1
|
Elhence H, Dodge JL, Kahn JA, Lee BP. Characteristics and Outcomes Among US Commercially Insured Transgender Adults With Cirrhosis: A National Cohort Study. Am J Gastroenterol 2024; 119:2455-2461. [PMID: 38916204 PMCID: PMC11617278 DOI: 10.14309/ajg.0000000000002907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
INTRODUCTION The National Institute on Minority Health and Health Disparities has noted that transgender individuals experience unique health disparities. We sought to describe the landscape of transgender patients with cirrhosis. METHODS We identified all transgender and cisgender adults in Optum's deidentified Clinformatics Data Mart Database between 2007 and 2022 using validated billing codes and calculating age-standardized prevalence of cirrhosis among cisgender vs transgender adults. Among those with incident cirrhosis diagnoses, we calculated age-standardized incidence densities of liver-related outcomes (decompensation, transplantation, hepatocellular carcinoma) and all-cause mortality. We examined 5-year survival using inverse probability treatment weighting to balance transgender and cisgender populations on demographic and clinical characteristics. RESULTS Among 64,615,316 adults, 42,471 (0.07%) were transgender. Among 329,251 adults with cirrhosis, 293 (0.09%) were transgender. Trans- (vs cis-) genders had higher prevalence of cirrhosis (1,285 [95% confidence interval (CI) 1,136-1,449] per 100,000 vs 561 [559-563] per 100,000). Among adults with cirrhosis, trans- (vs cis-) genders had higher proportions of anxiety (70.7% [56.9-86.9] vs 43.2% [42.7-43.8]), depression (66.4% [53.3-81.7] vs 38.4% [37.9-38.9]), HIV/AIDS (8.5% [3.9-16.1] vs 1.6% [1.5-1.7]), and alcohol (57.5% [46.0-71.1] vs 51.0% [50.5-51.6]) and viral (30.5% [22.8-39.8] vs 24.2% [23.9-24.5]) etiologies, although etiologies had overlapping CIs. Trans- (vs cis-) genders had similar incidence densities of death (12.0 [95% CI 8.8-15.3] vs 14.0 [13.9-14.2] per 100 person-years), decompensation (15.7 [10.9-20.5] vs 14.1 [14.0-14.3]), and liver transplantation (0.3 [0.0-0.8] vs 0.3 [0.3-0.4]). In inverse probability treatment weighting survival analysis, transgender and cisgender individuals had similar 5-year survival probabilities (63.4% [56.6-71.1] vs 59.1% [58.7-59.4]). DISCUSSION Trans- (vs cis-) gender adults have double the prevalence of cirrhosis, and the majority have a diagnosis of anxiety and/or depression. These results are informative for researchers, policymakers, and clinicians to advance equitable care for transgender individuals.
Collapse
Affiliation(s)
- Hirsh Elhence
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jennifer L. Dodge
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California
- Division of Gastroenterology and Liver Diseases, University of Southern California, Los Angeles, California
| | - Jeffrey A. Kahn
- Division of Gastroenterology and Liver Diseases, University of Southern California, Los Angeles, California
| | - Brian P. Lee
- Division of Gastroenterology and Liver Diseases, University of Southern California, Los Angeles, California
| |
Collapse
|
2
|
Kawut SM, Feng R, Ellenberg SS, Zamanian R, Bull T, Chakinala M, Mathai SC, Hemnes A, Lin G, Doyle M, Andrew R, MacLean M, Stasinopoulos I, Austin E, DeMichele A, Shou H, Minhas J, Song N, Moutchia J, Ventetuolo CE. Pulmonary Hypertension and Anastrozole (PHANTOM): A Randomized, Double-Blind, Placebo-Controlled Trial. Am J Respir Crit Care Med 2024; 210:1143-1151. [PMID: 38747680 PMCID: PMC11544352 DOI: 10.1164/rccm.202402-0371oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/15/2024] [Indexed: 11/02/2024] Open
Abstract
Rationale: Inhibition of aromatase with anastrozole reduces pulmonary hypertension in experimental models. Objectives: We aimed to determine whether anastrozole improved the 6-minute-walk distance (6MWD) at 6 months in pulmonary arterial hypertension (PAH). Methods: We performed a randomized, double-blind, placebo-controlled phase II clinical trial of anastrozole in subjects with PAH at seven centers. Eighty-four postmenopausal women with PAH and men with PAH were randomized in a 1:1 ratio to receive anastrozole 1 mg or placebo by mouth daily, stratified by sex using permuted blocks of variable sizes. All subjects and study staff were masked. The primary outcome was the change from baseline in 6MWD at 6 months. By intention-to-treat analysis, we estimated the treatment effect of anastrozole using linear regression models adjusted for sex and baseline 6MWD. Assuming 10% loss to follow-up, we anticipated having 80% power to detect a difference in the change in 6MWD of 22 meters. Measurements and Main Results: Forty-one subjects were randomized to placebo and 43 to anastrozole, and all received the allocated treatment. Three subjects in the placebo group and two in the anastrozole group discontinued the study drug. There was no significant difference in the change in 6MWD at 6 months (placebo-corrected treatment effect, -7.9 m; 95% confidence interval, -32.7 to 16.9; P = 0.53). There was no difference in adverse events between the groups. Conclusions: Anastrozole did not show a significant effect on 6MWD compared with placebo in postmenopausal women with PAH and in men with PAH. Anastrozole was safe and did not have adverse effects. Clinical trial registered with www.clincialtrials.gov (NCT03229499).
Collapse
Affiliation(s)
- Steven M Kawut
- Department of Medicine
- Department of Biostatistics, Epidemiology, and Informatics, and
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rui Feng
- Department of Biostatistics, Epidemiology, and Informatics, and
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Susan S Ellenberg
- Department of Biostatistics, Epidemiology, and Informatics, and
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Roham Zamanian
- Department of Medicine, Stanford University, Stanford, California
| | - Todd Bull
- Pulmonary Vascular Disease Center, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Denver, Colorado
| | - Murali Chakinala
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Stephen C Mathai
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | | | - Grace Lin
- Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Margaret Doyle
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Ruth Andrew
- University/British Heart Foundation, Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Margaret MacLean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom; and
| | - Ioannis Stasinopoulos
- University/British Heart Foundation, Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Eric Austin
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee
| | - Angela DeMichele
- Department of Medicine
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Haochang Shou
- Department of Biostatistics, Epidemiology, and Informatics, and
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Nianfu Song
- Department of Biostatistics, Epidemiology, and Informatics, and
| | - Jude Moutchia
- Department of Biostatistics, Epidemiology, and Informatics, and
| | - Corey E Ventetuolo
- Department of Medicine and
- Department of Health Services, Policy and Practice, Brown University, Providence, Rhode Island
| |
Collapse
|
3
|
Bommena S, Fallon MB. Pulmonary Complications of Portal Hypertension. Clin Liver Dis 2024; 28:467-482. [PMID: 38945638 DOI: 10.1016/j.cld.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Portopulmonary hypertension (POPH), hepatopulmonary syndrome, and hepatic hydrothorax constitute significant complications of portal hypertension, with important implications for management and liver transplantation (LT) candidacy. POPH is characterized by obstruction and remodeling of the pulmonary resistance arterial bed. Hepatopulmonary syndrome is the most common pulmonary vascular disorder, characterized by intrapulmonary vascular dilatations causing impaired gas exchange. LT may improve prognosis in select patients with POPH. LT is the only effective treatment of hepatopulmonary syndrome. Hepatic hydrothorax is defined as transudative pleural fluid accumulation that is not explained by primary cardiopulmonary or pleural disease. LT is the definitive cure for hepatic hydrothorax.
Collapse
Affiliation(s)
- Shoma Bommena
- Department of Internal Medicine, University of Arizona College of Medicine-Phoenix, Banner University Medical Center, Phoenix, AZ, USA
| | - Michael B Fallon
- Department of Internal Medicine, University of Arizona College of Medicine-Phoenix, 475 North 5th Street, Phoenix, AZ 85004, USA.
| |
Collapse
|
4
|
Juncu S, Minea H, Girleanu I, Huiban L, Muzica C, Chiriac S, Timofeiov S, Mihai F, Cojocariu C, Stanciu C, Trifan A, Singeap AM. Clinical Implications and Management of Spontaneous Portosystemic Shunts in Liver Cirrhosis. Diagnostics (Basel) 2024; 14:1372. [PMID: 39001262 PMCID: PMC11241716 DOI: 10.3390/diagnostics14131372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Portal hypertension from chronic liver disease leads to the formation of collateral blood vessels called spontaneous portosystemic shunts (SPSS). These shunts may form from existing vessels or through neo-angiogenesis. Their location affects clinical outcomes due to varying risks and complications. This review summarizes current knowledge on SPSS, covering their clinical impact and management strategies. Recent data suggest that SPSS increases the risk of variceal bleeding, regardless of shunt size. The size of the shunt is crucial in the rising incidence of hepatic encephalopathy (HE) linked to SPSS. It also increases the risk of portopulmonary hypertension and portal vein thrombosis. Detecting and assessing SPSS rely on computed tomography (CT) and magnetic resonance imaging. CT enables precise measurements and the prediction of cirrhosis progression. Management focuses on liver disease progression and SPSS-related complications, like HE, variceal bleeding, and portopulmonary hypertension. Interventional radiology techniques such as balloon-occluded, plug-assisted, and coil-assisted retrograde transvenous obliteration play a pivotal role. Surgical options are rare but are considered when other methods fail. Liver transplantation (LT) often resolves SPSS. Intraoperative SPSS ligation is still recommended in patients at high risk for developing HE or graft hypoperfusion.
Collapse
Affiliation(s)
- Simona Juncu
- Department of Gastroenterology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street No. 16, 700115 Iasi, Romania; (S.J.); (H.M.); (I.G.); (L.H.); (C.M.); (C.C.); (C.S.); (A.T.); (A.-M.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency County Hospital, Bd. Independentei No. 1, 700111 Iasi, Romania
| | - Horia Minea
- Department of Gastroenterology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street No. 16, 700115 Iasi, Romania; (S.J.); (H.M.); (I.G.); (L.H.); (C.M.); (C.C.); (C.S.); (A.T.); (A.-M.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency County Hospital, Bd. Independentei No. 1, 700111 Iasi, Romania
| | - Irina Girleanu
- Department of Gastroenterology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street No. 16, 700115 Iasi, Romania; (S.J.); (H.M.); (I.G.); (L.H.); (C.M.); (C.C.); (C.S.); (A.T.); (A.-M.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency County Hospital, Bd. Independentei No. 1, 700111 Iasi, Romania
| | - Laura Huiban
- Department of Gastroenterology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street No. 16, 700115 Iasi, Romania; (S.J.); (H.M.); (I.G.); (L.H.); (C.M.); (C.C.); (C.S.); (A.T.); (A.-M.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency County Hospital, Bd. Independentei No. 1, 700111 Iasi, Romania
| | - Cristina Muzica
- Department of Gastroenterology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street No. 16, 700115 Iasi, Romania; (S.J.); (H.M.); (I.G.); (L.H.); (C.M.); (C.C.); (C.S.); (A.T.); (A.-M.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency County Hospital, Bd. Independentei No. 1, 700111 Iasi, Romania
| | - Stefan Chiriac
- Department of Gastroenterology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street No. 16, 700115 Iasi, Romania; (S.J.); (H.M.); (I.G.); (L.H.); (C.M.); (C.C.); (C.S.); (A.T.); (A.-M.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency County Hospital, Bd. Independentei No. 1, 700111 Iasi, Romania
| | - Sergiu Timofeiov
- Department of Surgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street No. 16, 700115 Iasi, Romania;
- Department of Surgery, “St. Spiridon” Emergency County Hospital, Bd. Independentei No. 1, 700111 Iasi, Romania
| | - Florin Mihai
- Department of Radiology and Medical Imaging, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street No. 16, 700115 Iasi, Romania
| | - Camelia Cojocariu
- Department of Gastroenterology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street No. 16, 700115 Iasi, Romania; (S.J.); (H.M.); (I.G.); (L.H.); (C.M.); (C.C.); (C.S.); (A.T.); (A.-M.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency County Hospital, Bd. Independentei No. 1, 700111 Iasi, Romania
| | - Carol Stanciu
- Department of Gastroenterology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street No. 16, 700115 Iasi, Romania; (S.J.); (H.M.); (I.G.); (L.H.); (C.M.); (C.C.); (C.S.); (A.T.); (A.-M.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency County Hospital, Bd. Independentei No. 1, 700111 Iasi, Romania
| | - Anca Trifan
- Department of Gastroenterology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street No. 16, 700115 Iasi, Romania; (S.J.); (H.M.); (I.G.); (L.H.); (C.M.); (C.C.); (C.S.); (A.T.); (A.-M.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency County Hospital, Bd. Independentei No. 1, 700111 Iasi, Romania
| | - Ana-Maria Singeap
- Department of Gastroenterology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street No. 16, 700115 Iasi, Romania; (S.J.); (H.M.); (I.G.); (L.H.); (C.M.); (C.C.); (C.S.); (A.T.); (A.-M.S.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency County Hospital, Bd. Independentei No. 1, 700111 Iasi, Romania
| |
Collapse
|
5
|
Dignam JP, Sharma S, Stasinopoulos I, MacLean MR. Pulmonary arterial hypertension: Sex matters. Br J Pharmacol 2024; 181:938-966. [PMID: 37939796 DOI: 10.1111/bph.16277] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex disease of multifactorial origin. While registries have demonstrated that women are more susceptible to the disease, females with PAH have superior right ventricle (RV) function and a better prognosis than their male counterparts, a phenomenon referred to as the 'estrogen paradox'. Numerous pre-clinical studies have investigated the involvement of sex hormones in PAH pathobiology, often with conflicting results. However, recent advances suggest that abnormal estrogen synthesis, metabolism and signalling underpin the sexual dimorphism of this disease. Other sex hormones, such as progesterone, testosterone and dehydroepiandrosterone may also play a role. Several non-hormonal factor including sex chromosomes and epigenetics have also been implicated. Though the underlying pathophysiological mechanisms are complex, several compounds that modulate sex hormones levels and signalling are under investigation in PAH patients. Further elucidation of the estrogen paradox will set the stage for the identification of additional therapeutic targets for this disease.
Collapse
Affiliation(s)
- Joshua P Dignam
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Smriti Sharma
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Ioannis Stasinopoulos
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, UK
| | - Margaret R MacLean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| |
Collapse
|
6
|
Graham BB, Hilton JF, Lee MH, Kumar R, Balladares DF, Rahaghi FN, Estépar RSJ, Mickael C, Lima RLB, Loureiro CM, Lucena J, Oliveira RK, Corrêa RDA. Is pulmonary arterial hypertension associated with schistosomiasis distinct from pulmonary arterial hypertension associated with portal hypertension? JHLT OPEN 2023; 1:100007. [PMID: 38050478 PMCID: PMC10695267 DOI: 10.1016/j.jhlto.2023.100007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Pulmonary arterial hypertension associated with schistosomiasis (SchPAH) and pulmonary arterial hypertension associated with portal hypertension (PoPAH) are lung diseases that develop in the presence of liver diseases. However, mechanistic pathways by which the underlying liver conditions and other drivers contribute to the development and progression of pulmonary arterial hypertension (PAH) are unclear for both etiologies. In turn, these unknowns limit certainty of strategies to prevent, diagnose, and reverse the resultant PAH. Here we consider specific mechanisms that contribute to SchPAH and PoPAH, identifying those that may be shared and those that appear to be unique to each etiology, in the hope that this exploration will both highlight known causal drivers and identify knowledge gaps appropriate for future research. Overall, the key pathophysiologic differences that we identify between SchPAH and PoPAH suggest that they are not variants of a single condition.
Collapse
Affiliation(s)
- Brian B. Graham
- Lung Biology Center, University of California San Francisco, San Francisco, California
- Pulmonary Division, San Francisco General Hospital, San Francisco, California
| | - Joan F. Hilton
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Michael H. Lee
- Lung Biology Center, University of California San Francisco, San Francisco, California
- Pulmonary Division, San Francisco General Hospital, San Francisco, California
| | - Rahul Kumar
- Lung Biology Center, University of California San Francisco, San Francisco, California
- Pulmonary Division, San Francisco General Hospital, San Francisco, California
| | - Dara Fonseca Balladares
- Lung Biology Center, University of California San Francisco, San Francisco, California
- Pulmonary Division, San Francisco General Hospital, San Francisco, California
| | - Farbod N. Rahaghi
- Pulmonary Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Raúl San José Estépar
- Applied Chest Imaging Laboratory, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Claudia Mickael
- Pulmonary and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | | | - Juliana Lucena
- Division of Respiratory Diseases, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Rudolf K.F. Oliveira
- Division of Respiratory Diseases, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Ricardo de Amorim Corrêa
- Internal Medicine/Pulmonary Division, Medical School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
7
|
Jose A, Elwing JM, Kawut SM, Pauciulo MW, Sherman KE, Nichols WC, Fallon MB, McCormack FX. Human liver single nuclear RNA sequencing implicates BMPR2, GDF15, arginine, and estrogen in portopulmonary hypertension. Commun Biol 2023; 6:826. [PMID: 37558836 PMCID: PMC10412637 DOI: 10.1038/s42003-023-05193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
Portopulmonary hypertension (PoPH) is a type of pulmonary vascular disease due to portal hypertension that exhibits high morbidity and mortality. The mechanisms driving disease are unknown, and transcriptional characteristics unique to the PoPH liver remain unexplored. Here, we apply single nuclear RNA sequencing to compare cirrhotic livers from patients with and without PoPH. We identify characteristics unique to PoPH in cells surrounding the central hepatic vein, including increased growth differentiation factor signaling, enrichment of the arginine biosynthesis pathway, and differential expression of the bone morphogenic protein type II receptor and estrogen receptor type I genes. These results provide insight into the transcriptomic characteristics of the PoPH liver and mechanisms by which PoPH cellular dysfunction might contribute to pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Arun Jose
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Jean M Elwing
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Steven M Kawut
- Department of Medicine, Perelman School at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael W Pauciulo
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kenneth E Sherman
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - William C Nichols
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Francis X McCormack
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
8
|
Engelmann C, Zhang IW, Clària J. Mechanisms of immunity in acutely decompensated cirrhosis and acute-on-chronic liver failure. Liver Int 2023. [PMID: 37365995 DOI: 10.1111/liv.15644] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
The identification of systemic inflammation (SI) as a central player in the orchestration of acute-on-chronic liver failure (ACLF) has opened new avenues for the understanding of the pathophysiological mechanisms underlying this disease condition. ACLF, which develops in patients with acute decompensation of cirrhosis, is characterized by single or multiple organ failure and high risk of short-term (28-day) mortality. Its poor outcome is closely associated with the severity of the systemic inflammatory response. In this review, we describe the key features of SI in patients with acutely decompensated cirrhosis and ACLF, including the presence of a high blood white cell count and increased levels of inflammatory mediators in systemic circulation. We also discuss the main triggers (i.e. pathogen- and damage-associated molecular patterns), the cell effectors (i.e. neutrophils, monocytes and lymphocytes), the humoral mediators (acute phase proteins, cytokines, chemokines, growth factors and bioactive lipid mediators) and the factors that influence the systemic inflammatory response that drive organ failure and mortality in ACLF. The role of immunological exhaustion and/or immunoparalysis in the context of exacerbated inflammatory responses that predispose ACLF patients to secondary infections and re-escalation of end-organ dysfunction and mortality are also reviewed. Finally, several new potential immunogenic therapeutic targets are debated.
Collapse
Affiliation(s)
- Cornelius Engelmann
- Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Institute for Liver and Digestive Health, University College London, London, UK
| | - Ingrid W Zhang
- Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- European Foundation for the Study of Chronic Liver Failure (EF CLIF) and Grifols Chair, Barcelona, Spain
| | - Joan Clària
- European Foundation for the Study of Chronic Liver Failure (EF CLIF) and Grifols Chair, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS CIBERehd, Barcelona, Spain
- Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Risk factors for portopulmonary hypertension in patients with cirrhosis: a prospective, multicenter study. Hepatol Int 2023; 17:139-149. [PMID: 36477691 DOI: 10.1007/s12072-022-10456-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/12/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Tricuspid regurgitation pressure gradient (TRPG) measurement by echocardiography is recommended as the most objective examination to detect portopulmonary hypertension (PoPH). This study aimed to identify factors associated with a high TRPG in patients with cirrhosis and develop a scoring model for identifying patients who are most likely to benefit from echocardiography investigations. RESULTS A total of 486 patients who underwent echocardiography were randomly allocated to the derivation and validation sets at a ratio of 2:1. Of the patients, 51 (10.5%) had TRPG ≥ 35 mmHg. The median brain natriuretic peptide (BNP) was 39.5 pg/mL. Shortness of breath (SOB) was reported by 91 (18.7%) patients. In the derivation set, multivariate analysis identified female gender, shortness of breath, and BNP ≥ 48.9 pg/mL as independent factors for TRPG ≥ 35 mmHg. The risk score for predicting TRPG ≥ 35 mmHg was calculated as follows: - 3.596 + 1.250 × gender (female: 1, male: 0) + 1.093 × SOB (presence: 1, absence: 0) + 0.953 × BNP (≥ 48.9 pg/mL: 1, < 48.9 pg/mL: 0). The risk score yielded sensitivity of 66.7%, specificity of 75.3%, positive predictive value of 25.5%, negative predict value of 94.3%, and predictive accuracy of 74.4% for predicting TRPG ≥ 35 mmHg. These results were almost similar in the validation set, indicating the reproducibility and validity of the risk score. CONCLUSIONS This study clarified the characteristics of patients with suspected PoPH and developed a scoring model for identifying patients at high risk of PoPH, which may be used in selecting patients that may benefit from echocardiography.
Collapse
|
10
|
Portopulmonary Hypertension: Management and Liver Transplantation Evaluation. Chest 2023:S0012-3692(23)00043-0. [PMID: 36649754 DOI: 10.1016/j.chest.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Portopulmonary hypertension (POPH) affects 5% to 6% of patients with advanced liver disease and accounts for 5% to 15% of pulmonary arterial hypertension (PAH) cases. Compared with idiopathic PAH, POPH is associated with significantly worse survival. Recent studies have improved our understanding of the role of both PAH therapy and liver transplantation (LT) in the management of POPH and their impact on overall prognosis. We performed a review of the published literature to summarize the available evidence and guidelines regarding the diagnosis and management of POPH. POPH is defined by the presence of precapillary PH in the context of portal hypertension. POPH is associated with increased perioperative risk at the time of LT, which can be stratified by mean pulmonary arterial pressure and pulmonary vascular resistance. Screening with echocardiography is recommended in all LT candidates to facilitate detection and treatment of POPH. Despite a paucity of evidence, POPH is treated similarly to idiopathic PAH with PAH therapy. These therapies are associated with improved pulmonary hemodynamics and facilitation of safe LT. LT can result in improvement or resolution of POPH in half of patients and has been associated with improved survival in highly selected patients. The prognosis in POPH is poor and is impacted by the severity of both PH and liver disease. Management with a combination of PAH therapy and LT in selected patients has been associated with improved pulmonary hemodynamics and survival.
Collapse
|
11
|
Abstract
Portopulmonary hypertension (PoPH) is a progressive, ultimately fatal cardiopulmonary disease that occurs exclusively in patients with underlying portal hypertensive liver disease. PoPH outcomes are driven by both the severity of underlying liver disease and the degree of cardiac adaptation to elevated pulmonary pressures. The mainstay of treatment in PoPH is targeted pulmonary vascular therapy. Liver transplantation (LT) can be beneficial in some patients, but is associated with considerable risks in the PoPH population, and outcomes are variable. The optimal management strategy for PoPH, LT, or medical therapy alone, is unclear, and further research is needed to help guide clinical decision-making.
Collapse
Affiliation(s)
- Arun Jose
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, ML 0564, Medical Sciences Building, 231 Albert Sabin Way, Cincinnati, OH 45267, USA.
| | - Courtney R Jones
- Department of Anesthesiology, University of Cincinnati, ML 3553, Medical Sciences Building, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Jean M Elwing
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, ML 0564, Medical Sciences Building, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| |
Collapse
|
12
|
MacLean MR, Pandya D, Swietlik EM, Denver N, Mair K, Morrell NW, Gräf S. A pilot study to examine association of BMI with functional class and 6 min walk distance in idiopathic and heritable PAH: Possible association with estrogen metabolism. Pulm Circ 2022; 12:e12139. [PMID: 36186719 PMCID: PMC9510900 DOI: 10.1002/pul2.12139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/24/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
The hypothesis that a relationship exists between body mass index (BMI), functional class, and 6 min walk distance (6MWD) in Group 1-pulmonary arterial hypertension (PAH) was examined. Analysis of data from the UK National Cohort Study for heritable pulmonary arterial/idiopathic PAH suggests increased BMI is a predictor of worse functional class and shorter 6MWD; increased body-weight in mice and man may be associated with increased estrogen metabolism.
Collapse
Affiliation(s)
- Margaret R. MacLean
- Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeGlasgowUK
| | - Divya Pandya
- Department of MedicineUniversity of CambridgeCambridgeUK
| | | | - Nina Denver
- Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeGlasgowUK
| | - Kirsty Mair
- Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeGlasgowUK
| | | | - Stefan Gräf
- Department of MedicineUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
- NIHR BioResource for Translational ResearchUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
13
|
Gupta A, Pradhan A, Mehrotra S, Misra R, Usman K, Kumar A, Pandey S. Prevalence and Clinical Features of Portopulmonary Hypertension in Patients With Hepatic Cirrhosis: An Echocardiographic Study. Cureus 2022; 14:e24957. [PMID: 35698719 PMCID: PMC9188673 DOI: 10.7759/cureus.24957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Objective The present study was conducted to delineate the prevalence and clinical features of portopulmonary hypertension in patients with hepatic cirrhosis. Possible associations between echocardiographic variables and portopulmonary hypertension were also explored. Methods A prospective, observational study was conducted between September 2017 and August 2018. Differences in demographics, clinical presentation, laboratory findings, and echocardiographic findings in cirrhosis patients with and without portopulmonary hypertension were compared. Results The prevalence of portopulmonary hypertension in patients with hepatic cirrhosis was found to be 9.3%. Hemoglobin was significantly lower among patients with portopulmonary hypertension compared to those without portopulmonary hypertension (5.50±0.68 g/dl vs. 7.26±1.43 g/dl, p=0.001). All patients with portopulmonary hypertension displayed right atrial (major: p=0.0001 and minor: p=0.001) and right ventricular (basal, p=0.0001; longitudinal, p=0.0001) dilation. Several variables such as right ventricular systolic pressure (p=0.0001), pulmonary artery diameter (major: p=0.0001; right: p=0.0001; and left: p=0.007), pulmonary vascular resistance (p=0.0001), tricuspid regurgitation (p=0.0001), pulmonary regurgitation peak pressure gradient (p=0.0001), pulmonary regurgitation end diastolic gradient (p=0.0001), left atrial dimension (major axis: p=0.002), left atrial volume (p=0.04), left ventricular outflow tract (p=0.001), inferior vena cava diameter (p=0.001), and inferior vena cava collapsibility (p=0.001) were higher in patients with portopulmonary hypertension compared to patients without portopulmonary hypertension. Conclusions The present study revealed a 9.3% prevalence of portopulmonary hypertension among patients with hepatic cirrhosis. Patients with portopulmonary hypertension displayed significantly lower haemoglobin levels, right and left ventricular dilation, and higher values of several echocardiographic variables as compared to those without portopulmonary hypertension.
Collapse
Affiliation(s)
- Anany Gupta
- Medicine, King George's Medical University, Lucknow, IND
| | | | | | - Ravi Misra
- Medicine, King George's Medical University, Lucknow, IND
| | - Kauser Usman
- Medicine, King George's Medical University, Lucknow, IND
| | - Ajay Kumar
- Medicine, King George's Medical University, Lucknow, IND
| | - Shivani Pandey
- Biochemistry, King George's Medical University, Lucknow, IND
| |
Collapse
|
14
|
Ishikawa T, Egusa M, Kawamoto D, Nishimura T, Sasaki R, Saeki I, Sakaida I, Takami T. Screening for portopulmonary hypertension using computed tomography-based measurements of the main pulmonary artery and ascending aorta diameters in patients with portal hypertension. Hepatol Res 2022; 52:255-268. [PMID: 34822208 DOI: 10.1111/hepr.13735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/10/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022]
Abstract
AIM This study aimed to demonstrate the feasibility of identifying candidates of portopulmonary hypertension (PoPH) from general portal hypertension patients based on chest computed tomography (CT) results. METHODS One hundred and thirty patients with portal hypertension who had undergone interventional radiology therapies at our hospital between August 2011 and July 2021 were included, and preoperative clinical data were collected. Suspicious PoPH was defined as main pulmonary artery diameter (mPA-D) ≥ 29 mm or the ratio of mPA-D to ascending aorta diameter (mPA-D/aAo-D) ≥ 1.0, and probable PoPH as mPA-D ≥ 33 mm based on the chest CT. Prevalence of suspicious and probable PoPH was evaluated, and the differences in clinical characteristics of each population were compared. RESULTS Overall, 29 (22.3%) and 5 (3.8%) patients were categorized as suspicious and probable PoPH, respectively. Univariate analyses revealed that female sex, higher shortest diameter of inferior vena cava, presence of portosystemic shunts ≥ 5 mm, and lower blood urea nitrogen levels were significantly associated with suspicious PoPH (p < 0.05). Multivariate analyses identified all four factors as significantly independent determinants of suspicious PoPH (p < 0.05). In addition, among the population of suspicious PoPH, there were significant differences in seven parameters, including total bilirubin levels and spleen volume between patients with and without probable PoPH (p < 0.05). However, no significant independent indicators of probable PoPH were found. CONCLUSIONS CT-based measurements of mPA-D and mPA-D/aAo-D have the potential to screen patients with suspicious PoPH in clinical practice focused on portal hypertension.
Collapse
Affiliation(s)
- Tsuyoshi Ishikawa
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube-Yamaguchi, Japan
| | - Maho Egusa
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube-Yamaguchi, Japan
| | - Daiki Kawamoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube-Yamaguchi, Japan
| | - Tatsuro Nishimura
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube-Yamaguchi, Japan
| | - Ryo Sasaki
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube-Yamaguchi, Japan
| | - Issei Saeki
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube-Yamaguchi, Japan
| | - Isao Sakaida
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube-Yamaguchi, Japan
| | - Taro Takami
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube-Yamaguchi, Japan
| |
Collapse
|
15
|
Xu H, Cheng B, Wang R, Ding M, Gao Y. Portopulmonary hypertension: Current developments and future perspectives. LIVER RESEARCH 2022. [DOI: 10.1016/j.livres.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Kelly NJ, Chan SY. Pulmonary Arterial Hypertension: Emerging Principles of Precision Medicine across Basic Science to Clinical Practice. Rev Cardiovasc Med 2022; 23:378. [PMID: 36875282 PMCID: PMC9980296 DOI: 10.31083/j.rcm2311378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an enigmatic and deadly vascular disease with no known cure. Recent years have seen rapid advances in our understanding of the molecular underpinnings of PAH, with an expanding knowledge of the molecular, cellular, and systems-level drivers of disease that are being translated into novel therapeutic modalities. Simultaneous advances in clinical technology have led to a growing list of tools with potential application to diagnosis and phenotyping. Guided by fundamental biology, these developments hold the potential to usher in a new era of personalized medicine in PAH with broad implications for patient management and great promise for improved outcomes.
Collapse
Affiliation(s)
- Neil J Kelly
- Center for Pulmonary Vascular Biology and Medicine and Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute; Division of Cardiology; Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine and Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute; Division of Cardiology; Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
17
|
Cheron C, McBride SA, Antigny F, Girerd B, Chouchana M, Chaumais MC, Jaïs X, Bertoletti L, Sitbon O, Weatherald J, Humbert M, Montani D. Sex and gender in pulmonary arterial hypertension. Eur Respir Rev 2021; 30:30/162/200330. [PMID: 34750113 DOI: 10.1183/16000617.0330-2020] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/28/2021] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease characterised by pulmonary vascular remodelling and elevated pulmonary pressure, which eventually leads to right heart failure and death. Registries worldwide have noted a female predominance of the disease, spurring particular interest in hormonal involvement in the disease pathobiology. Several experimental models have shown both protective and deleterious effects of oestrogens, suggesting that complex mechanisms participate in PAH pathogenesis. In fact, oestrogen metabolites as well as receptors and enzymes implicated in oestrogen signalling pathways and associated conditions such as BMPR2 mutation contribute to PAH penetrance more specifically in women. Conversely, females have better right ventricular function, translating to a better prognosis. Along with right ventricular adaptation, women tend to respond to PAH treatment differently from men. As some young women suffer from PAH, contraception is of particular importance, considering that pregnancy in patients with PAH is strongly discouraged due to high risk of death. When contraception measures fail, pregnant women need a multidisciplinary team-based approach. This article aims to review epidemiology, mechanisms underlying the higher female predominance, but better prognosis and the intricacies in management of women affected by PAH.
Collapse
Affiliation(s)
- Céline Cheron
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Susan Ainslie McBride
- Internal Medicine Residency Program, Dept of Medicine, University of Calgary, Calgary, Canada
| | - Fabrice Antigny
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Barbara Girerd
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Margot Chouchana
- Assistance Publique Hôpitaux de Paris, Service de Pharmacie Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Marie-Camille Chaumais
- Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France.,Assistance Publique Hôpitaux de Paris, Service de Pharmacie Hôpital Bicêtre, Le Kremlin Bicêtre, France.,Université Paris-Saclay, Faculté de Pharmacie, Chatenay Malabry, France
| | - Xavier Jaïs
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Laurent Bertoletti
- Centre Hospitalier Universitaire de Saint-Etienne, Service de Médecine Vasculaire et Thérapeutique, Saint-Etienne, France.,INSERM U1059 et CIC1408, Université Jean-Monnet, Saint-Etienne, France
| | - Olivier Sitbon
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Jason Weatherald
- Division of Respirology, Dept of Medicine, University of Calgary, Calgary, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
| | - Marc Humbert
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - David Montani
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France .,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| |
Collapse
|
18
|
Akahane T. Factors associated with portopulmonary hypertension. Hepatol Res 2021; 51:1179-1180. [PMID: 34850499 DOI: 10.1111/hepr.13721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Nara, Japan
| |
Collapse
|
19
|
Kawaguchi T, Honda A, Sugiyama Y, Nakano D, Tsutsumi T, Tahara N, Torimura T, Fukumoto Y. Association between the albumin-bilirubin (ALBI) score and severity of portopulmonary hypertension (PoPH): A data-mining analysis. Hepatol Res 2021; 51:1207-1218. [PMID: 34534392 DOI: 10.1111/hepr.13714] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Portopulmonary hypertension (PoPH) is a severe complication of chronic liver disease. We aimed to investigate the etiology of chronic liver disease and the factors associated with the severity of PoPH. SUBJECTS AND METHODS Echocardiography was undergone in 833 patients with chronic liver disease during 2005-2019 and 13 patients (1.6%) were diagnosed with PoPH in this observational study. At the diagnosis of PoPH, liver function was evaluated by albumin-bilirubin (ALBI) score. Severe PoPH was defined as (1) mean pulmonary arterial pressure (mPAP) ≥50 mmHg or (2) mPAP: 35-49 mmHg and pulmonary vascular resistance ≥400 dyne/s/cm5 . Factors associated with severe PoPH were evaluated by decision-tree analysis. RESULTS In patients with PoPH, the leading etiology of chronic liver disease was hepatitis C virus (HCV) (46.2% [sustained virological response (SVR): 23.1% and non-SVR: 15.4%]). Severe PoPH was observed in 53.8% of patients and the 5-year survival rate was 48.1%. There was a significant correlation of mPAP with ALBI score (r = 0.6456, p = 0.0171). In the decision-tree and random forest analyses, the most impacted classifier for severe PoPH was the ALBI score. In patients with ALBI score ≥-1.45, all patients showed severe PoPH, while the prevalence of severe PoPH was 25.0% in patients with ALBI score <-1.45. CONCLUSIONS We found that HCV including SVR was the major etiology of chronic liver disease in patients with PoPH. Moreover, we revealed that the ALBI score was the most impacted factor associated with severe PoPH. Thus, ALBI score may be useful for the estimation of pulmonary vascular resistance.
Collapse
Affiliation(s)
- Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Akihiro Honda
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yoichi Sugiyama
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Dan Nakano
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Tsubasa Tsutsumi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Nobuhiro Tahara
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yoshihiro Fukumoto
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
20
|
Del Valle K, DuBrock HM. Hepatopulmonary Syndrome and Portopulmonary Hypertension: Pulmonary Vascular Complications of Liver Disease. Compr Physiol 2021; 11:3281-3302. [PMID: 34636408 DOI: 10.1002/cphy.c210009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pulmonary vascular disease is a frequent complication of chronic liver disease and portal hypertension, affecting up to 30% of patients. There are two distinct pulmonary vascular complications of liver disease: hepatopulmonary syndrome (HPS) and portopulmonary hypertension (POPH). HPS affects 25% of patients with chronic liver disease and is characterized by intrapulmonary vasodilatation and abnormal arterial oxygenation. HPS negatively impacts quality of life and is associated with a 2-fold increased risk of death compared to controls with liver disease without HPS. Angiogenesis, endothelin-1 mediated endothelial dysfunction, monocyte influx, and alveolar type 2 cell dysfunction seem to play important roles in disease pathogenesis but there are currently no effective medical therapies. Fortunately, HPS resolves following liver transplant (LT) with improvements in hypoxemia. POPH is a subtype of pulmonary arterial hypertension (PAH) characterized by an elevated mean pulmonary arterial pressure and pulmonary vascular resistance in the setting of normal left-sided filling pressures. POPH affects 5% to 6% of patients with chronic liver disease. Although the pathogenesis has not been fully elucidated, endothelial dysfunction, inflammation, and estrogen signaling have been identified as key pathways involved in disease pathogenesis. POPH is typically treated with PAH targeted therapy and may also improve with liver transplantation in selected patients. This article highlights what is currently known regarding the diagnosis, management, pathobiology, and outcomes of HPS and POPH. Ongoing research is needed to improve understanding of the pathophysiology and outcomes of these distinct and often misunderstood pulmonary vascular complications of liver disease. © 2021 American Physiological Society. Compr Physiol 11:1-22, 2021.
Collapse
|
21
|
Lahm T. Hormones, Hemodynamics, and Hepatic Function: Digesting the Intricacies of Sex Differences in Portopulmonary Hypertension. Chest 2021; 159:11-13. [PMID: 33422194 DOI: 10.1016/j.chest.2020.09.240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 11/29/2022] Open
Affiliation(s)
- Tim Lahm
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, and the Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine; and the Richard L. Roudebush VA Medical Center, Indianapolis, IN.
| |
Collapse
|
22
|
Pienkos S, Gallego N, Condon DF, Cruz-Utrilla A, Ochoa N, Nevado J, Arias P, Agarwal S, Patel H, Chakraborty A, Lapunzina P, Escribano P, Tenorio-Castaño J, de Jesús Pérez VA. Novel TNIP2 and TRAF2 Variants Are Implicated in the Pathogenesis of Pulmonary Arterial Hypertension. Front Med (Lausanne) 2021; 8:625763. [PMID: 33996849 PMCID: PMC8119639 DOI: 10.3389/fmed.2021.625763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Pulmonary arterial hypertension (PAH) is a rare disease characterized by pulmonary vascular remodeling and right heart failure. Specific genetic variants increase the incidence of PAH in carriers with a family history of PAH, those who suffer from certain medical conditions, and even those with no apparent risk factors. Inflammation and immune dysregulation are related to vascular remodeling in PAH, but whether genetic susceptibility modifies the PAH immune response is unclear. TNIP2 and TRAF2 encode for immunomodulatory proteins that regulate NF-κB activation, a transcription factor complex associated with inflammation and vascular remodeling in PAH. Methods: Two unrelated families with PAH cases underwent whole-exome sequencing (WES). A custom pipeline for variant prioritization was carried out to obtain candidate variants. To determine the impact of TNIP2 and TRAF2 in cell proliferation, we performed an MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay on healthy lung pericytes transfected with siRNA specific for each gene. To measure the effect of loss of TNIP2 and TRAF2 on NF-kappa-beta (NF-κB) activity, we measured levels of Phospho-p65-NF-κB in siRNA-transfected pericytes using western immunoblotting. Results: We discovered a novel missense variant in the TNIP2 gene in two affected individuals from the same family. The two patients had a complex form of PAH with interatrial communication and scleroderma. In the second family, WES of the proband with PAH and primary biliary cirrhosis revealed a de novo protein-truncating variant in the TRAF2. The knockdown of TNIP2 and TRAF2 increased NF-κB activity in healthy lung pericytes, which correlated with a significant increase in proliferation over 24 h. Conclusions: We have identified two rare novel variants in TNIP2 and TRAF2 using WES. We speculate that loss of function in these genes promotes pulmonary vascular remodeling by allowing overactivation of the NF-κB signaling activity. Our findings support a role for WES in helping identify novel genetic variants associated with dysfunctional immune response in PAH.
Collapse
Affiliation(s)
- Shaun Pienkos
- Division of Pulmonary and Critical Care Medicine and Department of Medicine, Stanford University, Stanford, CA, United States
| | - Natalia Gallego
- Medical and Molecular Genetics Institute (INGEMM), IdiPaz, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - David F. Condon
- Division of Pulmonary and Critical Care Medicine and Department of Medicine, Stanford University, Stanford, CA, United States
| | - Alejandro Cruz-Utrilla
- Pulmonary Hypertension Unit, Department of Cardiology, Hospital Universitario Doce de Octubre, Madrid, Spain
- Centro de Investigación Biomedica en Red en Enfermedades Cardiovasculares, Instituto de Salud Carlos III (CIBERCV), Madrid, Spain
| | - Nuria Ochoa
- Pulmonary Hypertension Unit, Department of Cardiology, Hospital Universitario Doce de Octubre, Madrid, Spain
- Centro de Investigación Biomedica en Red en Enfermedades Cardiovasculares, Instituto de Salud Carlos III (CIBERCV), Madrid, Spain
| | - Julián Nevado
- Medical and Molecular Genetics Institute (INGEMM), IdiPaz, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Intellectual Disability, TeleHealth, Autism and Congenital Anomalies (ITHACA), European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Brussels, Belgium
| | - Pedro Arias
- Medical and Molecular Genetics Institute (INGEMM), IdiPaz, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Intellectual Disability, TeleHealth, Autism and Congenital Anomalies (ITHACA), European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Brussels, Belgium
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine and Department of Medicine, Stanford University, Stanford, CA, United States
| | - Hiral Patel
- Division of Pulmonary and Critical Care Medicine and Department of Medicine, Stanford University, Stanford, CA, United States
| | - Ananya Chakraborty
- Division of Pulmonary and Critical Care Medicine and Department of Medicine, Stanford University, Stanford, CA, United States
| | - Pablo Lapunzina
- Medical and Molecular Genetics Institute (INGEMM), IdiPaz, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Intellectual Disability, TeleHealth, Autism and Congenital Anomalies (ITHACA), European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Brussels, Belgium
| | - Pilar Escribano
- Pulmonary Hypertension Unit, Department of Cardiology, Hospital Universitario Doce de Octubre, Madrid, Spain
- Centro de Investigación Biomedica en Red en Enfermedades Cardiovasculares, Instituto de Salud Carlos III (CIBERCV), Madrid, Spain
| | - Jair Tenorio-Castaño
- Medical and Molecular Genetics Institute (INGEMM), IdiPaz, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Intellectual Disability, TeleHealth, Autism and Congenital Anomalies (ITHACA), European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Brussels, Belgium
| | - Vinicio A. de Jesús Pérez
- Division of Pulmonary and Critical Care Medicine and Department of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
23
|
Prevalence and Associated Factors of Portopulmonary Hypertension in Patients with Portal Hypertension: A Case-Control Study. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5595614. [PMID: 33987440 PMCID: PMC8079202 DOI: 10.1155/2021/5595614] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/10/2021] [Accepted: 03/25/2021] [Indexed: 02/05/2023]
Abstract
Background and Aims There are few studies on the prevalence and clinical characteristics of portopulmonary hypertension (POPH) in patients with portal hypertension. In addition, invasive right heart catheterization further limits the clinical diagnosis of POPH patients. Methods From January 2018 to December 2019, 1004 patients with portal hypertension were treated in the Department of Hepatology, the First Hospital of Jilin University. Based on the inclusion and exclusion criteria, 188 patients with portal hypertension were finally included. We collected complete clinical data, laboratory examinations, and imaging examinations. Patients were divided into a POPH group and a non-POPH group based on echocardiographic results. We calculated the prevalence of POPH in patients with portal hypertension. The differences in clinical characteristics of the two groups of patients were compared. Results The prevalence of POPH in patients with portal hypertension was 2.8%. Among the 188 patients with portal hypertension with fingertip oxygen saturation < 95% at rest, 28 patients had POPH (12 males and 16 females), with an average age of 63 ± 8, and 160 patients did not have POPH (110 males, 50 women), with an average age of 59 ± 11. The proportion of women in the POPH group (P < 0.01) and patients without liver cancer (P = 0.044) was high. Compared to patients without POPH, patients with POPH had lower hemoglobin (related to the severity of anemia, P < 0.01), higher creatinine (P < 0.05), and lower partial pressure of oxygen and carbon dioxide (P < 0.05). Patients with POPH had a higher incidence of atrial enlargement, ventricular enlargement, mitral valve regurgitation, tricuspid regurgitation, pulmonary artery widening, pericardial effusion, and aortic regurgitation than those without POPH. The risk of POPH did not increase with the aggravation of the Child-Pugh classification. Conclusion The prevalence of POPH in patients with portal hypertension is 2.8%. The proportion of women and nonliver cancer in POPH patients was higher than that in non-POPH patients. In addition, the POPH group had higher creatinine and lower hemoglobin, and echocardiography showed that POPH patients had more cardiac structural changes. In patients with portal hypertension, the risk in patients with POPH has nothing to do with the Child-Pugh classification and MELD score.
Collapse
|
24
|
Thomas C, Glinskii V, de Jesus Perez V, Sahay S. Portopulmonary Hypertension: From Bench to Bedside. Front Med (Lausanne) 2020; 7:569413. [PMID: 33224960 PMCID: PMC7670077 DOI: 10.3389/fmed.2020.569413] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022] Open
Abstract
Portopulmonary hypertension (PoPH) is defined as pulmonary arterial hypertension (PAH) associated with portal hypertension and is a subset of Group 1 pulmonary hypertension (PH). PoPH is a cause of significant morbidity and mortality in patients with portal hypertension with or without liver disease. Significant strides in elucidating the pathogenesis, effective screening algorithms, accurate diagnoses, and treatment options have been made in past 20 years. Survival of PoPH has remained poor compared to IPAH and other forms of PAH. Recently, the first randomized controlled trial was done in this patient population and showed promising results with PAH specific therapy. Despite positive effects on hemodynamics and functional outcomes, it is unclear whether PAH specific therapy has a beneficial effect on long term survival or transplant outcomes. In this review, we will discuss the epidemiology, pathophysiology, clinical and hemodynamic characteristics of PoPH. Additionally, this review will highlight the lacunae in our current management strategy, challenges faced and will provide direction to potentially useful futuristic management strategies.
Collapse
Affiliation(s)
- Christopher Thomas
- Division of Pulmonary, Allergy & Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Vladimir Glinskii
- Division of Pulmonary, Allergy & Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Vinicio de Jesus Perez
- Division of Pulmonary, Allergy & Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Sandeep Sahay
- Houston Methodist Hospital Lung Center, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
25
|
Mair KM, Gaw R, MacLean MR. Obesity, estrogens and adipose tissue dysfunction - implications for pulmonary arterial hypertension. Pulm Circ 2020; 10:2045894020952019. [PMID: 32999709 PMCID: PMC7506791 DOI: 10.1177/2045894020952023] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is a prevalent global public health issue characterized by excess body fat. Adipose tissue is now recognized as an important endocrine organ releasing an abundance of bioactive adipokines including, but not limited to, leptin, adiponectin and resistin. Obesity is a common comorbidity amongst pulmonary arterial hypertension patients, with 30% to 40% reported as obese, independent of other comorbidities associated with pulmonary arterial hypertension (e.g. obstructive sleep apnoea). An 'obesity paradox' has been observed, where obesity has been associated with subclinical right ventricular dysfunction but paradoxically may confer a protective effect on right ventricular function once pulmonary hypertension develops. Obesity and pulmonary arterial hypertension share multiple pathophysiological mechanisms including inflammation, oxidative stress, elevated leptin (proinflammatory) and reduced adiponectin (anti-inflammatory). The female prevalence of pulmonary arterial hypertension has instigated the hypothesis that estrogens may play a causative role in its development. Adipose tissue, a major site for storage and metabolism of sex steroids, is the primary source of estrogens and circulating estrogens levels which are elevated in postmenopausal women and men with pulmonary arterial hypertension. This review discusses the functions of adipose tissue in both health and obesity and the links between obesity and pulmonary arterial hypertension. Shared pathophysiological mechanisms and the contribution of specific fat depots, metabolic and sex-dependent differences are discussed.
Collapse
Affiliation(s)
- Kirsty M. Mair
- Strathclyde Institute of Pharmacy and Biomedical
Sciences (SIPBS), University of Strathclyde, Glasgow, UK
| | - Rosemary Gaw
- Strathclyde Institute of Pharmacy and Biomedical
Sciences (SIPBS), University of Strathclyde, Glasgow, UK
| | - Margaret R. MacLean
- Strathclyde Institute of Pharmacy and Biomedical
Sciences (SIPBS), University of Strathclyde, Glasgow, UK
| |
Collapse
|