1
|
Ulrich H, Glaser T, Thomas AP. Purinergic signaling in liver disease: calcium signaling and induction of inflammation. Purinergic Signal 2024:10.1007/s11302-024-10044-9. [PMID: 39320433 DOI: 10.1007/s11302-024-10044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/15/2024] [Indexed: 09/26/2024] Open
Abstract
Purinergic signaling regulates many metabolic functions and is implicated in liver physiology and pathophysiology. Liver functionality is modulated by ionotropic P2X and metabotropic P2Y receptors, specifically P2Y1, P2Y2, and P2Y6 subtypes, which physiologically exert their influence through calcium signaling, a key second messenger controlling glucose and fat metabolism in hepatocytes. Purinergic receptors, acting through calcium signaling, play an important role in a range of liver diseases. Ionotropic P2X receptors, such as the P2X7 subtype, and certain metabotropic P2Y receptors can induce aberrant intracellular calcium transients that impact normal hepatocyte function and initiate the activation of other liver cell types, including Kupffer and stellate cells. These P2Y- and P2X-dependent intracellular calcium increases are particularly relevant in hepatic disease states, where stellate and Kupffer cells respond with innate immune reactions to challenges, such as excess fat accumulation, chronic alcohol abuse, or infections, and can eventually lead to liver fibrosis. This review explores the consequences of excessive extracellular ATP accumulation, triggering calcium influx through P2X4 and P2X7 receptors, inflammasome activation, and programmed cell death. In addition, P2Y2 receptors contribute to hepatic steatosis and insulin resistance, while inhibiting the expression of P2Y6 receptors can alleviate alcoholic liver steatosis. Adenosine receptors may also contribute to fibrosis through extracellular matrix production by fibroblasts. Thus, pharmacological modulation of P1 and P2 receptors and downstream calcium signaling may open novel therapeutic avenues.
Collapse
Affiliation(s)
- Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Andrew P Thomas
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
2
|
Mata-Martínez E, Ramírez-Ledesma MG, Vázquez-Victorio G, Hernández-Muñoz R, Díaz-Muñoz M, Vázquez-Cuevas FG. Purinergic Signaling in Non-Parenchymal Liver Cells. Int J Mol Sci 2024; 25:9447. [PMID: 39273394 PMCID: PMC11394727 DOI: 10.3390/ijms25179447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Purinergic signaling has emerged as an important paracrine-autocrine intercellular system that regulates physiological and pathological processes in practically all organs of the body. Although this system has been thoroughly defined since the nineties, recent research has made substantial advances regarding its role in aspects of liver physiology. However, most studies have mainly targeted the entire organ, 70% of which is made up of parenchymal cells or hepatocytes. Because of its physiological role, the liver is exposed to toxic metabolites, such as xenobiotics, drugs, and fatty acids, as well as to pathogens such as viruses and bacteria. Under injury conditions, all cell types within the liver undergo adaptive changes. In this context, the concentration of extracellular ATP has the potential to increase dramatically. Indeed, this purinergic response has not been studied in sufficient detail in non-parenchymal liver cells. In the present review, we systematize the physiopathological adaptations related to the purinergic system in chronic liver diseases of non-parenchymal liver cells, such as hepatic stellate cells, Kupffer cells, sinusoidal endothelial cells, and cholangiocytes. The role played by non-parenchymal liver cells in these circumstances will undoubtedly be strategic in understanding the regenerative activities that support the viability of this organ under stressful conditions.
Collapse
Affiliation(s)
- Esperanza Mata-Martínez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - María Guadalupe Ramírez-Ledesma
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| | - Genaro Vázquez-Victorio
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Rolando Hernández-Muñoz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| | - Francisco G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| |
Collapse
|
3
|
Liu Z, Sun M, Liu W, Feng F, Li X, Jin C, Zhang Y, Wang J. Deficiency of purinergic P2X4 receptor alleviates experimental autoimmune hepatitis in mice. Biochem Pharmacol 2024; 221:116033. [PMID: 38301964 DOI: 10.1016/j.bcp.2024.116033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/29/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Purinergic P2X4 receptor (P2X4R) has been shown to have immunomodulatory properties in infection, inflammation, and organ damage including liver regeneration and fibrosis. However, the mechanisms and pathophysiology associated with P2X4R during acute liver injury remain unknown. We used P2X4R-/- mice to explore the role of P2X4R in three different models of acute liver injury caused by concanavalin A (ConA), carbon tetrachloride, and acetaminophen. ConA treatment results in an increased expression of P2X4R in the liver of mice, which was positively correlated with higher levels of aspartate aminotransferase and alanine aminotransferase in the serum. However, P2X4R gene ablation significantly reduced the severity of acute hepatitis in mice caused by ConA, but not by carbon tetrachloride or acetaminophen. The protective benefits against immune-mediated acute hepatitis were achieved via modulating inflammation (Interleukin (IL)-1β, IL-6, IL-17A, interferon-γ, tumor necrosis factor-α), oxidative stress (malondialdehyde, superoxide dismutase, glutathione peroxidase, and catalase), apoptosis markers (Bax, Bcl-2, and Caspase-3), autophagy biomarkers (LC3, Beclin-1, and p62), and nucleotide oligomerization domain-likereceptorprotein 3(NLRP3) inflammasome-activated pyroptosis markers (NLRP3, Gasdermin D, Caspase-1, ASC, IL-1β). Additionally, administration of P2X4R antagonist (5-BDBD) or agonist (cytidine 5'-triphosphate) either improved or worsened ConA-induced autoimmune hepatitis, respectively. This study is the first to reveal that the absence of the P2X4 receptor may mitigate immune-mediated liver damage, potentially by restraining inflammation, oxidation, and programmed cell death mechanisms. And highlight P2X4 receptor is essential for ConA-induced acute hepatitis.
Collapse
Affiliation(s)
- Zejin Liu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Mengyang Sun
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Wenhua Liu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Fangyu Feng
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Xinyu Li
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Chaolei Jin
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Yijie Zhang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Junpeng Wang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China.
| |
Collapse
|
4
|
Arunachalam AR, Samuel SS, Mani A, Maynard JP, Stayer KM, Dybbro E, Narayanan S, Biswas A, Pathan S, Soni K, Kamal AHM, Ambati CSR, Putluri N, Desai MS, Thevananther S. P2Y2 purinergic receptor gene deletion protects mice from bacterial endotoxin and sepsis-associated liver injury and mortality. Am J Physiol Gastrointest Liver Physiol 2023; 325:G471-G491. [PMID: 37697947 PMCID: PMC10812707 DOI: 10.1152/ajpgi.00090.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
The liver plays a significant role in regulating a wide range of metabolic, homeostatic, and host-defense functions. However, the impact of liver injury on the host's ability to control bacteremia and morbidity in sepsis is not well understood. Leukocyte recruitment and activation lead to cytokine and chemokine release, which, in turn, trigger hepatocellular injury and elevate nucleotide levels in the extracellular milieu. P2Y2 purinergic receptors, G protein-coupled and activated by extracellular ATP/UTP, are expressed at the cell surface of hepatocytes and nonparenchymal cells. We sought to determine whether P2Y2 purinergic receptor function is necessary for the maladaptive host response to bacterial infection and endotoxin-mediated inflammatory liver injury and mortality in mice. We report that P2Y2 purinergic receptor knockout mice (P2Y2-/-) had attenuated inflammation and liver injury, with improved survival in response to LPS/galactosamine (LPS/GalN; inflammatory liver injury) and cecal ligation and puncture (CLP; polymicrobial sepsis). P2Y2-/- livers had attenuated c-Jun NH2-terminal kinase activation, matrix metallopeptidase-9 expression, and hepatocyte apoptosis in response to LPS/GalN and attenuated inducible nitric oxide synthase and nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 protein expression in response to CLP. Implicating liver injury in the disruption of amino acid homeostasis, CLP led to lower serum arginine and higher bacterial load and morbidity in the WT mice, whereas serum arginine levels were comparable to sham-operated controls in P2Y2-/- mice, which had attenuated bacteremia and improved survival. Collectively, our studies highlight the pathophysiological relevance of P2Y2 purinergic receptor function in inflammatory liver injury and dysregulation of systemic amino acid homeostasis with implications for sepsis-associated immune dysfunction and morbidity in mice.NEW & NOTEWORTHY Our studies provide experimental evidence for P2Y2 purinergic receptor-mediated potentiation of inflammatory liver injury, morbidity, and mortality, in two well-established animal models of inflammatory liver injury. Our findings highlight the potential to target P2Y2 purinergic signaling to attenuate the induction of "cytokine storm" and prevent its deleterious consequences on liver function, systemic amino acid homeostasis, host response to bacterial infection, and sepsis-associated morbidity and mortality.
Collapse
Affiliation(s)
- Athis R Arunachalam
- Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Sanju S Samuel
- Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Arunmani Mani
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Janielle P Maynard
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Kelsey M Stayer
- Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Eric Dybbro
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Subapradha Narayanan
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Aalekhya Biswas
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Saliha Pathan
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Krishnakant Soni
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Abu Hena Mostafa Kamal
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States
| | | | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States
| | - Moreshwar S Desai
- Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Sundararajah Thevananther
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
5
|
Lallement J, Raho I, Merlen G, Rainteau D, Croyal M, Schiffano M, Kassis N, Doignon I, Soty M, Lachkar F, Krempf M, Van Hul M, Cani PD, Foufelle F, Amouyal C, Le Stunff H, Magnan C, Tordjmann T, Cruciani-Guglielmacci C. Hepatic deletion of serine palmitoyl transferase 2 impairs ceramide/sphingomyelin balance, bile acids homeostasis and leads to liver damage in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159333. [PMID: 37224999 DOI: 10.1016/j.bbalip.2023.159333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/24/2023] [Accepted: 04/30/2023] [Indexed: 05/26/2023]
Abstract
Ceramides (Cer) have been shown as lipotoxic inducers, which disturb numerous cell-signaling pathways, leading to metabolic disorders such as type 2 diabetes. In this study, we aimed to determine the role of de novo hepatic ceramide synthesis in energy and liver homeostasis in mice. We generated mice lacking serine palmitoyltransferase 2 (Sptlc2), the rate limiting enzyme of ceramide de novo synthesis, in liver under albumin promoter. Liver function, glucose homeostasis, bile acid (BA) metabolism and hepatic sphingolipids content were assessed using metabolic tests and LC-MS. Despite lower expression of hepatic Sptlc2, we observed an increased concentration of hepatic Cer, associated with a 10-fold increase in neutral sphingomyelinase 2 (nSMase2) expression, and a decreased sphingomyelin content in the liver. Sptlc2ΔLiv mice were protected against obesity induced by high fat diet and displayed a defect in lipid absorption. In addition, an important increase in tauro-muricholic acid was associated with a downregulation of the nuclear BA receptor FXR target genes. Sptlc2 deficiency also enhanced glucose tolerance and attenuated hepatic glucose production, while the latter effect was dampened in presence of nSMase2 inhibitor. Finally, Sptlc2 disruption promoted apoptosis, inflammation and progressive development of hepatic fibrosis, worsening with age. Our data suggest a compensatory mechanism to regulate hepatic ceramides content from sphingomyelin hydrolysis, with deleterious impact on liver homeostasis. In addition, our results show the involvement of hepatic sphingolipid modulation in BA metabolism and hepatic glucose production in an insulin-independent manner, which highlight the still under-researched role of ceramides in many metabolic functions.
Collapse
Affiliation(s)
- Justine Lallement
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Ilyès Raho
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | | | - Dominique Rainteau
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Biochemistry Department, Paris, France
| | - Mikael Croyal
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000 Nantes, France; Plateforme de Spectrométrie de Masse du CRNH-O, UMR1280, Nantes, France
| | - Melody Schiffano
- Plateforme de Spectrométrie de Masse du CRNH-O, UMR1280, Nantes, France
| | - Nadim Kassis
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | | | - Maud Soty
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, Lyon, France
| | - Floriane Lachkar
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, 75006 Paris, France
| | | | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain (Université catholique de Louvain), 1200 Brussels, Belgium; Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300 Wavre, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain (Université catholique de Louvain), 1200 Brussels, Belgium; Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300 Wavre, Belgium
| | - Fabienne Foufelle
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, 75006 Paris, France
| | - Chloé Amouyal
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Hervé Le Stunff
- Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Université Paris Saclay, France
| | - Christophe Magnan
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | | | | |
Collapse
|
6
|
Li ZX, Sheng XD, Wang YL, Wen Lv X. Blocking P2X4 purinergic receptor attenuates alcohol-related liver fibrosis by inhibiting hepatic stellate cell activation through PI3K/AKT signaling pathway. Int Immunopharmacol 2022; 113:109326. [DOI: 10.1016/j.intimp.2022.109326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/22/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
|
7
|
Castillo C, Saez-Orellana F, Godoy PA, Fuentealba J. Microglial Activation Modulated by P2X4R in Ischemia and Repercussions in Alzheimer's Disease. Front Physiol 2022; 13:814999. [PMID: 35283778 PMCID: PMC8904919 DOI: 10.3389/fphys.2022.814999] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/12/2022] [Indexed: 01/01/2023] Open
Abstract
There are over 80 million people currently living who have had a stroke. The ischemic injury in the brain starts a cascade of events that lead to neuronal death, inducing neurodegeneration which could lead to Alzheimer's disease (AD). Cerebrovascular diseases have been suggested to contribute to AD neuropathological changes, including brain atrophy and accumulation of abnormal proteins such as amyloid beta (Aβ). In patients older than 60 years, the incidence of dementia a year after stroke was significantly increased. Nevertheless, the molecular links between stroke and dementia are not clearly understood but could be related to neuroinflammation. Considering that activated microglia has a central role, there are brain-resident innate immune cells and are about 10-15% of glial cells in the adult brain. Their phagocytic activity is essential for synaptic homeostasis in different areas, such as the hippocampus. These cells polarize into phenotypes or subtypes: the pro-inflammatory M1 phenotype, or the immunosuppressive M2 phenotype. Phenotype M1 is induced by classical activation, where microglia secrete a high level of pro- inflammatory factors which can cause damage to the surrounding neuronal cells. Otherwise, M2 phenotype is the major effector cell with the potential to counteract pro-inflammatory reactions and promote repair genes expression. Moreover, after the classical activation, an anti-inflammatory and a repair phase are initiated to achieve tissue homeostasis. Recently it has been described the concepts of homeostatic and reactive microglia and they had been related to major AD risk, linking to a multifunctional microglial response to Aβ plaques and pathophysiology markers related, such as intracellular increased calcium. The upregulation and increased activity of purinergic receptors activated by ADP/ATP, specially P2X4R, which has a high permeability to calcium and is mainly expressed in microglial cells, is observed in diseases related to neuroinflammation, such as neuropathic pain and stroke. Thus, P2X4R is associated with microglial activation. P2X4R activation drives microglia motility via the phosphatidylinositol-3-kinase (PI3K)/Akt pathway. Also, these receptors are involved in inflammatory-mediated prostaglandin E2 (PGE2) production and induce a secretion and increase the expression of BDNF and TNF-α which could be a link between pathologies related to aging and neuroinflammation.
Collapse
Affiliation(s)
- Carolina Castillo
- Laboratory of Screening of Neuroactive Compounds, Department of Physiology, School of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Francisco Saez-Orellana
- Laboratory of Screening of Neuroactive Compounds, Department of Physiology, School of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Pamela Andrea Godoy
- Laboratory of Screening of Neuroactive Compounds, Department of Physiology, School of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Jorge Fuentealba
- Laboratory of Screening of Neuroactive Compounds, Department of Physiology, School of Biological Sciences, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
8
|
Keely SJ, Urso A, Ilyaskin AV, Korbmacher C, Bunnett NW, Poole DP, Carbone SE. Contributions of bile acids to gastrointestinal physiology as receptor agonists and modifiers of ion channels. Am J Physiol Gastrointest Liver Physiol 2022; 322:G201-G222. [PMID: 34755536 PMCID: PMC8782647 DOI: 10.1152/ajpgi.00125.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 02/03/2023]
Abstract
Bile acids (BAs) are known to be important regulators of intestinal motility and epithelial fluid and electrolyte transport. Over the past two decades, significant advances in identifying and characterizing the receptors, transporters, and ion channels targeted by BAs have led to exciting new insights into the molecular mechanisms involved in these processes. Our appreciation of BAs, their receptors, and BA-modulated ion channels as potential targets for the development of new approaches to treat intestinal motility and transport disorders is increasing. In the current review, we aim to summarize recent advances in our knowledge of the different BA receptors and BA-modulated ion channels present in the gastrointestinal system. We discuss how they regulate motility and epithelial transport, their roles in pathogenesis, and their therapeutic potential in a range of gastrointestinal diseases.
Collapse
Affiliation(s)
- Stephen J Keely
- Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Andreacarola Urso
- Department of Surgery, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Pharmacology, Columbia University, New York, New York
| | - Alexandr V Ilyaskin
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Bavaria, Germany
| | - Christoph Korbmacher
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Bavaria, Germany
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, Neuroscience Institute, New York University, New York, New York
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, New York
| | - Daniel P Poole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council, Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Simona E Carbone
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council, Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
9
|
An Q, Yue G, Yang X, Lou J, Shan W, Ding J, Jin Z, Hu Y, Du Q, Liao Q, Xie R, Xu J. Pathophysiological Role of Purinergic P2X Receptors in Digestive System Diseases. Front Physiol 2022; 12:781069. [PMID: 35002763 PMCID: PMC8740087 DOI: 10.3389/fphys.2021.781069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
P2X receptors (P2XRs) are trimeric, non-selective cation channels activated by extracellular ATP and widely distributed in the digestive system. P2XRs have an important role in the physiological function of the digestive system, such as neurotransmission, ion transports, proliferation and apoptosis, muscle contraction, and relaxation. P2XRs can be involved in pain mechanisms both centrally and in the periphery and confirmed the association of P2XRs with visceral pain. In the periphery, ATP can be released as a result of tissue injury, visceral distension, or sympathetic activation and can excite nociceptive primary afferents by acting at homomeric P2X(3)R or heteromeric P2X(2/3)R. Thus, peripheral P2XRs, and homomeric P2X(3) and/or heteromeric P2X(2/3)R in particular, constitute attractive targets for analgesic drugs. Recently studies have shown that P2XRs have made significant advances in inflammation and cancer. P2X7R mediates NLRP3 inflammasome activation, cytokine and chemokine release, T lymphocyte survival and differentiation, transcription factor activation, and cell death. The P2X7R is a potent stimulant of inflammation and immunity and a promoter of cancer cell growth. This makes P2X7R an appealing target for anti-inflammatory and anti-cancer therapy. It is believed that with the further study of P2XRs and its subtypes, P2XRs and its specific antagonists will be expected to be widely used in the treatment of human digestive diseases in the future.
Collapse
Affiliation(s)
- Qimin An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Gengyu Yue
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Xiaoxu Yang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Jun Lou
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Weixi Shan
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Jianhong Ding
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Zhe Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Yanxia Hu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Qian Du
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Qiushi Liao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| |
Collapse
|
10
|
Mesto N, Movassat J, Tourrel-Cuzin C. P2-type purinergic signaling in the regulation of pancreatic β-cell functional plasticity as a promising novel therapeutic approach for the treatment of type 2 diabetes? Front Endocrinol (Lausanne) 2022; 13:1099152. [PMID: 37065173 PMCID: PMC10099247 DOI: 10.3389/fendo.2022.1099152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Diabetes Mellitus is a metabolic disorder characterized by a chronic hyperglycemia due to an impaired insulin secretion and a decreased in peripheral insulin sensitivity. This disease is a major public health problem due to it sharp prevalence. Therefore, it is crucial to readapt therapeutic approaches for the treatment of this pathology. One of the strategies would be through P2-type purinergic receptors pathway via ATP binding. In addition to its well-known role as an intracellular energy intermediary in numerous biochemical and physiological processes, ATP is also an important extracellular signaling molecule. ATP mediates its effects by binding and activating two classes of P2 purinoreceptors: P2X receptors that are ligand-gated ion channel receptors, existing in seven isoforms (P2X 1 to 7) and P2Y receptors that are G-protein coupled receptors, existing in eight isoforms (P2Y 1/2/4/6/11/12/13/14). These receptors are ubiquitously distributed and involved in numerous physiological processes in several tissues. The concept of purinergic signaling, originally formulated by Geoffrey Burnstock (1929-2020), was also found to mediate various responses in the pancreas. Several studies have shown that P2 receptors are expressed in the endocrine pancreas, notably in β cells, where ATP could modulate their function but also their plasticity and thus play a physiological role in stimulating insulin secretion to face some metabolic demands. In this review, we provide a historical perspective and summarize current knowledge on P2-type purinergic signaling in the regulation of pancreatic β-cell functional plasticity, which would be a promising novel therapeutic approach for the treatment of type 2 diabetes.
Collapse
|
11
|
P2X4 Receptors Mediate Ca 2+ Release from Lysosomes in Response to Stimulation of P2X7 and H 1 Histamine Receptors. Int J Mol Sci 2021; 22:ijms221910492. [PMID: 34638832 PMCID: PMC8508626 DOI: 10.3390/ijms221910492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 01/01/2023] Open
Abstract
The P2X4 purinergic receptor is targeted to endolysosomes, where it mediates an inward current dependent on luminal ATP and pH. Activation of P2X4 receptors was previously shown to trigger lysosome fusion, but the regulation of P2X4 receptors and their role in lysosomal Ca2+ signaling are poorly understood. We show that lysosomal P2X4 receptors are activated downstream of plasma membrane P2X7 and H1 histamine receptor stimulation. When P2X4 receptors are expressed, the increase in near-lysosome cytosolic [Ca2+] is exaggerated, as detected with a low-affinity targeted Ca2+ sensor. P2X4-dependent changes in lysosome properties were triggered downstream of P2X7 receptor activation, including an enlargement of lysosomes indicative of homotypic fusion and a redistribution of lysosomes towards the periphery of the cell. Lysosomal P2X4 receptors, therefore, have a role in regulating lysosomal Ca2+ release and the regulation of lysosomal membrane trafficking.
Collapse
|
12
|
Kanellopoulos JM, Almeida-da-Silva CLC, Rüütel Boudinot S, Ojcius DM. Structural and Functional Features of the P2X4 Receptor: An Immunological Perspective. Front Immunol 2021; 12:645834. [PMID: 33897694 PMCID: PMC8059410 DOI: 10.3389/fimmu.2021.645834] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular nucleotides are important mediators of activation, triggering various responses through plasma membrane P2 and P1 receptors. P2 receptors are further subdivided into ionotropic P2X receptors and G protein-coupled P2Y receptors. P2X4 is an ATP-gated cation channel broadly expressed in most tissues of the body. Within the P2X family, P2X4 has a unique subcellular distribution, being preferentially localized in lysosomes. In these organelles, high ATP concentrations do not trigger P2X4 because of the low pH. However, when the pH increases to 7.4, P2X4 can be stimulated by intra-lysosomal ATP, which is in its active, tetra-anionic form. Elucidation of P2X4, P2X3 and P2X7 structures has shed some light on the functional differences between these purinergic receptors. The potential interaction between P2X4 and P2X7 has been extensively studied. Despite intensive effort, it has not been possible yet to determine whether P2X4 and P2X7 interact as heterotrimers or homotrimers at the plasma membrane. However, several publications have shown that functional interactions between P2X4 and P2X7 do occur. Importantly, these studies indicate that P2X4 potentiates P2X7-dependent activation of inflammasomes, leading to increased release of IL-1β and IL-18. The role of P2X4 in various diseases could be beneficial or deleterious even though the pathophysiological mechanisms involved are still poorly defined. However, in diseases whose physiopathology involves activation of the NLRP3 inflammasome, P2X4 was found to exacerbate severity of disease. The recent production of monoclonal antibodies specific for the human and mouse P2X4, some of which are endowed with agonist or antagonist properties, raises the possibility that they could be used therapeutically. Analysis of single nucleotide polymorphisms of the human P2RX4 gene has uncovered the association of P2RX4 gene variants with susceptibility to several human diseases.
Collapse
Affiliation(s)
- Jean M Kanellopoulos
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Sirje Rüütel Boudinot
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, United States
| |
Collapse
|
13
|
Bidault-Jourdainne V, Merlen G, Glénisson M, Doignon I, Garcin I, Péan N, Boisgard R, Ursic-Bedoya J, Serino M, Ullmer C, Humbert L, Abdelrafee A, Golse N, Vibert E, Duclos-Vallée JC, Rainteau D, Tordjmann T. TGR5 controls bile acid composition and gallbladder function to protect the liver from bile acid overload. JHEP Rep 2020; 3:100214. [PMID: 33604531 PMCID: PMC7872982 DOI: 10.1016/j.jhepr.2020.100214] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
Background & Aims As the composition of the bile acid (BA) pool has a major impact on liver pathophysiology, we studied its regulation by the BA receptor Takeda G protein coupled receptor (TGR5), which promotes hepatoprotection against BA overload. Methods Wild-type, total and hepatocyte-specific TGR5-knockout, and TGR5-overexpressing mice were used in: partial (66%) and 89% extended hepatectomies (EHs) upon normal, ursodeoxycholic acid (UDCA)- or cholestyramine (CT)-enriched diet, bile duct ligation (BDL), cholic acid (CA)-enriched diet, and TGR5 agonist (RO) treatments. We thereby studied the impact of TGR5 on: BA composition, liver injury, regeneration and survival. We also performed analyses on the gut microbiota (GM) and gallbladder (GB). Liver BA composition was analysed in patients undergoing major hepatectomy. Results The TGR5-KO hyperhydrophobic BA composition was not directly related to altered BA synthesis, nor to TGR5-KO GM dysbiosis, as supported by hepatocyte-specific KO mice and co-housing experiments, respectively. The TGR5-dependent control of GB dilatation was crucial for BA composition, as determined by experiments including RO treatment and/or cholecystectomy. The poor TGR5-KO post-EH survival rate, related to exacerbated peribiliary necrosis and BA overload, was improved by shifting BAs toward a less toxic composition (CT treatment). After either BDL or a CA-enriched diet with or without cholecystectomy, we found that GB dilatation had strong TGR5-dependent hepatoprotective properties. In patients, a more hydrophobic liver BA composition was correlated with an unfavourable outcome after hepatectomy. Conclusions BA composition is crucial for hepatoprotection in mice and humans. We indicate TGR5 as a key regulator of BA profile and thereby as a potential hepatoprotective target under BA overload conditions. Lay summary Through multiple in vivo experimental approaches in mice, together with a patient study, this work brings some new light on the relationships between biliary homeostasis, gallbladder function, and liver protection. We showed that hepatic bile acid composition is crucial for optimal liver repair, not only in mice, but also in human patients undergoing major hepatectomy. Reducing BA hydrophobicity improves outcomes after major hepatectomy in mice. The BA receptor TGR5 controls BA pool composition, which is crucial for liver repair. TGR5 targets the gallbladder to induce a hepatoprotective effect. In patients, a more hydrophobic BA pool is associated with liver injury after hepatectomy.
Collapse
Key Words
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- BA, bile acid
- BDL, bile duct ligation
- Bile acids
- CA, cholic acid
- CC, cholecystectomy
- CT, cholestyramine
- CYP, cytochrome P450
- EH, extended hepatectomy
- GB, gallbladder
- GM, gut microbiota
- GPBAR1
- GPBAR1, G protein-coupled bile acid receptor 1
- Gallbladder
- HI, hydrophobicity index
- Hepatoprotection
- KO, knockout
- ND, normal diet
- OA, oleanolic acid
- PH, partial hepatectomy
- TBA, total BA
- TGR5
- TGR5, Takeda G protein coupled receptor
- UDCA, ursodeoxycholic acid
- WT, wild-type
Collapse
Affiliation(s)
| | - Grégory Merlen
- Université Paris Saclay, Faculté des Sciences d'Orsay, INSERM U.1193, bât. 443, 91405, Orsay, France
| | - Mathilde Glénisson
- Université Paris Saclay, Faculté des Sciences d'Orsay, INSERM U.1193, bât. 443, 91405, Orsay, France
| | - Isabelle Doignon
- Université Paris Saclay, Faculté des Sciences d'Orsay, INSERM U.1193, bât. 443, 91405, Orsay, France
| | - Isabelle Garcin
- Université Paris Saclay, Faculté des Sciences d'Orsay, INSERM U.1193, bât. 443, 91405, Orsay, France
| | - Noémie Péan
- Université Paris Saclay, Faculté des Sciences d'Orsay, INSERM U.1193, bât. 443, 91405, Orsay, France
| | - Raphael Boisgard
- Plateforme d'Imagerie du Petit Animal, SHFJ, 91405, Orsay, France
| | - José Ursic-Bedoya
- Université Paris Saclay, Faculté des Sciences d'Orsay, INSERM U.1193, bât. 443, 91405, Orsay, France
| | - Matteo Serino
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, U1220, CHU Purpan, CS60039, 31024, Toulouse, France
| | | | - Lydie Humbert
- Sorbonne Université, Centre de Recherche Saint Antoine, CRSA, INSERM U 1057, 75571, Paris Cedex 12, France
| | - Ahmed Abdelrafee
- Centre Hépato-Biliaire, Hôpital Paul Brousse, Université Paris-Saclay, 94800, Villejuif, France
| | - Nicolas Golse
- Centre Hépato-Biliaire, Hôpital Paul Brousse, Université Paris-Saclay, 94800, Villejuif, France
| | - Eric Vibert
- Centre Hépato-Biliaire, Hôpital Paul Brousse, Université Paris-Saclay, 94800, Villejuif, France
| | | | - Dominique Rainteau
- Sorbonne Université, Centre de Recherche Saint Antoine, CRSA, INSERM U 1057, 75571, Paris Cedex 12, France
| | - Thierry Tordjmann
- Université Paris Saclay, Faculté des Sciences d'Orsay, INSERM U.1193, bât. 443, 91405, Orsay, France
| |
Collapse
|
14
|
Implication of Neuronal Versus Microglial P2X4 Receptors in Central Nervous System Disorders. Neurosci Bull 2020; 36:1327-1343. [PMID: 32889635 DOI: 10.1007/s12264-020-00570-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023] Open
Abstract
The P2X4 receptor (P2X4) is an ATP-gated cation channel that is highly permeable to Ca2+ and widely expressed in neuronal and glial cell types throughout the central nervous system (CNS). A growing body of evidence indicates that P2X4 plays key roles in numerous central disorders. P2X4 trafficking is highly regulated and consequently in normal situations, P2X4 is present on the plasma membrane at low density and found mostly within intracellular endosomal/lysosomal compartments. An increase in the de novo expression and/or surface density of P2X4 has been observed in microglia and/or neurons during pathological states. This review aims to summarize knowledge on P2X4 functions in CNS disorders and provide some insights into the relative contributions of neuronal and glial P2X4 in pathological contexts. However, determination of the cell-specific functions of P2X4 along with its intracellular and cell surface roles remain to be elucidated before its potential as a therapeutic target in multiple disorders can be defined.
Collapse
|
15
|
Sivcev S, Slavikova B, Ivetic M, Knezu M, Kudova E, Zemkova H. Lithocholic acid inhibits P2X2 and potentiates P2X4 receptor channel gating. J Steroid Biochem Mol Biol 2020; 202:105725. [PMID: 32652201 DOI: 10.1016/j.jsbmb.2020.105725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/21/2020] [Accepted: 07/05/2020] [Indexed: 02/02/2023]
Abstract
The family of ATP-gated purinergic P2X receptors comprises seven bunits (P2X1-7) that are unevenly distributed in the central and peripheral nervous systems as well as other organs. Endogenous modulators of P2X receptors are phospholipids, steroids and neurosteroids. Here, we analyzed whether bile acids, which are natural products derived from cholesterol, affect P2X receptor activity. We examined the effects of primary and secondary bile acids and newly synthesized derivatives of lithocholic acid on agonist-induced responses in HEK293T cells expressing rat P2X2, P2X4 and P2X7 receptors. Electrophysiology revealed that low micromolar concentrations of lithocholic acid and its structural analog 4-dafachronic acid strongly inhibit ATP-stimulated P2X2 but potentiate P2X4 responses, whereas primary bile acids and other secondary bile acids exhibit no or reduced effects only at higher concentrations. Agonist-stimulated P2X7 responses are significantly potentiated by lithocholic acid at moderate concentrations. Structural modifications of lithocholic acid at positions C-3, C-5 or C-17 abolish both inhibitory and potentiation effects to varying degrees, and the 3α-hydroxy group contributes to the ability of the molecule to switch between potentiation and inhibition. Lithocholic acid allosterically modulates P2X2 and P2X4 receptor sensitivity to ATP, reduces the rate of P2X4 receptor desensitization and antagonizes the effect of ivermectin on P2X4 receptor deactivation. Alanine-scanning mutagenesis of the upper halve of P2X4 transmembrane domain-1 revealed that residues Phe48, Val43 and Tyr42 are important for potentiating effect of lithocholic acid, indicating that modulatory sites for lithocholic acid and ivermectin partly overlap. Lithocholic acid also inhibits ATP-evoked currents in pituitary gonadotrophs expressing native P2X2, and potentiates ATP currents in nonidentified pituitary cells expressing P2X4 receptors. These results indicate that lithocholic acid is a bioactive steroid that may help to further unveil the importance of the P2X2, and P2X4 receptors in many physiological processes.
Collapse
Affiliation(s)
- Sonja Sivcev
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Slavikova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Milorad Ivetic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Michal Knezu
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Zemkova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
16
|
Wang P, Jia J, Zhang D. Purinergic signalling in liver diseases: Pathological functions and therapeutic opportunities. JHEP Rep 2020; 2:100165. [PMID: 33103092 PMCID: PMC7575885 DOI: 10.1016/j.jhepr.2020.100165] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/24/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular nucleotides, including ATP, are essential regulators of liver function and serve as danger signals that trigger inflammation upon injury. Ectonucleotidases, which are expressed by liver-resident cells and recruited immune cells sequentially hydrolyse nucleotides to adenosine. The nucleotide/nucleoside balance orchestrates liver homeostasis, tissue repair, and functional restoration by regulating the crosstalk between liver-resident cells and recruited immune cells. In this review, we discuss our current knowledge on the role of purinergic signals in liver homeostasis, restriction of inflammation, stimulation of liver regeneration, modulation of fibrogenesis, and regulation of carcinogenesis. Moreover, we discuss potential targeted therapeutic strategies for liver diseases based on purinergic signals involving blockade of nucleotide receptors, enhancement of ectonucleoside triphosphate diphosphohydrolase activity, and activation of adenosine receptors.
Collapse
Key Words
- A1, adenosine receptor A1
- A2A, adenosine receptor A2A
- A2B, adenosine receptor A2B
- A3, adenosine receptor A3
- AIH, autoimmune hepatitis
- ALT, alanine aminotransferase
- APAP, acetaminophen
- APCP, α,β-methylene ADP
- Adenosine receptors
- BDL, bile duct ligation
- CCl4, carbon tetrachloride
- CD73, ecto-5ʹ-nucleotidase
- ConA, concanavalin A
- DCs, dendritic cells
- DMN, dimethylnitrosamine
- Ecto-5ʹ-nucleotidase
- Ectonucleoside triphosphate diphosphohydrolases 1
- HCC, hepatocellular carcinoma
- HFD, high-fat diet
- HGF, hepatocyte growth factor
- HSCs, hepatic stellate cells
- IFN, interferon
- IL-, interleukin-
- IPC, ischaemic preconditioning
- IR, ischaemia-reperfusion
- Liver
- MAPK, mitogen-activating protein kinase
- MCDD, methionine- and choline-deficient diet
- MHC, major histocompatibility complex
- NAFLD, non-alcoholic fatty liver disease
- NK, natural killer
- NKT, natural killer T
- NTPDases, ectonucleoside triphosphate diphosphohydrolases
- Nucleotide receptors
- P1, purinergic type 1
- P2, purinergic type 2
- PBC, primary biliary cholangitis
- PH, partial hepatectomy
- PKA, protein kinase A
- PPADS, pyridoxal-phosphate-6-azophenyl-2′,4′-disulphonate
- Purinergic signals
- ROS, reactive oxygen species
- TAA, thioacetamide
- TNF, tumour necrosis factor
- Tregs, regulatory T cells
- VEGF, vascular endothelial growth factor
Collapse
Affiliation(s)
- Ping Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis & National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis & National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Dong Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation & National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| |
Collapse
|
17
|
Chouiter A, Dali AR, Dellis O. [Purinergic receptors and hepatic fibrosis]. Med Sci (Paris) 2020; 36:525-528. [PMID: 32452377 DOI: 10.1051/medsci/2020086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Pour la cinquième année, dans le cadre du module d’enseignement « Physiopathologie de la signalisation » proposé par l’université Paris-sud, les étudiants du Master « Biologie Santé » de l’université Paris-Saclay se sont confrontés à l’écriture scientifique. Ils ont sélectionné une quinzaine d’articles scientifiques récents dans le domaine de la signalisation cellulaire présentant des résultats originaux, via des approches expérimentales variées, sur des thèmes allant des relations hôte-pathogène aux innovations thérapeutiques, en passant par la signalisation hépatique et le métabolisme. Après un travail préparatoire réalisé avec l’équipe pédagogique, les étudiants, organisés en binômes, ont ensuite rédigé, guidés par des chercheurs, une Nouvelle soulignant les résultats majeurs et l’originalité de l’article étudié. Ils ont beaucoup apprécié cette initiation à l’écriture d’articles scientifiques et, comme vous pourrez le lire, se sont investis dans ce travail avec enthousiasme ! Trois de ces Nouvelles sont publiées dans ce numéro, les autres le seront dans des prochains numéros.
Collapse
Affiliation(s)
- Amelle Chouiter
- M1 Biologie-Santé et Magistère de Biologie, Université Paris-Saclay, 91405 Orsay, France
| | | | - Olivier Dellis
- Inserm U1174, Univ. Paris Sud, Université Paris Saclay, 91405 Orsay, France
| |
Collapse
|
18
|
Lemos FDO, França A, Lima Filho ACM, Florentino RM, Santos ML, Missiaggia DG, Rodrigues GOL, Dias FF, Souza Passos IB, Teixeira MM, Andrade AMDF, Lima CX, Vidigal PVT, Costa VV, Fonseca MC, Nathanson MH, Leite MF. Molecular Mechanism for Protection Against Liver Failure in Human Yellow Fever Infection. Hepatol Commun 2020; 4:657-669. [PMID: 32363317 PMCID: PMC7193135 DOI: 10.1002/hep4.1504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
Yellow fever (YF) is a viral hemorrhagic fever that typically involves the liver. Brazil recently experienced its largest recorded YF outbreak, and the disease was fatal in more than a third of affected individuals, mostly because of acute liver failure. Affected individuals are generally treated only supportively, but during the recent Brazilian outbreak, selected patients were treated with liver transplant. We took advantage of this clinical experience to better characterize the clinical and pathological features of YF-induced liver failure and to examine the mechanism of hepatocellular injury in YF, to identify targets that would be amenable to therapeutic intervention in preventing progression to liver failure and death. Patients with YF liver failure rapidly developed massive transaminase elevations, with jaundice, coagulopathy, thrombocytopenia, and usually hepatic encephalopathy, along with pathological findings that included microvesicular steatosis and lytic necrosis. Hepatocytes began to express the type 3 isoform of the inositol trisphosphate receptor (ITPR3), an intracellular calcium (Ca2+) channel that is not normally expressed in hepatocytes. Experiments in an animal model, isolated hepatocytes, and liver-derived cell lines showed that this new expression of ITPR3 was associated with increased nuclear Ca2+ signaling and hepatocyte proliferation, and reduced steatosis and cell death induced by the YF virus. Conclusion: Yellow fever often induces liver failure characterized by massive hepatocellular damage plus steatosis. New expression of ITPR3 also occurs in YF-infected hepatocytes, which may represent an endogenous protective mechanism that could suggest approaches to treat affected individuals before they progress to liver failure, thereby decreasing the mortality of this disease in a way that does not rely on the costly and limited resource of liver transplantation.
Collapse
Affiliation(s)
| | - Andressa França
- Department of Physiology and BiophysicsUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | | | - Rodrigo M. Florentino
- Department of Physiology and BiophysicsUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Marcone Loiola Santos
- Department of Physiology and BiophysicsUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Dabny G. Missiaggia
- Department of Physiology and BiophysicsUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | | | - Felipe Ferraz Dias
- Center of MicroscopyUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | | | - Mauro M. Teixeira
- Department of Biochemistry and ImmunologyUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | | | - Cristiano Xavier Lima
- Hepatic Transplant ServiceHospital Felício RochoBelo HorizonteBrazil
- SurgeryUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | | | | | - Matheus Castro Fonseca
- Brazilian Biosciences National Laboratory (LNBio)Brazilian Center for Research in Energy and MaterialsRua Giuseppe Máximo ScolfaroCampinasBrazil
| | - Michael H. Nathanson
- Section of Digestive DiseasesDepartment of Internal MedicineYale University School of MedicineNew HavenCT
| | - M. Fatima Leite
- Department of Physiology and BiophysicsUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| |
Collapse
|
19
|
Merlen G, Kahale N, Ursic-Bedoya J, Bidault-Jourdainne V, Simerabet H, Doignon I, Tanfin Z, Garcin I, Péan N, Gautherot J, Davit-Spraul A, Guettier C, Humbert L, Rainteau D, Ebnet K, Ullmer C, Cassio D, Tordjmann T. TGR5-dependent hepatoprotection through the regulation of biliary epithelium barrier function. Gut 2020; 69:146-157. [PMID: 30723104 DOI: 10.1136/gutjnl-2018-316975] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/26/2018] [Accepted: 01/15/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVE We explored the hypothesis that TGR5, the bile acid (BA) G-protein-coupled receptor highly expressed in biliary epithelial cells, protects the liver against BA overload through the regulation of biliary epithelium permeability. DESIGN Experiments were performed under basal and TGR5 agonist treatment. In vitro transepithelial electric resistance (TER) and FITC-dextran diffusion were measured in different cell lines. In vivo FITC-dextran was injected in the gallbladder (GB) lumen and traced in plasma. Tight junction proteins and TGR5-induced signalling were investigated in vitro and in vivo (wild-type [WT] and TGR5-KO livers and GB). WT and TGR5-KO mice were submitted to bile duct ligation or alpha-naphtylisothiocyanate intoxication under vehicle or TGR5 agonist treatment, and liver injury was studied. RESULTS In vitro TGR5 stimulation increased TER and reduced paracellular permeability for dextran. In vivo dextran diffusion after GB injection was increased in TGR5-knock-out (KO) as compared with WT mice and decreased on TGR5 stimulation. In TGR5-KO bile ducts and GB, junctional adhesion molecule A (JAM-A) was hypophosphorylated and selectively downregulated among TJP analysed. TGR5 stimulation induced JAM-A phosphorylation and stabilisation both in vitro and in vivo, associated with protein kinase C-ζ activation. TGR5 agonist-induced TER increase as well as JAM-A protein stabilisation was dependent on JAM-A Ser285 phosphorylation. TGR5 agonist-treated mice were protected from cholestasis-induced liver injury, and this protection was significantly impaired in JAM-A-KO mice. CONCLUSION The BA receptor TGR5 regulates biliary epithelial barrier function in vitro and in vivo through an impact on JAM-A expression and phosphorylation, thereby protecting liver parenchyma against bile leakage.
Collapse
Affiliation(s)
- Grégory Merlen
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Nicolas Kahale
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | | | | | - Hayat Simerabet
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Isabelle Doignon
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Zahra Tanfin
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Isabelle Garcin
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Noémie Péan
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Julien Gautherot
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | - Anne Davit-Spraul
- Service de Biochimie, Hopital Bicêtre, Le Kremlin-Bicêtre, France.,Université Paris Sud Faculte de Medecine, Le Kremlin-Bicêtre, France
| | - Catherine Guettier
- Université Paris Sud Faculte de Medecine, Le Kremlin-Bicêtre, France.,Service d'Anatomie Pathologique, Hopital Bicêtre, Le Kremlin-Bicêtre, France
| | - Lydie Humbert
- ER7, Université Pierre et Marie Curie-Paris-6, Paris, France
| | | | - Klaus Ebnet
- Institute-associated Research Group 'Cell adhesion and cell polarity', Institute of Medical Biochemistry, ZMBE, Münster, University of Münster, Münster, Germany
| | - Christoph Ullmer
- Roche Pharmaceutical Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Doris Cassio
- U1174, INSERM, Orsay, France.,Université Paris-Sud, Orsay, France
| | | |
Collapse
|
20
|
Velázquez-Miranda E, Díaz-Muñoz M, Vázquez-Cuevas FG. Purinergic signaling in hepatic disease. Purinergic Signal 2019; 15:477-489. [PMID: 31576486 DOI: 10.1007/s11302-019-09680-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022] Open
Abstract
Extracellular purines (ATP and adenosine) are ubiquitous intercellular messengers. During tissular damage, they function as damage-associated molecular patterns (DAMPs). In this context, purines announce tissue alterations to initiate a reparative response that involve the formation of the inflammasome complex and the recruitment of specialized cells of the immune system. The present review focuses on the role of the purinergic system in liver damage, mainly during the onset and development of fibrosis. After hepatocellular injury, extracellular ATP promotes a signaling cascade that ameliorates tissue alterations to restore the hepatic function. However, if cellular damage becomes chronic, ATP orchestrates an aberrant reparative process that results in severe liver diseases such as fibrosis and cirrhosis. ATP and adenosine, their receptors, and extracellular ectonucleotidases are mediators of unique processes that will be reviewed in detail.
Collapse
Affiliation(s)
- E Velázquez-Miranda
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, C.P. 76230, Juriquilla, Querétaro, México
| | - M Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, C.P. 76230, Juriquilla, Querétaro, México
| | - F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, C.P. 76230, Juriquilla, Querétaro, México.
| |
Collapse
|
21
|
Asif A, Khalid M, Manzoor S, Ahmad H, Rehman AU. Role of purinergic receptors in hepatobiliary carcinoma in Pakistani population: an approach towards proinflammatory role of P2X4 and P2X7 receptors. Purinergic Signal 2019; 15:367-374. [PMID: 31401785 PMCID: PMC6737133 DOI: 10.1007/s11302-019-09675-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
The primary malignancy of liver, known as hepatocellular carcinoma (HCC), comprises 9% of all hepatobiliary carcinomas. A steady rise has also been observed in adenocarcinoma (ADC) of the liver and ampullary carcinoma (AMC), ascending to 0.5% of gastrointestinal malignancies. Hepatobiliary carcinomas consist of 13% of all cancer occurrences worldwide. Purinergic receptor-based signaling holds the therapeutic potential based on its role in cell proliferation of several carcinomas. An altered ATP concentration in nanomoles may lead towards crucial changes in cancer growth patterns in liver tissue. A total of 40 tissue samples were collected (20 samples of HCC, 10 samples of ADC, and 10 samples of AMC) from patients that underwent surgery. P2X4 and P2X7 receptors exhibited significantly increased expression in HCC, ADC, and AMC samples as compared with the control tissue samples. While ADC and AMC samples showed higher expression of P2X4 and P2X7 than the control, statistically, HCC samples exhibited the most significant expression of both P2X4 and P2X7 receptors than control tissues. It may be inferred that higher expression of P2X4 and P2X7 receptors is significantly associated with the upregulated cellular stress leading to inflammation and it is plausible that both these receptors may be used in diagnostic, prognostic, and therapeutic tools for carcinoma studies in the future.
Collapse
Affiliation(s)
- Arun Asif
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, H-12, Islamabad, 44000, Pakistan
| | - Madiha Khalid
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, H-12, Islamabad, 44000, Pakistan
| | - Sobia Manzoor
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, H-12, Islamabad, 44000, Pakistan.
| | - Hassam Ahmad
- Hepato-pancreatobiliary Liver Transplant Unit, Shaikh Zayd Hospital, Lahore, Punjab, 54000, Pakistan
| | - Aman Ur Rehman
- Department of Histopathology, Shaikh Zayd Hospital, Lahore, Punjab, 54000, Pakistan
| |
Collapse
|
22
|
Ilyaskin AV, Sure F, Nesterov V, Haerteis S, Korbmacher C. Bile acids inhibit human purinergic receptor P2X4 in a heterologous expression system. J Gen Physiol 2019; 151:820-833. [PMID: 30988062 PMCID: PMC6572003 DOI: 10.1085/jgp.201812291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/08/2019] [Accepted: 03/22/2019] [Indexed: 12/22/2022] Open
Abstract
We recently demonstrated that bile acids, especially tauro-deoxycholic acid (t-DCA), modify the function of the acid-sensing ion channel ASIC1a and other members of the epithelial sodium channel (ENaC)/degenerin (DEG) ion channel family. Surprisingly, ASIC1 shares a high degree of structural similarity with the purinergic receptor P2X4, a nonselective cation channel transiently activated by ATP. P2X4 is abundantly expressed in the apical membrane of bile duct epithelial cells and is therefore exposed to bile acids under physiological conditions. Here, we hypothesize that P2X4 may also be modulated by bile acids and investigate whether t-DCA and other common bile acids affect human P2X4 heterologously expressed in Xenopus laevis oocytes. We find that application of either t-DCA or unconjugated deoxycholic acid (DCA; 250 µM) causes a strong reduction (∼70%) of ATP-activated P2X4-mediated whole-cell currents. The inhibitory effect of 250 µM tauro-chenodeoxycholic acid is less pronounced (∼30%), and 250 µM chenodeoxycholic acid, cholic acid, or tauro-cholic acid did not significantly alter P2X4-mediated currents. t-DCA inhibits P2X4 in a concentration-dependent manner by reducing the efficacy of ATP without significantly changing its affinity. Single-channel patch-clamp recordings provide evidence that t-DCA inhibits P2X4 by stabilizing the channel's closed state. Using site-directed mutagenesis, we identifiy several amino acid residues within the transmembrane domains of P2X4 that are critically involved in mediating the inhibitory effect of t-DCA on P2X4. Importantly, a W46A mutation converts the inhibitory effect of t-DCA into a stimulatory effect. We conclude that t-DCA directly interacts with P2X4 and decreases ATP-activated P2X4 currents by stabilizing the closed conformation of the channel.
Collapse
Affiliation(s)
- Alexandr V Ilyaskin
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Florian Sure
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Viatcheslav Nesterov
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Silke Haerteis
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Korbmacher
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
23
|
Murrell-Lagnado RD, Frick M. P2X4 and lysosome fusion. Curr Opin Pharmacol 2019; 47:126-132. [PMID: 31039505 DOI: 10.1016/j.coph.2019.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023]
Abstract
Similar to other members of the P2X receptor family, the P2X4 receptor at the plasma membrane forms a highly Ca2+ permeable, non-selective cation channel that is activated by extracellular ATP. Yet, P2X4 differs from the other subtypes, as it is predominantly localized on late endosomal, lysosomal and/or lysosome-related organelles. It is targeted there by virtue of tyrosine-based and di-leucine like trafficking motifs contained within its C-terminal and N-terminal regions respectively. The physiological role of the stable intracellular expression of P2X4 in acidic compartments has been a long-standing puzzle. Recent evidence, however, points to a dual role in the regulation of ion fluxes across lysosomal membranes to control lysosome membrane fusion and in the re-sensitization of receptors exposed to extracellular ATP.
Collapse
Affiliation(s)
| | - Manfred Frick
- Institute of General Physiology, University of Ulm, Ulm, Germany
| |
Collapse
|
24
|
Su WF, Wu F, Jin ZH, Gu Y, Chen YT, Fei Y, Chen H, Wang YX, Xing LY, Zhao YY, Yuan Y, Tang X, Chen G. Overexpression of P2X4 receptor in Schwann cells promotes motor and sensory functional recovery and remyelination via BDNF secretion after nerve injury. Glia 2018; 67:78-90. [DOI: 10.1002/glia.23527] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Wen-Feng Su
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
| | - Fan Wu
- Medical School of Nantong University; Nantong China
| | - Zi-Han Jin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
| | - Yun Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
| | - Ying-Ting Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
| | - Ying Fei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
| | - Hui Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
| | - Ya-Xian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
| | - Ling-Yan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
| | - Ya-Yu Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
| | - Ying Yuan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
- Affiliated Hospital of Nantong University; Nantong China
| | - Xin Tang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
- Department of Anesthesiology; Affiliated Hospital of Nantong University; Nantong China
| |
Collapse
|
25
|
The P2X4 purinergic receptor regulates hepatic myofibroblast activation during liver fibrogenesis. J Hepatol 2018; 69:644-653. [PMID: 29802948 DOI: 10.1016/j.jhep.2018.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/07/2018] [Accepted: 05/14/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Liver fibrosis is characterized by the accumulation of extracellular matrix produced by hepatic myofibroblasts (hMF), the activation of which is critical to the fibrogenic process. Extracellular ATP, released by dying or stressed cells, and its purinergic receptors, constitute a powerful signaling network after injury. Although the purinergic receptor P2X4 (P2RX4) is highly expressed in the liver, its functions in hMF had never been investigated during liver fibrogenesis. METHODS In vivo, bile duct ligation was performed and methionine- and choline-deficient diet administered in wild-type and P2x4 knock-out (P2x4-KO) mice. In vitro, hMF were isolated from mouse (wild-type and P2x4-KO) and human liver. P2X4 pharmacological inhibition (in vitro and in vivo) and P2X4 siRNAs (in vitro) were used. Histological, biochemical and cell culture analysis allowed us to study P2X4 expression and its involvement in the regulation of fibrogenic and fibrolytic factors, as well as of hMF activation markers and properties. RESULTS P2X4 genetic invalidation or pharmacological inhibition protected mice from liver fibrosis and hMF accumulation after bile duct ligation or methionine- and choline-deficient diet. Human and mouse hMFs expressed P2X4, mainly in lysosomes. Invalidation of P2X4 in human and mouse hMFs blunted their activation marker expression and their fibrogenic properties. Finally, we showed that P2X4 regulates calcium entry and lysosomal exocytosis in hMF, impacting on ATP release, profibrogenic secretory profile, and transcription factor activation. CONCLUSION P2X4 expression and activation is critical for hMF to sustain their activated and fibrogenic phenotype. Therefore, the inactivation of P2X4 may be of therapeutic interest during liver fibrotic diseases. LAY SUMMARY During chronic injury, the liver often repairs with fibrotic tissue, which impairs liver function, and for which there is currently no treatment. We found that a previously unexplored pathway involving the purinergic receptor P2X4, can modulate fibrotic liver repair. Therefore, this receptor could be of interest in the development of novel therapies for fibrotic liver diseases.
Collapse
|
26
|
Trampert DC, Nathanson MH. Regulation of bile secretion by calcium signaling in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1761-1770. [PMID: 29787781 DOI: 10.1016/j.bbamcr.2018.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/12/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022]
Abstract
Calcium (Ca2+) signaling controls secretion in many types of cells and tissues. In the liver, Ca2+ regulates secretion in both hepatocytes, which are responsible for primary formation of bile, and cholangiocytes, which line the biliary tree and further condition the bile before it is secreted. Cholestatic liver diseases, which are characterized by impaired bile secretion, may result from impaired Ca2+ signaling mechanisms in either hepatocytes or cholangiocytes. This review will discuss the Ca2+ signaling machinery and mechanisms responsible for regulation of secretion in both hepatocytes and cholangiocytes, and the pathophysiological changes in Ca2+ signaling that can occur in each of these cell types to result in cholestasis.
Collapse
Affiliation(s)
- David C Trampert
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8019, USA
| | - Michael H Nathanson
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8019, USA.
| |
Collapse
|
27
|
Zech A, Wiesler B, Ayata CK, Schlaich T, Dürk T, Hoßfeld M, Ehrat N, Cicko S, Idzko M. P2rx4 deficiency in mice alleviates allergen-induced airway inflammation. Oncotarget 2018; 7:80288-80297. [PMID: 27863396 PMCID: PMC5348320 DOI: 10.18632/oncotarget.13375] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/09/2016] [Indexed: 02/07/2023] Open
Abstract
Compelling evidences point out a crucial role for extracellular nucleotides such as adenosine triphosphate (ATP) during inflammatory conditions. Once released into the extracellular space, ATP modulates migration, maturation and function of various inflammatory cells via activating of purinergic receptors of the P2Y- and P2X- family. P2RX4 is an ATP-guided ion channel expressed on structural cells such as alveolar epithelial and smooth muscle cells as well as inflammatory cells including macrophages, dendritic cells (DCs) and T cells. P2RX4 has been shown to interact with P2RX7 and promote NLRP3 inflammasome activation. Although P2RX7 has already been implicated in allergic asthma, the role of P2RX4 in airway inflammation has not been elucidated yet. Therefore, we used a selective pharmacological antagonist and genetic ablation to investigate the role of P2RX4 in an ovalbumin (OVA) driven model of allergen-induced airway inflammation (AAI). Both, P2RX4 antagonist 5-BDBD treatment and P2rx4 deficiency resulted in an alleviated broncho alveolar lavage fluid eosinophilia, peribronchial inflammation, Th2 cytokine production and bronchial hyperresponsiveness. Furthermore, P2rx4-deficient bone marrow derived DCs (BMDCs) showed a reduced IL-1ß production in response to ATP accompanied by a decreased P2rx7 expression and attenuated Th2 priming capacity compared to wild type (WT) BMDCs in vitro. Moreover, mice adoptively transferred with P2rx4-deficient BMDCs exhibit a diminished AAI in vivo. In conclusion our data suggests that P2RX4-signaling contributes to AAI pathogenesis by regulating DC mediated Th2 cell priming via modulating IL-1ß secretion and selective P2RX4-antagonists might be a new therapeutic option for allergic asthma.
Collapse
Affiliation(s)
- Andreas Zech
- Department of Pneumology, University Medical Centre Freiburg, Germany
| | - Benjamin Wiesler
- Department of Pneumology, University Medical Centre Freiburg, Germany
| | | | - Tilmann Schlaich
- Department of Pneumology, University Medical Centre Freiburg, Germany
| | - Thorsten Dürk
- Department of Pneumology, University Medical Centre Freiburg, Germany
| | - Madelon Hoßfeld
- Department of Pneumology, University Medical Centre Freiburg, Germany
| | - Nicolas Ehrat
- Department of Pneumology, University Medical Centre Freiburg, Germany
| | - Sanja Cicko
- Department of Pneumology, University Medical Centre Freiburg, Germany
| | - Marco Idzko
- Department of Pneumology, University Medical Centre Freiburg, Germany
| |
Collapse
|
28
|
Khamphaya T, Chukijrungroat N, Saengsirisuwan V, Mitchell-Richards KA, Robert ME, Mennone A, Nathanson MH, Weerachayaphorn J, Weerachayaphorn J. Nonalcoholic fatty liver disease impairs expression of the type II inositol 1,4,5-trisphosphate receptor. Hepatology 2018; 67:560-574. [PMID: 29023819 PMCID: PMC5893412 DOI: 10.1002/hep.29588] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/07/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver disease worldwide. It may result in several types of liver problems, including impaired liver regeneration (LR), but the mechanism for this is unknown. Because LR depends on calcium signaling, we examined the effects of NAFLD on expression of the type II inositol 1,4,5-trisphosphate receptor (ITPR2), the principle calcium release channel in hepatocytes. ITPR2 promoter activity was measured in Huh7 and HepG2 cells. ITPR2 and c-Jun protein levels were evaluated in Huh7 cells, in liver tissue from a rat model of NAFLD, and in liver biopsy specimens of patients with simple steatosis and nonalcoholic steatohepatitis (NASH). LR was assessed in wild-type and Itpr2 knockout (Itpr2-/- ) mice following 67% hepatectomy. Cell proliferation was examined in ITPR2-knockout HepG2 cells generated by the CRISPR/Cas9 system. c-Jun dose dependently decreased activity of the human ITPR2 promoter. c-Jun expression was increased and ITPR2 was decreased in fat-loaded Huh7 cells and in livers of rats fed a high-fat, high-fructose diet. Overexpression of c-Jun reduced protein and mRNA expression of ITPR2 in Huh7 cells, whereas knockdown of c-Jun prevented the decrease of ITPR2 in fat-loaded Huh7 cells. ITPR2 expression was decreased and c-Jun was increased in liver biopsies of patients with steatosis and NASH compared to controls. ITPR2-knockout cells exhibited less nuclear calcium signaling and cell proliferation than control cells. LR assessed by Ki-67 and proliferating cell nuclear antigen was markedly decreased in Itpr2-/- mice. Conclusion: Fatty liver induces a c-Jun-mediated decrease in ITPR2 in hepatocytes. This may account for the impaired LR that occurs in NAFLD. (Hepatology 2018;67:560-574).
Collapse
Affiliation(s)
- Tanaporn Khamphaya
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Natsasi Chukijrungroat
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Vitoon Saengsirisuwan
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | - Marie E. Robert
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | - Albert Mennone
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven 06519, Connecticut, USA
| | - Michael H. Nathanson
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven 06519, Connecticut, USA,Corresponding Authors: Michael H. Nathanson, M.D., Ph.D., Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA. Phone: (+1) 203-785-7312; Fax: (+1) 203-785-7273, ; Jittima Weerachayaphorn, Ph.D., Department of Physiology, Faculty of Science, Mahidol University, Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand. Phone: (+66) 2201-5514; Fax: (+66) 2354-7154, ,
| | - Jittima Weerachayaphorn
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand,Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven 06519, Connecticut, USA,Corresponding Authors: Michael H. Nathanson, M.D., Ph.D., Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA. Phone: (+1) 203-785-7312; Fax: (+1) 203-785-7273, ; Jittima Weerachayaphorn, Ph.D., Department of Physiology, Faculty of Science, Mahidol University, Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand. Phone: (+66) 2201-5514; Fax: (+66) 2354-7154, ,
| | - Jittima Weerachayaphorn
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
29
|
Lv M, Zeng H, He Y, Zhang J, Tan G. Dexmedetomidine promotes liver regeneration in mice after 70% partial hepatectomy by suppressing NLRP3 inflammasome not TLR4/NFκB. Int Immunopharmacol 2018; 54:46-51. [DOI: 10.1016/j.intimp.2017.10.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/30/2017] [Accepted: 10/25/2017] [Indexed: 02/08/2023]
|
30
|
Suurväli J, Boudinot P, Kanellopoulos J, Rüütel Boudinot S. P2X4: A fast and sensitive purinergic receptor. Biomed J 2017; 40:245-256. [PMID: 29179879 PMCID: PMC6138603 DOI: 10.1016/j.bj.2017.06.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 01/31/2023] Open
Abstract
Extracellular nucleotides have been recognized as important mediators of activation, triggering multiple responses via plasma membrane receptors known as P2 receptors. P2 receptors comprise P2X ionotropic receptors and G protein-coupled P2Y receptors. P2X receptors are expressed in many tissues, where they are involved in a number of functions including synaptic transmission, muscle contraction, platelet aggregation, inflammation, macrophage activation, differentiation and proliferation, neuropathic and inflammatory pain. P2X4 is one of the most sensitive purinergic receptors (at nanomolar ATP concentrations), about one thousand times more than the archetypal P2X7. P2X4 is widely expressed in central and peripheral neurons, in microglia, and also found in various epithelial tissues and endothelial cells. It localizes on the plasma membrane, but also in intracellular compartments. P2X4 is preferentially localized in lysosomes, where it is protected from proteolysis by its glycosylation. High ATP concentration in the lysosomes does not activate P2X4 at low pH; P2X4 gets activated by intra-lysosomal ATP only in its fully dissociated tetra-anionic form, when the pH increases to 7.4. Thus, P2X4 is functioning as a Ca2+-channel after the fusion of late endosomes and lysosomes. P2X4 modulates major neurotransmitter systems and regulates alcohol-induced responses in microglia. P2X4 is one of the key receptors mediating neuropathic pain. However, injury-induced upregulation of P2X4 expression is gender dependent and plays a key role in pain difference between males and females. P2X4 is also involved in inflammation. Extracellular ATP being a pro-inflammatory molecule, P2X4 can trigger inflammation in response to high ATP release. It is therefore involved in multiple pathologies, like post-ischemic inflammation, rheumatoid arthritis, airways inflammation in asthma, neurodegenerative diseases and even metabolic syndrome. Although P2X4 remains poorly characterized, more studies are needed as it is likely to be a potential therapeutic target in these multiple pathologies.
Collapse
Affiliation(s)
- Jaanus Suurväli
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Pierre Boudinot
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jean Kanellopoulos
- Institute for Integrative Biology of the Cell (I2BC) CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Sirje Rüütel Boudinot
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.
| |
Collapse
|
31
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
32
|
Abstract
Liver possesses many critical functions such as synthesis, detoxification, and metabolism. It continually receives nutrient-rich blood from gut, which incidentally is also toxin-rich. That may be why liver is uniquely bestowed with a capacity to regenerate. A commonly studied procedure to understand the cellular and molecular basis of liver regeneration is that of surgical resection. Removal of two-thirds of the liver in rodents or patients instigates alterations in hepatic homeostasis, which are sensed by the deficient organ to drive the restoration process. Although the exact mechanisms that initiate regeneration are unknown, alterations in hemodynamics and metabolism have been suspected as important effectors. Key signaling pathways are activated that drive cell proliferation in various hepatic cell types through autocrine and paracrine mechanisms. Once the prehepatectomy mass is regained, the process of regeneration is adequately terminated. This review highlights recent discoveries in the cellular and molecular basis of liver regeneration.
Collapse
Affiliation(s)
- Morgan E. Preziosi
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania,Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Satdarshan P. Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania,Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania,Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
33
|
Lambert A, Julien B. [Liver regeneration : two pieces of the puzzle connected]. Med Sci (Paris) 2016; 32:839-841. [PMID: 27758747 DOI: 10.1051/medsci/20163210016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Anthony Lambert
- M1 Biologie Santé, Université Paris-Saclay, 91405 Orsay, France
| | - Boris Julien
- Inserm U-1174, Université Paris-Sud, 91405 Orsay, France
| |
Collapse
|