1
|
Mochizuki H, Choong CJ, Masliah E. A refined concept: α-synuclein dysregulation disease. Neurochem Int 2018; 119:84-96. [PMID: 29305061 DOI: 10.1016/j.neuint.2017.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 12/23/2022]
Abstract
α-synuclein (αSyn) still remains a mysterious protein even two decades after SNCA encoding it was identified as the first causative gene of familial Parkinson's disease (PD). Accumulation of αSyn causes α-synucleinopathies including PD, dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Recent advances in therapeutic approaches offer new antibody-, vaccine-, antisense-oligonucleotide- and small molecule-based options to reduce αSyn protein levels and aggregates in patient's brain. Gathering research information of other neurological disease particularly Alzheimer's disease, recent disappointment of an experimental amyloid plaques busting antibody in clinical trials underscores the difficulty of treating people who show even mild dementia as damage in their brain may already be too extensive. Prodromal intervention to inhibit the accumulation of pathogenic protein may advantageously provide a better outcome. However, treatment prior to onset is not ethically justified as standard practice at present. In this review, we initiate a refined concept to define early pathogenic state of αSyn accumulation before occurrence of brain damage as a disease criterion for αSyn dysregulation disease.
Collapse
Affiliation(s)
- Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
| | - Chi-Jing Choong
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Eliezer Masliah
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
2
|
Pliássova A, Canas PM, Xavier AC, da Silva BS, Cunha RA, Agostinho P. Age-Related Changes in the Synaptic Density of Amyloid-β Protein Precursor and Secretases in the Human Cerebral Cortex. J Alzheimers Dis 2017; 52:1209-14. [PMID: 27104908 DOI: 10.3233/jad-160213] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Amyloid-β protein precursor (AβPP) is involved in synaptic formation and function. In the human cingulate cortex, AβPP was preferentially located in the presynaptic active zone as in rodents, indicating a preserved subsynaptic AβPP distribution across species and brain regions. Synaptic AβPP immunoreactivity was decreased with aging in cortical samples collected from autopsies of males (20-80 years), whereas the synaptic levels of α-secretase (ADAM10) and β-secretase (BACE1) did not significantly change. Decreased AβPP levels may be related to lower allostasis of synapses in the aged brain and their greater susceptibility to dysfunction characteristic of the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
- Anna Pliássova
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal.,FMUC - Faculty of Medicine, University of Coimbra, Portugal
| | - Paula M Canas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal.,FMUC - Faculty of Medicine, University of Coimbra, Portugal
| | - Ana Carolina Xavier
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Beatriz S da Silva
- Portuguese National Institute of Legal Medicine and Forensic Sciences (INMLCF IP), Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal.,FMUC - Faculty of Medicine, University of Coimbra, Portugal
| | - Paula Agostinho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal.,FMUC - Faculty of Medicine, University of Coimbra, Portugal
| |
Collapse
|
3
|
Schaefers ATU, Teuchert-Noodt G. Developmental neuroplasticity and the origin of neurodegenerative diseases. World J Biol Psychiatry 2016; 17:587-599. [PMID: 23705632 DOI: 10.3109/15622975.2013.797104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Neurodegenerative diseases like Alzheimer's and Parkinson's Disease, marked by characteristic protein aggregations, are more and more accepted to be synaptic disorders and to arise from a combination of genetic and environmental factors. In this review we propose our concept that neuroplasticity might constitute a link between early life challenges and neurodegeneration. METHODS After introducing the general principles of neuroplasticity, we show how adverse environmental stimuli during development impact adult neuroplasticity and might lead to neurodegenerative processes. RESULTS There are significant overlaps between neurodevelopmental and neurodegenerative processes. Proteins that represent hallmarks of neurodegeneration are involved in plastic processes under physiological conditions. Brain regions - particularly the hippocampus - that retain life-long plastic capacities are the key targets of neurodegeneration. Neuroplasticity is highest in young age making the brain more susceptible to external influences than later in life. Impacts during critical periods have life-long consequences on neuroplasticity and structural self-organization and are known to be common risk factors for neurodegenerative diseases. CONCLUSIONS Several lines of evidence support a link between developmental neuroplasticity and neurodegenerative processes later in life. A deeper insight into these processes is necessary to design strategies to mitigate or even prevent neurodegenerative pathologies.
Collapse
|
4
|
α-Synuclein negatively regulates protein kinase Cδ expression to suppress apoptosis in dopaminergic neurons by reducing p300 histone acetyltransferase activity. J Neurosci 2011; 31:2035-51. [PMID: 21307242 DOI: 10.1523/jneurosci.5634-10.2011] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We recently demonstrated that protein kinase Cδ (PKCδ), an important member of the novel PKC family, is a key oxidative stress-sensitive kinase that can be activated by caspase-3-dependent proteolytic cleavage to induce dopaminergic neuronal cell death. We now report a novel association between α-synuclein (αsyn), a protein associated with the pathogenesis of Parkinson's disease, and PKCδ, in which αsyn negatively modulates the p300- and nuclear factor-κB (NFκB)-dependent transactivation to downregulate proapoptotic kinase PKCδ expression and thereby protects against apoptosis in dopaminergic neuronal cells. Stable expression of human wild-type αsyn at physiological levels in dopaminergic neuronal cells resulted in an isoform-dependent transcriptional suppression of PKCδ expression without changes in the stability of mRNA and protein or DNA methylation. The reduction in PKCδ transcription was mediated, in part, through the suppression of constitutive NFκB activity targeted at two proximal PKCδ promoter κB sites. This occurred independently of NFκB/IκBα (inhibitor of κBα) nuclear translocation but was associated with decreased NFκB-p65 acetylation. Also, αsyn reduced p300 levels and its HAT (histone acetyltransferase) activity, thereby contributing to diminished PKCδ transactivation. Importantly, reduced PKCδ and p300 expression also were observed within nigral dopaminergic neurons in αsyn-transgenic mice. These findings expand the role of αsyn in neuroprotection by modulating the expression of the key proapoptotic kinase PKCδ in dopaminergic neurons.
Collapse
|
5
|
Su E, Bell MJ, Wisniewski SR, Adelson PD, Janesko-Feldman KL, Salonia R, Clark RSB, Kochanek PM, Kagan VE, Bayır H. α-Synuclein levels are elevated in cerebrospinal fluid following traumatic brain injury in infants and children: the effect of therapeutic hypothermia. Dev Neurosci 2010; 32:385-95. [PMID: 21124000 DOI: 10.1159/000321342] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 09/15/2010] [Indexed: 01/02/2023] Open
Abstract
α-Synuclein is one of the most abundant proteins in presynaptic terminals. Normal expression of α-synuclein is essential for neuronal survival and it prevents the initiation of apoptosis in neurons through covalent cross-linking of cytochrome c released from mitochondria. Exocytosis of α-synuclein occurs with neuronal mitochondrial dysfunction, making its detection in cerebrospinal fluid (CSF) of children after severe traumatic brain injury (TBI) a potentially important marker of injury. Experimental therapeutic hypothermia (TH) improves mitochondrial function and attenuates cell death, and therefore may also affect CSF α-synuclein concentrations. We assessed α-synuclein levels in CSF of 47 infants and children with severe TBI using a commercial ELISA for detection of monomeric protein. 23 patients were randomized to TH based on published protocols where cooling (32-33°C) was initiated within 6-24 h, maintained for 48 h, and then followed by slow rewarming. CSF samples were obtained continuously via an intraventricular catheter for 6 days after TBI. Control CSF (n = 9) was sampled from children receiving lumbar puncture for CSF analysis of infection that was proven negative. Associations of initial Glasgow Coma Scale (GCS) score, age, gender, treatment, mechanism of injury and Glasgow Outcome Scale (GOS) score with CSF α-synuclein were compared by multivariate regression analysis. CSF α-synuclein levels were elevated in TBI patients compared to controls (p = 0.0093), with a temporal profile showing an early, approximately 5-fold increase on days 1-3 followed by a delayed, >10-fold increase on days 4-6 versus control. α-Synuclein levels were higher in patients treated with normothermia versus hypothermia (p = 0.0033), in patients aged <4 years versus ≥4 years (p < 0.0001), in females versus males (p = 0.0007), in nonaccidental TBI versus accidental TBI victims (p = 0.0003), and in patients with global versus focal injury on computed tomography of the brain (p = 0.046). Comparisons of CSF α-synuclein levels with initial GCS and GOS scores were not statistically significant. Further studies are needed to evaluate the conformational status of α-synuclein in CSF, and whether TH affects α-synuclein aggregation.
Collapse
Affiliation(s)
- Erik Su
- Safar Center for Resuscitation Research, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Burger C. Region-specific genetic alterations in the aging hippocampus: implications for cognitive aging. Front Aging Neurosci 2010; 2:140. [PMID: 21048902 PMCID: PMC2967426 DOI: 10.3389/fnagi.2010.00140] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 08/17/2010] [Indexed: 01/31/2023] Open
Abstract
Aging is associated with cognitive decline in both humans and animals and of all brain regions, the hippocampus appears to be particularly vulnerable to senescence. Age-related spatial learning deficits result from alterations in hippocampal connectivity and plasticity. These changes are differentially expressed in each of the hippocampal fields known as cornu ammonis 1 (CA1), cornu ammonis 3 (CA3), and the dentate gyrus. Each sub-region displays varying degrees of susceptibility to aging. For example, the CA1 region is particularly susceptible in Alzheimer's disease while the CA3 region shows vulnerability to stress and glucocorticoids. Further, in animals, aging is the main factor associated with the decline in adult neurogenesis in the dentate gyrus. This review discusses the relationship between region-specific hippocampal connectivity, morphology, and gene expression alterations and the cognitive deficits associated with senescence. In particular, data are reviewed that illustrate how the molecular changes observed in the CA1, CA3, and dentate regions are associated with age-related learning deficits. This topic is of importance because increased understanding of how gene expression patterns reflect individual differences in cognitive performance is critical to the process of identifying new and clinically useful biomarkers for cognitive aging.
Collapse
Affiliation(s)
- Corinna Burger
- Department of Neurology, Medical Sciences Center, University of WisconsinMadison, USA
| |
Collapse
|
7
|
O'Callaghan RM, Griffin EW, Kelly AM. Long-term treadmill exposure protects against age-related neurodegenerative change in the rat hippocampus. Hippocampus 2009; 19:1019-29. [PMID: 19309034 DOI: 10.1002/hipo.20591] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The potential of exercise or environmental enrichment to prevent or reverse age-related cognitive decline in rats has been widely investigated. The data suggest that the efficacy of these interventions as neuroprotectants may depend upon the duration and nature of the protocols and age of onset. Investigations of the mechanisms underlying these neuroprotective strategies indicate a potential role for the neurotrophin family of proteins, including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). In this study, we have assessed the effects of 8 months of forced exercise, begun in middle-age, on the expression of long-term potentiation (LTP) and on spatial learning in the Morris water maze in aged Wistar rats. We also assessed these measures in a cage control group and in a group of rats exposed to the stationary treadmill for the same duration as the exercised rats. Our data confirm an age-related decline in expression of LTP and in spatial learning concomitant with decreased expression of NGF and BDNF mRNA in dentate gyrus (DG). The age-related impairments in both plasticity and growth factor expression were prevented in the long-term exercised group and, surprisingly, the treadmill control group. Given the extensive handling that the treadmill control group received and their regular exposure to an environment outside the home cage, this group can be considered to have experienced environmentally enriched conditions when compared with the cage control group. Significant correlations were observed between both learning and LTP and the expression of NGF and BDNF mRNA in the dentate gyrus. We conclude that decreased expression of NGF and BDNF in the dentate gyrus of aged rats is associated with impaired LTP and spatial learning. We suggest that the reversal of these age-related impairments by enrichment and exercise may be linked with prevention of the age-related decline in expression of these growth factors and, furthermore, that enrichment is as efficacious as exercise in preventing this age-related decline.
Collapse
Affiliation(s)
- Rachel M O'Callaghan
- Department of Physiology, School of Medicine, and Trinity College Institute of Neuroscience, University of Dublin, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
8
|
Mladenovic Djordjevic A, Perovic M, Tesic V, Tanic N, Rakic L, Ruzdijic S, Kanazir S. Long-term dietary restriction modulates the level of presynaptic proteins in the cortex and hippocampus of the aging rat. Neurochem Int 2009; 56:250-5. [PMID: 19878701 DOI: 10.1016/j.neuint.2009.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/13/2009] [Accepted: 10/16/2009] [Indexed: 01/05/2023]
Abstract
Brain aging is related to the numerous structural and functional changes including decreased synaptic plasticity. The beneficial effects of dietary restriction (DR) are well known but insufficiently investigated at the level of plasticity-related markers. Therefore, the aim of this study was to examine the expression profiles of proteins structurally and functionally related to synapses-growth-associated protein 43 (GAP-43), synaptophysin (SPH) and alpha-synuclein (alpha-Syn), in the course of aging and in response to long-term DR. The mRNA and protein levels of three presynaptic proteins were assessed by Real Time RT-PCR and Western blotting in the cortex and hippocampus of young (6-month-old), middle-aged (12-month-old), aged (18-month-old) and old (24-month-old) male Wistar rats fed ad libitum and exposed to DR starting from 6 months of age. We observed that long-term DR modulated age-related transcriptional changes by maintaining stable mRNAs levels in the cortex. No major age-related changes of the protein levels were observed in the cortex, while the specific temporal decline was detected in the hippocampus for all three proteins. The SPH levels were decreased across lifespan (0.8-, 0.8- and 0.6-fold change at 12, 18 and 24 months), while the significant decrease of GAP-43 and alpha-Syn protein was detected at 24 months of age (0.6- and 0.7-fold decrease, respectively). Long-term DR eliminated this decline by increasing GAP-43, SPH and alpha-Syn protein levels (1.7-, 1.7- and 1.6-fold, respectively) thus reverting protein levels to the values measured in 6-month-old animals.Specific pattern of changes observed in the hippocampus identifies this structure as more vulnerable to the processes of aging and with a more pronounced response to the DR effects. The observed DR-induced stabilization of the levels of three presynaptic proteins indicates the beneficial effect of DR on age-related decline in the capacity for synaptic plasticity.
Collapse
|
9
|
Mladenovic A, Perovic M, Tanic N, Petanceska S, Ruzdijic S, Kanazir S. Dietary restriction modulates alpha-synuclein expression in the aging rat cortex and hippocampus. Synapse 2007; 61:790-4. [PMID: 17568432 DOI: 10.1002/syn.20427] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dietary restriction (DR) is one of the promising environmental interventions known to attenuate aging and decrease risk of age-related neurodegenerative disorders. The aim of this study was to assess the effects of DR on expression of alpha-synuclein, a presynaptic protein involved in pathogenesis of Parkinson's and some other neurodegenerative diseases, in the cortex and hippocampus of adult, middle-aged, late middle-aged, and aged rats. Using Real Time RT-PCR, the authors report that aging regulates the expression of alpha-synuclein in a tissue-specific manner and that long-term DR reverts the late age-related changes of alpha-synuclein expression.
Collapse
|
10
|
Burger C, López MC, Feller JA, Baker HV, Muzyczka N, Mandel RJ. Changes in transcription within the CA1 field of the hippocampus are associated with age-related spatial learning impairments. Neurobiol Learn Mem 2006; 87:21-41. [PMID: 16829144 DOI: 10.1016/j.nlm.2006.05.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 05/04/2006] [Accepted: 05/20/2006] [Indexed: 11/20/2022]
Abstract
Aged rats display a broad range of behavioral performance in spatial learning. The aim of this study was to identify candidate genes that are associated with learning and memory impairments. We first categorized aged-superior learners and age learning-impaired rats based on their performance in the Morris water maze (MWM) and then isolated messenger RNA from the CA1 hippocampal region of each animal to interrogate Affymetrix microarrays. Microarray analysis identified a set of 50 genes that was transcribed differently in aged-superior learners that had successfully learned the spatial strategy in the MWM compared to aged learning-impaired animals that were unable to learn and a variety of groups designed to control for all non-learning aspects of exposure to the water maze paradigm. A detailed analysis of the navigation patterns of the different groups of animals during acquisition and probe trials of the MWM task was performed. Young animals used predominantly an allocentric (spatial) search strategy and aged-superior learners appeared to use a combination of allocentric and egocentric (response) strategies, whereas aged-learning impaired animals displayed thigmotactic behavior. The significant 50 genes that we identified were tentatively classified into four groups based on their putative role in learning: transcription, synaptic morphology, ion conductivity and protein modification. Thus, this study has potentially identified a set of genes that are responsible for the learning impairments in aged rats. The role of these genes in the learning impairments associated with aging will ultimately have to be validated by manipulating gene expression in aged rats. Finally, these 50 genes were functioning in the context of an aging CA1 region where over 200 genes was found to be differentially expressed compared to a young CA1.
Collapse
Affiliation(s)
- Corinna Burger
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Box 100266, Gainesville, FL 32610, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Giordano G, Sánchez-Pérez AM, Montoliu C, Berezney R, Malyavantham K, Costa LG, Calvete JJ, Felipo V. Activation of NMDA receptors induces protein kinase A-mediated phosphorylation and degradation of matrin 3. Blocking these effects prevents NMDA-induced neuronal death. J Neurochem 2005; 94:808-18. [PMID: 16000164 DOI: 10.1111/j.1471-4159.2005.03235.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Activation of NMDA receptors leads to activation of cAMP-dependent protein kinase (PKA). The main substrates phosphorylated by PKA following NMDA receptor activation remain unidentified. The aim of this work was to identify a major substrate phosphorylated by PKA following NMDA receptor activation in cerebellar neurones in culture, and to assess whether this phosphorylation may be involved in neuronal death induced by excessive NMDA receptor activation. The main PKA substrate following NMDA receptor activation was identified by MALDI-TOFF fingerprinting as the nuclear protein, matrin 3. PKA-mediated phosphorylation of matrin 3 is followed by its degradation. NMDA receptor activation in rat brain in vivo by ammonia injection also induced PKA-mediated matrin 3 phosphorylation and degradation in brain cell nuclei. Blocking NMDA receptors in brain in vivo with MK-801 reduced basal phosphorylation of matrin 3, suggesting that it is modulated by NMDA receptors. Inhibition of PKA with H-89 prevents NMDA-induced phosphorylation and degradation of matrin 3 as well as neuronal death. These results suggest that PKA-mediated phosphorylation of matrin 3 may serve as a rapid way of transferring information from synapses containing NMDA receptors to neuronal nuclei under physiological conditions, and may contribute to neuronal death under pathological conditions.
Collapse
MESH Headings
- Ammonia/pharmacology
- Animals
- Animals, Newborn
- Blotting, Western/methods
- Cell Count/methods
- Cell Death/drug effects
- Cells, Cultured
- Cerebellum/cytology
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Dizocilpine Maleate/pharmacology
- Dose-Response Relationship, Drug
- Drug Interactions
- Electrophoresis, Gel, Two-Dimensional/methods
- Enzyme Inhibitors/pharmacology
- Excitatory Amino Acid Agonists/pharmacology
- Excitatory Amino Acid Antagonists/pharmacology
- Fluorescent Antibody Technique/methods
- Immunoprecipitation/methods
- Isoquinolines/pharmacology
- N-Methylaspartate/pharmacology
- Neurons/drug effects
- Neurons/metabolism
- Nuclear Proteins/metabolism
- Phosphorylation/drug effects
- RNA-Binding Proteins
- Rats
- Rats, Wistar
- Receptors, N-Methyl-D-Aspartate/physiology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
- Sulfonamides/pharmacology
- Time Factors
Collapse
Affiliation(s)
- Gennaro Giordano
- Laboratory of Neurobiology, Fundación Valenciana de Investigaciones Biomedicas, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Sidhu A, Wersinger C, Vernier P. Does alpha-synuclein modulate dopaminergic synaptic content and tone at the synapse? FASEB J 2004; 18:637-47. [PMID: 15054086 DOI: 10.1096/fj.03-1112rev] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
alpha-Synuclein is a key component of the pathological process of neurodegeneration in Parkinson's disease. Although its contributions to normal physiological conditions remain elusive, converging observations suggest that a primary function of this protein in dopaminergic neurons may be the regulation of dopamine content and synaptic tone at the synapse. We review here cumulative evidence that demonstrates the participation of alpha-synuclein in the life cycle of dopamine from its synthesis, storage, release, and reuptake. The regulatory role of alpha-synuclein on dopamine metabolism is assessed by discussing the experimental evidence supporting each of these observations in the healthy physiological maintenance of dopaminergic neurons, as well as showing how disruption of these events can initiate the observed neurotoxicity of alpha-synuclein and the genesis of the degenerative processes associated with Parkinson's disease.
Collapse
Affiliation(s)
- Anita Sidhu
- Department of Pediatrics, Georgetown University, Washington, DC, USA.
| | | | | |
Collapse
|
13
|
Wersinger C, Vernier P, Sidhu A. Trypsin Disrupts the Trafficking of the Human Dopamine Transporter by α-Synuclein and Its A30P Mutant†. Biochemistry 2004; 43:1242-53. [PMID: 14756560 DOI: 10.1021/bi035308s] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alpha-synuclein modulates dopamine homeostasis in dopamine-producing neurons of substantia nigra, partly through regulation of human dopamine transporter (hDAT) activity. To identify the underlying mechanisms, we disrupted the modulation of hDAT activity by wild-type (wt) alpha-synuclein, and its familial Parkinson's disease linked mutants A30P and A53T, by mild trypsinization (0.1%, 30 s) of Ltk(-) cotransfected cells. Trypsin completely reversed the attenuation of hDAT function mediated by wt and the A30P mutant. In A53T coexpressing cells, where DAT activity is not downregulated, trypsinization did not induce any changes. These effects of trypsin were mimicked by collagenase I and Dispase (0.1%, 1 min each) but not by chymotrypsin, Pronase, or papain (0.1%, up to 2 min each). Trypsin increased dopamine uptake in rat primary mesencephalic neurons, suggesting that DAT activity is also subjected to modulation by alpha-synuclein in these neurons that endogenously coexpress both proteins. In trypsinized cells, dopamine accelerated both production of reactive oxygen species and cell death in hDAT and wt or A30P, but not A53T, coexpressing cells, compared to nontrypsinized cells. Paradoxically, trypsin increased the protein-protein interactions between the synuclein variants and hDAT, without any noticeable proteolysis of these proteins. hDAT-alpha-synuclein protein-protein interactions occurred through residues 58-107 (NAC domain) of the alpha-synuclein variants and residues 598-620 of the carboxy-terminal tail of hDAT, in both trypsinized and nontrypsinized cells. Confocal microscopy and biotinylation studies show that, in cells expressing the wt or A30P variants, but not the A53T mutant, hDAT is sequestered away from the plasma membrane into the cytoplasm, an effect that is reversed by trypsin. These results show that alpha-synuclein modulates hDAT function through trafficking of the transporter in a process that can be disrupted by trypsin.
Collapse
|
14
|
Dhanrajan TM, Lynch MA, Kelly A, Popov VI, Rusakov DA, Stewart MG. Expression of long-term potentiation in aged rats involves perforated synapses but dendritic spine branching results from high-frequency stimulation alone. Hippocampus 2004; 14:255-64. [PMID: 15098730 PMCID: PMC3369534 DOI: 10.1002/hipo.10172] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Evidence for morphological substrates of long-term changes in synaptic efficacy is controversial, partly because it is difficult to employ an unambiguous control. We have used a high-frequency stimulation protocol in vivo to induce long-term potentiation (LTP) in the hippocampal dentate gyrus of aged (22-month-old) rats and have found a clear distinction between animals that sustain LTP and those that fail to sustain it. The "failure group" was used as a specific/"like-with-like" control for morphological changes associated with the expression of LTP per se. Quantitative optical and electron microscopy was used to analyze large populations of dendritic spines and excitatory perforant path synapses; LTP was found to be associated with an increase in numbers of segmented (perforated) postsynaptic densities in spine synapses. In contrast, an increase in the number of branched spines appears to result from high-frequency stimulation alone. These data shed light on the current controversy about the expression mechanism of LTP.
Collapse
Affiliation(s)
| | | | - Aine Kelly
- Department of Physiology, Trinity College, Dublin, Ireland
| | - Victor I. Popov
- Department of Biological Sciences, The Open University, Milton Keynes, United Kingdom
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Dmitri A. Rusakov
- Department of Biological Sciences, The Open University, Milton Keynes, United Kingdom
- Institute of Neurology, University College London, London, United Kingdom
| | - Michael G. Stewart
- Department of Biological Sciences, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
15
|
Wersinger C, Prou D, Vernier P, Sidhu A. Modulation of dopamine transporter function by alpha-synuclein is altered by impairment of cell adhesion and by induction of oxidative stress. FASEB J 2003; 17:2151-3. [PMID: 12958153 DOI: 10.1096/fj.03-0152fje] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human alpha-synuclein accumulates in dopaminergic neurons as intraneuronal inclusions, Lewy bodies, which are characteristic of idiopathic Parkinson's disease (PD). Here, we suggest that modulation of the functional activity of the dopamine transporter (DAT) by alpha-synuclein may be a key factor in the preferential degeneration of mesencephalic dopamine (DA)-synthesizing neurons in PD. In cotransfected Ltk-, HEK 293, and SK-N-MC cells, alpha-synuclein induced a 35% decrease in [3H]DA uptake. Biotinylated DAT levels were decreased by 40% in cotransfected cells relative to cells expressing only DAT. DAT was colocalized with alpha-synuclein in mesencephalic neurons and cotransfected Ltk- cells. Coimmunoprecipitation studies showed the existence of a complex between alpha-synuclein and DAT, in specific rat brain regions and cotransfected cells, through specific amino acid motifs of both proteins. The attenuation of DAT function by alpha-synuclein was cytoprotective, because DA-mediated oxidative stress and cell death were reduced in cotransfected cells. The neurotoxin MPP+ (1-methyl-4-phenylpyridinium), oxidative stress, or impairment of cell adhesion ablated the alpha-synuclein-mediated inhibition of DAT activity, which caused increased uptake of DA and increased biotinylated DAT levels, in both mesencephalic neurons and cotransfected cells. These studies suggest a novel normative role for alpha-synuclein in regulating DA synaptic availability and homeostasis, which is relevant to the pathophysiology of PD.
Collapse
|
16
|
Wersinger C, Sidhu A. Differential cytotoxicity of dopamine and H2O2 in a human neuroblastoma divided cell line transfected with alpha-synuclein and its familial Parkinson's disease-linked mutants. Neurosci Lett 2003; 342:124-8. [PMID: 12727333 DOI: 10.1016/s0304-3940(03)00212-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
alpha-Synuclein accumulates in Lewy bodies and two missense mutations, A30P and A53T, have been linked to familial Parkinson's disease. Neither the normal function of alpha-synuclein nor the pathomechanism of alpha-synuclein-induced neuropathy are known. SK-N-MC neuroblastoma cells were transiently transfected with either wt alpha-synuclein, or its mutants, and their abilities to protect against oxidative stress were assessed. At low expression levels (1 microg cDNA/10(5) cells), all three synuclein variants were devoid of any effect on dopamine-induced cytotoxicity and nitrite production, whereas at higher expression (5 microg cDNA/10(5) cells), the variants enhanced dopamine-mediated effects. Low levels of wt alpha-synuclein blocked H(2)O(2)-induced cytotoxicity and nitrite production, a protective effect that was partly decreased upon higher expression. Both A30P and A53T increased in a dose-dependent manner H(2)O(2)-induced nitrite production and cell death. These results show an absence of protective effects for the A30P/A53T mutants, and a differential cytoprotective role of alpha-synuclein against oxidants, which varies according to expression levels.
Collapse
|
17
|
Abstract
Alpha-synuclein accumulates in Lewy bodies in idiopathic Parkinson's disease. Neither the normal function nor contribution of alpha-synuclein to the pathophysiology of neurodegeneration is known. Here we show that a normal function of alpha-synuclein is the negative modulation of human dopamine transporter (hDAT) activity. In cotransfected Ltk(-) cells, alpha-synuclein attenuated the reuptake of dopamine by hDAT, in a manner dependent on expression levels of alpha-synuclein. Alpha-synuclein-mediated inhibition of hDAT activity was independent of expression vectors, cell types and methods of transfection. The alpha-synuclein-mediated decrease in DAT activity occurred through diminished uptake velocity of dopamine, without changes in the affinity of hDAT for dopamine. Co-immunoprecipitation studies confirmed the formation of a stable complex between alpha-synuclein and DAT, through direct protein:protein interactions. Thus, under normal (non-toxic) expression conditions, alpha-synuclein negatively modulates dopamine uptake by DAT.
Collapse
|