Fe2+ accumulation and mtROS production, constituting a novel mechanism of FSP1-mediated inhibition of ferroptosis. In conclusion, differences in hepatocellular iron handling between male and female account, at least in part, for sexual dimorphism in induced ferroptosis of the hepatocytes.
Collapse
Affiliation(s)
- Hui Tao
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Hamid Y Dar
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Cheng Tian
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Somesh Banerjee
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Evan S Glazer
- Departments of Surgery and Cancer Center, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Atlanta Veterans Administration Medical Center, Decatur, GA, USA
| | - Liqin Zhu
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Peijian He
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, 615 Michael Street, Atlanta, GA, 30322, USA.
| |
Collapse
|
11
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
12
|
Mithila M, Islam MR, Khatun MR, Gazi MS, Hossain SJ. Sonneratia apetala (Buch.-Ham.) Fruit Extracts Ameliorate Iron Overload and Iron-Induced Oxidative Stress in Mice. Prev Nutr Food Sci 2023; 28:278-284. [PMID: 37842250 PMCID: PMC10567606 DOI: 10.3746/pnf.2023.28.3.278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 10/17/2023] Open
Abstract
Iron overload results in oxidative damage to various biomolecules including DNA, proteins and lipids which ultimately leads to cell death. The Sonneratia apetala fruit contains a high content of antioxidants and displays several bioactive properties. Therefore, the powder of the S. apetala fruit was successively fractionated into n-hexane (Hex), chloroform (Chl), and methanol (Met) fractions to evaluate their efficiency in ameliorating iron overload. In vitro, a colorimetric method was used to assess the Fe-chelating activity of the fractions using ferrozine. The fractions were also used in vivo to examine their efficacy in ameliorating iron overload and iron-induced oxidative stress in mice induced by intraperitoneal injection of ferric carboxymaltose at 100 mg/kg body weight (bw). Among the fractions, Met showed the highest Fe-chelation ability with an inhibitory concentration 50 of 165 μg/mL followed by Hex (270 μg/mL), and Chl (418 μg/mL). In vivo, the results showed a significantly (P<0.05) lower iron profile (iron and ferritin concentrations in serum and liver tissue and total iron-binding capacity of serum) in the Met and the Hex treated mice groups than in the iron-overloaded group. Met at 1,000 μg/kg bw completely ameliorated iron overload in the blood and the liver tissue of mice. At this concentration, Met also prevented iron-induced oxidative stress in the liver tissue of iron-overloaded mice by restoring reducing power, total antioxidant capacity, and total protein. Thus, the S. apetala fruit, especially its Met fraction can be used in treating iron overload and associated toxicity.
Collapse
Affiliation(s)
- Mehenaz Mithila
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
| | - M Rabiul Islam
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Mst Rima Khatun
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
| | - M Shamim Gazi
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Sheikh Julfikar Hossain
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
| |
Collapse
|
13
|
He A, Zhou Z, Huang L, Yip KC, Chen J, Yan R, Li R. Association between serum iron and liver transaminases based on a large adult women population. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2023; 42:69. [PMID: 37488660 PMCID: PMC10367365 DOI: 10.1186/s41043-023-00420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Studies are being focused on the potential roles of iron in various diseases, but remain unclear for the association between serum iron and liver injury, especially in adult women. METHODS Based on the National Health and Nutrition Examination Survey, we investigated the relationship between serum iron and alanine aminotransferase (ALT) and aspartate aminotransferase (AST) among 19,185 adult women. RESULTS Using weighted multivariate regression analyses, subgroup analyses, and threshold effect analyses, we found that serum iron was independently and positively correlated with ALT and AST. These associations differed in various age or race. Additionally, we found turning points in the curves of the relationship between serum iron and ALT in all women and the non-pregnant women. Using sensitivity analyses, we further found that the associations between serum iron and the liver transaminases remained positive in the non-pregnant women after adjusting for various covariates, but not in pregnant women. Besides, the positive associations between them kept present after excluding the women with high blood pressure, diabetes, and chronic kidney disease. CONCLUSION The present study indicated a positive association between serum iron and liver transaminases, indicating that serum iron may be a potential biomarker of liver function.
Collapse
Affiliation(s)
- Andong He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Zhuoping Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Lili Huang
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital of Jinan University, Dongguan Eastern Central Hospital, Dongguan, 523576, Guangdong, China
| | - Ka Cheuk Yip
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Jing Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Ruiling Yan
- Department of Fetal Medicine, The First Affiliated Hospital of Jinan University, No. 613 Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong, China.
| | - Ruiman Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
14
|
Yu Y, Woloshun RR, Lee JK, Ebea PO, Zhu S, Nemeth E, Garrick LM, Garrick MD, Collins JF. Fetal factors disrupt placental and maternal iron homeostasis in murine β-thalassemia. Blood 2023; 142:185-196. [PMID: 37146247 PMCID: PMC10352602 DOI: 10.1182/blood.2022018839] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/07/2023] Open
Abstract
Pregnancy rates in β-thalassemia are increasing but the risk of complications is higher; thus, better understanding of maternal and fetal iron homeostasis in this disorder is needed. HbbTh3/+ (Th3/+) mice model human β-thalassemia. Both the murine and human diseases are characterized by low hepcidin, high iron absorption, and tissue iron overload, with concurrent anemia. We hypothesized that disordered iron metabolism in pregnant Th3/+ mice would negatively affect their unborn offspring. The experimental design included these groups: wild-type (WT) dams carrying WT fetuses (WT1); WT dams carrying WT and Th3/+ fetuses (WT2); Th3/+ dams carrying WT and Th3/+ fetuses (Th3/+); and age-matched, nonpregnant adult females. Serum hepcidin was low, and mobilization of splenic and hepatic storage iron was enhanced in all 3 groups of experimental dams. Intestinal 59Fe absorption was lower in Th3/+ dams (as compared with WT1/2 dams) but splenic 59Fe uptake was higher. Th3/+ dams had hyperferremia, which led to fetal and placenta iron loading, fetal growth restriction, and placentomegaly. Notably, Th3/+ dams loaded Th3/+ and WT fetuses, with the latter situation more closely mirroring human circumstances when mothers with thalassemia have relatively unaffected (thalassemia trait) offspring. Iron-related oxidative stress likely contributed to fetal growth impairment; enhanced placental erythropoiesis is a probable cause of placental enlargement. Moreover, high fetal liver iron transactivated Hamp; fetal hepcidin downregulated placental ferroportin expression, limiting placental iron flux and thus mitigating fetal iron loading. Whether gestational iron loading occurs in human thalassemic pregnancy, when blood transfusion can further elevate serum iron, is worth consideration.
Collapse
Affiliation(s)
- Yang Yu
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL
| | - Regina R. Woloshun
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL
| | - Jennifer K. Lee
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL
| | - Pearl Onuwa Ebea
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL
| | - Sean Zhu
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL
| | - Elizabeta Nemeth
- Department of Medicine, University of California, Los Angeles, CA
| | | | | | - James F. Collins
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL
| |
Collapse
|
15
|
Tao H, Dar HY, Tian C, Banerjee S, Glazer ES, Srinivasan S, Zhu L, Pacifici R, He P. Differences in Hepatocellular Iron Metabolism Underlie Sexual Dimorphism in Hepatocyte Ferroptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.24.546395. [PMID: 37425728 PMCID: PMC10327041 DOI: 10.1101/2023.06.24.546395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Males show higher incidence and severity than females in hepatic injury and many liver diseases, but the mechanisms are not well understood. Ferroptosis, an iron-mediated lipid peroxidation-dependent death, plays an important role in the pathogenesis of liver diseases. We determined whether hepatocyte ferroptosis displays gender difference, accounting for sexual dimorphism in liver diseases. Compared to female hepatocytes, male hepatocytes were much more vulnerable to ferroptosis by iron and pharmacological inducers including RSL3 and iFSP1. Male but not female hepatocytes exhibited significant increases in mitochondrial Fe 2+ and mitochondrial ROS (mtROS) contents. Female hepatocytes showed a lower expression of iron importer transferrin receptor 1 (TfR1) and mitochondrial iron importer mitoferrin 1 (Mfrn1), but a higher expression of iron storage protein ferritin heavy chain 1 (FTH1). It is well known that TfR1 expression is positively correlated with ferroptosis. Herein, we showed that silencing FTH1 enhanced while knockdown of Mfrn1 decreased ferroptosis in HepG2 cells. Removing female hormones by ovariectomy (OVX) did not dampen but rather enhanced hepatocyte resistance to ferroptosis. Mechanistically, OVX potentiated the decrease in TfR1 and increase in FTH1 expression. OVX also increased FSP1 expression in ERK-dependent manner. Elevation in FSP1 suppressed mitochondrial Fe 2+ accumulation and mtROS production, constituting a novel mechanism of FSP1-mediated inhibition of ferroptosis. In conclusion, differences in hepatocellular iron handling between male and female account, at least in part, for sexual dimorphism in induced ferroptosis of the hepatocytes.
Collapse
|
16
|
Giorgi G, Mascaró M, Gandini NA, Rabassa ME, Coló GP, Arévalo J, Curino AC, Facchinetti MM, Roque ME. Iron cycle disruption by heme oxygenase-1 activation leads to a reduced breast cancer cell survival. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166621. [PMID: 36539019 DOI: 10.1016/j.bbadis.2022.166621] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Heme oxygenase-1 (HO-1), which catalyzes heme degradation releasing iron, regulates several processes related to breast cancer. Iron metabolism deregulation is also connected with several tumor processes. However the regulatory relationship between HO-1 and iron proteins in breast cancer remains unclear. Using human breast cancer biopsies, we found that high HO-1 levels significantly correlated with low DMT1 levels. Contrariwise, high HO-1 levels significantly correlated with high ZIP14 and prohepcidin expression, as well as hemosiderin storage. At mRNA level, we found that high HO-1 expression significantly correlated with low DMT1 expression but high ZIP14, L-ferritin and hepcidin expression. In in vivo experiments in mice with genetic overexpression or pharmacological activation of HO-1, we detected the same expression pattern observed in human biopsies. In in vitro experiments, HO-1 activation induced changes in iron proteins expression leading to an increase of hemosiderin, ROS levels, lipid peroxidation and a decrease of the growth rate. Such low growth rate induced by HO-1 activation was reversed when iron levels or ROS levels were reduced. Our findings demonstrate an important role of HO-1 on iron homeostasis in breast cancer. The changes in iron proteins expression when HO-1 is modulated led to the iron accumulation deregulating the iron cell cycle, and consequently, generating oxidative stress and low viability, all contributing to impair breast cancer progression.
Collapse
Affiliation(s)
- G Giorgi
- Laboratorio de Fisiología Humana, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), 8000 Bahía Blanca, Argentina
| | - M Mascaró
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), 8000 Bahía Blanca, Argentina
| | - N A Gandini
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), 8000 Bahía Blanca, Argentina
| | - M E Rabassa
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), 1900 La Plata, Buenos Aires, Argentina
| | - G P Coló
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), 8000 Bahía Blanca, Argentina
| | - J Arévalo
- Servicio de Patología, Hospital Interzonal de Agudos "Dr. José Penna", 8000 Bahía Blanca, Argentina
| | - A C Curino
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), 8000 Bahía Blanca, Argentina.
| | - M M Facchinetti
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), 8000 Bahía Blanca, Argentina
| | - M E Roque
- Laboratorio de Fisiología Humana, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), 8000 Bahía Blanca, Argentina
| |
Collapse
|
17
|
Hino K, Yanatori I, Hara Y, Nishina S. Iron and liver cancer: an inseparable connection. FEBS J 2022; 289:7810-7829. [PMID: 34543507 DOI: 10.1111/febs.16208] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/17/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023]
Abstract
Iron is an essential element for all organisms. Iron-containing proteins play critical roles in cellular functions. The biological importance of iron is largely attributable to its chemical properties as a transitional metal. However, an excess of 'free' reactive iron damages the macromolecular components of cells and cellular DNA through the production of harmful free radicals. On the contrary, most of the body's excess iron is stored in the liver. Not only hereditary haemochromatosis but also some liver diseases with mild-to-moderate hepatic iron accumulation, such as chronic hepatitis C, alcoholic liver disease and nonalcoholic steatohepatitis, are associated with a high risk for liver cancer development. These findings have attracted attention to the causative and promotive roles of iron in the development of liver cancer. In the last decade, accumulating evidence regarding molecules regulating iron metabolism or iron-related cell death programmes such as ferroptosis has shed light on the relationship between hepatic iron accumulation and hepatocarcinogenesis. In this review, we briefly present the current molecular understanding of iron regulation in the liver. Next, we describe the mechanisms underlying dysregulated iron metabolism depending on the aetiology of liver diseases. Finally, we discuss the causative and promotive roles of iron in cancer development.
Collapse
Affiliation(s)
- Keisuke Hino
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| | - Izumi Yanatori
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Japan
| | - Yuichi Hara
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| | - Sohji Nishina
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|
18
|
Zhang L, Liu J, Dai Z, Wang J, Wu M, Su R, Zhang D. Crosstalk between regulated necrosis and micronutrition, bridged by reactive oxygen species. Front Nutr 2022; 9:1003340. [PMID: 36211509 PMCID: PMC9543034 DOI: 10.3389/fnut.2022.1003340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/26/2022] [Indexed: 11/15/2022] Open
Abstract
The discovery of regulated necrosis revitalizes the understanding of necrosis from a passive and accidental cell death to a highly coordinated and genetically regulated cell death routine. Since the emergence of RIPK1 (receptor-interacting protein kinase 1)-RIPK3-MLKL (mixed lineage kinase domain-like) axis-mediated necroptosis, various other forms of regulated necrosis, including ferroptosis and pyroptosis, have been described, which enrich the understanding of pathophysiological nature of diseases and provide novel therapeutics. Micronutrients, vitamins, and minerals, position centrally in metabolism, which are required to maintain cellular homeostasis and functions. A steady supply of micronutrients benefits health, whereas either deficiency or excessive amounts of micronutrients are considered harmful and clinically associated with certain diseases, such as cardiovascular disease and neurodegenerative disease. Recent advance reveals that micronutrients are actively involved in the signaling pathways of regulated necrosis. For example, iron-mediated oxidative stress leads to lipid peroxidation, which triggers ferroptotic cell death in cancer cells. In this review, we illustrate the crosstalk between micronutrients and regulated necrosis, and unravel the important roles of micronutrients in the process of regulated necrosis. Meanwhile, we analyze the perspective mechanism of each micronutrient in regulated necrosis, with a particular focus on reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Lei Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Jinting Liu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Ziyan Dai
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Jia Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Mengyang Wu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Ruicong Su
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Di Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- *Correspondence: Di Zhang,
| |
Collapse
|
19
|
Charlebois E, Fillebeen C, Katsarou A, Rabinovich A, Wisniewski K, Venkataramani V, Michalke B, Velentza A, Pantopoulos K. A crosstalk between hepcidin and IRE/IRP pathways controls ferroportin expression and determines serum iron levels in mice. eLife 2022; 11:81332. [PMID: 36066082 PMCID: PMC9499557 DOI: 10.7554/elife.81332] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
The iron hormone hepcidin is transcriptionally activated by iron or inflammation via distinct, partially overlapping pathways. We addressed how iron affects inflammatory hepcidin levels and the ensuing hypoferremic response. Dietary iron overload did not mitigate hepcidin induction in lipopolysaccharide (LPS)-treated wild type mice but prevented effective inflammatory hypoferremia. Likewise, LPS modestly decreased serum iron in hepcidin-deficient Hjv-/- mice, model of hemochromatosis. Synthetic hepcidin triggered hypoferremia in control but not iron-loaded wild type animals. Furthermore, it dramatically decreased hepatic and splenic ferroportin in Hjv-/- mice on standard or iron-deficient diet, but only triggered hypoferremia in the latter. Mechanistically, iron antagonized hepcidin responsiveness by inactivating IRPs in the liver and spleen to stimulate ferroportin mRNA translation. Prolonged LPS treatment eliminated ferroportin mRNA and permitted hepcidin-mediated hypoferremia in iron-loaded mice. Thus, de novo ferroportin synthesis is a critical determinant of serum iron and finetunes hepcidin-dependent functional outcomes. Our data uncover a crosstalk between hepcidin and IRE/IRP systems that controls tissue ferroportin expression and determines serum iron levels. Moreover, they suggest that hepcidin supplementation therapy is more efficient when combined with iron depletion.
Collapse
Affiliation(s)
| | | | | | | | | | - Vivek Venkataramani
- Department of Medicine II, University Hospital Frankfurt, Frankfurt, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
| | | | | |
Collapse
|
20
|
Wang D, Wu H, Yang J, Li M, Ling C, Gao Z, Lu H, Shen H, Tang Y. Loss of SLC46A1 decreases tumor iron content in hepatocellular carcinoma. Hepatol Commun 2022; 6:2914-2924. [PMID: 35811443 PMCID: PMC9512484 DOI: 10.1002/hep4.2031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/07/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
It is interesting that high iron is an independent inducer or cofactor of hepatocellular carcinoma (HCC) while the amount of iron is decreased in the liver tumor tissues. Due to the previous findings that iron deficiency promoted HCC metastasis, it is of significance to identify the underlying mechanism of iron deficiency in HCC. The tumor iron content and expressions of iron‐metabolic molecules were observed in the primary liver cancers of rats and mice. The molecules that changed independently of iron were identified by comparing the expression profiles in the human HCC tissues and iron‐deprived HCC cells. The downstream effects of these molecules on regulating intracellular iron content were investigated in vitro and further validated in vivo. Both in primary liver cancers of rats and mice, we confirmed the decreased iron content in tumor tissues and the altered expressions of iron‐metabolic molecules, including transferrin receptor 1 (TfR1), six‐transmembrane epithelial antigen of prostate 3 (STEAP3), divalent metal transporter 1 (DMT1), SLC46A1, ferroportin, hepcidin, and ferritin. Among these, STEAP3, DMT1, and SLC46A1 were altered free of iron deficiency. However, only silence or overexpression of SLC46A1 controlled the intracellular iron content of HCC cells. The interventions of STEAP3 or DMT1 could not change the intracellular iron content. Lentivirus‐mediated regain of SLC46A1 expression restored the iron content in orthotopically implanted tumors, with correspondingly changes in the iron‐metabolic molecules as iron increasing. Conclusion: Taken together, these results suggest that the loss of SLC46A1 expression leads to iron deficiency in liver tumor tissues, which would be an effective target to manage iron homeostasis in HCC.
Collapse
Affiliation(s)
- Dongyao Wang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Huiwen Wu
- Department of Nutrition, Second Military Medical University, Shanghai, China.,Department of Nutrition, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxin Yang
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Min Li
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Changquan Ling
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zelong Gao
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Hongtao Lu
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Hui Shen
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Yuxiao Tang
- Department of Nutrition, Second Military Medical University, Shanghai, China
| |
Collapse
|
21
|
Szarka A, Lőrincz T, Hajdinák P. Friend or Foe: The Relativity of (Anti)oxidative Agents and Pathways. Int J Mol Sci 2022; 23:ijms23095188. [PMID: 35563576 PMCID: PMC9099968 DOI: 10.3390/ijms23095188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/17/2022] Open
Abstract
An element, iron, a process, the generation of reactive oxygen species (ROS), and a molecule, ascorbate, were chosen in our study to show their dual functions and their role in cell fate decision. Iron is a critical component of numerous proteins involved in metabolism and detoxification. On the other hand, excessive amounts of free iron in the presence of oxygen can promote the production of potentially toxic ROS. They can result in persistent oxidative stress, which in turn can lead to damage and cell death. At the same time, ROS—at strictly regulated levels—are essential to maintaining the redox homeostasis, and they are engaged in many cellular signaling pathways, so their total elimination is not expedient. Ascorbate establishes a special link between ROS generation/elimination and cell death. At low concentrations, it behaves as an excellent antioxidant and has an important role in ROS elimination. However, at high concentrations, in the presence of transition metals such as iron, it drives the generation of ROS. In the term of the dual function of these molecules and oxidative stress, ascorbate/ROS-driven cell deaths are not necessarily harmful processes—they can be live-savers too.
Collapse
Affiliation(s)
- András Szarka
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary; (T.L.); (P.H.)
- Biotechnology Model Laboratory, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
- Correspondence:
| | - Tamás Lőrincz
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary; (T.L.); (P.H.)
- Biotechnology Model Laboratory, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Péter Hajdinák
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary; (T.L.); (P.H.)
- Biotechnology Model Laboratory, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| |
Collapse
|
22
|
Time- and Spectrally-Resolved Photoluminescence Study of Alloyed Cd xZn 1-xSe yS 1-y/ZnS Quantum Dots and Their Nanocomposites with SPIONs in Living Cells. Int J Mol Sci 2022; 23:ijms23074061. [PMID: 35409422 PMCID: PMC8999546 DOI: 10.3390/ijms23074061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 12/18/2022] Open
Abstract
Magnetic-luminescent composites based on semiconductor quantum dots (QDs) and superparamagnetic iron oxide nanoparticles (SPIONs) can serve as a platform combining visualization and therapy. Here, we report the construction of QD-SPION nanocomposites based on synthesized SPIONs and alloyed QDs (CdxZn1−xSeyS1−y)/ZnS solubilized with L-cysteine molecules. The study of the spectral-luminescence characteristics, the kinetics of luminescence decay show the composite’s stability in a solution. After incubation with HeLa cells, QDs, SPIONs, and their composites form clusters on the cell surface and associate with endosomes inside the cells. Component-wise analysis of the photoluminescence decay of cell-associated QDs/SPIONs provides information about their localization and aggregate status.
Collapse
|
23
|
The (Bio)Chemistry of Non-Transferrin-Bound Iron. Molecules 2022; 27:molecules27061784. [PMID: 35335148 PMCID: PMC8951307 DOI: 10.3390/molecules27061784] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
In healthy individuals, virtually all blood plasma iron is bound by transferrin. However, in several diseases and clinical conditions, hazardous non-transferrin-bound iron (NTBI) species occur. NTBI represents a potentially toxic iron form, being a direct cause of oxidative stress in the circulating compartment and tissue iron loading. The accumulation of these species can cause cellular damage in several organs, namely, the liver, spleen, and heart. Despite its pathophysiological relevance, the chemical nature of NTBI remains elusive. This has precluded its use as a clinical biochemical marker and the development of targeted therapies. Herein, we make a critical assessment of the current knowledge of NTBI speciation. The currently accepted hypotheses suggest that NTBI is mostly iron bound to citric acid and iron bound to serum albumin, but the chemistry of this system remains fuzzy. We explore the complex chemistry of iron complexation by citric acid and its implications towards NTBI reactivity. Further, the ability of albumin to bind iron is revised and the role of protein post-translational modifications on iron binding is discussed. The characterization of the NTBI species structure may be the starting point for the development of a standardized analytical assay, the better understanding of these species’ reactivity or the identification of NTBI uptake mechanisms by different cell types, and finally, to the development of new therapies.
Collapse
|
24
|
Zhang S, Xin W, Anderson GJ, Li R, Gao L, Chen S, Zhao J, Liu S. Double-edge sword roles of iron in driving energy production versus instigating ferroptosis. Cell Death Dis 2022; 13:40. [PMID: 35013137 PMCID: PMC8748693 DOI: 10.1038/s41419-021-04490-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
Iron is vital for many physiological functions, including energy production, and dysregulated iron homeostasis underlies a number of pathologies. Ferroptosis is a recently recognized form of regulated cell death that is characterized by iron dependency and lipid peroxidation, and this process has been reported to be involved in multiple diseases. The mechanisms underlying ferroptosis are complex, and involve both well-described pathways (including the iron-induced Fenton reaction, impaired antioxidant capacity, and mitochondrial dysfunction) and novel interactions linked to cellular energy production. In this review, we examine the contribution of iron to diverse metabolic activities and their relationship to ferroptosis. There is an emphasis on the role of iron in driving energy production and its link to ferroptosis under both physiological and pathological conditions. In conclusion, excess reactive oxygen species production driven by disordered iron metabolism, which induces Fenton reaction and/or impairs mitochondrial function and energy metabolism, is a key inducer of ferroptosis.
Collapse
Affiliation(s)
- Shuping Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Wei Xin
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Gregory J Anderson
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
| | - Ruibin Li
- School for Radiological and Interdisciplinary Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250031, China
| | - Shuguang Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, 250031, China.
| | - Sijin Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
25
|
Fisher AL, Babitt JL. Coordination of iron homeostasis by bone morphogenetic proteins: Current understanding and unanswered questions. Dev Dyn 2022; 251:26-46. [PMID: 33993583 PMCID: PMC8594283 DOI: 10.1002/dvdy.372] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 01/19/2023] Open
Abstract
Iron homeostasis is tightly regulated to balance the iron requirement for erythropoiesis and other vital cellular functions, while preventing cellular injury from iron excess. The liver hormone hepcidin is the master regulator of systemic iron balance by controlling the degradation and function of the sole known mammalian iron exporter ferroportin. Liver hepcidin expression is coordinately regulated by several signals that indicate the need for more or less iron, including plasma and tissue iron levels, inflammation, and erythropoietic drive. Most of these signals regulate hepcidin expression by modulating the activity of the bone morphogenetic protein (BMP)-SMAD pathway, which controls hepcidin transcription. Genetic disorders of iron overload and iron deficiency have identified several hepatocyte membrane proteins that play a critical role in mediating the BMP-SMAD and hepcidin regulatory response to iron. However, the precise molecular mechanisms by which serum and tissue iron levels are sensed to regulate BMP ligand production and promote the physical and/or functional interaction of these proteins to modulate SMAD signaling and hepcidin expression remain uncertain. This critical commentary will focus on the current understanding and key unanswered questions regarding how the liver senses iron levels to regulate BMP-SMAD signaling and thereby hepcidin expression to control systemic iron homeostasis.
Collapse
Affiliation(s)
| | - Jodie L Babitt
- Corresponding author: Jodie L Babitt, Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA. Mailing address: 185 Cambridge St., CPZN-8208, Boston, MA 02114. Telephone: +1 (617) 643-3181.
| |
Collapse
|
26
|
Iron loading induces cholesterol synthesis and sensitizes endothelial cells to TNFα-mediated apoptosis. J Biol Chem 2021; 297:101156. [PMID: 34480898 PMCID: PMC8463868 DOI: 10.1016/j.jbc.2021.101156] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/22/2021] [Accepted: 08/31/2021] [Indexed: 01/06/2023] Open
Abstract
In plasma, iron is normally bound to transferrin, the principal protein in blood responsible for binding and transporting iron throughout the body. However, in conditions of iron overload when the iron-binding capacity of transferrin is exceeded, non-transferrin-bound iron (NTBI) appears in plasma. NTBI is taken up by hepatocytes and other parenchymal cells via NTBI transporters and can cause cellular damage by promoting the generation of reactive oxygen species. However, how NTBI affects endothelial cells, the most proximal cell type exposed to circulating NTBI, has not been explored. We modeled in vitro the effects of systemic iron overload on endothelial cells by treating primary human umbilical vein endothelial cells (HUVECs) with NTBI (ferric ammonium citrate [FAC]). We showed by RNA-Seq that iron loading alters lipid homeostasis in HUVECs by inducing sterol regulatory element-binding protein 2-mediated cholesterol biosynthesis. We also determined that FAC increased the susceptibility of HUVECs to apoptosis induced by tumor necrosis factor-α (TNFα). Moreover, we showed that cholesterol biosynthesis contributes to iron-potentiated apoptosis. Treating HUVECs with a cholesterol chelator hydroxypropyl-β-cyclodextrin demonstrated that depletion of cholesterol was sufficient to rescue HUVECs from TNFα-induced apoptosis, even in the presence of FAC. Finally, we showed that FAC or cholesterol treatment modulated the TNFα pathway by inducing novel proteolytic processing of TNFR1 to a short isoform that localizes to lipid rafts. Our study raises the possibility that iron-mediated toxicity in human iron overload disorders is at least in part dependent on alterations in cholesterol metabolism in endothelial cells, increasing their susceptibility to apoptosis.
Collapse
|
27
|
Song Y, Wang B, Zhu X, Hu J, Sun J, Xuan J, Ge Z. Human umbilical cord blood-derived MSCs exosome attenuate myocardial injury by inhibiting ferroptosis in acute myocardial infarction mice. Cell Biol Toxicol 2021; 37:51-64. [PMID: 32535745 DOI: 10.1007/s10565-020-09530-8] [Citation(s) in RCA: 190] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/28/2020] [Indexed: 10/24/2022]
Abstract
The exosome of MSCs derived from human umbilical cord blood (HUCB-MSC) has been reported to have cardioprotective effects on mouse models of acute myocardial infarction (AMI) and cardiomyocyte hypoxia injury, but the exact mechanisms involved require further investigation. This paper aimed to study the role of HUCB-MSC-exosomes in inhibiting ferroptosis to attenuate myocardial injury. Compared with sham or normoxia groups, RT-PCR and western blotting showed that divalent metal transporter 1 (DMT1) expression was significantly increased, and Prussian blue staining, ferrous iron (Fe2+), MDA, and GSH level detection demonstrated that ferroptosis occurred in the infraction myocardium and in cardiomyocyte following hypoxia-induced injury. Overexpression of DMT1 promoted H/R-induced myocardial cell ferroptosis, while knockdown of DMT1 significantly inhibited the ferroptosis. HUCB-MSCs-derived exosomes inhibited ferroptosis and reduced myocardial injury, which was abolished in exosome with miR-23a-3p knockout. Moreover, dual luciferase reporter assay confirmed that DMT1 was a target gene of miR-23a-3p. In conclusion, HUCB-MSCs-exosomes may suppress DMT1 expression by miR-23a-3p to inhibit ferroptosis and attenuate myocardial injury.
Collapse
Affiliation(s)
- Yufang Song
- Department of Anesthesiology Department, Henan Provincial People's Hospital and Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, 461464, People's Republic of China
| | - Baocai Wang
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital and Fuwai Central China Cardiovascular Hospital, 1 Fuwai Road, Zhengzhou, Henan, 461464, People's Republic of China
| | - Xiliang Zhu
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital and Fuwai Central China Cardiovascular Hospital, 1 Fuwai Road, Zhengzhou, Henan, 461464, People's Republic of China
| | - Junlong Hu
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital and Fuwai Central China Cardiovascular Hospital, 1 Fuwai Road, Zhengzhou, Henan, 461464, People's Republic of China
| | - Junjie Sun
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital and Fuwai Central China Cardiovascular Hospital, 1 Fuwai Road, Zhengzhou, Henan, 461464, People's Republic of China
| | - Jizhong Xuan
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital and Fuwai Central China Cardiovascular Hospital, 1 Fuwai Road, Zhengzhou, Henan, 461464, People's Republic of China
| | - Zhenwei Ge
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital and Fuwai Central China Cardiovascular Hospital, 1 Fuwai Road, Zhengzhou, Henan, 461464, People's Republic of China.
| |
Collapse
|
28
|
Ogłuszka M, Lipiński P, Starzyński RR. Interaction between iron and omega-3 fatty acids metabolisms: where is the cross-link? Crit Rev Food Sci Nutr 2020; 62:3002-3022. [DOI: 10.1080/10408398.2020.1862047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Magdalena Ogłuszka
- Department of Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Rafał Radosław Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| |
Collapse
|
29
|
Abstract
Iron is essential for a variety of physiological processes. Hepatic iron overload acts as a trigger for the progression of hepatic steatosis to nonalcoholic steatohepatitis and hepatocellular carcinoma. In the present study, we aimed to study the effects of iron overload on cellular responses in hepatocytes. Rat primary hepatocytes (RPH), mouse primary hepatocytes (MPH), HepG2 human hepatoma cells and Hepa1-6 mouse hepatoma cells were treated with FeCl3. Treatment with FeCl3 effectively increased iron accumulation in primary hepatocytes. Expression levels of molecules involved in cellular signaling such as AMPK pathway, TGF-β family pathway, and MAP kinase pathway were decreased by FeCl3 treatment in RPH. Cell viability in response to FeCl3 treatment was decreased in RPH but not in HepG2 and Hepa1-6 cells. Treatment with FeCl3 also decreased expression level of LC-3B, a marker of autophagy in RPH but not in liver-derived cell lines. Ultrastructural observations revealed that cell death resembling ferroptosis and necrosis was induced upon FeCl3 treatment in RPH. The expression level of genes involved in iron transport varied among different liver-derived cells- iron is thought to be efficiently incorporated as free Fe2+ in primary hepatocytes, whereas transferrin-iron is the main route for iron uptake in HepG2 cells. The present study reveals specific cellular responses in different liver-derived cells as a consequence of iron overload.
Collapse
|
30
|
Iron and manganese transport in mammalian systems. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118890. [PMID: 33091506 DOI: 10.1016/j.bbamcr.2020.118890] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/24/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022]
Abstract
Studies in recent years have significantly expanded, refined, and redefined the repertoire of transporters and other proteins involved in iron and manganese (Mn) transport and homeostasis. In this review, we discuss highlights of the recent literature on iron and Mn transport, focusing on the roles of membrane transporters and related proteins. Studies are considered from the vantage point of main organs, tissues, and cell types that actively control whole-body iron or Mn homeostasis, with emphasis on studies in which in vivo metal transport was measured directly or implicated by using knockout mouse models. Overviews of whole-body and cellular iron and Mn homeostasis are also provided to give physiological context for key transporters and to highlight how they participate in the uptake, intracellular trafficking, and efflux of each metal. Important similarities and differences in iron and Mn transport are noted, and future research opportunities and challenges are identified.
Collapse
|
31
|
Altamura S, Marques O, Colucci S, Mertens C, Alikhanyan K, Muckenthaler MU. Regulation of iron homeostasis: Lessons from mouse models. Mol Aspects Med 2020; 75:100872. [DOI: 10.1016/j.mam.2020.100872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
|
32
|
Yu Y, Jiang L, Wang H, Shen Z, Cheng Q, Zhang P, Wang J, Wu Q, Fang X, Duan L, Wang S, Wang K, An P, Shao T, Chung RT, Zheng S, Min J, Wang F. Hepatic transferrin plays a role in systemic iron homeostasis and liver ferroptosis. Blood 2020; 136:726-739. [PMID: 32374849 PMCID: PMC7414596 DOI: 10.1182/blood.2019002907] [Citation(s) in RCA: 329] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/19/2020] [Indexed: 02/08/2023] Open
Abstract
Although the serum-abundant metal-binding protein transferrin (encoded by the Trf gene) is synthesized primarily in the liver, its function in the liver is largely unknown. Here, we generated hepatocyte-specific Trf knockout mice (Trf-LKO), which are viable and fertile but have impaired erythropoiesis and altered iron metabolism. Moreover, feeding Trf-LKO mice a high-iron diet increased their susceptibility to developing ferroptosis-induced liver fibrosis. Importantly, we found that treating Trf-LKO mice with the ferroptosis inhibitor ferrostatin-1 potently rescued liver fibrosis induced by either high dietary iron or carbon tetrachloride (CCl4) injections. In addition, deleting hepatic Slc39a14 expression in Trf-LKO mice significantly reduced hepatic iron accumulation, thereby reducing ferroptosis-mediated liver fibrosis induced by either a high-iron diet or CCl4 injections. Finally, we found that patients with liver cirrhosis have significantly lower levels of serum transferrin and hepatic transferrin, as well as higher levels of hepatic iron and lipid peroxidation, compared with healthy control subjects. Taken together, these data indicate that hepatic transferrin plays a protective role in maintaining liver function, providing a possible therapeutic target for preventing ferroptosis-induced liver fibrosis.
Collapse
Affiliation(s)
- Yingying Yu
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
- Precision Nutrition Innovation Center, Department of Nutrition, School of Public Health, Zhengzhou University, Zhengzhou, China; and
| | - Li Jiang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Wang
- Precision Nutrition Innovation Center, Department of Nutrition, School of Public Health, Zhengzhou University, Zhengzhou, China; and
| | - Zhe Shen
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Cheng
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Pan Zhang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaming Wang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Wu
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuexian Fang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingyan Duan
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Shufen Wang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Wang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng An
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Tuo Shao
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Raymond T Chung
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Shusen Zheng
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Junxia Min
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fudi Wang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
- Precision Nutrition Innovation Center, Department of Nutrition, School of Public Health, Zhengzhou University, Zhengzhou, China; and
| |
Collapse
|
33
|
Ścibior A, Hus I, Mańko J, Jawniak D. Evaluation of the level of selected iron-related proteins/receptors in the liver of rats during separate/combined vanadium and magnesium administration. J Trace Elem Med Biol 2020; 61:126550. [PMID: 32464446 DOI: 10.1016/j.jtemb.2020.126550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/17/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND The current knowledge about the effects of vanadium (V) on iron (Fe)-related proteins and Fe homeostasis (which is regulated at the systemic, organelle, and cellular levels) is still insufficient. OBJECTIVE This fact and our earlier results prompted us to conduct studies with the aim to explain the mechanism of anemia accompanied by a rise in hepatic and splenic Fe deposition in rats receiving sodium metavanadate (SMV) separately and in combination with magnesium sulfate (MS). RESULTS We demonstrated for the first time that SMV (0.125 mg V/mL) administered to rats individually and in conjunction with MS (0.06 mg Mg/mL) for 12 weeks did not cause significant differences in the hepatic hepcidin (Hepc) and hemojuvelin (HJV) concentrations, compared to the control. In comparison with the control, there were no significant changes in the concentration of transferrin receptor 1 (TfR1) in the liver of rats treated with SMV and MS alone (in both cases only a downward trend of 14% and 15% was observed). However, a significant reduction in the hepatic TfR1 level was found in rats receiving SMV and MS simultaneously. In turn, the concentration of transferrin receptor 2 (TfR2) showed an increasing trend in the liver of rats treated with SMV and/or MS. CONCLUSIONS The experimental data suggest that the pathomechanism of the SMV-induced anemia is not associated with the effect of V on the concentration of Hepc in the liver, as confirmed by the unaltered hepatic HJV and TfR1 levels. Therefore, further studies are needed in order to check whether anemia that developed in the rats at the SMV administration (a) results from the inhibitory effect of V on erythropoietin (EPO) production, (b) is related to the effect of V on the induction of matriptase-2 (TMPRSS6) expression, or (c) is associated with the influence of this metal on haem synthesis.
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Poland.
| | - Iwona Hus
- Institute of Hematology and Transfusion Medicine, Warsaw, Poland.
| | - Joanna Mańko
- Clinic of Haematooncology and Bone Marrow Transplantation, Medical University, Lublin, Poland.
| | - Dariusz Jawniak
- Clinic of Haematooncology and Bone Marrow Transplantation, Medical University, Lublin, Poland.
| |
Collapse
|
34
|
Sanyear C, Butthep P, Eamsaard W, Fucharoen S, Svasti S, Masaratana P. Iron homeostasis in a mouse model of thalassemia intermedia is altered between adolescence and adulthood. PeerJ 2020; 8:e8802. [PMID: 32219031 PMCID: PMC7085893 DOI: 10.7717/peerj.8802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 02/25/2020] [Indexed: 01/03/2023] Open
Abstract
Background Iron overload is one of common complications of β-thalassemia. Systemic iron homeostasis is regulated by iron-regulatory hormone, hepcidin, which inhibits intestinal iron absorption and iron recycling by reticuloendothelial system. In addition, body iron status and requirement can be altered with age. In adolescence, iron requirement is increased due to blood volume expansion and growth spurt. Heterozygous β-globin knockout mice (Hbbth3/+; BKO) is a mouse model of thalassemia widely used to study iron homeostasis under this pathological condition. However, effects of age on iron homeostasis, particularly the expression of genes involved in hemoglobin metabolism as well as erythroid regulators in the spleen, during adolescence have not been explored in this mouse model. Methods Iron parameters as well as the mRNA expression of hepcidin and genes involved in iron transport and metabolism in wildtype (WT) and BKO mice during adolescence (6–7 weeks old) and adulthood (16–20 weeks old) were analyzed and compared by 2-way ANOVA. Results The transition of adolescence to adulthood was associated with reductions in duodenal iron transporter mRNA expression and serum iron levels of both WT and BKO mice. Erythrocyte parameters in BKO mice remained abnormal in both age groups despite persistent induction of genes involved in hemoglobin metabolism in the spleen and progressively increased extramedullary erythropiesis. In BKO mice, adulthood was associated with increased liver hepcidin and ferroportin mRNA expression along with splenic erythroferrone mRNA suppression compared to adolescence. Conclusion Our results demonstrate that iron homeostasis in a mouse model of thalassemia intermedia is altered between adolescence and adulthood. The present study underscores the importance of the age of thalassemic mice in the study of molecular or pathophysiological changes under thalassemic condition.
Collapse
Affiliation(s)
- Chanita Sanyear
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Punnee Butthep
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Wiraya Eamsaard
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Patarabutr Masaratana
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
35
|
Ding H, Yu X, Chen L, Han J, Zhao Y, Feng J. Tolerable upper intake level of iron damages the intestine and alters the intestinal flora in weaned piglets. Metallomics 2020; 12:1356-1369. [DOI: 10.1039/d0mt00096e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Iron is an indispensable element for animal growth but become toxic at high concentrations, while tolerable upper intake level of iron shows adverse effect in the intestine.
Collapse
Affiliation(s)
- Haoxuan Ding
- College of Animal Science
- Zhejiang University
- Key Laboratory of animal feed and nutrition of Zhejiang Province
- Hangzhou
- China
| | - Xiaonan Yu
- College of Animal Science
- Zhejiang University
- Key Laboratory of animal feed and nutrition of Zhejiang Province
- Hangzhou
- China
| | - Lingjun Chen
- College of Animal Science
- Zhejiang University
- Key Laboratory of animal feed and nutrition of Zhejiang Province
- Hangzhou
- China
| | - Jianan Han
- College of Animal Science
- Zhejiang University
- Key Laboratory of animal feed and nutrition of Zhejiang Province
- Hangzhou
- China
| | - Yang Zhao
- College of Animal Science
- Zhejiang University
- Key Laboratory of animal feed and nutrition of Zhejiang Province
- Hangzhou
- China
| | - Jie Feng
- College of Animal Science
- Zhejiang University
- Key Laboratory of animal feed and nutrition of Zhejiang Province
- Hangzhou
- China
| |
Collapse
|
36
|
Low DMT1 Expression Associates With Increased Oxidative Phosphorylation and Early Recurrence in Hepatocellular Carcinoma. J Surg Res 2019; 234:343-352. [PMID: 30527495 DOI: 10.1016/j.jss.2018.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/11/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Despite a high rate of recurrences, long-term survival can be achieved after the resection of hepatocellular carcinoma (HCC) with effective local treatment. Discovery of adverse prognostic variables to identify patients with high risk of recurrence could improve the management of HCC. Accumulating evidence showing a link between carcinogenesis and increased expression of iron import proteins and intracellular iron prompted us to investigate a role of divalent metal-ion transporter-1 (DMT1) that binds and regulates a variety of divalent metals in HCC. MATERIALS AND METHODS Clinical and gene expression data from RNA seq in 369 HCC patients were obtained from The Cancer Genome Atlas. Disease-free survival was compared between DMT1 high- and low-expressing tumors, and gene set enrichment analysis was conducted. RESULTS Patients with lower expression of DMT1 exhibited significantly worse disease-free survival compared with the DMT1 high group (P = 0.044), notably in advanced-stage patients (P = 0.008). DMT1 expression did not differ in etiologies, stages, and differentiation status of HCC. Interestingly, DMT1 expression levels inversely associated with cellular respiratory function in HCC. Furthermore, gene set enrichment analysis revealed that metabolism-related gene sets such as glycolysis, oxidative phosphorylation, and reactive oxygen species pathway were significantly enriched in the DMT1 low-expressing HCC. CONCLUSIONS Low DMT1 expression associates with increased oxidative phosphorylation as well as glycolysis and identifies early recurrence in HCC patients after surgical treatment.
Collapse
|
37
|
Ingrassia R, Garavaglia B, Memo M. DMT1 Expression and Iron Levels at the Crossroads Between Aging and Neurodegeneration. Front Neurosci 2019; 13:575. [PMID: 31231185 PMCID: PMC6560079 DOI: 10.3389/fnins.2019.00575] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/20/2019] [Indexed: 12/15/2022] Open
Abstract
Iron homeostasis is an essential prerequisite for metabolic and neurological functions throughout the healthy human life, with a dynamic interplay between intracellular and systemic iron metabolism. The development of different neurodegenerative diseases is associated with alterations of the intracellular transport of iron and heavy metals, principally mediated by Divalent Metal Transporter 1 (DMT1), responsible for Non-Transferrin Bound Iron transport (NTBI). In addition, DMT1 regulation and its compartmentalization in specific brain regions play important roles during aging. This review highlights the contribution of DMT1 to the physiological exchange and distribution of body iron and heavy metals during aging and neurodegenerative diseases. DMT1 also mediates the crosstalk between central nervous system and peripheral tissues, by systemic diffusion through the Blood Brain Barrier (BBB), with the involvement of peripheral iron homeostasis in association with inflammation. In conclusion, a survey about the role of DMT1 and iron will illustrate the complex panel of interrelationship with aging, neurodegeneration and neuroinflammation.
Collapse
Affiliation(s)
- Rosaria Ingrassia
- Section of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maurizio Memo
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
38
|
Zhang Q, Lu Y, Xu X, Li S, Du Y, Yu R. MR molecular imaging of HCC employing a regulated ferritin gene carried by a modified polycation vector. Int J Nanomedicine 2019; 14:3189-3201. [PMID: 31118631 PMCID: PMC6504634 DOI: 10.2147/ijn.s191270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/19/2019] [Indexed: 01/03/2023] Open
Abstract
Purpose: Early diagnosis is essential for reducing liver cancer mortality, and molecular diagnosis by magnetic resonance imaging (MRI) is an emerging and promising technology. The chief aim of the present work is to use the ferritin gene, modified by the alpha-fetoprotein (AFP) promoter, carried by a highly safe vector, to produce signal contrast on T2-weighted MR imaging as an endogenous contrast agent, and to provide a highly specific target for subsequent therapy. Methods: Polyethyleneimine-β-cyclodextrin (PEI-β-CD, PC) was synthesized as a novel vector. The optimal nitrogen/phosphorus ratio (N/P) of the PC/plasmid DNA complex was determined by gel retardation, biophysical properties and transmission electron microscopy morphological analysis. The transfection efficiency was observed under a fluorescence microscope and analyzed by flow cytometry. Cellular iron accumulation caused by ferritin overexpression was verified by Prussian blue staining, and the resulting contrast imaging effect was examined by MRI. Results: The modified cationic polymer PC was much safer than high molecular weight PEI, and could condense plasmid DNA at an N/P ratio of 50 with suitable biophysical properties and a high transfection efficiency. Overexpression of ferritin enriched intracellular iron. The short-term iron imbalance initiated by AFP promoter regulation only occurred in hepatoma cells, resulting in signal contrast on MRI. The specific target TfR was also upregulated during this process. Conclusion: These results illustrate that the regulated ferritin gene carried by PC can be used as an endogenous contrast agent for MRI detection of hepatocellular carcinoma (HCC). This molecular imaging technique may promote safer early diagnosis of HCC, and provide a more highly specific target for future chemotherapy drugs.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yuanfei Lu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaoling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Shujuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Risheng Yu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
39
|
Abstract
Iron overload cardiomyopathy (IOC) is a major cause of death in patients with diseases associated with chronic anemia such as thalassemia or sickle cell disease after chronic blood transfusions. Associated with iron overload conditions, there is excess free iron that enters cardiomyocytes through both L- and T-type calcium channels thereby resulting in increased reactive oxygen species being generated via Haber-Weiss and Fenton reactions. It is thought that an increase in reactive oxygen species contributes to high morbidity and mortality rates. Recent studies have, however, suggested that it is iron overload in mitochondria that contributes to cellular oxidative stress, mitochondrial damage, cardiac arrhythmias, as well as the development of cardiomyopathy. Iron chelators, antioxidants, and/or calcium channel blockers have been demonstrated to prevent and ameliorate cardiac dysfunction in animal models as well as in patients suffering from cardiac iron overload. Hence, either a mono-therapy or combination therapies with any of the aforementioned agents may serve as a novel treatment in iron-overload patients in the near future. In the present article, we review the mechanisms of cytosolic and/or mitochondrial iron load in the heart which may contribute synergistically or independently to the development of iron-associated cardiomyopathy. We also review available as well as potential future novel treatments.
Collapse
|
40
|
Abstract
Most cells in the body acquire iron via receptor-mediated endocytosis of transferrin, the circulating iron transport protein. When cellular iron levels are sufficient, the uptake of transferrin decreases to limit further iron assimilation and prevent excessive iron accumulation. In iron overload conditions, such as hereditary hemochromatosis and thalassemia major, unregulated iron entry into the plasma overwhelms the carrying capacity of transferrin, resulting in non-transferrin-bound iron (NTBI), a redox-active, potentially toxic form of iron. Plasma NTBI is rapidly cleared from the circulation primarily by the liver and other organs (e.g., pancreas, heart, and pituitary) where it contributes significantly to tissue iron overload and related pathology. While NTBI is usually not detectable in the plasma of healthy individuals, it does appear to be a normal constituent of brain interstitial fluid and therefore likely serves as an important source of iron for most cell types in the CNS. A growing body of literature indicates that NTBI uptake is mediated by non-transferrin-bound iron transporters such as ZIP14, L-type and T-type calcium channels, DMT1, ZIP8, and TRPC6. This review provides an overview of NTBI uptake by various tissues and cells and summarizes the evidence for and against the roles of individual transporters in this process.
Collapse
Affiliation(s)
- Mitchell D Knutson
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
41
|
Iron uptake by ZIP8 and ZIP14 in human proximal tubular epithelial cells. Biometals 2019; 32:211-226. [PMID: 30806852 PMCID: PMC6437295 DOI: 10.1007/s10534-019-00183-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022]
Abstract
In patients with iron overload disorders, increasing number of reports of renal dysfunction and renal iron deposition support an association between increased iron exposure and renal injury. In systemic iron overload, elevated circulating levels of transferrin-bound (TBI) and non-transferrin-bound iron (NTBI) are filtered to the renal proximal tubules, where they may cause injury. However, the mechanisms of tubular iron handling remain elusive. To unravel molecular renal proximal tubular NTBI and TBI handling, human conditionally immortalized proximal tubular epithelial cells (ciPTECs) were incubated with 55Fe as NTBI and fluorescently labeled holo-transferrin as TBI. Ferrous iron importers ZIP8 and ZIP14 were localized in the ciPTEC plasma membrane. Whereas silencing of either ZIP8 or ZIP14 alone did not affect 55Fe uptake, combined silencing significantly reduced 55Fe uptake compared to control (p < 0.05). Furthermore, transferrin receptor 1 (TfR1) and ZIP14, but not ZIP8, colocalized with early endosome antigen 1 (EEA1). TfR1 and ZIP14 also colocalized with uptake of fluorescently labeled transferrin. Furthermore, ZIP14 silencing decreased 55Fe uptake after 55Fe-Transferrin exposure (p < 0.05), suggesting ZIP14 could be involved in early endosomal transport of TBI-derived iron into the cytosol. Our data suggest that human proximal tubular epithelial cells take up TBI and NTBI, where ZIP8 and ZIP14 are both involved in NTBI uptake, but ZIP14, not ZIP8, mediates TBI-derived iron uptake. This knowledge provides more insights in the mechanisms of renal iron handling and suggests that ZIP8 and ZIP14 could be potential targets for limiting renal iron reabsorption and enhancing urinary iron excretion in systemic iron overload disorders.
Collapse
|
42
|
La A, Nguyen T, Tran K, Sauble E, Tu D, Gonzalez A, Kidane TZ, Soriano C, Morgan J, Doan M, Tran K, Wang CY, Knutson MD, Linder MC. Mobilization of iron from ferritin: new steps and details. Metallomics 2019; 10:154-168. [PMID: 29260183 DOI: 10.1039/c7mt00284j] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Much evidence indicates that iron stored in ferritin is mobilized through protein degradation in lysosomes, but concerns about this process have lingered, and the mechanistic details of its aspects are lacking. In the studies presented here, 59Fe-labeled ferritin was induced by preloading hepatic (HepG2) cells with radiolabeled Fe. Placing these cells in a medium containing desferrioxamine resulted in the loss of ferritin-59Fe, but adding high concentrations of reducing agents or modulating the internal GSH concentration failed to alter the rates of ferritin-59Fe release. Confocal microscopy showed that Fe deprivation increased the movement of ferritin into lysosomes and hyperaccumulation was observed when lysosomal proteolysis was inhibited. It also resulted in the rapid movement of DMT1 to lysosomes, which was inhibited by bafilomycin. Ferrihydrite crystals isolated from purified rat liver/spleen ferritin were solubilized at pH 5 and 7 by GSH, ascorbate, citrate and lysosomal fluids obtained from livers and J774a.1 macrophages. The inhibition of DMT1/Nramp2 and siRNA knockdown of Nramp1 each reduced the transfer of 59Fe from lysosomes to the cytosol; and hepatocyte-specific knockout of DMT1 in mice prevented the release of Fe from the liver responding to EPO treatment, but did not inhibit lysosomal ferritin degradation. We conclude that ferritin-Fe mobilization does not occur through changes in cellular concentrations of reducing/chelating agents but by the coordinated movement of ferritin and DMT1 to lysosomes, where the ferrihydrite crystals exposed by ferritin degradation dissolve in the lysosomal fluid, and the reduced iron is transported back to the cytosol via DMT1 in hepatocytes, and by both DMT1 and Nramp1 in macrophages, prior to release into the blood or storage in ferritin.
Collapse
Affiliation(s)
- A La
- Department of Chemistry and Biochemistry, California State University, Fullerton, CA 92834-6866, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Publisher's Note. J Surg Res 2019. [DOI: 10.1016/j.jss.2018.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Transferrin receptor 1 controls systemic iron homeostasis by fine-tuning hepcidin expression to hepatocellular iron load. Blood 2018; 133:344-355. [PMID: 30538134 DOI: 10.1182/blood-2018-05-850404] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023] Open
Abstract
Transferrin receptor 1 (Tfr1) mediates uptake of circulating transferrin-bound iron to developing erythroid cells and other cell types. Its critical physiological function is highlighted by the embryonic lethal phenotype of Tfr1-knockout (Tfrc-/-) mice and the pathologies of several tissue-specific knockouts. We generated TfrcAlb-Cre mice bearing hepatocyte-specific ablation of Tfr1 to explore implications in hepatocellular and systemic iron homeostasis. TfrcAlb-Cre mice are viable and do not display any apparent liver pathology. Nevertheless, their liver iron content (LIC) is lower compared with that of control Tfrcfl/fl littermates as a result of the reduced capacity of Tfr1-deficient hepatocytes to internalize iron from transferrin. Even though liver Hamp messenger RNA (mRNA) and serum hepcidin levels do not differ between TfrcAlb-Cre and Tfrcfl/fl mice, Hamp/LIC and hepcidin/LIC ratios are significantly higher in the former. Importantly, this is accompanied by modest hypoferremia and microcytosis, and it predisposes TfrcAlb-Cre mice to iron-deficiency anemia. TfrcAlb-Cre mice appropriately regulate Hamp expression following dietary iron manipulations or holo-transferrin injection. Holo-transferrin also triggers proper induction of Hamp mRNA, ferritin, and Tfr2 in primary TfrcAlb-Cre hepatocytes. We further show that these cells can acquire 59Fe from 59Fe-transferrin, presumably via Tfr2. We conclude that Tfr1 is redundant for basal hepatocellular iron supply but essential for fine-tuning hepcidin responses according to the iron load of hepatocytes. Our data are consistent with an inhibitory function of Tfr1 on iron signaling to hepcidin via its interaction with Hfe. Moreover, they highlight hepatocellular Tfr1 as a link between cellular and systemic iron-regulatory pathways.
Collapse
|
45
|
Zhao L, Bartnikas T, Chu X, Klein J, Yun C, Srinivasan S, He P. Hyperglycemia promotes microvillus membrane expression of DMT1 in intestinal epithelial cells in a PKCα-dependent manner. FASEB J 2018; 33:3549-3561. [PMID: 30423260 DOI: 10.1096/fj.201801855r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Excessive iron increases the incidence of diabetes and worsens diabetic complications. Reciprocally, diabetes induces iron loading, partially attributable to elevated intestinal iron export according to a recent report. Herein, we show that iron uptake and the mRNA expression of iron importer divalent metal transporter 1 (DMT1) were significantly increased in the duodenum of streptozotocin-induced diabetic mice. Immunofluorescence staining of human intestinal biopsies revealed increased brush border membrane (BBM) and decreased cytoplasmic DMT1 expression in patients with diabetes, suggesting translocation of DMT1. This pattern of DMT1 regulation was corroborated by immunoblotting results in diabetic mice showing that BBM DMT1 expression was increased by 210%, in contrast to a 60% increase in total DMT1. PKC mediates many diabetic complications, and PKCα activity was increased in diabetic mouse intestine. Intriguingly, diabetic mice with PKCα deficiency did not show increases in iron uptake and BBM DMT1 expression. High-glucose treatment increased plasma membrane DMT1 expression via the activation of PKCα in cultured IECs. Inhibition of PKCα potentiated the ubiquitination and degradation of DMT1 protein. We further showed that high glucose suppressed membrane DMT1 internalization. These findings demonstrate that PKCα promotes microvillus membrane DMT1 expression and intestinal iron uptake, contributing to diabetic iron loading.-Zhao, L., Bartnikas, T., Chu, X., Klein, J., Yun, C., Srinivasan, S., He, P. Hyperglycemia promotes microvillus membrane expression of DMT1 in intestinal epithelial cells in a PKCα-dependent manner.
Collapse
Affiliation(s)
- Luqing Zhao
- Department of Gastroenterology, Beijing Hospital of Traditional Chinese Medicine Affiliated With Capital Medical University, Beijing, China.,Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Thomas Bartnikas
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Xiangpeng Chu
- Department of Thoracic Surgery, People's Hospital of Rizhao, Shandong, China
| | - Janet Klein
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA; and
| | - Chris Yun
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta Veterans Administration Medical Center, Decatur, Georgia, USA
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta Veterans Administration Medical Center, Decatur, Georgia, USA
| | - Peijian He
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
46
|
Doguer C, Ha JH, Collins JF. Intersection of Iron and Copper Metabolism in the Mammalian Intestine and Liver. Compr Physiol 2018; 8:1433-1461. [PMID: 30215866 DOI: 10.1002/cphy.c170045] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Iron and copper have similar physiochemical properties; thus, physiologically relevant interactions seem likely. Indeed, points of intersection between these two essential trace minerals have been recognized for many decades, but mechanistic details have been lacking. Investigations in recent years have revealed that copper may positively influence iron homeostasis, and also that iron may antagonize copper metabolism. For example, when body iron stores are low, copper is apparently redistributed to tissues important for regulating iron balance, including enterocytes of upper small bowel, the liver, and blood. Copper in enterocytes may positively influence iron transport, and hepatic copper may enhance biosynthesis of a circulating ferroxidase, ceruloplasmin, which potentiates iron release from stores. Moreover, many intestinal genes related to iron absorption are transactivated by a hypoxia-inducible transcription factor, hypoxia-inducible factor-2α (HIF2α), during iron deficiency. Interestingly, copper influences the DNA-binding activity of the HIF factors, thus further exemplifying how copper may modulate intestinal iron homeostasis. Copper may also alter the activity of the iron-regulatory hormone hepcidin. Furthermore, copper depletion has been noted in iron-loading disorders, such as hereditary hemochromatosis. Copper depletion may also be caused by high-dose iron supplementation, raising concerns particularly in pregnancy when iron supplementation is widely recommended. This review will cover the basic physiology of intestinal iron and copper absorption as well as the metabolism of these minerals in the liver. Also considered in detail will be current experimental work in this field, with a focus on molecular aspects of intestinal and hepatic iron-copper interplay and how this relates to various disease states. © 2018 American Physiological Society. Compr Physiol 8:1433-1461, 2018.
Collapse
Affiliation(s)
- Caglar Doguer
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA.,Nutrition and Dietetics Department, Namık Kemal University, Tekirdag, Turkey
| | - Jung-Heun Ha
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA.,Department of Food and Nutrition, Chosun University Note: Caglar Doguer and Jung-Heun Ha have contributed equally to this work., Gwangju, Korea
| | - James F Collins
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA
| |
Collapse
|
47
|
Fang S, Zhuo Z, Yu X, Wang H, Feng J. Oral administration of liquid iron preparation containing excess iron induces intestine and liver injury, impairs intestinal barrier function and alters the gut microbiota in rats. J Trace Elem Med Biol 2018; 47:12-20. [PMID: 29544798 DOI: 10.1016/j.jtemb.2018.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 12/26/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022]
Abstract
The aim of this study was to determine the toxicological effects of excess iron in a liquid iron preparation (especially on intestinal barrier function) and the possible etiology of side effects or diseases caused by the excess iron. In study 1, forty male Sprague-Dawley rats (4-5 wk old) were subjected to oral gavage with 1 ml vehicle (0.01 mol/L HCl) or 1 ml liquid iron preparation containing 8 mg, 16 mg or 24 mg of iron for 30 d. Iron status, oxidative stress, histology (H&E staining), ultrastructure (electron microscopy) and apoptosis (TUNEL assay) in the intestines and liver were assessed. The cecal microbiota was evaluated by 16S rRNA sequencing. In study 2, twenty rats with the same profile as above were subjected to oral gavage with 1 ml vehicle or 24 mg Fe for 30 d. The intestinal barrier function was determined by in vivo studies and an Ussing chamber assay; tight junction proteins and serum pro-inflammatory cytokines were observed by enzyme-linked immunosorbent assay. In study 1, the intestinal mucosa and liver showed apparent oxidative stress. In addition, iron concentration-dependent ultrastructural alterations to duodenal enterocytes and hepatocytes and histological damage to the colonic mucosa were detected. Notably, apoptosis was increased in duodenal enterocytes and hepatocytes. Impaired intestinal barrier function and lower expression of intestinal tight junction proteins were observed, and the phenotype was more severe in the colon than in the duodenum. A trend toward higher expression of serum pro-inflammatory cytokines might indicate systemic inflammation. Furthermore, the caecal microbiota showed a significant change, with increased Defluviitaleaceae, Ruminococcaceae, and Coprococcus and reduced Lachnospiraceae and Allobaculum, which could mediate the detrimental effects of excess iron on gut health. We concluded that excessive iron exposure from liquid iron preparation induces oxidative stress and histopathological alterations in the intestine and liver. Impaired intestinal barrier function could increase iron transportation, and inflammation along with oxidative stress-enhanced liver iron deposition may cause further liver injury in a vicious circle. These effects were accompanied by lower intestinal segment damage and altered gut microbial composition of rats toward a profile with an increased risk of gut disease.
Collapse
Affiliation(s)
- Shenglin Fang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhao Zhuo
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaonan Yu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Haichao Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jie Feng
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
48
|
Casale M, Borriello A, Scianguetta S, Roberti D, Caiazza M, Bencivenga D, Tartaglione I, Ladogana S, Maruzzi M, Della Ragione F, Perrotta S. Hereditary hypochromic microcytic anemia associated with loss-of-function DMT1 gene mutations and absence of liver iron overload. Am J Hematol 2018; 93:E58-E60. [PMID: 29178181 DOI: 10.1002/ajh.24988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Maddalena Casale
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica; Università della Campania “L. Vanvitelli”; Italy
| | - Adriana Borriello
- Dipartimento di Biochimica, Biofisica e Patologia Generale; Università della Campania “L. Vanvitelli”; Italy
| | - Saverio Scianguetta
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica; Università della Campania “L. Vanvitelli”; Italy
| | - Domenico Roberti
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica; Università della Campania “L. Vanvitelli”; Italy
| | - Martina Caiazza
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica; Università della Campania “L. Vanvitelli”; Italy
| | - Debora Bencivenga
- Dipartimento di Biochimica, Biofisica e Patologia Generale; Università della Campania “L. Vanvitelli”; Italy
| | - Immacolata Tartaglione
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica; Università della Campania “L. Vanvitelli”; Italy
| | - Saverio Ladogana
- Paediatric Onco-haematology Unit; “Casa Sollievo della Sofferenza” Hospital, IRCCS; San Giovanni Rotondo Italy
| | - Matteo Maruzzi
- Paediatric Onco-haematology Unit; “Casa Sollievo della Sofferenza” Hospital, IRCCS; San Giovanni Rotondo Italy
| | - Fulvio Della Ragione
- Dipartimento di Biochimica, Biofisica e Patologia Generale; Università della Campania “L. Vanvitelli”; Italy
| | - Silverio Perrotta
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica; Università della Campania “L. Vanvitelli”; Italy
| |
Collapse
|
49
|
Xiao L, Luo G, Tang Y, Yao P. Quercetin and iron metabolism: What we know and what we need to know. Food Chem Toxicol 2018; 114:190-203. [PMID: 29432835 DOI: 10.1016/j.fct.2018.02.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/18/2018] [Accepted: 02/07/2018] [Indexed: 12/14/2022]
Abstract
Iron is a life-supporting micronutrient that is required in the human diet, and is essential for maintaining physiological homeostasis. Properly harnessing a redox-active metal such as iron is a great challenge for cells and organisms because an excess of highly reactive iron catalyzes the formation of reactive oxygen species and can lead to cell and tissue damage. Quercetin is a typical flavonoid that is commonly found in fruits and vegetables and has versatile biological effects. From a classical viewpoint, owing to its unique chemical characteristics, quercetin has long been associated with iron metabolism only in the context of its iron-chelating and ROS-scavenging activities. However, within the field of human iron biology, expanding concepts of the roles of quercetin are flourishing, and great strides are being made in understanding the interactions between quercetin and iron. This progress highlights the varied roles of quercetin in iron metabolism, which involve much more than iron chelation alone. A review of these studies provides an ideal context to summarize recent progress and discuss compelling evidence for therapeutic opportunities that could arise from a better understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- Lin Xiao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
50
|
Marks ES, Bonnemaison ML, Brusnahan SK, Zhang W, Fan W, Garrison JC, Boesen EI. Renal iron accumulation occurs in lupus nephritis and iron chelation delays the onset of albuminuria. Sci Rep 2017; 7:12821. [PMID: 28993663 PMCID: PMC5634457 DOI: 10.1038/s41598-017-13029-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/19/2017] [Indexed: 12/11/2022] Open
Abstract
Proteins involved in iron homeostasis have been identified as biomarkers for lupus nephritis, a serious complication of systemic lupus erythematosus (SLE). We tested the hypothesis that renal iron accumulation occurs and contributes to renal injury in SLE. Renal non-heme iron levels were increased in the (New Zealand Black x New Zealand White) F1 (NZB/W) mouse model of lupus nephritis compared with healthy New Zealand White (NZW) mice in an age- and strain-dependent manner. Biodistribution studies revealed increased transferrin-bound iron accumulation in the kidneys of albuminuric NZB/W mice, but no difference in the accumulation of non-transferrin bound iron or ferritin. Transferrin excretion was significantly increased in albuminuric NZB/W mice, indicating enhanced tubular exposure and potential for enhanced tubular uptake following filtration. Expression of transferrin receptor and 24p3R were reduced in tubules from NZB/W compared to NZW mice, while ferroportin expression was unchanged and ferritin expression increased, consistent with increased iron accumulation and compensatory downregulation of uptake pathways. Treatment of NZB/W mice with the iron chelator deferiprone significantly delayed the onset of albuminuria and reduced blood urea nitrogen concentrations. Together, these findings suggest that pathological changes in renal iron homeostasis occurs in lupus nephritis, contributing to the development of kidney injury.
Collapse
Affiliation(s)
- Eileen S Marks
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mathilde L Bonnemaison
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Susan K Brusnahan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Wenting Zhang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Wei Fan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jered C Garrison
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Erika I Boesen
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|