1
|
Li J, Ma Z, Yang Z, Yang M, Li C, Li M, Li X, Chen X, Ma H, Chen W, Ye X, Li X. Integrating transcriptomics and network pharmacology to reveal the mechanisms of total Rhizoma Coptidis alkaloids against nonalcoholic steatohepatitis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117600. [PMID: 38103844 DOI: 10.1016/j.jep.2023.117600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Non-alcoholic steatohepatitis (NASH) has emerged as a major cause of cirrhosis and hepatocellular carcinoma, posing a significant threat to public health. Rhizoma Coptidis, a traditional Chinese medicinal herb has been shown to have significant curative effects on liver diseases. Total Rhizoma Coptidis Alkaloids (TRCA) is a primarily alkaloid mixture extracted from Rhizoma Coptidis, and its constituents are widely accepted to have hepatoprotective effects. AIM OF THE STUDY This work aimed to investigate the efficacy and potential mechanisms of TRCA in ameliorating NASH through both in vitro experiments and in vivo mouse models. MATERIALS AND METHODS The study employed a mice model induced by a high-fat diet (HFD) to evaluate the effectiveness and pharmacological mechanisms of TRCA in alleviating NASH. Transcriptomic sequencing and network pharmacology were used to explore the possible targets and mechanisms of TRCA to ameliorate NASH. Further validation was performed in free fatty acid (FFA)-induced human hepatocytes (LO2) and human hepatocellular carcinoma cells (HepG2). RESULTS TRCA effectively ameliorated the main features of NASH such as lipid accumulation, hepatitis and hepatic fibrosis in the liver tissue of mice induced by HFD, as well as improved glucose tolerance and insulin resistance in mice. Combined with transcriptomic and network pharmacological analyses, 68 core targets associated with the improvement of NASH by TRCA were obtained. According to the KEGG results, the core targets were significantly enriched in the PI3K-AKT signaling pathway whereas TRCA ameliorated the aberrant down-regulation of the PI3K-AKT signaling pathway induced by HFD. Furthermore, the five highest-ranked genes were obtained by PPI network analysis. Moreover, our findings suggest that TRCA may impede the progression of HFD-induced NASH by regulating the expression of PPARG, MMP9, ALB, CCL2, and EGFR. CONCLUSIONS TRCA can ameliorate HFD-induced liver injury by modulating aberrant downregulation of the PI3K-AKT signaling pathway. Key proteins such as PPARG, MMP9, ALB, CCL2, and EGFR may be critical targets for TRCA to ameliorate NASH. This finding supports using Rhizoma Coptidis, a well-known herbal medicine, as a potential therapeutic agent for NASH.
Collapse
Affiliation(s)
- Juan Li
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Zhengcai Ma
- School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Zhipeng Yang
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Maochun Yang
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Changsheng Li
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Mengmeng Li
- School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Xiaoduo Li
- School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Xiantao Chen
- School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Hang Ma
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Wanqun Chen
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400000, China.
| | - Xiaoli Ye
- School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Xuegang Li
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
2
|
Zhao J, Guo M, Yan Y, Wang Y, Zhao X, Yang J, Chen J, Chen C, Tang L, Zeng W, Liu Y, Qin M, Zhou Y, Xu L. The miR-7/EGFR axis controls the epithelial cell immunomodulation and regeneration and orchestrates the pathology in inflammatory bowel disease. J Adv Res 2024; 57:119-134. [PMID: 37094666 PMCID: PMC10918346 DOI: 10.1016/j.jare.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 04/12/2023] [Indexed: 04/26/2023] Open
Abstract
INTRODUCTION The epithelial immunomodulation and regeneration are intrinsic critical events against inflammatory bowel disease (IBD). MiR-7 is well documented as a promising regulator in the development of various diseases including inflammatory diseases. OBJECTIVES This study aimed to assess the effect of miR-7 in intestinal epithelial cells (IECs) in IBD. METHODS MiR-7def mice were given dextran sulfate sodium (DSS) to induce enteritis model. The infiltration of inflammatory cells was measured by FCM and immunofluorescence assay. 5'deletion assay and EMSA assays were performed to study the regulatory mechanism of miR-7 expression in IECs. The inflammatory signals and the targets of miR-7 were analyzed by RNA-seq and FISH assay. IECs were isolated from miR-7def, miR-7oe and WT mice to identify the immunomodulation and regeneration capacity. IEC-specific miR-7 silencing expression vector was designed and administered by the tail vein into murine DSS-induced enteritis model to evaluate the pathological lesions of IBD. RESULTS We found miR-7 deficiency improved the pathological lesions of DSS-induced murine enteritis model, accompanied by elevated proliferation and enhanced transduction of NF-κB/AKT/ERK signals in colonic IECs, as well as decreased local infiltration of inflammatory cells. MiR-7 was dominantly upregulated in colonic IECs in colitis. Moreover, the transcription of pre-miR-7a-1, orchestrated by transcription factor C/EBPα, was a main resource of mature miR-7 in IECs. As for the mechanism, EGFR, a miR-7 target gene, was downregulated in colonic IECs in colitis model and Crohn's disease patients. Furthermore, miR-7 also controlled the proliferation and inflammatory-cytokine secretion of IECs in response to inflammatory-signals through EGFR/NF-κB/AKT/ERK pathway. Finally, IEC-specific miR-7 silencing promoted the proliferation and transduction of NF-κB pathway in IECs and alleviated the pathological damage of colitis. CONCLUSION Our results present the unknown role of miR-7/EGFR axis in IEC immunomodulation and regeneration in IBD and might provide clues for the application of miRNA-based therapeutic strategies in colonic diseases.
Collapse
Affiliation(s)
- Juanjuan Zhao
- School of Medicine, Guizhou University, Guiyang 550025, Guizhou, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Mengmeng Guo
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Yaping Yan
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Ya Wang
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Xu Zhao
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Jing Yang
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Jing Chen
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Chao Chen
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Lin Tang
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Wenhuan Zeng
- Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Yiting Liu
- Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Ming Qin
- Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Ya Zhou
- Department of Medical Physics, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China
| | - Lin Xu
- School of Medicine, Guizhou University, Guiyang 550025, Guizhou, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Key Laboratory of Gene Detection and Treatment of Guizhou Province, Guizhou, Zunyi 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
3
|
Lv T, Lou Y, Yan Q, Nie L, Cheng Z, Zhou X. Phosphorylation: new star of pathogenesis and treatment in steatotic liver disease. Lipids Health Dis 2024; 23:50. [PMID: 38368351 PMCID: PMC10873984 DOI: 10.1186/s12944-024-02037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/31/2024] [Indexed: 02/19/2024] Open
Abstract
Steatotic liver disease poses a serious threat to human health and has emerged as one of the most significant burdens of chronic liver disease worldwide. Currently, the research mechanism is not clear, and there is no specific targeted drug for direct treatment. Phosphorylation is widely regarded as the most common type of protein modification, closely linked to steatotic liver disease in previous studies. However, there is no systematic review to clarify the relationship and investigate from the perspective of phosphorylation. Phosphorylation has been found to mainly regulate molecule stability, affect localization, transform molecular function, and cooperate with other protein modifications. Among them, adenosine 5'-monophosphate-activated protein kinase (AMPK), serine/threonine kinase (AKT), and nuclear factor kappa-B (NF-kB) are considered the core mechanisms in steatotic liver disease. As to treatment, lifestyle changes, prescription drugs, and herbal ingredients can alleviate symptoms by influencing phosphorylation. It demonstrates the significant role of phosphorylation as a mechanism occurrence and a therapeutic target in steatotic liver disease, which could be a new star for future exploration.
Collapse
Affiliation(s)
- Tiansu Lv
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Lou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qianhua Yan
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lijuan Nie
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhe Cheng
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiqiao Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
4
|
Wang Y, Zheng J, Long Y, Wu W, Zhu Y. Direct degradation and stabilization of proteins: New horizons in treatment of nonalcoholic steatohepatitis. Biochem Pharmacol 2024; 220:115989. [PMID: 38122854 DOI: 10.1016/j.bcp.2023.115989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is featured with excessive hepatic lipid accumulation and its global prevalence is soaring. Nonalcoholic steatohepatitis (NASH), the severe systemic inflammatory subtype of NAFLD, is tightly associated with metabolic comorbidities, and the hepatocytes manifest severe inflammation and ballooning. Currently the therapeutic options for treating NASH are limited. Potent small molecules specifically intervene with the signaling pathways that promote pathogenesis of NASH. Nevertheless they have obvious adverse effects and show long-term ineffectiveness in clinical trials. It poses the fundamental question to efficiently and safely inhibit the pathogenic processes. Targeted protein degradation (TPD) belongs to the direct degradation strategies and is a burgeoning strategy. It utilizes the small molecules to bind to the target proteins and recruit the endogenous proteasome, lysosome and autophagosome-mediated degradation machineries. They effectively and specifically degrade the target proteins. It has exhibited promising therapeutic effects in treatment of cancer, neurodegenerative diseases and other diseases in a catalytic manner at low doses. We critically discuss the principles of multiple direct degradation strategies, especially PROTAC and ATTEC. We extensively analyze their emerging application in degradation of excessive pathogenic proteins and lipid droplets, which promote the progression of NASH. Moreover, we discuss the opposite strategy that utilizes the small molecules to recruit deubiquinases to stabilize the NASH/MASH-suppressing proteins. Their advantages, limitations, as well as the solutions to address the limitations have been analyzed. In summary, the innovative direct degradation strategies provide new insights into design of next-generation therapeutics to combat NASH with optimal safety paradigm and efficiency.
Collapse
Affiliation(s)
- Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, PR China.
| | - Jianan Zheng
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China
| | - Yun Long
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, PR China
| | - Wenyi Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China
| | - Yutong Zhu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China
| |
Collapse
|
5
|
Zou Y, Zhan T, Liu J, Tan J, Liu W, Huang S, Cai Y, Huang M, Huang X, Tian X. CXCL6 promotes the progression of NAFLD through regulation of PPARα. Cytokine 2024; 174:156459. [PMID: 38056250 DOI: 10.1016/j.cyto.2023.156459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
An increasing number of studies have shown that Nonalcoholic fatty liver disease (NAFLD) is strongly associated with obesity, insulin resistance, dyslipidemia, hypertension and metabolic syndrome, but its specific pathogenesis remains unclear. By analyzing GEO database, we found CXCL6 was upregulated in liver tissues of patients with NAFLD. We also confirmed with qPCR that CXCL6 is highly expressed in serum of patients with NAFLD. To identify the underlying impact of CXCL6 on NAFLD, we established animal and cell models of NAFLD. Similarly, we confirmed by qPCR and Western blot that CXCL6 was upregulated in the NAFLD model in vitro and vivo. After transfecting NAFLD cells with siRNA targeting CXCL6 (si-CXCL6), a series of functional experiments were carried out, and these data indicated that the inhibition of CXCL6 reduced intracellular lipid deposition, decreased AST, ALT and TG level, facilitate cell proliferation and suppress their apoptosis. Furthermore, western blot and qPCR analyses displayed that the suppression of CXCL6 could raise the PPARα expression, but PPAR α inhibitor, GW6471 could partially counteract this effect. What's more, Oil Red O staining, biochemical analyzer and TG detection kit revealed that GW6471 could reverse the inhibitory effect of si-CXCL6 on NAFLD. In summary, we provide convincing evidence that CXCL6 is markedly elevated in NAFLD, and the CXCL6/PPARα regulatory network mediates disease progression of NAFLD.
Collapse
Affiliation(s)
- Yanli Zou
- Department of Gastroenterology, Tongren Hospital of WuHan University (WuHan Third Hospital), Wuhan 430060, China
| | - Ting Zhan
- Department of Gastroenterology, Tongren Hospital of WuHan University (WuHan Third Hospital), Wuhan 430060, China
| | - Jiaxi Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430060, China
| | - Jie Tan
- Department of Gastroenterology, Tongren Hospital of WuHan University (WuHan Third Hospital), Wuhan 430060, China
| | - Weijie Liu
- Department of Gastroenterology, Tongren Hospital of WuHan University (WuHan Third Hospital), Wuhan 430060, China
| | - Shasha Huang
- Department of Gastroenterology, Tongren Hospital of WuHan University (WuHan Third Hospital), Wuhan 430060, China
| | - Yisan Cai
- Department of Gastroenterology, Tongren Hospital of WuHan University (WuHan Third Hospital), Wuhan 430060, China
| | - Ming Huang
- Department of Gastroenterology, Tongren Hospital of WuHan University (WuHan Third Hospital), Wuhan 430060, China
| | - Xiaodong Huang
- Department of Gastroenterology, Tongren Hospital of WuHan University (WuHan Third Hospital), Wuhan 430060, China; Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430060, China.
| | - Xia Tian
- Department of Gastroenterology, Tongren Hospital of WuHan University (WuHan Third Hospital), Wuhan 430060, China.
| |
Collapse
|
6
|
Zhang C, Zhang Y, Dong Y, Zi R, Wang Y, Chen Y, Liu C, Wang J, Wang X, Li J, Liang H, Ou J. Non-alcoholic fatty liver disease promotes liver metastasis of colorectal cancer via fatty acid synthase dependent EGFR palmitoylation. Cell Death Discov 2024; 10:41. [PMID: 38263401 PMCID: PMC10805926 DOI: 10.1038/s41420-023-01770-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 01/25/2024] Open
Abstract
Liver metastasis is the major reason for most of colorectal cancer (CRC) related deaths. Accumulating evidence indicates that CRC patients with non-alcoholic fatty liver disease (NAFLD) are at a greater risk of developing liver metastasis. With the growing prevalence of NAFLD, a better understanding of the molecular mechanism in NAFLD-driven CRC liver metastasis is needed. In this study, we demonstrated that NAFLD facilitated CRC liver metastasis as a metabolic disorder and promoted the stemness of metastatic CRC cells for their colonization and outgrowth in hepatic niches. Metabolically, the lipid-rich microenvironment in NAFLD activated de novo palmitate biosynthesis in metastatic CRC cells via upregulating fatty acid synthase (FASN). Moreover, increased intracellular palmitate bioavailability promoted EGFR palmitoylation to enhance its protein stability and plasma membrane localization. Furthermore, we demonstrated that the FDA-approved FASN inhibitor orlistat could reduce NAFLD-activated endogenous palmitate production, thus inhibiting palmitoylation of EGFR to suppress CRC cell stemness and restrict liver metastasis in synergy with conventional chemotherapy. These findings reveal that the NAFLD metabolic microenvironment boosts endogenous palmitate biosynthesis in metastatic CRC cells and promotes cell stemness via EGFR palmitoylation, and FASN inhibitor orlistat could be a candidate adjuvant drug to suppress liver metastasis in CRC patients with NAFLD.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yue Zhang
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yan Dong
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Ruiyang Zi
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yijie Wang
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yanrong Chen
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Chengxiang Liu
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Junyi Wang
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Xuesong Wang
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Jianjun Li
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China.
| | - Houjie Liang
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China.
| | - Juanjuan Ou
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China.
- Jinfeng Laboratory, 401329, Chongqing, China.
| |
Collapse
|
7
|
Peng C, Li J, Ke X, Liu F, Huang KE. In silico and in vivo demonstration of the regulatory mechanism of Qi-Ge decoction in treating NAFLD. Ann Med 2023; 55:2200258. [PMID: 37096878 DOI: 10.1080/07853890.2023.2200258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD), a chronic and progressive liver disease, often causes steatosis and steatohepatitis. Qi-Ge decoction (QGD) shows a good effect against NAFLD in the clinic. But the molecular mechanism for QGD in improving NAFLD is unknown. PURPOSE This study explored the molecular mechanism of QGD in NAFLD model rats using comprehensive network pharmacology, molecular docking and in vivo verification strategies. METHODS Active components and targets of QGD were obtained from public database. The overlapped genes between QGD and NAFLD targets were analyzed by enrichment analysis. Active components and targets were used to predict molecular docking analysis. Finally, seven key targets were screened out and the gene expression were verified in the NAFLD rat's liver tissues after QGD treatment. RESULTS Fifty-eight common QGD therapeutic targets were associated with NAFLD. Molecular docking demonstrated that seven targets had strong binding ability for the corresponding active ingredients. GO analysis identified 18 biological process entries, which were mainly related to regulation of lipid storage, lipid localization and peptide transport. KEGG analysis identified multiple signaling pathways, which were mainly associated with tumor necrosis factor signaling and NAFLD. In vivo data confirmed that the effect of QGD in the treatment of NAFLD was mainly exerted through improving liver steatosis and inflammatory cell infiltration. Additionally, QGD upregulated the expression of MAPK8 and ESR1 and downregulated the transcriptional expression of IL6, VEGFA, CASP3, EGFR and MYC. These targets may affect lipid metabolism by regulating lipid storage and inflammation. CONCLUSION The integration of results obtained in silico and in vivo indicated that QGD regulates multiple targets, biological processes and signaling pathways in NAFLD, which may represent a complex molecular mechanism by which QGD improves NAFLD.Key messagesQGD intervention is related to multiple biological processes such as inflammation, oxidation and cell apoptosis in NAFLD.Lipid and atherosclerosis, TNF signaling pathway, IL-17 signaling pathway, non-alcoholic fatty liver disease and AGE-RAGE signaling pathway in diabetic complications are the main pathways for QGD intervention NAFLD.The active components of QGD can form good binding with relevant target proteins through intermolecular forces, exhibiting excellent docking activity.
Collapse
Affiliation(s)
- Chong Peng
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Postdoctoral Research Station, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jing Li
- Postdoctoral Research Station, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Integrative Cancer Centre, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xuehong Ke
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Fengbin Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ke-Er Huang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Hu H, Lin G, He F, Liu J, Jia R, Li K, Hong W, Fang M, Zeng JZ. Design, synthesis, and biological evaluation of carbonyl-hydrazine-1-carboxamide derivatives as anti-hepatic fibrosis agents targeting Nur77. Bioorg Chem 2023; 140:106795. [PMID: 37657195 DOI: 10.1016/j.bioorg.2023.106795] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/20/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
Hepatic fibrosis remains a great challenge clinically. The orphan nuclear receptor Nur77 is recently suggested as the critical regulator of transforming growth factor-β (TGF-β) signaling, which plays a central role in multi-organic fibrosis. Herein, we optimized our previously reported Nur77-targeted compound 9 h for attempting to develop effective and safe anti-hepatic fibrosis agents. The critical pharmacophore scaffold of pyridine-carbonyl-hydrazine-1-carboxamide was retained, while the naphthalene ring was replaced with an aromatic ring containing pyridyl or indole groups. Four series of derivatives were thus generated, among which the compound 16f had excellent binding activity toward Nur77-LBD (KD = 470 nM) with the best inhibitory activity against the TGF- β 1 activation of hepatic stellate cells (HSCs) and low cytotoxicity to normal mice liver AML-12 cells (IC50 > 80 μM). In mice, 16f displayed potent activity against CCl4-induced liver fibrosis with improved liver function. Mechanistically, 16f-mediated inactivation of HSC and suppression of liver fibrosis were associated with its enhancement of autophagic flux in a Nur77-dependent manner. Together, 16f was identified as a potential anti-liver fibrosis agent. Our study suggests that Nur77 may serve as a critical anti-hepatic fibrosis target.
Collapse
Affiliation(s)
- Hongyu Hu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China; Xingzhi College, Zhejiang Normal University, Lanxi 321004, China
| | - Gang Lin
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Fengming He
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jie Liu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Rong Jia
- Xingzhi College, Zhejiang Normal University, Lanxi 321004, China
| | - Kun Li
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Wenbin Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Meijuan Fang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Jin-Zhang Zeng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
9
|
Exploring the mechanism of Cassiae semen in regulating lipid metabolism through network pharmacology and experimental validation. Biosci Rep 2023; 43:232453. [PMID: 36645186 PMCID: PMC9905789 DOI: 10.1042/bsr20221375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Multiple studies have assessed the role of Cassiae semen (CS) in regulating lipid metabolism. However, the mechanism of action of CS on non-alcoholic fatty liver disease (NAFLD) has seen rare scrutiny. OBJECTIVE The objective of this study was to explore the regulatory mechanism of CS on lipid metabolism in NAFLD. METHODS Components of CS ethanol extract (CSEE) were analyzed and identified using UPLC-Q-Orbirap HRMS. The candidate compounds of CS and its relative targets were extracted from the Traditional Chinese Medicine Systems Pharmacology, Swiss-Target-Prediction, and TargetNet web server. The Therapeutic Target Database, Genecards, Online Mendelian Inheritance in Man, and DisGeNET were searched for NAFLD targets. Binding affinity between potential core components and key targets was established employing molecular docking simulations. After that, free fatty acid (FFA)-induced HepG2 cells were used to further validate part of the network pharmacology results. RESULTS Six genes, including Caspase 3 (CASP3), phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit α (PIK3CA), epidermal growth factor receptor (EGFR), and amyloid β (A4) precursor protein (APP) were identified as key targets. The mitogen-activated protein kinase (MAPK) signaling pathway was found to associate closely with CS's effect on NAFLD. Per molecular docking findings, toralactone and quinizarin formed the most stable combinations with hub genes. About 0.1 (vs. FFA, P<0.01) and 0.2 (vs. FFA, P<0.05) mg/ml CSEE decreased lipid accumulation in vitro by reversing the up-regulation of CASP3, EGFR, and APP and the down-regulation of PIK3CA. CONCLUSION CSEE can significantly reduce intracellular lipid accumulation by modulating the MAPK signaling pathway to decrease CASP3 and EGFR expression.
Collapse
|
10
|
A Whole New Comprehension about ncRNA-Encoded Peptides/Proteins in Cancers. Cancers (Basel) 2022; 14:cancers14215196. [PMID: 36358616 PMCID: PMC9654040 DOI: 10.3390/cancers14215196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary The advent of bioinformatics and high-throughput sequencing have disclosed the complexity of ORFs in ncRNAs. Thus, there is a dire need to deep into the real role of ncRNA-encoded proteins/peptides. Considerable progress has been achieved in several fields, ranging from the mechanism translation of ORFs in ncRNAs to various reliable detection means and experimental approaches. Several studies have been stressing functions and mechanisms of ncRNA-encoded peptides/proteins in cancers, which are helpful for us to understand the specific biological regulating procedure. Innovative research on animal models confirms the potential of clinical applications, such as being tumor biomarkers, antitumor drugs and cancer vaccines. In this review, we conclude the latest discoveries of ncRNA-encoded peptides/proteins, we are looking forwards to accelerating the pace of detection and diagnosis development in cancers. Abstract It is generally considered that non-coding RNAs do not encode proteins; however, more recently, studies have shown that lncRNAs and circRNAs have ORFs which are regions that code for peptides/protein. On account of the lack of 5′cap structure, translation of circRNAs is driven by IRESs, m6A modification or through rolling amplification. An increasing body of evidence have revealed different functions and mechanisms of ncRNA-encoded peptides/proteins in cancers, including regulation of signal transduction (Wnt/β-catenin signaling, AKT-related signaling, MAPK signaling and other signaling), cellular metabolism (Glucose metabolism and Lipid metabolism), protein stability, transcriptional regulation, posttranscriptional regulation (regulation of RNA stability, mRNA splicing and translation initiation). In addition, we conclude the existing detection technologies and the potential of clinical applications in cancer therapy.
Collapse
|
11
|
Duwaerts CC, Maiers JL. ER Disposal Pathways in Chronic Liver Disease: Protective, Pathogenic, and Potential Therapeutic Targets. Front Mol Biosci 2022; 8:804097. [PMID: 35174209 PMCID: PMC8841999 DOI: 10.3389/fmolb.2021.804097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum is a central player in liver pathophysiology. Chronic injury to the ER through increased lipid content, alcohol metabolism, or accumulation of misfolded proteins causes ER stress, dysregulated hepatocyte function, inflammation, and worsened disease pathogenesis. A key adaptation of the ER to resolve stress is the removal of excess or misfolded proteins. Degradation of intra-luminal or ER membrane proteins occurs through distinct mechanisms that include ER-associated Degradation (ERAD) and ER-to-lysosome-associated degradation (ERLAD), which includes macro-ER-phagy, micro-ER-phagy, and Atg8/LC-3-dependent vesicular delivery. All three of these processes are critical for removing misfolded or unfolded protein aggregates, and re-establishing ER homeostasis following expansion/stress, which is critical for liver function and adaptation to injury. Despite playing a key role in resolving ER stress, the contribution of these degradative processes to liver physiology and pathophysiology is understudied. Analysis of publicly available datasets from diseased livers revealed that numerous genes involved in ER-related degradative pathways are dysregulated; however, their roles and regulation in disease progression are not well defined. Here we discuss the dynamic regulation of ER-related protein disposal pathways in chronic liver disease and cell-type specific roles, as well as potentially targetable mechanisms for treatment of chronic liver disease.
Collapse
Affiliation(s)
- Caroline C. Duwaerts
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jessica L. Maiers
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
12
|
Ma Z, Zhu Y, Wang Q, Deng M, Wang J, Li D, Gu L, Zhao R, Yan S. Y-box binding protein 1 regulates liver lipid metabolism by regulating the Wnt/β-catenin signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2022; 9:1693. [PMID: 34988202 PMCID: PMC8667161 DOI: 10.21037/atm-21-5767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022]
Abstract
Background We mainly investigated how y-box binding protein 1 (YB-1) regulates liver lipid metabolism through the Wnt/β-catenin signaling pathway using multiple models. Methods The LO2 cells were treated with palmitic acid (PA) to create an NAFLD model in vitro. Immunohistochemistry and Western blotting assays were used to detect the expression of YB-1, β-catenin, SREBP-1c, LXRa, FXR1 and PPARα protein, and RNAs of them was detected by qRT-PCR. Oil Red O assay was applied to observe lipid droplets in LO2 cells and liver tissues. H&E staining was performed to observe the degree of liver inflammation. Proteomics in LO2 cells were conducted by Tandem mass tag proteomics assay. Co-immunoprecipitation and Western blotting assays were used to verify YB-1 complexed pGSK3β. ELISA and Western blotting assays were used to detect the concentrations of TNFα and IL-6 in LO2 cells and liver tissues, respectively. Results We found that YB-1 and β-catenin were highly expressed in the LO2 cell NAFLD model, and that the expression of TNFα and IL-6 also increased. Lipid synthases (SREBP-1c and LXRa) expression were decreased, while β-oxidation-related factors (FXR1 and PPARα) expression were increased. The expression of SREBP-1c and LXRa were increased while FXR1 and PPARα were decreased, though such responses were rescued through inhibiting β-catenin expression. Finally, tandem mass tag proteomics, co-immunoprecipitation, and Western blotting demonstrated that YB-1 could form a protein complex with phosphorylated glycogen synthase kinase 3 beta (pGSK3β) to regulate Wnt/β-catenin. In mouse NAFLD livers, immunohistochemistry and Western blotting validated the finding of YB-1 gene downregulation leading to the inhibition of Wnt/β-catenin pathway activation, ultimately inhibiting lipid synthesis and reducing the inflammatory response. Similar to the in vitro investigation, β-catenin overexpression reversed such YB-1 downregulation-induced downstream effects. Upregulation of the YB-1 gene promoted the activation of the Wnt/β-catenin pathway, thus increasing lipid synthesis and the inflammatory response. However, downregulation of β-catenin reversed this phenomenon caused by upregulating YB-1. Conclusions In summary, these results demonstrate that YB-1 regulates liver lipid metabolism by regulating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Zhenzeng Ma
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yu Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qizhi Wang
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Min Deng
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jianchao Wang
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Dapeng Li
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lin Gu
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Rui Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shanjun Yan
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
13
|
Li M, Chen J, Liu S, Sun X, Xu H, Gao Q, Chen X, Xi C, Huang D, Deng Y, Zhang F, Gao S, Qiu S, Tao X, Zhai J, Wei H, Yao H, Chen W. Spermine-Related DNA Hypermethylation and Elevated Expression of Genes for Collagen Formation are Susceptible Factors for Chemotherapy-Induced Hand-Foot Syndrome in Chinese Colorectal Cancer Patients. Front Pharmacol 2021; 12:746910. [PMID: 34539419 PMCID: PMC8440935 DOI: 10.3389/fphar.2021.746910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/13/2021] [Indexed: 01/06/2023] Open
Abstract
Hand-foot syndrome (HFS) is a common capecitabine-based chemotherapy-related adverse event (CRAE) in patients with colorectal cancer (CRC). It is of great significance to comprehensively identify susceptible factors for HFS, and further to elucidate the biomolecular mechanism of HFS susceptibility. We performed an untargeted multi-omics analysis integrating DNA methylation, transcriptome, and metabolome data of 63 Chinese CRC patients who had complete CRAE records during capecitabine-based chemotherapy. We found that the metabolome changes for each of matched plasma, urine, and normal colorectal tissue (CRT) in relation to HFS were characterized by chronic tissue damage, which was indicated by reduced nucleotide salvage, elevated spermine level, and increased production of endogenous cytotoxic metabolites. HFS-related transcriptome changes of CRT showed an overall suppressed inflammation profile but increased M2 macrophage polarization. HFS-related DNA methylation of CRT presented gene-specific hypermethylation on genes mainly for collagen formation. The hypermethylation was accumulated in the opensea and shore regions, which elicited a positive effect on gene expression. Additionally, we developed and validated models combining relevant biomarkers showing reasonably good discrimination performance with the area under the receiver operating characteristic curve values from 0.833 to 0.955. Our results demonstrated that the multi-omics variations associated with a profibrotic phenotype were closely related to HFS susceptibility. HFS-related biomolecular variations in CRT contributed more to the relevant biomolecular mechanism of HFS than in plasma and urine. Spermine-related DNA hypermethylation and elevated expression of genes for collagen formation were closely associated with HFS susceptibility. These findings provided new insights into the susceptible factors for chemotherapy-induced HFS, which can promote the implementation of individualized treatment against HFS.
Collapse
Affiliation(s)
- Mingming Li
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jiani Chen
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shaoqun Liu
- Department of Gastric Intestinal Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiaomeng Sun
- Research Institute, GloriousMed Clinical Laboratory Co., Ltd., Shanghai, China
| | - Huilin Xu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qianmin Gao
- Department of General Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xintao Chen
- Department of General Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chaowen Xi
- Research Institute, GloriousMed Clinical Laboratory Co., Ltd., Shanghai, China
| | - Doudou Huang
- Traditional Chinese Medicine Resource and Technology Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Deng
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Feng Zhang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shouhong Gao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shi Qiu
- Traditional Chinese Medicine Resource and Technology Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xia Tao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jingwen Zhai
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hua Wei
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China.,Department of Pharmacy, 905th Hospital of PLA Navy, Naval Medical University, Shanghai, China
| | - Houshan Yao
- Department of General Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wansheng Chen
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China.,Traditional Chinese Medicine Resource and Technology Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|