1
|
Wu J, Wen L, Liu X, Li Q, Sun Z, Liang C, Xie F, Li X. Silybin: A Review of Its Targeted and Novel Agents for Treating Liver Diseases Based on Pathogenesis. Phytother Res 2024; 38:5713-5740. [PMID: 39310970 DOI: 10.1002/ptr.8347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 12/13/2024]
Abstract
Liver disease represents a significant global public health concern. Silybin, derived from Silybum marianum, has been demonstrated to exhibit a range of beneficial properties, including anti-inflammatory, antioxidative, antifibrotic, antiviral, and cytoprotective effects. These attributes render it a promising candidate for the treatment of liver fibrosis, cirrhosis, liver cancer, viral hepatitis, non-alcoholic fatty liver disease, and other liver conditions. Nevertheless, its low solubility and low bioavailability have emerged as significant limitations in its clinical application. To address these limitations, researchers have developed a number of silybin formulations. This study presents a comprehensive review of the results of research on silybin for the treatment of liver diseases in recent decades, with a particular focus on novel formulations based on the pathogenesis of the disease. These include approaches targeting the liver via the CD44 receptor, folic acid, vitamin A, and others. Furthermore, the study presents the findings of studies that have employed nanotechnology to enhance the low bioavailability and low solubility of silybin. This includes the use of nanoparticles, liposomes, and nanosuspensions. This study reviews the application of silybin preparations in the treatment of global liver diseases. However, further high-quality and more complete experimental studies are still required to gain a more comprehensive understanding of the efficacy and safety of these preparations. Finally, the study considers the issues that arise during the research of silybin formulations.
Collapse
Affiliation(s)
- Jijiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolian Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuipeng Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Shuyun W, Lin F, Pan C, Zhang Q, Tao H, Fan M, Xu L, Kong KV, Chen Y, Lin D, Feng S. Laser tweezer Raman spectroscopy combined with deep neural networks for identification of liver cancer cells. Talanta 2023; 264:124753. [PMID: 37290333 DOI: 10.1016/j.talanta.2023.124753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/10/2023]
Abstract
Rapid identification of cancer cells is crucial for clinical treatment guidance. Laser tweezer Raman spectroscopy (LTRS) that provides biochemical characteristics of cells can be used to identify cell phenotypes through classification models in a non-invasive and label-free manner. However, traditional classification methods require extensive reference databases and clinical experience, which is challenging when sampling at inaccessible locations. Here, we describe a classification method combing LTRS with deep neural network (DNN) for differential and discriminative analysis of multiple liver cancer (LC) cells. By using LTRS, we obtained high-quality single-cell Raman spectra of normal hepatocytes (HL-7702) and liver cancer cell lines (SMMC-7721, Hep3B, HepG2, SK-Hep1 and Huh7). The tentative assignment of Raman peaks indicated that arginine content was elevated and phenylalanine, glutathione and glutamate content was decreased in liver cancer cells. Subsequently, we randomly selected 300 spectra from each cell line for DNN model analysis, achieving a mean accuracy of 99.2%, a mean sensitivity of 99.2% and a mean specificity of 99.8% for the identification and classification of multiple LC cells and hepatocyte cells. These results demonstrate the combination of LTRS and DNN is a promising method for rapid and accurate cancer cell identification at single cell level.
Collapse
Affiliation(s)
- Weng Shuyun
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Fengjie Lin
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital Fuzhou, Fuzhou, 3500014, China
| | - Changbin Pan
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Qiyi Zhang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Hong Tao
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Min Fan
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Luyun Xu
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Kien Voon Kong
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yuanmei Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital Fuzhou, Fuzhou, 3500014, China
| | - Duo Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350117, China.
| | - Shangyuan Feng
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350117, China.
| |
Collapse
|
3
|
Goonetilleke M, Kuk N, Correia J, Hodge A, Moore G, Gantier MP, Yeoh G, Sievert W, Lim R. Addressing the liver progenitor cell response and hepatic oxidative stress in experimental non-alcoholic fatty liver disease/non-alcoholic steatohepatitis using amniotic epithelial cells. Stem Cell Res Ther 2021; 12:429. [PMID: 34321089 PMCID: PMC8317377 DOI: 10.1186/s13287-021-02476-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 06/26/2021] [Indexed: 12/29/2022] Open
Abstract
Background Non-alcoholic fatty liver disease is the most common liver disease globally and in its inflammatory form, non-alcoholic steatohepatitis (NASH), can progress to cirrhosis and hepatocellular carcinoma (HCC). Currently, patient education and lifestyle changes are the major tools to prevent the continued progression of NASH. Emerging therapies in NASH target known pathological processes involved in the progression of the disease including inflammation, fibrosis, oxidative stress and hepatocyte apoptosis. Human amniotic epithelial cells (hAECs) were previously shown to be beneficial in experimental models of chronic liver injury, reducing hepatic inflammation and fibrosis. Previous studies have shown that liver progenitor cells (LPCs) response plays a significant role in the development of fibrosis and HCC in mouse models of fatty liver disease. In this study, we examined the effect hAECs have on the LPC response and hepatic oxidative stress in an experimental model of NASH. Methods Experimental NASH was induced in C57BL/6 J male mice using a high-fat, high fructose diet for 42 weeks. Mice received either a single intraperitoneal injection of 2 × 106 hAECs at week 34 or an additional hAEC dose at week 38. Changes to the LPC response and oxidative stress regulators were measured. Results hAEC administration significantly reduced the expansion of LPCs and their mitogens, IL-6, IFNγ and TWEAK. hAEC administration also reduced neutrophil infiltration and myeloperoxidase production with a concurrent increase in heme oxygenase-1 production. These observations were accompanied by a significant increase in total levels of anti-fibrotic IFNβ in mice treated with a single dose of hAECs, which appeared to be independent of c-GAS-STING activation. Conclusions Expansion of liver progenitor cells, hepatic inflammation and oxidative stress associated with experimental NASH were attenuated by hAEC administration. Given that repeated doses did not significantly increase efficacy, future studies assessing the impact of dose escalation and/or timing of dose may provide insights into clinical translation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02476-6.
Collapse
Affiliation(s)
- Mihiri Goonetilleke
- Centre for Inflammatory Disease, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia.,The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - Nathan Kuk
- Centre for Inflammatory Disease, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia.,Gastroenterology and Hepatology Unit, Monash Health, Melbourne, Victoria, Australia
| | - Jeanne Correia
- Centre for Inflammatory Disease, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia.,The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Gastroenterology and Hepatology Unit, Monash Health, Melbourne, Victoria, Australia
| | - Alex Hodge
- Centre for Inflammatory Disease, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia.,Gastroenterology and Hepatology Unit, Monash Health, Melbourne, Victoria, Australia
| | - Gregory Moore
- Centre for Inflammatory Disease, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia.,Gastroenterology and Hepatology Unit, Monash Health, Melbourne, Victoria, Australia
| | - Michael P Gantier
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.,Centre for Innate Immunity and Infectious Disease, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - George Yeoh
- Centre for Medical Research, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia.,School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - William Sievert
- Centre for Inflammatory Disease, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia.,Gastroenterology and Hepatology Unit, Monash Health, Melbourne, Victoria, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia. .,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Jiang T, Sánchez-Rivera FJ, Soto-Feliciano YM, Yang Q, Song CQ, Bhuatkar A, Haynes CM, Hemann MT, Xue W. Targeting the De Novo Purine Synthesis Pathway Through Adenylosuccinate Lyase Depletion Impairs Liver Cancer Growth by Perturbing Mitochondrial Function. Hepatology 2021; 74:233-247. [PMID: 33336367 PMCID: PMC8209110 DOI: 10.1002/hep.31685] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/12/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is among the most common cancer types worldwide, yet patients with HCC have limited treatment options. There is an urgent need to identify drug targets that specifically inhibit the growth of HCC cells. APPROACH AND RESULTS We used a CRISPR library targeting ~2,000 druggable genes to perform a high-throughput screen and identified adenylosuccinate lyase (ADSL), a key enzyme involved in the de novo purine synthesis pathway, as a potential drug target for HCC. ADSL has been implicated as a potential oncogenic driver in some cancers, but its role in liver cancer progression remains unknown. CRISPR-mediated knockout of ADSL impaired colony formation of liver cancer cells by affecting AMP production. In the absence of ADSL, the growth of liver tumors is retarded in vivo. Mechanistically, we found that ADSL knockout caused S-phase cell cycle arrest not by inducing DNA damage but by impairing mitochondrial function. Using data from patients with HCC, we also revealed that high ADSL expression occurs during tumorigenesis and is linked to poor survival rate. CONCLUSIONS Our findings uncover the role of ADSL-mediated de novo purine synthesis in fueling mitochondrial ATP production to promote liver cancer cell growth. Targeting ADSL may be a therapeutic approach for patients with HCC.
Collapse
Affiliation(s)
- Tingting Jiang
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Francisco J. Sánchez-Rivera
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, NY 10065
| | - Yadira M. Soto-Feliciano
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Qiyuan Yang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Chun-Qing Song
- Westlake University, Hangzhou, Zhejiang Province, 310024, China
| | - Arjun Bhuatkar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Cole M Haynes
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael T. Hemann
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605
| |
Collapse
|
5
|
A Bioinformatics Analysis Identifies the Telomerase Inhibitor MST-312 for Treating High-STMN1-Expressing Hepatocellular Carcinoma. J Pers Med 2021; 11:jpm11050332. [PMID: 33922244 PMCID: PMC8145764 DOI: 10.3390/jpm11050332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 01/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a relatively chemo-resistant tumor. Several multi-kinase inhibitors have been approved for treating advanced HCC. However, most HCC patients are highly refractory to these drugs. Therefore, the development of more effective therapies for advanced HCC patients is urgently needed. Stathmin 1 (STMN1) is an oncoprotein that destabilizes microtubules and promotes cancer cell migration and invasion. In this study, cancer genomics data mining identified STMN1 as a prognosis biomarker and a therapeutic target for HCC. Co-expressed gene analysis indicated that STMN1 expression was positively associated with cell-cycle-related gene expression. Chemical sensitivity profiling of HCC cell lines suggested that High-STMN1-expressing HCC cells were the most sensitive to MST-312 (a telomerase inhibitor). Drug-gene connectivity mapping supported that MST-312 reversed the STMN1-co-expressed gene signature (especially BUB1B, MCM2/5/6, and TTK genes). In vitro experiments validated that MST-312 inhibited HCC cell viability and related protein expression (STMN1, BUB1B, and MCM5). In addition, overexpression of STMN1 enhanced the anticancer activity of MST-312 in HCC cells. Therefore, MST-312 can be used for treating STMN1-high expression HCC.
Collapse
|
6
|
Alison MR. The cellular origins of cancer with particular reference to the gastrointestinal tract. Int J Exp Pathol 2020; 101:132-151. [PMID: 32794627 PMCID: PMC7495846 DOI: 10.1111/iep.12364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022] Open
Abstract
Stem cells or their closely related committed progenitor cells are the likely founder cells of most neoplasms. In the continually renewing and hierarchically organized epithelia of the oesophagus, stomach and intestine, homeostatic stem cells are located at the beginning of the cell flux, in the basal layer of the oesophagus, the isthmic region of gastric oxyntic glands and at the bottom of gastric pyloric-antral glands and colonic crypts. The introduction of mutant oncogenes such as KrasG12D or loss of Tp53 or Apc to specific cell types expressing the likes of Lgr5 and Mist1 can be readily accomplished in genetically engineered mouse models to initiate tumorigenesis. Other origins of cancer are discussed including 'reserve' stem cells that may be activated by damage or through disruption of morphogen gradients along the crypt axis. In the liver and pancreas, with little cell turnover and no obvious stem cell markers, the importance of regenerative hyperplasia associated with chronic inflammation to tumour initiation is vividly apparent, though inflammatory conditions in the renewing populations are also permissive for tumour induction. In the liver, hepatocytes, biliary epithelial cells and hepatic progenitor cells are embryologically related, and all can give rise to hepatocellular carcinoma and cholangiocarcinoma. In the exocrine pancreas, both acinar and ductal cells can give rise to pancreatic ductal adenocarcinoma (PDAC), although the preceding preneoplastic states are quite different: acinar-ductal metaplasia gives rise to pancreatic intraepithelial neoplasia culminating in PDAC, while ducts give rise to PDAC via. mucinous cell metaplasia that may have a polyclonal origin.
Collapse
Affiliation(s)
- Malcolm R. Alison
- Centre for Tumour BiologyBarts Cancer Institute, Charterhouse SquareBarts and The London School of Medicine and DentistryLondonUK
| |
Collapse
|
7
|
Stem Cell Therapy for Hepatocellular Carcinoma: Future Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1237:97-119. [PMID: 31728916 DOI: 10.1007/5584_2019_441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of cancer and results in a high mortality rate worldwide. Unfortunately, most cases of HCC are diagnosed in an advanced stage, resulting in a poor prognosis and ineffective treatment. HCC is often resistant to both radiotherapy and chemotherapy, resulting in a high recurrence rate. Although the use of stem cells is evolving into a potentially effective approach for the treatment of cancer, few studies on stem cell therapy in HCC have been published. The administration of stem cells from bone marrow, adipose tissue, the amnion, and the umbilical cord to experimental animal models of HCC has not yielded consistent responses. However, it is possible to induce the apoptosis of cancer cells, repress angiogenesis, and cause tumor regression by administration of genetically modified stem cells. New alternative approaches to cancer therapy, such as the use of stem cell derivatives, exosomes or stem cell extracts, have been proposed. In this review, we highlight these experimental approaches for the use of stem cells as a vehicle for local drug delivery.
Collapse
|
8
|
Castven D, Fischer M, Becker D, Heinrich S, Andersen JB, Strand D, Sprinzl MF, Strand S, Czauderna C, Heilmann-Heimbach S, Roessler S, Weinmann A, Wörns MA, Thorgeirsson SS, Galle PR, Matter MS, Lang H, Marquardt JU. Adverse genomic alterations and stemness features are induced by field cancerization in the microenvironment of hepatocellular carcinomas. Oncotarget 2018; 8:48688-48700. [PMID: 28415775 PMCID: PMC5564717 DOI: 10.18632/oncotarget.16231] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/03/2017] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular Carcinoma (HCC) commonly develops in chronically damaged liver tissues. The resulting regenerative and inflammatory processes create an adverse milieu that promotes tumor-initiation and progression. A better understanding of the hepatic tumor-microenvironment interaction might infer profound therapeutic implications. Integrative whole genome and transcriptome analyses of different tumor regions, the invasive tumor border and tumor-surrounding liver (SL) were performed to identify associated molecular alterations and integrated with our existing HCC database. Expression levels and localization of established CSC markers were assessed in pre-neoplastic lesions and confirmed in two independent patient cohorts using qRT-PCR, immunohistochemistry and immunofluorescence. Our results indicate that genomic and transcriptomic profiles between SL and different tumor regions are quite distinct. Progressive increase in genetic alterations and activation of pathways related to proliferation as well as apoptosis were observed in the tumor tissue, while activation of stemness markers was present in cirrhotic SL and continuously decreased from pre-neoplastic lesions to HCC. Interestingly, the invasive tumor border was characterized by inflammatory and EMT-related gene sets as well as activation of pro-survival signaling. Consistently, integration of gene expression signatures with two independent HCC databases containing 300 HCCs revealed that border signatures are predictive of HCC patient survival. Prognostic significance of the permissive liver microenvironment might be a consequence of a pro-oncogenic field effect that is caused by chronic regenerative processes. Activation of key oncogenic features and immune-response signaling indicates that the cross-talk between tumor and microenvironment might be a promising therapeutic and/or preventive target.
Collapse
Affiliation(s)
- Darko Castven
- Department of Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Michael Fischer
- Department of Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Diana Becker
- Department of Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Stefan Heinrich
- Department of Surgery, Johannes Gutenberg University, Mainz, Germany
| | - Jesper B Andersen
- Department of Health and Medical Science, Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Dennis Strand
- Department of Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Martin F Sprinzl
- Department of Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Susanne Strand
- Department of Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Carolin Czauderna
- Department of Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Stefanie Heilmann-Heimbach
- Department of Genomics, Institute of Human Genetics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Arndt Weinmann
- Department of Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Marcus A Wörns
- Department of Medicine, Johannes Gutenberg University, Mainz, Germany
| | - Snorri S Thorgeirsson
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Peter R Galle
- Department of Medicine, Johannes Gutenberg University, Mainz, Germany
| | | | - Hauke Lang
- Department of Surgery, Johannes Gutenberg University, Mainz, Germany
| | - Jens U Marquardt
- Department of Medicine, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
9
|
Sia D, Villanueva A, Friedman SL, Llovet JM. Liver Cancer Cell of Origin, Molecular Class, and Effects on Patient Prognosis. Gastroenterology 2017; 152:745-761. [PMID: 28043904 DOI: 10.1053/j.gastro.2016.11.048] [Citation(s) in RCA: 768] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/09/2016] [Accepted: 11/26/2016] [Indexed: 12/11/2022]
Abstract
Primary liver cancer is the second leading cause of cancer-related death worldwide and therefore a major public health challenge. We review hypotheses of the cell of origin of liver tumorigenesis and clarify the classes of liver cancer based on molecular features and how they affect patient prognosis. Primary liver cancer comprises hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (iCCA), and other rare tumors, notably fibrolamellar carcinoma and hepatoblastoma. The molecular and clinical features of HCC versus iCCA are distinct, but these conditions have overlapping risk factors and pathways of oncogenesis. A better understanding of the cell types originating liver cancer can aid in exploring molecular mechanisms of carcinogenesis and therapeutic options. Molecular studies have identified adult hepatocytes as the cell of origin. These cells have been proposed to transform directly into HCC cells (via a sequence of genetic alterations), to dedifferentiate into hepatocyte precursor cells (which then become HCC cells that express progenitor cell markers), or to transdifferentiate into biliary-like cells (which give rise to iCCA). Alternatively, progenitor cells also give rise to HCCs and iCCAs with markers of progenitor cells. Advances in genome profiling and next-generation sequencing have led to the classification of HCCs based on molecular features and assigned them to categories such as proliferation-progenitor, proliferation-transforming growth factor β, and Wnt-catenin β1. iCCAs have been assigned to categories of proliferation and inflammation. Overall, proliferation subclasses are associated with a more aggressive phenotype and poor outcome of patients, although more specific signatures have refined our prognostic abilities. Analyses of genetic alterations have identified those that might be targeted therapeutically, such as fusions in the FGFR2 gene and mutations in genes encoding isocitrate dehydrogenases (in approximately 60% of iCCAs) or amplifications at 11q13 and 6p21 (in approximately 15% of HCCs). Further studies of these alterations are needed before they can be used as biomarkers in clinical decision making.
Collapse
Affiliation(s)
- Daniela Sia
- Mount Sinai Liver Cancer Program, Divisions of Liver Diseases, Hematology, and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Augusto Villanueva
- Mount Sinai Liver Cancer Program, Divisions of Liver Diseases, Hematology, and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Scott L Friedman
- Mount Sinai Liver Cancer Program, Divisions of Liver Diseases, Hematology, and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Josep M Llovet
- Mount Sinai Liver Cancer Program, Divisions of Liver Diseases, Hematology, and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Liver Cancer Translational Research Laboratory, BCLC, Liver Unit, CIBEREHD, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain.
| |
Collapse
|