1
|
Corbella E, Fara C, Covarelli F, Porreca V, Palmisano B, Mignogna G, Corsi A, Riminucci M, Maras B, Mancone C. THBS1 and THBS2 Enhance the In Vitro Proliferation, Adhesion, Migration and Invasion of Intrahepatic Cholangiocarcinoma Cells. Int J Mol Sci 2024; 25:1782. [PMID: 38339060 PMCID: PMC10855656 DOI: 10.3390/ijms25031782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
In intrahepatic cholangiocarcinoma (iCCA), thrombospondin 1 (THBS1) and 2 (THBS2) are soluble mediators released in the tumor microenvironment (TME) that contribute to the metastatic spreading of iCCA cells via a lymphatic network by the trans-differentiation of vascular endothelial cells to a lymphatic-like phenotype. To study the direct role of THBS1 and THBS2 on the iCCA cells, well-established epithelial (HuCCT-1) and mesenchymal (CCLP1) iCCA cell lines were subjected to recombinant human THBS1 and THBS2 (rhTHBS1, rhTHBS2) for cellular function assays. Cell growth, cell adhesion, migration, and invasion were all enhanced in both CCLP1 and HuCCT-1 cells by the treatment with either rhTHBS1 or rhTHBS2, although they showed some variability in their intensity of speeding up cellular processes. rhTHBS2 was more intense in inducing invasiveness and in committing the HuCCT-1 cells to a mesenchymal-like phenotype and was therefore a stronger enhancer of the malignant behavior of iCCA cells compared to rhTHBS1. Our data extend the role of THBS1 and THBS2, which are not only able to hinder the vascular network and promote tumor-associated lymphangiogenesis but also exacerbate the malignant behavior of the iCCA cells.
Collapse
Affiliation(s)
- Eleonora Corbella
- Department of Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (E.C.); (C.F.); (F.C.); (V.P.); (A.C.); (M.R.)
| | - Claudia Fara
- Department of Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (E.C.); (C.F.); (F.C.); (V.P.); (A.C.); (M.R.)
| | - Francesca Covarelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (E.C.); (C.F.); (F.C.); (V.P.); (A.C.); (M.R.)
| | - Veronica Porreca
- Department of Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (E.C.); (C.F.); (F.C.); (V.P.); (A.C.); (M.R.)
| | - Biagio Palmisano
- Department of Radiology, Oncology and Pathology, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy;
| | - Giuseppina Mignogna
- Department of Biochemistry Science, Sapienza University of Rome, Viale Regina Elena 332, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (E.C.); (C.F.); (F.C.); (V.P.); (A.C.); (M.R.)
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (E.C.); (C.F.); (F.C.); (V.P.); (A.C.); (M.R.)
| | - Bruno Maras
- Department of Biochemistry Science, Sapienza University of Rome, Viale Regina Elena 332, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Carmine Mancone
- Department of Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (E.C.); (C.F.); (F.C.); (V.P.); (A.C.); (M.R.)
| |
Collapse
|
2
|
Qiao B, Liu X, Wang B, Wei S. The role of periostin in cardiac fibrosis. Heart Fail Rev 2024; 29:191-206. [PMID: 37870704 DOI: 10.1007/s10741-023-10361-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
Cardiac fibrosis, which is the buildup of proteins in the connective tissues of the heart, can lead to end-stage extracellular matrix (ECM) remodeling and ultimately heart failure. Cardiac remodeling involves changes in gene expression in cardiac cells and ECM, which significantly leads to the morbidity and mortality in heart failure. However, despite extensive research, the elusive intricacies underlying cardiac fibrosis remain unidentified. Periostin, an extracellular matrix (ECM) protein of the fasciclin superfamily, acts as a scaffold for building complex architectures in the ECM, which improves intermolecular interactions and augments the mechanical properties of connective tissues. Recent research has shown that periostin not only contributes to normal ECM homeostasis in a healthy heart but also serves as a potent inducible regulator of cellular reorganization in cardiac fibrosis. Here, we reviewed the constitutive domain of periostin and its interaction with other ECM proteins. We have also discussed the critical pathophysiological functions of periostin in cardiac remodeling mechanisms, including two distinct yet potentially intertwined mechanisms. Furthermore, we will focus on the intrinsic complexities within periostin research, particularly surrounding the contentious issues observed in experimental findings.
Collapse
Affiliation(s)
- Bao Qiao
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xuehao Liu
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Bailu Wang
- Clinical Trial Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Shujian Wei
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
3
|
Sulforaphane Potentiates Gemcitabine-Mediated Anti-Cancer Effects against Intrahepatic Cholangiocarcinoma by Inhibiting HDAC Activity. Cells 2023; 12:cells12050687. [PMID: 36899823 PMCID: PMC10000472 DOI: 10.3390/cells12050687] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA), the second most common primary liver cancer, has high mortality rates because of its limited treatment options and acquired resistance to chemotherapy. Sulforaphane (SFN), a naturally occurring organosulfur compound found in cruciferous vegetables, exhibits multiple therapeutic properties, such as histone deacetylase (HDAC) inhibition and anti-cancer effects. This study assessed the effects of the combination of SFN and gemcitabine (GEM) on human iCCA cell growth. HuCCT-1 and HuH28 cells, representing moderately differentiated and undifferentiated iCCA, respectively, were treated with SFN and/or GEM. SFN concentration dependently reduced total HDAC activity and promoted total histone H3 acetylation in both iCCA cell lines. SFN synergistically augmented the GEM-mediated attenuation of cell viability and proliferation by inducing G2/M cell cycle arrest and apoptosis in both cell lines, as indicated by the cleavage of caspase-3. SFN also inhibited cancer cell invasion and decreased the expression of pro-angiogenic markers (VEGFA, VEGFR2, HIF-1α, and eNOS) in both iCCA cell lines. Notably, SFN effectively inhibited the GEM-mediated induction of epithelial-mesenchymal transition (EMT). A xenograft assay demonstrated that SFN and GEM substantially attenuated human iCCA cell-derived tumor growth with decreased Ki67+ proliferative cells and increased TUNEL+ apoptotic cells. The anti-cancer effects of every single agent were markedly augmented by concomitant use. Consistent with the results of in vitro cell cycle analysis, G2/M arrest was indicated by increased p21 and p-Chk2 expression and decreased p-Cdc25C expression in the tumors of SFN- and GEM-treated mice. Moreover, treatment with SFN inhibited CD34-positive neovascularization with decreased VEGF expression and GEM-induced EMT in iCCA-derived xenografted tumors. In conclusion, these results suggest that combination therapy with SFN with GEM is a potential novel option for iCCA treatment.
Collapse
|
4
|
Matricellular proteins in intrahepatic cholangiocarcinoma. Adv Cancer Res 2022; 156:249-281. [DOI: 10.1016/bs.acr.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Fabris L, Cadamuro M, Cagnin S, Strazzabosco M, Gores GJ. Liver Matrix in Benign and Malignant Biliary Tract Disease. Semin Liver Dis 2020; 40:282-297. [PMID: 32162285 DOI: 10.1055/s-0040-1705109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The extracellular matrix is a highly reactive scaffold formed by a wide array of multifunctional molecules, encompassing collagens and noncollagenous glycoproteins, proteoglycans, glycosaminoglycans, and polysaccharides. Besides outlining the tissue borders, the extracellular matrix profoundly regulates the behavior of resident cells by transducing mechanical signals, and by integrating multiple cues derived from the microenvironment. Evidence is mounting that changes in the biostructure of the extracellular matrix are instrumental for biliary repair. Following biliary damage and eventually, malignant transformation, the extracellular matrix undergoes several quantitative and qualitative modifications, which direct interactions among hepatic progenitor cells, reactive ductular cells, activated myofibroblasts and macrophages, to generate the ductular reaction. Herein, we will give an overview of the main molecular factors contributing to extracellular matrix remodeling in cholangiopathies. Then, we will discuss the structural alterations in terms of biochemical composition and physical stiffness featuring the "desmoplastic matrix" of cholangiocarcinoma along with their pro-oncogenic effects.
Collapse
Affiliation(s)
- Luca Fabris
- Department of Molecular Medicine, University of Padua, Padua, Italy.,Liver Center, Department of Medicine, Yale University, New Haven, Connecticut
| | | | - Silvia Cagnin
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Mario Strazzabosco
- Liver Center, Department of Medicine, Yale University, New Haven, Connecticut
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Michigan
| |
Collapse
|
6
|
Pouliquen DL, Boissard A, Coqueret O, Guette C. Biomarkers of tumor invasiveness in proteomics (Review). Int J Oncol 2020; 57:409-432. [PMID: 32468071 PMCID: PMC7307599 DOI: 10.3892/ijo.2020.5075] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past two decades, quantitative proteomics has emerged as an important tool for deciphering the complex molecular events involved in cancers. The number of references involving studies on the cancer metastatic process has doubled since 2010, while the last 5 years have seen the development of novel technologies combining deep proteome coverage capabilities with quantitative consistency and accuracy. To highlight key findings within this huge amount of information, the present review identified a list of tumor invasive biomarkers based on both the literature and data collected on a biocollection of experimental cell lines, tumor models of increasing invasiveness and tumor samples from patients with colorectal or breast cancer. Crossing these different data sources led to 76 proteins of interest out of 1,245 mentioned in the literature. Information on these proteins can potentially be translated into clinical prospects, since they represent potential targets for the development and evaluation of innovative therapies, alone or in combination. Herein, a systematical review of the biology of each of these proteins, including their specific subcellular/extracellular or multiple localizations is presented. Finally, as an important advantage of quantitative proteomics is the ability to provide data on all these molecules simultaneously in cell pellets, body fluids or paraffin‑embedded sections of tumors/invaded tissues, the significance of some of their interconnections is discussed.
Collapse
Affiliation(s)
| | - Alice Boissard
- Paul Papin ICO Cancer Center, CRCINA, Inserm, Université d'Angers, F‑44000 Nantes, France
| | | | - Catherine Guette
- Paul Papin ICO Cancer Center, CRCINA, Inserm, Université d'Angers, F‑44000 Nantes, France
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW To give a state-of-art knowledge regarding cancer-associated fibroblasts (CAF) in cholangiocarcinoma (CCA) based both on direct evidence and studies on other desmoplastic cancers. High contingency of CAF characterizes CCA, a tumor with a biliary epithelial phenotype that can emerge anywhere in the biliary tree. Current treatments are very limited, the surgical resection being the only effective treatment but restricted to a minority of patients, whereas the remaining patients undergo palliative chemotherapy regimens. In cancer, CAF shape the tumor microenvironment, drive cancer growth and progression, and contribute to drug resistance. All these functions are accomplished through an interplay network between CAF and surrounding cells including tumor and other stromal cells, i.e. immune and endothelial cells. RECENT FINDINGS Several studies have pointed out the existence of CAF sub-populations carrying out several and opposite functions, cancer-promoting or cancer-restraining as shown in pancreatic cancer, another prototypic desmoplastic tumor in which heterogeneity of CAF is well demonstrated. SUMMARY New CAF functions are now emerging in pancreatic and breast cancers like the modulation of immune responses or tumor metabolism, opening new area for treatments.
Collapse
|
8
|
Rachner TD, Göbel A, Hoffmann O, Erdmann K, Kasimir-Bauer S, Breining D, Kimmig R, Hofbauer LC, Bittner AK. High serum levels of periostin are associated with a poor survival in breast cancer. Breast Cancer Res Treat 2020; 180:515-524. [PMID: 32040688 DOI: 10.1007/s10549-020-05570-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/03/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Periostin is a secreted extracellular matrix protein, which was originally described in osteoblasts. It supports osteoblastic differentiation and bone formation and has been implicated in the pathogenesis of several human malignancies, including breast cancer. However, little is known about the prognostic value of serum periostin levels in breast cancer. METHODS In this study, we analyzed serum levels of periostin in a cohort of 509 primary, non-metastatic breast cancer patients. Disseminated tumor cell (DTC) status was determined using bone marrow aspirates obtained from the anterior iliac crests. Periostin levels were stratified according to several clinical parameters and Pearson correlation analyses were performed. Kaplan-Meier survival curves were assessed by using the log-rank (Mantel-Cox) test. To identify prognostic factors, multivariate Cox regression analyses were used. RESULTS Mean serum levels of periostin were 505 ± 179 pmol/l. In older patients (> 60 years), periostin serum levels were significantly increased compared to younger patients (540 ± 184 pmol/l vs. 469 ± 167 pmol/l; p < 0.0001) and age was positively correlated with periostin expression (p < 0.0001). When stratifying the cohort according to periostin serum concentrations, the overall and breast cancer-specific mortality were significantly higher in those patients with high serum periostin (above median) compared to those with low periostin during a mean follow-up of 8.5 years (17.7% vs. 11.4% breast cancer-specific death; p = 0.03; hazard ratio 1.65). Periostin was confirmed to be an independent prognostic marker for breast cancer-specific survival (p = 0.017; hazard ratio 1.79). No significant differences in serum periostin were observed when stratifying the patients according to their DTC status. CONCLUSIONS Our findings emphasize the relevance of periostin in breast cancer and reveal serum periostin as a potential marker for disease prediction, independent on the presence of micrometastases.
Collapse
Affiliation(s)
- Tilman D Rachner
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Ageing Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andy Göbel
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany. .,Center for Healthy Ageing Department of Medicine III, Technische Universität Dresden, Dresden, Germany. .,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Oliver Hoffmann
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kati Erdmann
- Department of Urology, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dorit Breining
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Ageing Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Ageing Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ann-Kathrin Bittner
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
9
|
Sonongbua J, Siritungyong S, Thongchot S, Kamolhan T, Utispan K, Thuwajit P, Pongpaibul A, Wongkham S, Thuwajit C. Periostin induces epithelial‑to‑mesenchymal transition via the integrin α5β1/TWIST‑2 axis in cholangiocarcinoma. Oncol Rep 2020; 43:1147-1158. [PMID: 32020235 PMCID: PMC7057947 DOI: 10.3892/or.2020.7485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/21/2020] [Indexed: 12/18/2022] Open
Abstract
Periostin (PN) (also known as osteoblast-specific factor OSF-2) is a protein that in humans is encoded by the POSTN gene and has been correlated with a reduced survival of cholangiocarcinoma (CCA) patients, with the well-known effect of inducing epithelial-to-mesenchymal transition (EMT). The present study investigated the effect of PN, through integrin (ITG)α5β1, in EMT-mediated CCA aggressiveness. The alterations in EMT-related gene and protein expression were investigated by real-time PCR, western blot analysis and zymogram. The effects of PN on migration and the level of TWIST-2 were assessed in CCA cells with and without siITGα5 transfection. PN was found to induce CCA cell migration and EMT features, including increments in Twist-related protein 2 (TWIST-2), zinc finger protein SNAI1 (SNAIL-1), α-smooth muscle actin (ASMA), vimentin (VIM) and matrix metallopeptidase 9 (MMP-9), and a reduction in cytokeratin 19 (CK-19) together with cytoplasmic translocation of E-cadherin (CDH-1). Additionally, PN markedly induced MMP-9 activity. TWIST-2 was significantly induced in PN-treated CCA cells; this effect was attenuated in the ITGα5β1-knockdown cells and corresponded to reduced migration of the cancer cells. These results indicated that PN induced CCA migration through ITGα5β1/TWIST-2-mediated EMT. Moreover, clinical samples from CCA patients showed that higher levels of TWIST-2 were significantly correlated with shorter survival time. In conclusion, the ITGα5β1-mediated TWIST-2 signaling pathway regulates PN-induced EMT in CCA progression, and TWIST-2 is a prognostic marker of poor survival in CCA patients.
Collapse
Affiliation(s)
- Jumaporn Sonongbua
- Graduate Program in Immunology Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suchada Siritungyong
- Graduate Program in Immunology Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suyanee Thongchot
- Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thanpawee Kamolhan
- Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Ananya Pongpaibul
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
10
|
Carpino G, Overi D, Melandro F, Grimaldi A, Cardinale V, Di Matteo S, Mennini G, Rossi M, Alvaro D, Barnaba V, Gaudio E, Mancone C. Matrisome analysis of intrahepatic cholangiocarcinoma unveils a peculiar cancer-associated extracellular matrix structure. Clin Proteomics 2019; 16:37. [PMID: 31687002 PMCID: PMC6821022 DOI: 10.1186/s12014-019-9257-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022] Open
Abstract
Background Intrahepatic cholangiocarcinoma (iCCA) is a malignancy that arises from the intrahepatic biliary tree, showing high mortality rates due to its late clinical presentation and limited treatment options. iCCA is characterized by a dense, reactive desmoplastic stroma marked by a dramatic accumulation of extracellular matrix (ECM). Although recent results strongly suggest a relationship between increasing desmoplastic stroma and the enhanced malignant behaviour of iCCA, the importance of ECM proteins in the pathogenesis of iCCA still have to be addressed. Methods iCCA ECM fibrillar structural organization was characterized by histological analysis. ECM proteome profiles from decellularized iCCA and surrounding noncancerous tissues were analysed by nLC coupled to MALDI-TOF/TOF analysis. Results iCCA tissues displayed high levels of collagen fibers and low abundance of reticular and elastic fibers, suggesting stiffness and loss of polarity. The ECM proteome profiles of iCCA samples, when compared to those obtained from the surrounding noncancerous tissues showed a dismantling of the basement membrane, a reduced angiogenesis and a downregulation of oncosuppressive activity. In particular, we focused on the effects of the overexpression of collagen type III alpha 1 chain (COL3A1) in iCCA, thus providing evidences that COL3A1 promotes iCCA cells migration and is a component of tumor-associated aligned collagen. Conclusions Overall, this study contributes to the understanding of molecular basis underlying desmoplasia in iCCA and indicates the type III collagen as a promising therapeutic target.
Collapse
Affiliation(s)
- Guido Carpino
- 1Division of Health Sciences, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 6, 00135 Rome, Italy
| | - Diletta Overi
- 2Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Borelli 50, 00161 Rome, Italy
| | - Fabio Melandro
- 3Department of General Surgery and Organ Transplantation "P. Stefanini", Sapienza University of Rome, Viale del Policlinico 151, 00161 Rome, Italy
| | - Alessio Grimaldi
- 4Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Viale del Policlinico 151, 00161 Rome, Italy
| | - Vincenzo Cardinale
- 5Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| | - Sabina Di Matteo
- 6Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico 151, 00161 Rome, Italy
| | - Gianluca Mennini
- 3Department of General Surgery and Organ Transplantation "P. Stefanini", Sapienza University of Rome, Viale del Policlinico 151, 00161 Rome, Italy
| | - Massimo Rossi
- 3Department of General Surgery and Organ Transplantation "P. Stefanini", Sapienza University of Rome, Viale del Policlinico 151, 00161 Rome, Italy
| | - Domenico Alvaro
- 6Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico 151, 00161 Rome, Italy
| | - Vincenzo Barnaba
- 4Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Viale del Policlinico 151, 00161 Rome, Italy
| | - Eugenio Gaudio
- 2Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Borelli 50, 00161 Rome, Italy
| | - Carmine Mancone
- 7Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| |
Collapse
|
11
|
Kumar P, Smith T, Raeman R, Chopyk DM, Brink H, Liu Y, Sulchek T, Anania FA. Periostin promotes liver fibrogenesis by activating lysyl oxidase in hepatic stellate cells. J Biol Chem 2018; 293:12781-12792. [PMID: 29941453 DOI: 10.1074/jbc.ra117.001601] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/20/2018] [Indexed: 12/29/2022] Open
Abstract
Liver fibrosis arises from dysregulated wound healing due to persistent inflammatory hepatic injury. Periostin is a nonstructural extracellular matrix protein that promotes organ fibrosis in adults. Here, we sought to identify the molecular mechanisms in periostin-mediated hepatic fibrosis. Hepatic fibrosis in periostin-/- mice was attenuated as evidenced by significantly reduced collagen fibril density and liver stiffness compared with those in WT controls. A single dose of carbon tetrachloride caused similar acute liver injury in periostin-/- and WT littermates, and we did not detect significant differences in transaminases and major fibrosis-related hepatic gene expression between these two genotypes. Activated hepatic stellate cells (HSCs) are the major periostin-producing liver cell type. We found that in primary rat HSCs in vitro, periostin significantly increases the expression levels and activities of lysyl oxidase (LOX) and lysyl oxidase-like (LOXL) isoforms 1-3. Periostin also induced expression of intra- and extracellular collagen type 1 and fibronectin in HSCs. Interestingly, periostin stimulated phosphorylation of SMAD2/3, which was sustained despite short hairpin RNA-mediated knockdown of transforming growth factor β (TGFβ) receptor I and II, indicating that periostin-mediated SMAD2/3 phosphorylation is independent of TGFβ receptors. Moreover, periostin induced the phosphorylation of focal adhesion kinase (FAK) and AKT in HSCs. Notably, siRNA-mediated FAK knockdown failed to block periostin-induced SMAD2/3 phosphorylation. These results suggest that periostin promotes enhanced matrix stiffness in chronic liver disease by activating LOX and LOXL, independently of TGFβ receptors. Hence, targeting periostin may be of therapeutic benefit in combating hepatic fibrosis.
Collapse
Affiliation(s)
- Pradeep Kumar
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322.
| | - Tekla Smith
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Reben Raeman
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Daniel M Chopyk
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Hannah Brink
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Yunshan Liu
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Todd Sulchek
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Frank A Anania
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
12
|
Mandrekar P, Cardinale V. Periostin and mesothelin: Potential predictors of malignant progression in intrahepatic cholangiocarcinoma. Hepatol Commun 2018; 2:481-483. [PMID: 29761164 PMCID: PMC5944583 DOI: 10.1002/hep4.1189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/24/2018] [Accepted: 03/31/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Pranoti Mandrekar
- Department of Medicine University of Massachusetts Medical School Worcester MA
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies Sapienza University of Rome Rome Italy
| |
Collapse
|