1
|
Todosenko N, Yurova K, Vulf M, Khaziakhmatova O, Litvinova L. Prohibitions in the meta-inflammatory response: a review. Front Mol Biosci 2024; 11:1322687. [PMID: 38813101 PMCID: PMC11133639 DOI: 10.3389/fmolb.2024.1322687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Prohibitins are the central regulatory element of cellular homeostasis, especially by modulating the response at different levels: Nucleus, mitochondria and membranes. Their localization and interaction with various proteins, homons, transcription and nuclear factors, and mtDNA indicate the globality and complexity of their pleiotropic properties, which remain to be investigated. A more detailed deciphering of cellular metabolism in relation to prohibitins under normal conditions and in various metabolic diseases will allow us to understand the precise role of prohibitins in the signaling cascades of PI3K/Akt, Raf/MAP/ERK, STAT3, p53, and others and to fathom their mutual influence. A valuable research perspective is to investigate the role of prohibitins in the molecular and cellular interactions between the two major players in the pathogenesis of obesity-adipocytes and macrophages - that form the basis of the meta-inflammatory response. Investigating the subtle intercellular communication and molecular cascades triggered in these cells will allow us to propose new therapeutic strategies to eliminate persistent inflammation, taking into account novel molecular genetic approaches to activate/inactivate prohibitins.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Maria Vulf
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
2
|
Zhao Z, Cui T, Wei F, Zhou Z, Sun Y, Gao C, Xu X, Zhang H. Wnt/β-Catenin signaling pathway in hepatocellular carcinoma: pathogenic role and therapeutic target. Front Oncol 2024; 14:1367364. [PMID: 38634048 PMCID: PMC11022604 DOI: 10.3389/fonc.2024.1367364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant liver tumor and one of the leading causes of cancer-related deaths worldwide. The Wnt/β-Catenin signaling pathway is a highly conserved pathway involved in several biological processes, including the improper regulation that leads to the tumorigenesis and progression of cancer. New studies have found that abnormal activation of the Wnt/β-Catenin signaling pathway is a major cause of HCC tumorigenesis, progression, and resistance to therapy. New perspectives and approaches to treating HCC will arise from understanding this pathway. This article offers a thorough analysis of the Wnt/β-Catenin signaling pathway's function and its therapeutic implications in HCC.
Collapse
Affiliation(s)
- Zekun Zhao
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Tenglu Cui
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Radiotherapy Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Fengxian Wei
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhiming Zhou
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yuan Sun
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Chaofeng Gao
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xiaodong Xu
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Huihan Zhang
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Fan W, Cao D, Yang B, Wang J, Li X, Kitka D, Li TWH, You S, Shiao S, Gangi A, Posadas E, Di Vizio D, Tomasi ML, Seki E, Mato JM, Yang H, Lu SC. Hepatic prohibitin 1 and methionine adenosyltransferase α1 defend against primary and secondary liver cancer metastasis. J Hepatol 2024; 80:443-453. [PMID: 38086446 PMCID: PMC10922446 DOI: 10.1016/j.jhep.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND & AIMS The liver is a common site of cancer metastasis, most commonly from colorectal cancer, and primary liver cancers that have metastasized are associated with poor outcomes. The underlying mechanisms by which the liver defends against these processes are largely unknown. Prohibitin 1 (PHB1) and methionine adenosyltransferase 1A (MAT1A) are highly expressed in the liver. They positively regulate each other and their deletion results in primary liver cancer. Here we investigated their roles in primary and secondary liver cancer metastasis. METHODS We identified common target genes of PHB1 and MAT1A using a metastasis array, and measured promoter activity and transcription factor binding using luciferase reporter assays and chromatin immunoprecipitation, respectively. We examined how PHB1 or MAT1A loss promotes liver cancer metastasis and whether their loss sensitizes to colorectal liver metastasis (CRLM). RESULTS Matrix metalloproteinase-7 (MMP-7) is a common target of MAT1A and PHB1 and its induction is responsible for increased migration and invasion when MAT1A or PHB1 is silenced. Mechanistically, PHB1 and MAT1A negatively regulate MMP7 promoter activity via an AP-1 site by repressing the MAFG-FOSB complex. Loss of MAT1A or PHB1 also increased MMP-7 in extracellular vesicles, which were internalized by colon and pancreatic cancer cells to enhance their oncogenicity. Low hepatic MAT1A or PHB1 expression sensitized to CRLM, but not if endogenous hepatic MMP-7 was knocked down first, which lowered CD4+ T cells while increasing CD8+ T cells in the tumor microenvironment. Hepatocytes co-cultured with colorectal cancer cells express less MAT1A/PHB1 but more MMP-7. Consistently, CRLM raised distant hepatocytes' MMP-7 expression in mice and humans. CONCLUSION We have identified a PHB1/MAT1A-MAFG/FOSB-MMP-7 axis that controls primary liver cancer metastasis and sensitization to CRLM. IMPACT AND IMPLICATIONS Primary and secondary liver cancer metastasis is associated with poor outcomes but whether the liver has underlying defense mechanism(s) against metastasis is unknown. Here we examined the hypothesis that hepatic prohibitin 1 (PHB1) and methionine adenosyltransferase 1A (MAT1A) cooperate to defend the liver against metastasis. Our studies found PHB1 and MAT1A form a complex that suppresses matrix metalloproteinase-7 (MMP-7) at the transcriptional level and loss of either PHB1 or MAT1A sensitizes the liver to metastasis via MMP-7 induction. Strategies that target the PHB1/MAT1A-MMP-7 axis may be a promising approach for the treatment of primary and secondary liver cancer metastasis.
Collapse
Affiliation(s)
- Wei Fan
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA
| | - DuoYao Cao
- Department of Biomedical Sciences, CSMC, Los Angeles, CA 90048, USA
| | - Bing Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA; Department of Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jiaohong Wang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA
| | - Xiaomo Li
- Department of Pathology, CSMC, Los Angeles CA 90048, USA
| | - Diana Kitka
- Department of Biomedical Sciences, CSMC, Los Angeles, CA 90048, USA; Department of Surgery, Cedars-Sinai Cancer, CSMC, Los Angeles, CA, 90048, USA
| | - Tony W H Li
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA
| | - Sungyong You
- Department of Biomedical Sciences, CSMC, Los Angeles, CA 90048, USA; Department of Surgery, Cedars-Sinai Cancer, CSMC, Los Angeles, CA, 90048, USA
| | - Stephen Shiao
- Department of Radiation Oncology, CSMC, LA, CA 90048, USA
| | | | | | - Dolores Di Vizio
- Department of Biomedical Sciences, CSMC, Los Angeles, CA 90048, USA; Department of Surgery, Cedars-Sinai Cancer, CSMC, Los Angeles, CA, 90048, USA
| | - Maria Lauda Tomasi
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticasy Digestivas (Ciberehd), Basque Research and Technology Alliance (BRTA), Technology, Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Heping Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA
| | - Shelly C Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA.
| |
Collapse
|
4
|
Shi JJ, Wang YK, Wang MQ, Deng J, Gao N, Li M, Li YP, Zhang X, Jia XL, Liu XT, Dang SS, Wang WJ. Prohibitin 1 inhibits cell proliferation and induces apoptosis via the p53-mediated mitochondrial pathway in vitro. World J Gastrointest Oncol 2024; 16:398-413. [PMID: 38425403 PMCID: PMC10900163 DOI: 10.4251/wjgo.v16.i2.398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Prohibitin 1 (PHB1) has been identified as an antiproliferative protein that is highly conserved and ubiquitously expressed, and it participates in a variety of essential cellular functions, including apoptosis, cell cycle regulation, proliferation, and survival. Emerging evidence indicates that PHB1 may play an important role in the progression of hepatocellular carcinoma (HCC). However, the role of PHB1 in HCC is controversial. AIM To investigate the effects of PHB1 on the proliferation and apoptosis of human HCC cells and the relevant mechanisms in vitro. METHODS HCC patients and healthy individuals were enrolled in this study according to the inclusion and exclusion criteria; then, PHB1 levels in the sera and liver tissues of these participates were determined using ELISA, RT-PCR, and immunohistochemistry. Human HepG2 and SMMC-7721 cells were transfected with the pEGFP-PHB1 plasmid and PHB1-specific shRNA (shRNA-PHB1) for 24-72 h. Cell proliferation was analysed with an MTT assay. Cell cycle progression and apoptosis were analysed using flow cytometry (FACS). The mRNA and protein expression levels of the cell cycle-related molecules p21, Cyclin A2, Cyclin E1, and CDK2 and the cell apoptosis-related molecules cytochrome C (Cyt C), p53, Bcl-2, Bax, caspase 3, and caspase 9 were measured by real-time PCR and Western blot, respectively. RESULTS Decreased levels of PHB1 were found in the sera and liver tissues of HCC patients compared to those of healthy individuals, and decreased PHB1 was positively correlated with low differentiation, TNM stage III-IV, and alpha-fetoprotein ≥ 400 μg/L. Overexpression of PHB1 significantly inhibited human HCC cell proliferation in a time-dependent manner. FACS revealed that the overexpression of PHB1 arrested HCC cells in the G0/G1 phase of the cell cycle and induced apoptosis. The proportion of cells in the G0/G1 phase was significantly increased and the proportion of cells in the S phase was decreased in HepG2 cells that were transfected with pEGFP-PHB1 compared with untreated control and empty vector-transfected cells. The percentage of apoptotic HepG2 cells that were transfected with pEGFP-PHB1 was 15.41% ± 1.06%, which was significantly greater than that of apoptotic control cells (3.65% ± 0.85%, P < 0.01) and empty vector-transfected cells (4.21% ± 0.52%, P < 0.01). Similar results were obtained with SMMC-7721 cells. Furthermore, the mRNA and protein expression levels of p53, p21, Bax, caspase 3, and caspase 9 were increased while the mRNA and protein expression levels of Cyclin A2, Cyclin E1, CDK2, and Bcl-2 were decreased when PHB1 was overexpressed in human HCC cells. However, when PHB1 was upregulated in human HCC cells, Cyt C expression levels were increased in the cytosol and decreased in the mitochondria, which indicated that Cyt C had been released into the cytosol. Conversely, these effects were reversed when PHB1 was knocked down. CONCLUSION PHB1 inhibits human HCC cell viability by arresting the cell cycle and inducing cell apoptosis via activation of the p53-mediated mitochondrial pathway.
Collapse
Affiliation(s)
- Juan-Juan Shi
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Yi-Kai Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Mu-Qi Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Jiang Deng
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Ning Gao
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Mei Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Ya-Ping Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Xin Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Xiao-Li Jia
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Xiong-Tao Liu
- Department of Operating Room, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Shuang-Suo Dang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Wen-Jun Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| |
Collapse
|
5
|
Sun QJ, Liu T. Subcellular distribution of prohibitin 1 in rat liver during liver regeneration and its cellular implication. World J Hepatol 2024; 16:65-74. [PMID: 38313239 PMCID: PMC10835489 DOI: 10.4254/wjh.v16.i1.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/03/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND The function of prohibitin 1 (Phb1) during liver regeneration (LR) remains relatively unexplored. Our previous research identified downregulation of Phb1 in rat liver mitochondria 24 h after 70% partial hepatectomy (PHx), as determined by subcellular proteomic analysis. AIM To investigate the potential role of Phb1 during LR. METHODS We examined changes in Phb1 mRNA and protein levels, subcellular distribution, and abundance in rat liver during LR following 70% PHx. We also evaluated mitochondrial changes and apoptosis using electron microscopy and flow cytometry. RNA-interference-mediated knockdown of Phb1 (PHBi) was performed in BRL-3A cells. RESULTS Compared with sham-operation control groups, Phb1 mRNA and protein levels in 70% PHx test groups were downregulated at 24 h, then upregulated at 72 and 168 h. Phb1 was mainly located in mitochondria, showed a reduced abundance at 24 h, significantly increased at 72 h, and almost recovered to normal at 168 h. Phb1 was also present in nuclei, with continuous increase in abundance observed 72 and 168 h after 70% PHx. The altered ultrastructure and reduced mass of mitochondria during LR had almost completely recovered to normal at 168 h. PHBi in BRL-3A cells resulted in increased S-phase entry, a higher number of apoptotic cells, and disruption of mitochondrial membrane potential. CONCLUSION Phb1 may contribute to maintaining mitochondrial stability and could play a role in regulating cell proliferation and apoptosis of rat liver cells during LR.
Collapse
Affiliation(s)
- Qing-Ju Sun
- Department of Clinical Laboratory, Navy No. 971 Hospital, Qingdao 266072, Shandong Province, China
| | - Tao Liu
- Department of Infectious Diseases, Navy No. 971 Hospital, Qingdao 266071, Shandong Province, China.
| |
Collapse
|
6
|
Oyang L, Li J, Jiang X, Lin J, Xia L, Yang L, Tan S, Wu N, Han Y, Yang Y, Luo X, Li J, Liao Q, Shi Y, Zhou Y. The function of prohibitins in mitochondria and the clinical potentials. Cancer Cell Int 2022; 22:343. [DOI: 10.1186/s12935-022-02765-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractProhibitins (PHBs) are a class of highly evolutionarily conserved proteins that widely distribute in prokaryotes and eukaryotes. PHBs function in cell growth and proliferation or differentiation, regulating metabolism and signaling pathways. PHBs have different subcellular localization in eukaryotes, but they are mainly located in mitochondria. In the mitochondria, PHBs stabilize the structure of the mitochondrial membrane and regulate mitochondrial autophagy, mitochondrial dynamics, mitochondrial biogenesis and quality control, and mitochondrial unfolded protein response. PHBs has shown to be associated with many diseases, such as mitochondria diseases, cancers, infectious diseases, and so on. Some molecule targets of PHBs can interfere with the occurrence and development of diseases. Therefore, this review clarifies the functions of PHBs in mitochondria, and provides a summary of the potential values in clinics.
Collapse
|
7
|
Ramani K, Robinson AE, Berlind J, Fan W, Abeynayake A, Binek A, Barbier-Torres L, Noureddin M, Nissen NN, Yildirim Z, Erbay E, Mato JM, Van Eyk JE, Lu SC. S-adenosylmethionine inhibits la ribonucleoprotein domain family member 1 in murine liver and human liver cancer cells. Hepatology 2022; 75:280-296. [PMID: 34449924 PMCID: PMC8766892 DOI: 10.1002/hep.32130] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/22/2021] [Accepted: 08/09/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIMS Methionine adenosyltransferase 1A (MAT1A) is responsible for S-adenosylmethionine (SAMe) biosynthesis in the liver. Mice lacking Mat1a have hepatic SAMe depletion and develop NASH and HCC spontaneously. Several kinases are activated in Mat1a knockout (KO) mice livers. However, characterizing the phospho-proteome and determining whether they contribute to liver pathology remain open for study. Our study aimed to provide this knowledge. APPROACH AND RESULTS We performed phospho-proteomics in Mat1a KO mice livers with and without SAMe treatment to identify SAMe-dependent changes that may contribute to liver pathology. Our studies used Mat1a KO mice at different ages treated with and without SAMe, cell lines, in vitro translation and kinase assays, and human liver specimens. We found that the most striking change was hyperphosphorylation and increased content of La-related protein 1 (LARP1), which, in the unphosphorylated form, negatively regulates translation of 5'-terminal oligopyrimidine (TOP)-containing mRNAs. Consistently, multiple TOP proteins are induced in KO livers. Translation of TOP mRNAs ribosomal protein S3 and ribosomal protein L18 was enhanced by LARP1 overexpression in liver cancer cells. We identified LARP1-T449 as a SAMe-sensitive phospho-site of cyclin-dependent kinase 2 (CDK2). Knocking down CDK2 lowered LARP1 phosphorylation and prevented LARP1-overexpression-mediated increase in translation. LARP1-T449 phosphorylation induced global translation, cell growth, migration, invasion, and expression of oncogenic TOP-ribosomal proteins in HCC cells. LARP1 expression is increased in human NASH and HCC. CONCLUSIONS Our results reveal a SAMe-sensitive mechanism of LARP1 phosphorylation that may be involved in the progression of NASH to HCC.
Collapse
Affiliation(s)
- Komal Ramani
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Aaron E. Robinson
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
- Smidt Heart Institute and Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Joshua Berlind
- Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033
| | - Wei Fan
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Aushinie Abeynayake
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Aleksandra Binek
- Smidt Heart Institute and Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Lucía Barbier-Torres
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Mazen Noureddin
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Nicholas N. Nissen
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Zehra Yildirim
- Department of Cardiology, Department of Biomedical Sciences and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Ebru Erbay
- Department of Cardiology, Department of Biomedical Sciences and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - José M. Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology, Derio, Bizkaia 48160, Spain
| | - Jennifer E. Van Eyk
- Smidt Heart Institute and Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Shelly C. Lu
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| |
Collapse
|
8
|
Alula KM, Delgado-Deida Y, Jackson DN, Venuprasad K, Theiss AL. Nuclear partitioning of Prohibitin 1 inhibits Wnt/β-catenin-dependent intestinal tumorigenesis. Oncogene 2020; 40:369-383. [PMID: 33144683 PMCID: PMC7856018 DOI: 10.1038/s41388-020-01538-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/09/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022]
Abstract
The Wnt/β-catenin signaling pathway is aberrantly activated in the majority of colorectal cancer cases due to somatic mutations in the adenomatous polyposis coli (APC) gene. Prohibitin 1 (PHB1) serves pleiotropic cellular functions with dynamic subcellular trafficking facilitating signaling crosstalk between organelles. Nuclear-localized PHB1 is an important regulator of gene transcription. Using mice with inducible intestinal epithelial cell (IEC)-specific deletion of Phb1 (Phb1iΔIEC) and mice with IEC-specific overexpression of Phb1 (Phb1Tg), we demonstrate that IEC-specific PHB1 combats intestinal tumorigenesis in the ApcMin/+ mouse model by inhibiting Wnt/β-catenin signaling. Forced nuclear accumulation of PHB1 in human RKO or SW48 CRC cell lines increased AXIN1 expression and decreased cell viability. PHB1 deficiency in CRC cells decreased AXIN1 expression and increased β-catenin activation that was abolished by XAV939, a pharmacological AXIN stabilizer. These results define a role of PHB1 in inhibiting the Wnt/β-catenin pathway to influence the development of intestinal tumorigenesis. Induction of nuclear PHB1 trafficking provides a novel therapeutic option to influence AXIN1 expression and the β-catenin destruction complex in Wnt-driven intestinal tumorigenesis.
Collapse
Affiliation(s)
- Kibrom M Alula
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Yaritza Delgado-Deida
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Dakota N Jackson
- Department of Internal Medicine, Division of Gastroenterology, Baylor Scott & White Research Institute, Baylor University Medical Center, Dallas, TX, USA
| | - K Venuprasad
- University of Texas Southwestern Medical Center, College of Medicine, Dallas, TX, USA
| | - Arianne L Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado, Aurora, CO, USA.
| |
Collapse
|
9
|
Wang D, Tabti R, Elderwish S, Abou-Hamdan H, Djehal A, Yu P, Yurugi H, Rajalingam K, Nebigil CG, Désaubry L. Prohibitin ligands: a growing armamentarium to tackle cancers, osteoporosis, inflammatory, cardiac and neurological diseases. Cell Mol Life Sci 2020; 77:3525-3546. [PMID: 32062751 PMCID: PMC11104971 DOI: 10.1007/s00018-020-03475-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 02/08/2023]
Abstract
Over the last three decades, the scaffold proteins prohibitins-1 and -2 (PHB1/2) have emerged as key signaling proteins regulating a myriad of signaling pathways in health and diseases. Small molecules targeting PHBs display promising effects against cancers, osteoporosis, inflammatory, cardiac and neurodegenerative diseases. This review provides an updated overview of the various classes of PHB ligands, with an emphasis on their mechanism of action and therapeutic potential. We also describe how these ligands have been used to explore PHB signaling in different physiological and pathological settings.
Collapse
Affiliation(s)
- Dong Wang
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Redouane Tabti
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Sabria Elderwish
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Hussein Abou-Hamdan
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Amel Djehal
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
- Superior National School Biotechnology Taoufik Khaznadar, Ville universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Peng Yu
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Hajime Yurugi
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
| | | | - Canan G Nebigil
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| | - Laurent Désaubry
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France.
| |
Collapse
|
10
|
Jackson DN, Alula KM, Delgado-Deida Y, Tabti R, Turner K, Wang X, Venuprasad K, Souza RF, Désaubry L, Theiss AL. The Synthetic Small Molecule FL3 Combats Intestinal Tumorigenesis via Axin1-Mediated Inhibition of Wnt/β-Catenin Signaling. Cancer Res 2020; 80:3519-3529. [PMID: 32665357 DOI: 10.1158/0008-5472.can-20-0216] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/23/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022]
Abstract
Colorectal cancer exhibits aberrant activation of Wnt/β-catenin signaling. Many inhibitors of the Wnt/β-catenin pathway have been tested for Wnt-dependent cancers including colorectal cancer, but are unsuccessful due to severe adverse reactions. FL3 is a synthetic derivative of natural products called flavaglines, which exhibit anti-inflammatory and cytoprotective properties in intestinal epithelial cells, but has not been previously tested in cell or preclinical models of intestinal tumorigenesis. In vitro studies suggest that flavaglines target prohibitin 1 (PHB1) as a ligand, but this has not been established in the intestine. PHB1 is a highly conserved protein with diverse functions that depend on its posttranslational modifications and subcellular localization. Here, we demonstrate that FL3 combats intestinal tumorigenesis in the azoxymethane-dextran sodium sulfate and ApcMin/+ mouse models and in human colorectal cancer tumor organoids (tumoroids) by inhibiting Wnt/β-catenin signaling via induction of Axin1 expression. FL3 exhibited no change in cell viability in normal intestinal epithelial cells or human matched-normal colonoids. FL3 response was diminished in colorectal cancer cell lines and human colorectal cancer tumoroids harboring a mutation at S45 of β-catenin. PHB1 deficiency in mice or in human colorectal cancer tumoroids abolished FL3-induced expression of Axin1 and drove tumoroid death. In colorectal cancer cells, FL3 treatment blocked phosphorylation of PHB1 at Thr258, resulting in its nuclear translocation and binding to the Axin1 promoter. These results suggest that FL3 inhibits Wnt/β-catenin signaling via PHB1-dependent activation of Axin1. FL3, therefore, represents a novel compound that combats Wnt pathway-dependent cancers, such as colorectal cancer. SIGNIFICANCE: Targeting of PHB1 by FL3 provides a novel mechanism to combat Wnt-driven cancers, with limited intestinal toxicity. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/17/3519/F1.large.jpg.
Collapse
Affiliation(s)
- Dakota N Jackson
- Division of Gastroenterology, Department of Internal Medicine, Baylor Scott & White Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Kibrom M Alula
- Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado
| | - Yaritza Delgado-Deida
- Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado
| | - Redouane Tabti
- Laboratory of Regenerative Nanomedicine (UMR 1260), INSERM-University of Strasbourg, Strasbourg, France
| | - Kevin Turner
- University of Texas Southwestern Medical Center, College of Medicine, Dallas, Texas
| | - Xuan Wang
- Division of Gastroenterology, Department of Internal Medicine, Baylor Scott & White Research Institute, Baylor University Medical Center, Dallas, Texas
| | - K Venuprasad
- University of Texas Southwestern Medical Center, College of Medicine, Dallas, Texas
| | - Rhonda F Souza
- Division of Gastroenterology, Department of Internal Medicine, Baylor Scott & White Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Laurent Désaubry
- Laboratory of Regenerative Nanomedicine (UMR 1260), INSERM-University of Strasbourg, Strasbourg, France
| | - Arianne L Theiss
- Division of Gastroenterology, Department of Internal Medicine, Baylor Scott & White Research Institute, Baylor University Medical Center, Dallas, Texas. .,Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
11
|
Mishra S. Phb1:Phb2 heterodimers in the mitochondria-beyond functional interdependence. J Biol Chem 2020; 294:14836. [PMID: 31586026 DOI: 10.1074/jbc.l119.010788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Suresh Mishra
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada .,Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| |
Collapse
|
12
|
Xu Z, Xiang W, Chen W, Sun Y, Qin F, Wei J, Yuan L, Zheng L, Li S. Circ-IGF1R inhibits cell invasion and migration in non-small cell lung cancer. Thorac Cancer 2020; 11:875-887. [PMID: 32107851 PMCID: PMC7113055 DOI: 10.1111/1759-7714.13329] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Circular RNA (circRNA) is a novel molecular marker and target candidate that is closely associated with tumor invasion and migration. The mechanism of action of hsa_circ_0005035 (circ-IGF1R) in non-small cell lung cancer remains unclear. In this study, we aimed to study the mechanism of action of circ-IGF1R in lung cancer. METHODS We screened circ-IGF1R, one of the most notable differential expressions, from the Gene Expression Omnibus database, GSE104854, for further research. The expression level of circ-IGF1R was examined using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) in five different lung cancer cell lines and 50 pairs of lung cancer and adjacent tissues. Wound-healing and Transwell assays were used for verifying the biological function of circ-IGF1R. The effect of overexpressing circ-IGF1R on the transcriptome of whole lung cancer cells was explored in lung cancer cell lines using RNA-seq. RESULTS The expression level of circ-IGF1R was notably lower in lung cancer tissues and lung cancer cell lines than in the adjacent normal tissues and cells (P < 0.0001). In addition, the expression level of circ-IGF1R was associated with larger tumors (T2/T3/T4) and lymph node metastasis (N1/ N2/N3) (P < 0.05). The overexpression of circ-IGF1R significantly inhibited the invasion and migration of the lung cancer cells. The potential network of circ-IGF1R-miR-1270-VANGL2 was preliminarily determined, and the expression patterns of miR-1270 and VANGL2 were verified in lung cancer cell lines. CONCLUSION Circ-IGF1R may inhibit lung cancer invasion and migration through a potential network of circ-IGF1R-miR-1270-VANGL2.
Collapse
Affiliation(s)
- Zhanyu Xu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weiwei Xiang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenjie Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yu Sun
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fanglu Qin
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiangbo Wei
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liqiang Yuan
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liping Zheng
- Department of Anesthesia Catheter Room, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shikang Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
13
|
Abstract
Prohibitin 1 is an evolutionary conserved and ubiquitously expressed protein that exerts different biological functions depending on its subcellular localization. The role of prohibitin 1 in liver cancer is controversial as it can be pro- or anti-tumorigenic. However, most of the studies to date have described prohibitin 1 primarily as a tumor suppressor in the liver. Its deficiency sensitizes the liver to cholestatic liver injury, non-alcoholic fatty liver disease, inflammatory insults, and cancer. Liver-specific Phb1-knockout mice spontaneously develop hepatocellular carcinoma, Phb1 heterozygotes are more susceptible to develop cholangiocarcinoma, and the majority of human hepatocellular carcinomas and cholangiocarcinomas have reduced prohibitin 1 expression. Consistent with a tumor suppressive role in the liver, prohibitin 1 negatively regulates proliferation in hepatocytes and human hepatocellular carcinoma and cholangiocarcinoma cell lines, and multiple oncogenic signaling pathways are activated when prohibitin 1 is deficient. Although best known as a mitochondrial chaperone, prohibitin 1 can protect the liver by mitochondrial-independent mechanisms. This review summarizes what’s known about prohibitin 1’s role in liver pathology, with the focus on hepatoprotection and carcinogenesis. Impact statement This review summarizes the last decades of research on PHB1 in liver pathobiology. PHB1 is a key player for liver health as it is hepatoprotective and tumor suppressive. We highlight the importance of PHB1’s subcellular localization, post-translational modifications, and interacting proteins as major determinants of PHB1 cytoprotective function and anti-tumor activity in the liver.
Collapse
Affiliation(s)
- Lucía Barbier-Torres
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shelly C Lu
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
14
|
Murray B, Barbier-Torres L, Fan W, Mato JM, Lu SC. Methionine adenosyltransferases in liver cancer. World J Gastroenterol 2019; 25:4300-4319. [PMID: 31496615 PMCID: PMC6710175 DOI: 10.3748/wjg.v25.i31.4300] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/31/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Methionine adenosyltransferases (MATs) are essential enzymes for life as they produce S-adenosylmethionine (SAMe), the biological methyl donor required for a plethora of reactions within the cell. Mammalian systems express two genes, MAT1A and MAT2A, which encode for MATα1 and MATα2, the catalytic subunits of the MAT isoenzymes, respectively. A third gene MAT2B, encodes a regulatory subunit known as MATβ which controls the activity of MATα2. MAT1A, which is mainly expressed in hepatocytes, maintains the differentiated state of these cells, whilst MAT2A and MAT2B are expressed in extrahepatic tissues as well as non-parenchymal cells of the liver (e.g., hepatic stellate and Kupffer cells). The biosynthesis of SAMe is impaired in patients with chronic liver disease and liver cancer due to decreased expression and inactivation of MATα1. A switch from MAT1A to MAT2A/MAT2B occurs in multiple liver diseases and during liver growth and dedifferentiation, but this change in the expression pattern of MATs results in reduced hepatic SAMe level. Decades of study have utilized the Mat1a-knockout (KO) mouse that spontaneously develops non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) to elucidate a variety of mechanisms by which MAT proteins dysregulation contributes to liver carcinogenesis. An increasing volume of work indicates that MATs have SAMe-independent functions, distinct interactomes and multiple subcellular localizations. Here we aim to provide an overview of MAT biology including genes, isoenzymes and their regulation to provide the context for understanding consequences of their dysregulation. We will highlight recent breakthroughs in the field and underscore the importance of MAT’s in liver tumorigenesis as well as their potential as targets for cancer therapy.
Collapse
Affiliation(s)
- Ben Murray
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Lucia Barbier-Torres
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Wei Fan
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology, Park of Bizkaia, Derio 48160, Bizkaia, Spain
| | - Shelly C Lu
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| |
Collapse
|