1
|
Zhang R, Feng Y, Nie P, Wang W, Wu H, Wan X, Xu H, Fu F. Polystyrene microplastics disturb maternal glucose homeostasis and induce adverse pregnancy outcomes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116492. [PMID: 38795415 DOI: 10.1016/j.ecoenv.2024.116492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Pregnant women are a special group that is sensitive to adverse external stimuli, causing metabolic abnormalities and adverse pregnancy outcomes. Microplastics (MPs), an environmental pollutant widely used in various fields, can induce a variety of toxic responses in mammals. Recent studies verified an association between MPs and metabolic disorders. Our research built a gestational mouse model in which polystyrene microplastics (PS-MPs) of 1 μm size were consumed at concentrations of 0.1, 1, and 10 mg/L during pregnancy. Results indicated that PS-MPs induced placental malfunction and fetal growth retardation. Significant glucose disorders, decreased liver function, hepatic inflammation, and oxidative stress were also observed after PS-MPs exposure. The hepatic SIRT1/IRS1/PI3K pathway was inhibited in the 10 mg/L PS-MPs exposure group. Our study found that PS-MPs activated inflammatory response and oxidative stress by increasing hepatic lipopolysaccharide (LPS) that inhibited the hepatic SIRT1/IRS1/PI3K pathway, ultimately leading to insulin resistance, glucose metabolism disorders, and adverse pregnancy outcomes. This study provides a basis for preventing environment-related gestational diabetes and concomitant adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Ruiying Zhang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yueying Feng
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Penghui Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Wanzhen Wang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Hua Wu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xianxian Wan
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Fen Fu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China.
| |
Collapse
|
2
|
Sebők C, Tráj P, Mackei M, Márton RA, Vörösházi J, Kemény Á, Neogrády Z, Mátis G. Modulation of the immune response by the host defense peptide IDR-1002 in chicken hepatic cell culture. Sci Rep 2023; 13:14530. [PMID: 37666888 PMCID: PMC10477227 DOI: 10.1038/s41598-023-41707-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023] Open
Abstract
IDR-1002, a synthetic host defense peptide (HDP), appears to be a potential candidate for the treatment of bacterial infections and the consequent inflammatory response due to its potent immunomodulatory activity. This is of relevance to the emerging issue of antimicrobial resistance in the farming sector. In this study, the effects of IDR-1002 were investigated on a chicken hepatocyte‒non-parenchymal cell co-culture, and the results revealed that IDR-1002 had complex effects on the regulation of the hepatic innate immunity. IDR-1002 increased the levels of both RANTES (Regulated on Activation, Normal T cell Expressed and Secreted) and Macrophage colony stimulating factor (M-CSF), suggesting the peptide plays a role in the modulation of macrophage differentiation, also reflected by the reduced concentrations of interleukin (IL)-6 and IL-10. The pro-inflammatory cytokine release triggered by the bacterial cell wall component lipoteichoic acid (LTA) was ameliorated by the concomitantly applied IDR-1002 based on the levels of IL-6, chicken chemotactic and angiogenic factor (CXCLi2) and interferon (IFN)-γ. Moreover, the production of nuclear factor erythroid 2-related factor 2 (Nrf2), an essential transcription factor in the antioxidant defense pathway, was increased after IDR-1002 exposure, while protein carbonyl (PC) levels were also elevated. These findings suggest that IDR-1002 affects the interplay of the cellular immune response and redox homeostasis, thus the peptide represents a promising tool in the treatment of bacterially induced inflammation in chickens.
Collapse
Affiliation(s)
- Csilla Sebők
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2, 1078, Budapest, Hungary.
| | - Patrik Tráj
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2, 1078, Budapest, Hungary
| | - Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2, 1078, Budapest, Hungary
| | - Rege Anna Márton
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2, 1078, Budapest, Hungary
| | - Júlia Vörösházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2, 1078, Budapest, Hungary
| | - Ágnes Kemény
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12, 7624, Pécs, Hungary
- Department of Medical Biology, Faculty of Medicine, University of Pécs, Szigeti u. 12, 7624, Pécs, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2, 1078, Budapest, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2, 1078, Budapest, Hungary
| |
Collapse
|
3
|
Yang L, Meng Y, Shi Y, Fang H, Zhang L. Maternal hepatic immunology during pregnancy. Front Immunol 2023; 14:1220323. [PMID: 37457700 PMCID: PMC10348424 DOI: 10.3389/fimmu.2023.1220323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
The liver plays pivotal roles in immunologic responses, and correct hepatic adaptations in maternal immunology are required during pregnancy. In this review, we focus on anatomical and immunological maternal hepatic adaptations during pregnancy, including our recent reports in this area. Moreover, we summarize maternal pregnancy-associated liver diseases, including hyperemesis gravidarum; intrahepatic cholestasis of pregnancy; preeclampsia, specifically hemolysis, elevated liver enzymes, and low platelet count syndrome; and acute fatty liver of pregnancy. In addition, the latest information about the factors that regulate hepatic immunology during pregnancy are reviewed for the first time, including human chorionic gonadotropin, estrogen, progesterone, growth hormone, insulin like growth factor 1, oxytocin, adrenocorticotropic hormone, adrenal hormone, prolactin, melatonin and prostaglandins. In summary, the latest progress on maternal hepatic anatomy and immunological adaptations, maternal pregnancy-associated diseases and the factors that regulate hepatic immunology during pregnancy are discussed, which may be used to prevent embryo loss and abortion, as well as pregnancy-associated liver diseases.
Collapse
|
4
|
Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, Guo JY, Liu FH, Chang Q, Zhang YX, Liu CG, Zhao YH. The sirtuin family in health and disease. Signal Transduct Target Ther 2022; 7:402. [PMID: 36581622 PMCID: PMC9797940 DOI: 10.1038/s41392-022-01257-8] [Citation(s) in RCA: 252] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 12/30/2022] Open
Abstract
Sirtuins (SIRTs) are nicotine adenine dinucleotide(+)-dependent histone deacetylases regulating critical signaling pathways in prokaryotes and eukaryotes, and are involved in numerous biological processes. Currently, seven mammalian homologs of yeast Sir2 named SIRT1 to SIRT7 have been identified. Increasing evidence has suggested the vital roles of seven members of the SIRT family in health and disease conditions. Notably, this protein family plays a variety of important roles in cellular biology such as inflammation, metabolism, oxidative stress, and apoptosis, etc., thus, it is considered a potential therapeutic target for different kinds of pathologies including cancer, cardiovascular disease, respiratory disease, and other conditions. Moreover, identification of SIRT modulators and exploring the functions of these different modulators have prompted increased efforts to discover new small molecules, which can modify SIRT activity. Furthermore, several randomized controlled trials have indicated that different interventions might affect the expression of SIRT protein in human samples, and supplementation of SIRT modulators might have diverse impact on physiological function in different participants. In this review, we introduce the history and structure of the SIRT protein family, discuss the molecular mechanisms and biological functions of seven members of the SIRT protein family, elaborate on the regulatory roles of SIRTs in human disease, summarize SIRT inhibitors and activators, and review related clinical studies.
Collapse
Affiliation(s)
- Qi-Jun Wu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huan-Huan Chen
- grid.412467.20000 0004 1806 3501Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue-Fei Yu
- grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Le Lv
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Yang Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ya-Shu Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gang Zheng
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun-Qi Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing-Yi Guo
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Chang
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Xiao Zhang
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cai-Gang Liu
- grid.412467.20000 0004 1806 3501Department of Cancer, Breast Cancer Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Tang H, Du H, Kuang X, Huang H, Zeng J, Long C, Zhu B, Fu L, Wang H, Zhang Q, Lin S, Yan J, Shen H. Arbutin Protects Retinal Pigment Epithelium Against Oxidative Stress by Modulating SIRT1/FOXO3a/PGC-1α/β Pathway. Front Genet 2022; 13:922807. [PMID: 36051689 PMCID: PMC9425105 DOI: 10.3389/fgene.2022.922807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Age-related macular degeneration (AMD), which is the leading cause of blindness among the elderly in western societies, is majorly accompanied by retinal pigment epithelium (RPE) degeneration. Because of the irreversible RPE cell loss among oxidative stress, it is crucial to search for available drugs for atrophic (dry) AMD. RNA-Seq analysis revealed that genes related to aging and mitochondrial health were differentially expressed under Arbutin treatment, whereas compared to oxidative injury, our study demonstrated that Arbutin substantially abrogated oxidative stress-induced cell senescence and apoptosis linked to intracellular antioxidant enzyme system homeostasis maintenance, restored mitochondrial membrane potential (MMP), and reduced the SA-β-GAL accumulation in RPE. Furthermore, Arbutin alleviated oxidative stress-mediated cell apoptosis and senescence via activation of SIRT1, as evidenced by the increase of the downstream FoxO3a and PGC-1α/β that are related to mitochondrial biogenesis, and the suppression of NF-κB p65 inflammasome, whereas rehabilitation of oxidative stress by SIRT1 inhibitor attenuated the protective effect of Arbutin. In conclusion, we validated the results in an in vivo model constructed by NAIO3-injured mice. OCT and HE staining showed that Arbutin sustained retinal integrity in the case of oxidative damage in vivo, and the disorder of RPE cytochrome was alleviated through fundus observation. In summary, our findings identified that oxidative stress-induced mitochondrial malfunction and the subsequent senescence acceleration in RPE cells, whereas Arbutin inhibited TBHP-induced RPE degeneration via regulating the SIRT1/Foxo3a/PGC-1α/β signaling pathway. These findings suggested that Arbutin is a new agent with potential applications in the development of AMD diseases.
Collapse
Affiliation(s)
- Han Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Han Du
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xielan Kuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Hao Huang
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingshu Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chongde Long
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Binbin Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Licheng Fu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Hua Wang
- Department of Intensive Care, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shuibin Lin
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianhua Yan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Jianhua Yan, ; Huangxuan Shen,
| | - Huangxuan Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Jianhua Yan, ; Huangxuan Shen,
| |
Collapse
|
6
|
Yoo SK, Mehdi SF, Pusapati S, Mathur N, Anipindi M, Lunenfeld B, Lowell B, Yang H, Metz CN, Khan SA, Leroith D, Roth J. Human Chorionic Gonadotropin and Related Peptides: Candidate Anti-Inflammatory Therapy in Early Stages of Sepsis. Front Immunol 2021; 12:714177. [PMID: 34589085 PMCID: PMC8475184 DOI: 10.3389/fimmu.2021.714177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
Sepsis continues to be a major cause of morbidity, mortality, and post-recovery disability in patients with a wide range of non-infectious and infectious inflammatory disorders, including COVID-19. The clinical onset of sepsis is often marked by the explosive release into the extracellular fluids of a multiplicity of host-derived cytokines and other pro-inflammatory hormone-like messengers from endogenous sources ("cytokine storm"). In patients with sepsis, therapies to counter the pro-inflammatory torrent, even when administered early, typically fall short. The major focus of our proposed essay is to promote pre-clinical studies with hCG (human chorionic gonadotropin) as a potential anti-inflammatory therapy for sepsis.
Collapse
Affiliation(s)
- Sun Koo Yoo
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Syed Faizan Mehdi
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Suma Pusapati
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Nimisha Mathur
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Manasa Anipindi
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Bruno Lunenfeld
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Barbara Lowell
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Huan Yang
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Christine Noel Metz
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Sawleha Arshi Khan
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| | - Derek Leroith
- Division of Endocrinology, Diabetes & Bone Disease, Icahn School of Medicine at Mt. Sinai, New York, NY, United States
| | - Jesse Roth
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, United States
| |
Collapse
|
7
|
Jia Y, Li Z, Cai W, Xiao D, Han S, Han F, Bai X, Wang K, Liu Y, Li X, Guan H, Hu D. SIRT1 regulates inflammation response of macrophages in sepsis mediated by long noncoding RNA. Biochim Biophys Acta Mol Basis Dis 2018; 1864:784-792. [DOI: 10.1016/j.bbadis.2017.12.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/29/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022]
|
8
|
Guo J, Zhao W, Cao X, Yang H, Ding J, Ding J, Tan Z, Ma X, Hao C, Wu L, Ma Z, Xie J, Wang Z. SIRT1 promotes tumor-like invasion of fibroblast-like synoviocytes in rheumatoid arthritis via targeting TIMP1. Oncotarget 2017; 8:88965-88973. [PMID: 29179491 PMCID: PMC5687661 DOI: 10.18632/oncotarget.21628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/26/2017] [Indexed: 11/25/2022] Open
Abstract
Suppression of tissue inhibitor of matrix metalloproteinase (TIMP) is associated with the tumor-like invasion of fibroblast-like synoviocytes (FLSs) that occurs during rheumatoid arthritis-related cartilage destruction. Silent information regulator 2 homolog1 (SIRT1), a histone deacetylase, is widely involved in transcriptional regulation, genomic stability, metabolism and DNA repair. Recent studies suggest that SIRT1 may also impact inflammatory response and the proliferation of FLSs in rheumatoid arthritis (RA). However, it is unknown whether SIRT1 has a role in the tumor-like invasion of FLSs in rheumatoid arthritis. Herein we report that SIRT1 contributes to FLS invasion and cartilage destruction via a TIMP1-dependent mechanism. Elevated SIRT1 in RA synovia suppresses TIMP1 expression via deacetylation of TIMP1-associated histones, thereby disrupting the binding of the transcription factor specificity protein 1 (Sp1) to the TIMP1 promoter. In rats with collagen-induced arthritis, depletion of SIRT1 remarkably promoted TIMP1 expression in synovial tissues and ameliorated cartilage destruction. These results describe a new role for SIRT1 and demonstrate its potential value as a therapeutic target for rheumatoid arthritis.
Collapse
Affiliation(s)
- Jiangtao Guo
- Cancer Hospital of General Hospital, Affiliated Ningxia People's Hospital, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China.,Ningxia People's Hospital, Yinchuan, China
| | - Wei Zhao
- Cancer Hospital of General Hospital, Affiliated Ningxia People's Hospital, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Xuqing Cao
- Cancer Hospital of General Hospital, Affiliated Ningxia People's Hospital, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China.,Ningxia People's Hospital, Yinchuan, China
| | - Huiying Yang
- Cancer Hospital of General Hospital, Affiliated Ningxia People's Hospital, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Juan Ding
- Cancer Hospital of General Hospital, Affiliated Ningxia People's Hospital, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Jingbin Ding
- Cancer Hospital of General Hospital, Affiliated Ningxia People's Hospital, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Zifang Tan
- Cancer Hospital of General Hospital, Affiliated Ningxia People's Hospital, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China.,Ningxia People's Hospital, Yinchuan, China
| | - Xiaoli Ma
- Cancer Hospital of General Hospital, Affiliated Ningxia People's Hospital, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China.,Ningxia People's Hospital, Yinchuan, China
| | - Chunfang Hao
- Cancer Hospital of General Hospital, Affiliated Ningxia People's Hospital, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China.,Ningxia People's Hospital, Yinchuan, China
| | - Lili Wu
- Cancer Hospital of General Hospital, Affiliated Ningxia People's Hospital, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China.,Ningxia People's Hospital, Yinchuan, China
| | - Zhengjuan Ma
- The Fifth People's Hospital of Ningxia, Shizuishan, China
| | | | - Zhijun Wang
- Cancer Hospital of General Hospital, Affiliated Ningxia People's Hospital, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|