1
|
Ngaibi J, Bigued, Kandeda AK, Nguezeye Y, Wangbara TA, Gaoudji L, Taiwe GS, Bum EN. Antiepileptic and anti-inflammatory effects of Lippia multiflora moldenke (Verbenaceae) in mice model of chronic temporal lobe epilepsy induced by pilocarpine. Heliyon 2024; 10:e39483. [PMID: 39498072 PMCID: PMC11533593 DOI: 10.1016/j.heliyon.2024.e39483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024] Open
Abstract
Lippia multiflora Moldenke (Verbenaceae) is an aromatic plant used as a popular medicine with antidepressant, antispasmodic, antifungal, anti-inflammatory, and antioxidant properties. In this study, we explored the effects of L. multiflora in mice chronic model of temporal lobe epilepsy induced by pilocarpine and kindled with pentylenetetrazol. Mice were divided into 7 groups of 10 animals, and received a single dose of pilocarpine (360 mg/kg, i.p.), 20 min after the administration of N-methyl-scopolamine (1 mg/kg, i.p). Thirty days after the induction of status epilepticus, animals were daily treated for 60 days with distilled water (10 mL/kg, per os) for the negative control group, extract (23.07, 57.69, 115.39 and 230.78 mg/kg, per os) for the test groups, and sodium valproate (300 mg/kg, i.p) for the positive control group. On every 10th day, animals were injected with a sub-convulsive dose of pentylenetetrazol (15 mg/kg, i.p) 1 h after the administration of the various treatments to assess the susceptibility of animals to seizures. At the end of behavioural tests, animals were sacrificed and the level of inflammatory cytokines was assessed in the hippocampus. The plant extract reduced (p < 0.001) the occurrence of seizures and the number of spontaneous recurrent seizures induced by pilocarpine in mice. It ameliorated the levels of inflammatory cytokines (TNF-α, INF- γ, IL-1β, IL-6, and IL-10) in the hippocampus. The in vitro studies show that L. multiflora have a high amount of total phenolic content, flavonoids and tannins and also have some good antioxidant properties. These results suggest that L. multiflora aqueous extracts has the potential to be a promising complementary and alternative medicine for the treatment of epilepsy, due to its antiepileptic, anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Joseph Ngaibi
- Department of Animal Biology, Faculty of Science, University of Dschang, Cameroon, P.O. Box 67, Dschang, Cameroon
| | - Bigued
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Antoine Kavaye Kandeda
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde 1, P.O. Box, Yaounde, Cameroon
| | - Yvette Nguezeye
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
- Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
| | - Tchang Alkali Wangbara
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Lamido Gaoudji
- Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
| | - Germain Sotoing Taiwe
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Cameroon, P.O. Box 63, Buea, Cameroon
| | - Elisabeth Ngo Bum
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
- Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
| |
Collapse
|
2
|
McCoy AM, Prevot TD, Sharmin D, Cook JM, Sibille EL, Lodge DJ. GL-II-73, a Positive Allosteric Modulator of α5GABA A Receptors, Reverses Dopamine System Dysfunction Associated with Pilocarpine-Induced Temporal Lobe Epilepsy. Int J Mol Sci 2023; 24:11588. [PMID: 37511346 PMCID: PMC10380722 DOI: 10.3390/ijms241411588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/15/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Although seizures are a hallmark feature of temporal lobe epilepsy (TLE), psychiatric comorbidities, including psychosis, are frequently associated with TLE and contribute to decreased quality of life. Currently, there are no defined therapeutic protocols to manage psychosis in TLE patients, as antipsychotic agents may induce epileptic seizures and are associated with severe side effects and pharmacokinetic and pharmacodynamic interactions with antiepileptic drugs. Thus, novel treatment strategies are necessary. Several lines of evidence suggest that hippocampal hyperactivity is central to the pathology of both TLE and psychosis; therefore, restoring hippocampal activity back to normal levels may be a novel therapeutic approach for treating psychosis in TLE. In rodent models, increased activity in the ventral hippocampus (vHipp) results in aberrant dopamine system function, which is thought to underlie symptoms of psychosis. Indeed, we have previously demonstrated that targeting α5-containing γ-aminobutyric acid receptors (α5GABAARs), an inhibitory receptor abundant in the hippocampus, with positive allosteric modulators (PAMs), can restore dopamine system function in rodent models displaying hippocampal hyperactivity. Thus, we posited that α5-PAMs may be beneficial in a model used to study TLE. Here, we demonstrate that pilocarpine-induced TLE is associated with increased VTA dopamine neuron activity, an effect that was completely reversed by intra-vHipp administration of GL-II-73, a selective α5-PAM. Further, pilocarpine did not alter the hippocampal α5GABAAR expression or synaptic localization that may affect the efficacy of α5-PAMs. Taken together, these results suggest augmenting α5GABAAR function as a novel therapeutic modality for the treatment of psychosis in TLE.
Collapse
Affiliation(s)
- Alexandra M. McCoy
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, TX 78229, USA;
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX 78229, USA
| | - Thomas D. Prevot
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON M5S 2S1, Canada; (T.D.P.); (E.L.S.)
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Dishary Sharmin
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA; (D.S.); (J.M.C.)
| | - James M. Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA; (D.S.); (J.M.C.)
| | - Etienne L. Sibille
- Campbell Family Mental Health Research Institute of CAMH, Toronto, ON M5S 2S1, Canada; (T.D.P.); (E.L.S.)
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Daniel J. Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, San Antonio, TX 78229, USA;
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX 78229, USA
| |
Collapse
|
3
|
Villalobos N, Ramírez-Sánchez E, Mondragón-García A, Garduño J, Castillo-Rolón D, Trujeque-Ramos S, Hernández-López S. Insulin decreases epileptiform activity in rat layer 5/6 prefrontal cortex in vitro. Synapse 2023; 77:e22263. [PMID: 36732015 DOI: 10.1002/syn.22263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 02/04/2023]
Abstract
Accumulating evidence indicates that insulin-mediated signaling in the brain may play important roles in regulating neuronal function. Alterations to insulin signaling are associated with the development of neurological disorders including Alzheimer's disease and Parkinson's disease. Also, hyperglycemia and insulin resistance have been associated with seizure activity and brain injury. In recent work, we found that insulin increased inhibitory GABAA -mediated tonic currents in the prefrontal cortex (PFC). In this work, we used local field potential recordings and calcium imaging to investigate the effect of insulin on seizure-like activity in PFC slices. Seizure-like events (SLEs) were induced by perfusing the slices with magnesium-free artificial cerebrospinal fluid (ACSF) containing the proconvulsive compound 4-aminopyridine (4-AP). We found that insulin decreased the frequency, amplitude, and duration of SLEs as well as the synchronic activity of PFC neurons evoked by 4-AP. These insulin effects were mediated by the PI3K/Akt signaling pathway and mimicked by gaboxadol (THIP), a δ GABAA receptor agonist. The effect of insulin on the number of SLEs was partially blocked by L-655,708, an inverse agonist with high selectivity for GABAA receptors containing the α5 subunit. Our results suggest that insulin reduces neuronal excitability by an increase of GABAergic tonic currents. The physiological relevance of these findings is discussed.
Collapse
Affiliation(s)
- N Villalobos
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, México
- Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina del IPN, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, México
| | - E Ramírez-Sánchez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - A Mondragón-García
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - J Garduño
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - D Castillo-Rolón
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - S Trujeque-Ramos
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - S Hernández-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
4
|
Vizuete AFK, Leal MB, Moreira AP, Seady M, Taday J, Gonçalves CA. Arundic acid (ONO-2506) downregulates neuroinflammation and astrocyte dysfunction after status epilepticus in young rats induced by Li-pilocarpine. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110704. [PMID: 36565981 DOI: 10.1016/j.pnpbp.2022.110704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 08/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Astrocytes, the most abundant glial cells, have several metabolic functions, including ionic, neurotransmitter and energetic homeostasis for neuronal activity. Reactive astrocytes and their dysfunction have been associated with several brain disorders, including the epileptogenic process. Glial Fibrillary Acidic Protein (GFAP) and S100 calcium-binding protein B (S100B) are astrocyte biomarkers associated with brain injury. We hypothesize that arundic acid (ONO-2506), which is known as an inhibitor of S100B synthesis and secretion, protects the hippocampal tissue from neuroinflammation and astrocyte dysfunction after status epileptics (SE) induction by Li-pilocarpine in young rats. Herein, we investigated the effects of arundic acid treatment, at time points of 6 or 24 h after the induction of SE by Li-pilocarpine, in young rats. In SE animals, arundic acid was able to prevent the damage induced by Li-pilocarpine in the hippocampus, decreasing neuroinflammatory signaling (reducing IL-1β, COX2, TLR4 and RAGE contents), astrogliosis (decreasing GFAP and S100B) and astrocytic dysfunction (recovering levels of GSH, glutamine synthetase and connexin-43). Furthermore, arundic acid improved glucose metabolism and reduced the glutamate excitotoxicity found in epilepsy. Our data reinforce the role of astrocytes in epileptogenesis development and the neuroprotective role of arundic acid, which modulates astrocyte function and neuroinflammation in SE animals.
Collapse
Affiliation(s)
- Adriana Fernanda K Vizuete
- Laboratory of Calcium-Binding Proteins in CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil.
| | - Miriara B Leal
- Laboratory of Calcium-Binding Proteins in CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Ana Paula Moreira
- Laboratory of Calcium-Binding Proteins in CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Marina Seady
- Laboratory of Calcium-Binding Proteins in CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Jéssica Taday
- Laboratory of Calcium-Binding Proteins in CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Laboratory of Calcium-Binding Proteins in CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
5
|
George MY, El-Derany MO, Ahmed Y, Zaher M, Ibrahim C, Waleed H, Khaled H, Khaled G, Saleh A, Alshafei H, Alshafei R, Ahmed N, Ezz S, Ashraf N, Ibrahim SS. Design and evaluation of chrysin-loaded nanoemulsion against lithium/pilocarpine-induced status epilepticus in rats; emphasis on formulation, neuronal excitotoxicity, oxidative stress, microglia polarization, and AMPK/SIRT-1/PGC-1α pathway. Expert Opin Drug Deliv 2023; 20:159-174. [PMID: 36446395 DOI: 10.1080/17425247.2023.2153831] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
OBJECTIVES The present study aims to formulate and evaluate the efficacy of chrysin-loaded nanoemulsion (CH NE) against lithium/pilocarpine-induced epilepsy in rats, as well as, elucidate its effect on main epilepsy pathogenesis cornerstones; neuronal hyperactivity, oxidative stress, and neuroinflammation. METHODS NEs were characterized by droplet size, zeta potential, pH, in vitro release, accelerated and long-term stability studies. Anti-convulsant efficacy of the optimized formula and underlying mechanisms involved were assessed and compared to that from CH suspension given orally at a 30 folds higher dose. RESULTS Optimized formula displayed a droplet size of 48.09 ± 0.83 nm, PDI 0.25 ± 0.011, sustained release, and good stability. CH treatment reduced seizures scoring, corrected behavioral and histological changes induced by Li/Pilo. Moreover, CH restored neurotransmitters balance and oxidative stress markers levels. Besides, CH induced microglia polarization from M1 to M2 hindering inflammation induced by Li/Pilo. Also, CH restored energy metabolism homeostasis via regulating protein expression of AMPK/SIRT-1/PGC-1α pathway markers. CH NE formulation was found to significantly enhance drug delivery to rats' hippocampus compared to CH suspension. CONCLUSION Our findings prove the therapeutic efficacy of CH NE at a lower dose which could be a potential brain targeting platform to combat epilepsy.
Collapse
Affiliation(s)
- Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Yasmine Ahmed
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Malvina Zaher
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Caroline Ibrahim
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Habiba Waleed
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hajar Khaled
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Gehad Khaled
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed Saleh
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Huda Alshafei
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rahma Alshafei
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nirmeen Ahmed
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sara Ezz
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nouran Ashraf
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Shaimaa S Ibrahim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
6
|
Sun Y, Peng Z, Wei X, Zhang N, Huang CS, Wallner M, Mody I, Houser CR. Virally-induced expression of GABAA receptor δ subunits following their pathological loss reveals their role in regulating GABAA receptor assembly. Prog Neurobiol 2022; 218:102337. [PMID: 35934131 PMCID: PMC10091858 DOI: 10.1016/j.pneurobio.2022.102337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 10/31/2022]
Abstract
Decreased expression of the δ subunit of the GABAA receptor (GABAAR) has been found in the dentate gyrus in several animal models of epilepsy and other disorders with increased excitability and is associated with altered modulation of tonic inhibition in dentate granule cells (GCs). In contrast, other GABAAR subunits, including α4 and γ2 subunits, are increased, but the relationship between these changes is unclear. The goals of this study were to determine if viral transfection of δ subunits in dentate GCs could increase δ subunit expression, alter expression of potentially-related GABAAR subunits, and restore more normal network excitability in the dentate gyrus in a mouse model of epilepsy. Pilocarpine-induced seizures were elicited in DOCK10-Cre mice that express Cre selectively in dentate GCs, and two weeks later the mice were injected unilaterally with a Cre-dependent δ-GABAAR viral vector. At 4-6 weeks following transfection, δ subunit immunolabeling was substantially increased in dentate GCs on the transfected side compared to the nontransfected side. Importantly, α4 and γ2 subunit labeling was downregulated on the transfected side. Electrophysiological studies revealed enhanced tonic inhibition, decreased network excitability, and increased neurosteroid sensitivity in slices from the δ subunit-transfected side compared to those from the nontransfected side of the same pilocarpine-treated animal, consistent with the formation of δ subunit-containing GABAARs. No differences were observed between sides of eYFP-transfected animals. These findings are consistent with the idea that altering expression of key subunits, such as the δ subunit, regulates GABAAR subunit assemblies, resulting in substantial effects on network excitability.
Collapse
|
7
|
Tipton AE, Russek SJ. Regulation of Inhibitory Signaling at the Receptor and Cellular Level; Advances in Our Understanding of GABAergic Neurotransmission and the Mechanisms by Which It Is Disrupted in Epilepsy. Front Synaptic Neurosci 2022; 14:914374. [PMID: 35874848 PMCID: PMC9302637 DOI: 10.3389/fnsyn.2022.914374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Inhibitory signaling in the brain organizes the neural circuits that orchestrate how living creatures interact with the world around them and how they build representations of objects and ideas. Without tight control at multiple points of cellular engagement, the brain’s inhibitory systems would run down and the ability to extract meaningful information from excitatory events would be lost leaving behind a system vulnerable to seizures and to cognitive decline. In this review, we will cover many of the salient features that have emerged regarding the dynamic regulation of inhibitory signaling seen through the lens of cell biology with an emphasis on the major building blocks, the ligand-gated ion channel receptors that are the first transduction point when the neurotransmitter GABA is released into the synapse. Epilepsy association will be used to indicate importance of key proteins and their pathways to brain function and to introduce novel areas for therapeutic intervention.
Collapse
Affiliation(s)
- Allison E. Tipton
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
- Biomolecular Pharmacology Program, Boston University School of Medicine, Boston, MA, United States
- Boston University MD/PhD Training Program, Boston, MA, United States
| | - Shelley J. Russek
- Biomolecular Pharmacology Program, Boston University School of Medicine, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Boston University MD/PhD Training Program, Boston, MA, United States
- *Correspondence: Shelley J. Russek,
| |
Collapse
|
8
|
Wu K, Castellano D, Tian Q, Lu W. Distinct regulation of tonic GABAergic inhibition by NMDA receptor subtypes. Cell Rep 2021; 37:109960. [PMID: 34758303 PMCID: PMC8630577 DOI: 10.1016/j.celrep.2021.109960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/03/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Tonic inhibition mediated by extrasynaptic GABAARs regulates various brain functions. However, the mechanisms that regulate tonic inhibition remain largely unclear. Here, we report distinct actions of GluN2A- and GluN2B-NMDA receptors (NMDARs) on tonic inhibition in hippocampal neurons under basal and high activity conditions. Specifically, overexpression of GluN2B, but not GluN2A, reduces α5-GABAAR surface expression and tonic currents. Additionally, knockout of GluN2A and GluN2B decreases and increases tonic currents, respectively. Mechanistically, GluN2A-NMDARs inhibit and GluN2B-NMDARs promote α5-GABAAR internalization, resulting in increased and decreased surface α5-GABAAR expression, respectively. Furthermore, GluN2A-NMDARs, but not GluN2B-NMDARs, are required for homeostatic potentiation of tonic inhibition induced by prolonged increase of neuronal activity. Last, tonic inhibition decreases during acute seizures, whereas it increases 24 h later, involving GluN2-NMDAR-dependent signaling. Collectively, these data reveal an NMDAR subunit-specific regulation of tonic inhibition in physiological and pathological conditions and provide mechanistic insight into activity-dependent modulation of tonic inhibition.
Collapse
Affiliation(s)
- Kunwei Wu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Castellano
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qingjun Tian
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Sperk G, Pirker S, Gasser E, Wieselthaler A, Bukovac A, Kuchukhidze G, Maier H, Drexel M, Baumgartner C, Ortler M, Czech T. Increased expression of GABA A receptor subunits associated with tonic inhibition in patients with temporal lobe epilepsy. Brain Commun 2021; 3:fcab239. [PMID: 34708207 PMCID: PMC8545616 DOI: 10.1093/braincomms/fcab239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/07/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022] Open
Abstract
Epilepsy animal models indicate pronounced changes in the expression and rearrangement of GABAA receptor subunits in the hippocampus and in para-hippocampal areas, including widespread downregulation of the subunits α5 and δ, and upregulation of α4, subunits that mediate tonic inhibition of GABA. In this case–control study, we investigated changes in the expression of subunits α4, α5 and δ in hippocampal specimens of drug resistant temporal lobe epilepsy patients who underwent epilepsy surgery. Using in situ hybridization, immunohistochemistry and α5-specific receptor autoradiography, we characterized expression of the receptor subunits in specimens from patients with and without Ammon’s horn sclerosis compared to post-mortem controls. Expression of the α5-subunit was abundant throughout all subfields of the hippocampus, including the dentate gyrus, sectors CA1 and CA3, the subiculum and pre- and parasubiculum. Significant but weaker expression was detected for subunits α4 and δ notably in the granule cell/molecular layer of control specimens, but was faint in the other parts of the hippocampus. Expression of all three subunits was similarly altered in sclerotic and non-sclerotic specimens. Respective mRNA levels were increased by about 50–80% in the granule cell layer compared with post-mortem controls. Subunit α5 mRNA levels and immunoreactivities were also increased in the sector CA3 and in the subiculum. Autoradiography for α5-containing receptors using [3H]L-655,708 as ligand showed significantly increased binding in the molecular layer of the dentate gyrus in non-sclerotic specimens. Increased expression of the α5 and δ subunits is in contrast to the previously observed downregulation of these subunits in different epilepsy models, whereas increased expression of α4 in temporal lobe epilepsy patients is consistent with that in the rodent models. Our findings indicate increased tonic inhibition likely representing an endogenous anticonvulsive mechanism in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Günther Sperk
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Susanne Pirker
- Neurological Department, Klinik Hietzing, 1130 Vienna, Austria
| | - Elisabeth Gasser
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anna Wieselthaler
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anneliese Bukovac
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Giorgi Kuchukhidze
- Department of Neurology, Christian Doppler Klinik, Affiliated Member of the European Reference Network EpiCARE and Centre for Cognitive Neuroscience, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria.,Neuroscience Institute, Christian Doppler Klinik, 5020 Salzburg, Austria
| | - Hans Maier
- INNPATH GmbH-Institute of Pathology, 6020 Innsbruck, Austria
| | - Meinrad Drexel
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria.,Institute of Molecular and Cellular Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | - Marin Ortler
- Department of Neurosurgery, Klinik Landstrasse, Vienna Healthcare Network, 1030Vienna, Austria.,Department of Neurosurgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Thomas Czech
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria
| |
Collapse
|
10
|
Kim HY, Suh PG, Kim JI. The Role of Phospholipase C in GABAergic Inhibition and Its Relevance to Epilepsy. Int J Mol Sci 2021; 22:ijms22063149. [PMID: 33808762 PMCID: PMC8003358 DOI: 10.3390/ijms22063149] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/02/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is characterized by recurrent seizures due to abnormal hyperexcitation of neurons. Recent studies have suggested that the imbalance of excitation and inhibition (E/I) in the central nervous system is closely implicated in the etiology of epilepsy. In the brain, GABA is a major inhibitory neurotransmitter and plays a pivotal role in maintaining E/I balance. As such, altered GABAergic inhibition can lead to severe E/I imbalance, consequently resulting in excessive and hypersynchronous neuronal activity as in epilepsy. Phospholipase C (PLC) is a key enzyme in the intracellular signaling pathway and regulates various neuronal functions including neuronal development, synaptic transmission, and plasticity in the brain. Accumulating evidence suggests that neuronal PLC is critically involved in multiple aspects of GABAergic functions. Therefore, a better understanding of mechanisms by which neuronal PLC regulates GABAergic inhibition is necessary for revealing an unrecognized linkage between PLC and epilepsy and developing more effective treatments for epilepsy. Here we review the function of PLC in GABAergic inhibition in the brain and discuss a pathophysiological relationship between PLC and epilepsy.
Collapse
Affiliation(s)
- Hye Yun Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (H.Y.K.); (P.-G.S.)
| | - Pann-Ghill Suh
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (H.Y.K.); (P.-G.S.)
- Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Jae-Ick Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (H.Y.K.); (P.-G.S.)
- Correspondence: ; Tel.: +82-52-217-2458
| |
Collapse
|
11
|
McGinnity CJ, Riaño Barros DA, Hinz R, Myers JF, Yaakub SN, Thyssen C, Heckemann RA, de Tisi J, Duncan JS, Sander JW, Lingford-Hughes A, Koepp MJ, Hammers A. Αlpha 5 subunit-containing GABA A receptors in temporal lobe epilepsy with normal MRI. Brain Commun 2021; 3:fcaa190. [PMID: 33501420 PMCID: PMC7811756 DOI: 10.1093/braincomms/fcaa190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 09/06/2020] [Accepted: 09/24/2020] [Indexed: 01/08/2023] Open
Abstract
GABAA receptors containing the α5 subunit mediate tonic inhibition and are widely expressed in the limbic system. In animals, activation of α5-containing receptors impairs hippocampus-dependent memory. Temporal lobe epilepsy is associated with memory impairments related to neuron loss and other changes. The less selective PET ligand [11C]flumazenil has revealed reductions in GABAA receptors. The hypothesis that α5 subunit receptor alterations are present in temporal lobe epilepsy and could contribute to impaired memory is untested. We compared α5 subunit availability between individuals with temporal lobe epilepsy and normal structural MRI ('MRI-negative') and healthy controls, and interrogated the relationship between α5 subunit availability and episodic memory performance, in a cross-sectional study. Twenty-three healthy male controls (median ± interquartile age 49 ± 13 years) and 11 individuals with MRI-negative temporal lobe epilepsy (seven males; 40 ± 8) had a 90-min PET scan after bolus injection of [11C]Ro15-4513, with arterial blood sampling and metabolite correction. All those with epilepsy and six controls completed the Adult Memory and Information Processing Battery on the scanning day. 'Bandpass' exponential spectral analyses were used to calculate volumes of distribution separately for the fast component [V F; dominated by signal from α1 (α2, α3)-containing receptors] and the slow component (V S; dominated by signal from α5-containing receptors). We made voxel-by-voxel comparisons between: the epilepsy and control groups; each individual case versus the controls. We obtained parametric maps of V F and V S measures from a single bolus injection of [11C]Ro15-4513. The epilepsy group had higher V S in anterior medial and lateral aspects of the temporal lobes, the anterior cingulate gyri, the presumed area tempestas (piriform cortex) and the insulae, in addition to increases of ∼24% and ∼26% in the ipsilateral and contralateral hippocampal areas (P < 0.004). This was associated with reduced V F:V S ratios within the same areas (P < 0.009). Comparisons of V S for each individual with epilepsy versus controls did not consistently lateralize the epileptogenic lobe. Memory scores were significantly lower in the epilepsy group than in controls (mean ± standard deviation -0.4 ± 1.0 versus 0.7 ± 0.3; P = 0.02). In individuals with epilepsy, hippocampal V S did not correlate with memory performance on the Adult Memory and Information Processing Battery. They had reduced V F in the hippocampal area, which was significant ipsilaterally (P = 0.03), as expected from [11C]flumazenil studies. We found increased tonic inhibitory neurotransmission in our cohort of MRI-negative temporal lobe epilepsy who also had co-morbid memory impairments. Our findings are consistent with a subunit shift from α1/2/3 to α5 in MRI-negative temporal lobe epilepsy.
Collapse
Affiliation(s)
- Colm J McGinnity
- Centre for Neuroscience, Department of Medicine, Imperial College London, London W12 0NN, UK
- MRC Clinical Sciences Centre, Hammersmith Hospital, London W12 0NN, UK
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Daniela A Riaño Barros
- Centre for Neuroscience, Department of Medicine, Imperial College London, London W12 0NN, UK
- MRC Clinical Sciences Centre, Hammersmith Hospital, London W12 0NN, UK
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester M20 3LJ, UK
| | - James F Myers
- Centre for Neuroscience, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Siti N Yaakub
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Charlotte Thyssen
- Medical Image and Signal Processing (MEDISIP), Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
| | - Rolf A Heckemann
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Jane de Tisi
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK, and Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
| | - John S Duncan
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK, and Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
| | - Josemir W Sander
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK, and Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede 2103SW, The Netherlands
| | - Anne Lingford-Hughes
- Neuropsychopharmacology Unit, Centre for Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Matthias J Koepp
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK, and Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
| | - Alexander Hammers
- Centre for Neuroscience, Department of Medicine, Imperial College London, London W12 0NN, UK
- MRC Clinical Sciences Centre, Hammersmith Hospital, London W12 0NN, UK
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EH, UK
- Neurodis Foundation, CERMEP, Imagerie du Vivant, 69003 Lyon, France
| |
Collapse
|
12
|
Petrache AL, Khan AA, Nicholson MW, Monaco A, Kuta-Siejkowska M, Haider S, Hilton S, Jovanovic JN, Ali AB. Selective Modulation of α5 GABA A Receptors Exacerbates Aberrant Inhibition at Key Hippocampal Neuronal Circuits in APP Mouse Model of Alzheimer's Disease. Front Cell Neurosci 2020; 14:568194. [PMID: 33262690 PMCID: PMC7686552 DOI: 10.3389/fncel.2020.568194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/28/2020] [Indexed: 11/13/2022] Open
Abstract
Selective negative allosteric modulators (NAMs), targeting α5 subunit-containing GABAA receptors (GABAARs) as potential therapeutic targets for disorders associated with cognitive deficits, including Alzheimer's disease (AD), continually fail clinical trials. We investigated whether this was due to the change in the expression of α5 GABAARs, consequently altering synaptic function during AD pathogenesis. Using medicinal chemistry and computational modeling, we developed aqueous soluble hybrids of 6,6-dimethyl-3-(2-hydroxyethyl) thio-1-(thiazol-2-yl)-6,7-dihydro-2-benzothiophene-4(5H)-one, that demonstrated selective binding and high negative allosteric modulation, specifically for the α5 GABAAR subtypes in constructed HEK293 stable cell-lines. Using a knock-in mouse model of AD (APP NL-F/NL-F), which expresses a mutant form of human amyloid-β (Aβ), we performed immunofluorescence studies combined with electrophysiological whole-cell recordings to investigate the effects of our key molecule, α5-SOP002 in the hippocampal CA1 region. In aged APP NL-F/NL-F mice, selective preservation of α5 GABAARs was observed in, calretinin- (CR), cholecystokinin- (CCK), somatostatin- (SST) expressing interneurons, and pyramidal cells. Previously, we reported that CR dis-inhibitory interneurons, specialized in regulating other interneurons displayed abnormally high levels of synaptic inhibition in the APP NL-F/NL-F mouse model, here we show that this excessive inhibition was "normalized" to control values with bath-applied α5-SOP002 (1 μM). However, α5-SOP002, further impaired inhibition onto CCK and pyramidal cells that were already largely compromised by exhibiting a deficit of inhibition in the AD model. In summary, using a multi-disciplinary approach, we show that exposure to α5 GABAAR NAMs may further compromise aberrant synapses in AD. We, therefore, suggest that the α5 GABAAR is not a suitable therapeutic target for the treatment of AD or other cognitive deficits due to the widespread neuronal-networks that use α5 GABAARs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Afia B Ali
- UCL School of Pharmacy, London, United Kingdom
| |
Collapse
|
13
|
Stefanits H, Milenkovic I, Mahr N, Pataraia E, Baumgartner C, Hainfellner JA, Kovacs GG, Kasprian G, Sieghart W, Yilmazer-Hanke D, Czech T. Alterations in GABAA Receptor Subunit Expression in the Amygdala and Entorhinal Cortex in Human Temporal Lobe Epilepsy. J Neuropathol Exp Neurol 2020; 78:1022-1048. [PMID: 31631219 DOI: 10.1093/jnen/nlz085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/06/2019] [Indexed: 12/14/2022] Open
Abstract
The amygdala has long been implicated in the pathophysiology of human temporal lobe epilepsy (TLE). The different nuclei of this complex structure are interconnected and share reciprocal connections with the hippocampus and other brain structures, partly via the entorhinal cortex. Expression of GABAA receptor subunits α1, α2, α3, α5, β2, β2/3, and γ2 was evaluated by immunohistochemistry in amygdala specimens and the entorhinal cortex of 12 TLE patients and 12 autopsy controls. A substantial decrease in the expression of α1, α2, α3, and β2/3 subunits was found in TLE cases, accompanied by an increase of γ2 subunit expression in many nuclei. In the entorhinal cortex, the expression of all GABAA receptor subunits was decreased except for the α1 subunit, which was increased on cellular somata. The overall reduction in α subunit expression may lead to decreased sensitivity to GABA and its ligands and compromise phasic inhibition, whereas upregulation of the γ2 subunit might influence clustering and kinetics of receptors and impair tonic inhibition. The description of these alterations in the human amygdala is important for the understanding of network changes in TLE as well as the development of subunit-specific therapeutic agents for the treatment of this disease.
Collapse
Affiliation(s)
- Harald Stefanits
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Ivan Milenkovic
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Nina Mahr
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Ekaterina Pataraia
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Christoph Baumgartner
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Johannes A Hainfellner
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Gabor G Kovacs
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Gregor Kasprian
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Werner Sieghart
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Deniz Yilmazer-Hanke
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Thomas Czech
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| |
Collapse
|
14
|
Mohamad FH, Has ATC. The α5-Containing GABA A Receptors-a Brief Summary. J Mol Neurosci 2019; 67:343-351. [PMID: 30607899 DOI: 10.1007/s12031-018-1246-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022]
Abstract
GABAA receptors are the major inhibitory neurotransmitter receptor in the human brain. The receptors are assembled from combination of protein subunits in pentameric complex which may consist of α1-6, β1-3, γ1-3, ρ1-3, δ, ε, θ, or π subunits. There are a theoretical > 150,000 possible assemblies and arrangements of GABAA subunits, although only a few combinations have been found in human with the most dominant consists of 2α1, 2β2, and 1γ2 in a counterclockwise arrangement as seen from the synaptic cleft. The receptors also possess binding sites for various unrelated substances including benzodiazepines, barbiturates, and anesthetics. The α5-containing GABAARs only make up ≤ 5% of the entire receptor population, but up to 25% of the receptor subtype is located in the crucial learning and memory-associated area of the brain-the hippocampus, which has ignited myriads of hypotheses and theories in regard to its role. As well as exhibiting synaptic phasic inhibition, the α5-containing receptors are also extrasynaptic and mediate tonic inhibition with continuously occurring smaller amplitude. Studies on negative-allosteric modulators for reducing this tonic inhibition have been shown to enhance learning and memory in neurological disorders such as schizophrenia, Down syndrome, and autism with a possible alternative benzodiazepine binding site. Therefore, a few α5 subunit-specific compounds have been developed to address these pharmacological needs. With its small population, the α5-containing receptors could be the key and also the answer for many untreated cognitive dysfunctions and disorders.
Collapse
Affiliation(s)
- Fatin H Mohamad
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kampus Kesihatan, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kampus Kesihatan, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
15
|
Liu YM, Fan HR, Deng S, Zhu T, Yan Y, Ge WH, Li WG, Li F. Methyleugenol Potentiates Central Amygdala GABAergic Inhibition and Reduces Anxiety. J Pharmacol Exp Ther 2018; 368:1-10. [DOI: 10.1124/jpet.118.250779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022] Open
|
16
|
Butler KM, Moody OA, Schuler E, Coryell J, Alexander JJ, Jenkins A, Escayg A. De novo variants in GABRA2 and GABRA5 alter receptor function and contribute to early-onset epilepsy. Brain 2018; 141:2392-2405. [PMID: 29961870 PMCID: PMC6061692 DOI: 10.1093/brain/awy171] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/02/2018] [Accepted: 05/04/2018] [Indexed: 01/19/2023] Open
Abstract
GABAA receptors are ligand-gated anion channels that are important regulators of neuronal inhibition. Mutations in several genes encoding receptor subunits have been identified in patients with various types of epilepsy, ranging from mild febrile seizures to severe epileptic encephalopathy. Using whole-genome sequencing, we identified a novel de novo missense variant in GABRA5 (c.880G > C, p.V294L) in a patient with severe early-onset epilepsy and developmental delay. Targeted resequencing of 279 additional epilepsy patients identified 19 rare variants from nine GABAA receptor genes, including a novel de novo missense variant in GABRA2 (c.875C > A, p.T292K) and a recurrent missense variant in GABRB3 (c.902C > T, p.P301L). Patients with the GABRA2 and GABRB3 variants also presented with severe epilepsy and developmental delay. We evaluated the effects of the GABRA5, GABRA2 and GABRB3 missense variants on receptor function using whole-cell patch-clamp recordings from human embryonic kidney 293T cells expressing appropriate α, β and γ subunits. The GABRA5 p.V294L variant produced receptors that were 10-times more sensitive to GABA but had reduced maximal GABA-evoked current due to increased receptor desensitization. The GABRA2 p.T292K variant reduced channel expression and produced mutant channels that were tonically open, even in the absence of GABA. Receptors containing the GABRB3 p.P301L variant were less sensitive to GABA and produced less GABA-evoked current. These results provide the first functional evidence that de novo variants in the GABRA5 and GABRA2 genes contribute to early-onset epilepsy and developmental delay, and demonstrate that epilepsy can result from reduced neuronal inhibition via a wide range of alterations in GABAA receptor function.
Collapse
Affiliation(s)
- Kameryn M Butler
- Department of Human Genetics, Emory University, Atlanta, Georgia, 30322, USA
- Genetics and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, 30322, USA
| | - Olivia A Moody
- Departments of Anesthesiology and Pharmacology, Emory University, Atlanta, Georgia, 30322, USA
- Neuroscience Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, 30322, USA
| | - Elisabeth Schuler
- Department for Pediatric Metabolic Medicine and Neurology, University Children’s Hospital, Heidelberg, 69120, Germany
| | - Jason Coryell
- Departments of Pediatrics and Neurology, School of Medicine, Oregon Health & Sciences University, Portland, Oregon, 97239, USA
| | - John J Alexander
- Department of Human Genetics, Emory University, Atlanta, Georgia, 30322, USA
- EGL Genetics, Tucker, Georgia, 30084, USA
| | - Andrew Jenkins
- Departments of Anesthesiology and Pharmacology, Emory University, Atlanta, Georgia, 30322, USA
| | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, Georgia, 30322, USA
| |
Collapse
|
17
|
Trujeque-Ramos S, Castillo-Rolón D, Galarraga E, Tapia D, Arenas-López G, Mihailescu S, Hernández-López S. Insulin Regulates GABA A Receptor-Mediated Tonic Currents in the Prefrontal Cortex. Front Neurosci 2018; 12:345. [PMID: 29904337 PMCID: PMC5990629 DOI: 10.3389/fnins.2018.00345] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/04/2018] [Indexed: 11/14/2022] Open
Abstract
Recent studies, have shown that insulin increases extrasynaptic GABAA receptor-mediated currents in the hippocampus, causing alterations of neuronal excitability. The prefrontal cortex (PFC) is another brain area which is involved in cognition functions and expresses insulin receptors. Here, we used electrophysiological, molecular, and immunocytochemical techniques to examine the effect of insulin on the extrasynaptic GABAA receptor-mediated tonic currents in brain slices. We found that insulin (20–500 nM) increases GABAA-mediated tonic currents. Our results suggest that insulin promotes the trafficking of extrasynaptic GABAA receptors from the cytoplasm to the cell membrane. Western blot analysis and immunocytochemistry showed that PFC extrasynaptic GABAA receptors contain α-5 and δ subunits. Insulin effect on tonic currents decreased the firing rate and neuronal excitability in layer 5–6 PFC cells. These effects of insulin were dependent on the activation of the PI3K enzyme, a key mediator of the insulin response within the brain. Taken together, these results suggest that insulin modulation of the GABAA-mediated tonic currents can modify the activity of neural circuits within the PFC. These actions could help to explain the alterations of cognitive processes associated with changes in insulin signaling.
Collapse
Affiliation(s)
- Saraí Trujeque-Ramos
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Diego Castillo-Rolón
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Elvira Galarraga
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Dagoberto Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Gabina Arenas-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Stefan Mihailescu
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Salvador Hernández-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| |
Collapse
|
18
|
Smirnova EY, Amakhin DV, Malkin SL, Chizhov AV, Zaitsev AV. Acute Changes in Electrophysiological Properties of Cortical Regular-Spiking Cells Following Seizures in a Rat Lithium–Pilocarpine Model. Neuroscience 2018; 379:202-215. [DOI: 10.1016/j.neuroscience.2018.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 11/26/2022]
|
19
|
Stefanits H, Milenkovic I, Mahr N, Pataraia E, Hainfellner JA, Kovacs GG, Sieghart W, Yilmazer-Hanke D, Czech T. GABAAreceptor subunits in the human amygdala and hippocampus: Immunohistochemical distribution of 7 subunits. J Comp Neurol 2017; 526:324-348. [DOI: 10.1002/cne.24337] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 09/12/2017] [Accepted: 09/19/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Harald Stefanits
- Department of Neurosurgery; Medical University of Vienna; Vienna Austria
- Institute of Neurology, Medical University of Vienna; Vienna Austria
| | - Ivan Milenkovic
- Department of Clinical Neurology; Medical University of Vienna; Vienna Austria
| | - Nina Mahr
- Department of Neurosurgery; Medical University of Vienna; Vienna Austria
| | - Ekaterina Pataraia
- Department of Clinical Neurology; Medical University of Vienna; Vienna Austria
| | | | - Gabor G. Kovacs
- Institute of Neurology, Medical University of Vienna; Vienna Austria
| | - Werner Sieghart
- Center for Brain Research, Department of Molecular Neurosciences; Medical University of Vienna; Vienna Austria
| | - Deniz Yilmazer-Hanke
- Clinical Neuroanatomy, Neurology Department, Medical Faculty; Ulm University; Ulm Germany
| | - Thomas Czech
- Department of Neurosurgery; Medical University of Vienna; Vienna Austria
| |
Collapse
|
20
|
Decreased surface expression of the δ subunit of the GABA A receptor contributes to reduced tonic inhibition in dentate granule cells in a mouse model of fragile X syndrome. Exp Neurol 2017; 297:168-178. [PMID: 28822839 DOI: 10.1016/j.expneurol.2017.08.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/21/2017] [Accepted: 08/15/2017] [Indexed: 11/22/2022]
Abstract
While numerous changes in the GABA system have been identified in models of Fragile X Syndrome (FXS), alterations in subunits of the GABAA receptors (GABAARs) that mediate tonic inhibition are particularly intriguing. Considering the key role of tonic inhibition in controlling neuronal excitability, reduced tonic inhibition could contribute to FXS-associated disorders such as hyperactivity, hypersensitivity, and increased seizure susceptibility. The current study has focused on the expression and function of the δ subunit of the GABAAR, a major subunit involved in tonic inhibition, in granule cells of the dentate gyrus in the Fmr1 knockout (KO) mouse model of FXS. Electrophysiological studies of dentate granule cells revealed a marked, nearly four-fold, decrease in tonic inhibition in the Fmr1 KO mice, as well as reduced effects of two δ subunit-preferring pharmacological agents, THIP and DS2, supporting the suggestion that δ subunit-containing GABAARs are compromised in the Fmr1 KO mice. Immunohistochemistry demonstrated a small but statistically significant decrease in δ subunit labeling in the molecular layer of the dentate gyrus in Fmr1 KO mice compared to wildtype (WT) littermates. The discrepancy between the large deficits in GABA-mediated tonic inhibition in granule cells in the Fmr1 KO mice and only modest reductions in immunolabeling of the δ subunit led to studies of surface expression of the δ subunit. Cross-linking experiments followed by Western blot analysis demonstrated a small, non-significant decrease in total δ subunit protein in the hippocampus of Fmr1 KO mice, but a four-fold decrease in surface expression of the δ subunit in these mice. No significant changes were observed in total or surface expression of the α4 subunit protein, a major partner of the δ subunit in the forebrain. Postembedding immunogold labeling for the δ subunit demonstrated a large, three-fold, decrease in the number of symmetric synapses with immunolabeling at perisynaptic locations in Fmr1 KO mice. While α4 immunogold particles were also reduced at perisynaptic locations in the Fmr1 KO mice, the labeling was increased at synaptic sites. Together these findings suggest that, in the dentate gyrus, altered surface expression of the δ subunit, rather than a decrease in δ subunit expression alone, could be limiting δ subunit-mediated tonic inhibition in this model of FXS. Finding ways to increase surface expression of the δ subunit of the GABAAR could be a novel approach to treatment of hyperexcitability-related alterations in FXS.
Collapse
|
21
|
Mesbah-Oskui L, Penna A, Orser BA, Horner RL. Reduced expression of α5GABA A receptors elicits autism-like alterations in EEG patterns and sleep-wake behavior. Neurotoxicol Teratol 2016; 61:115-122. [PMID: 27793660 DOI: 10.1016/j.ntt.2016.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
Abstract
A reduction in the activity of GABAA receptors, particularly α5 subunit-containing GABAA receptors (α5GABAARs), has been implicated in the etiology of Autism Spectrum Disorders (ASD). Genetically modified mice that lack α5GABAARs (Gabra5-/-) exhibit autism-like behaviors and both enhanced and impaired learning and memory, depending on the behavioral task. The aim of this study was to examine the electroencephalogram (EEG) activity and sleep-wake behaviors in Gabra5-/- mice and wild-type mice. In addition, since some individuals with ASD can exhibit elevated innate immune response, mice were treated with lipopolysaccharide (LPS; 125mg/kg intraperitoneal injection) or vehicle and EEG and sleep-wake patterns were assessed. The results showed that Gabra5-/- mice (n=3) exhibited elevated 0-2Hz EEG activity during all sleep-wake states (all p<0.04), decreased 8-12Hz EEG activity during REM sleep (p=0.04), and decreased sleep spindles under baseline conditions compared to wild-type controls (n=4) (all p≤0.03). Alterations in EEG activity and sleep-wake behavior were identified in Gabra5-/- mice following treatment with LPS, however these changes were similar to those in wild-type mice. Our findings support the hypothesis that reduced α5GABAAR activity contributes to an ASD phenotype. The results also suggest that Gabra5-/- mice may serve as an animal model for ASD, as assessed through EEG activity and sleep-wake behaviors.
Collapse
Affiliation(s)
- Lia Mesbah-Oskui
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Antonello Penna
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Beverley A Orser
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Anesthesia, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada.
| | - Richard L Horner
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
22
|
Ma J, Leung LS. Effects of hippocampal partial kindling on sensory and sensorimotor gating and methamphetamine-induced locomotion in kindling-prone and kindling-resistant rats. Epilepsy Behav 2016; 58:119-26. [PMID: 27070861 DOI: 10.1016/j.yebeh.2016.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 11/26/2022]
Abstract
The effects of hippocampal partial kindling on gating of hippocampal auditory-evoked potentials (AEPs), prepulse inhibition (PPI) to an acoustic startle response, and methamphetamine-induced locomotion were examined in selectively bred kindling-prone (Fast) and kindling-resistant (Slow) rats. Ten electrographic seizures (afterdischarges, ADs) induced by high-frequency stimulation of the hippocampal CA1 region resulted in deficits in gating of hippocampal AEP and PPI in Fast, but not Slow, rats. The increase in AD duration with kindling was similar in Fast and Slow rats. Kindling-induced changes in hippocampal AEP and PPI in Fast rats were abolished by pretest injection of CGP7930 (1mg/kg i.p.), a positive allosteric modulator of GABAB receptors. Injection of haloperidol (0.1mg/kg i.p.) daily before kindling also prevented kindling-induced changes in PPI and hippocampal AEP in Fast rats. Interestingly, methamphetamine-induced hyperlocomotion was enhanced by kindling in Slow, but not Fast, rats. However, the methamphetamine-induced hyperlocomotion in Slow rats was not suppressed by daily injection of 0.1mg/kg i.p. haloperidol before kindling, as compared with kindling without haloperidol. It is concluded that genetic disposition affected the behavioral consequences of repeated seizures. Fast rats required fewer hippocampal ADs to induce sensory (AEP) and sensorimotor (PPI) deficits, while Slow kindled rats were more sensitive to methamphetamine-induced locomotion. Dopaminergic blockade by haloperidol during kindling, or acute injection of CGP7930 before testing, attenuated some of the behavioral deficits induced by repeated hippocampal seizures, suggesting possible therapeutic strategies to treat the schizophrenic-like symptoms associated with temporal lobe epilepsy.
Collapse
Affiliation(s)
- Jingyi Ma
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario N6A 5C1, Canada.
| | - L Stan Leung
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario N6A 5C1, Canada; Graduate Program in Neuroscience, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
23
|
RNA sequencing reveals region-specific molecular mechanisms associated with epileptogenesis in a model of classical hippocampal sclerosis. Sci Rep 2016; 6:22416. [PMID: 26935982 PMCID: PMC4776103 DOI: 10.1038/srep22416] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/15/2016] [Indexed: 01/20/2023] Open
Abstract
We report here the first complete transcriptome analysis of the dorsal (dDG) and ventral dentate gyrus (vDG) of a rat epilepsy model presenting a hippocampal lesion with a strict resemblance to classical hippocampal sclerosis (HS). We collected the dDG and vDG by laser microdissection 15 days after electrical stimulation and performed high-throughput RNA-sequencing. There were many differentially regulated genes, some of which were specific to either of the two sub-regions in stimulated animals. Gene ontology analysis indicated an enrichment of inflammation-related processes in both sub-regions and of axonal guidance and calcium signaling processes exclusively in the vDG. There was also a differential regulation of genes encoding molecules involved in synaptic function, neural electrical activity and neuropeptides in stimulated rats. The data presented here suggests, in the time point analyzed, a remarkable interaction among several molecular components which takes place in the damaged hippocampi. Furthermore, even though similar mechanisms may function in different regions of the DG, the molecular components involved seem to be region specific.
Collapse
|
24
|
Bachhuber A, Lasrich M, Halmer R, Fassbender K, Walter S. Comparison of Antiepileptic Approaches in Treatment of Benzodiazepine Nonresponsive Status Epilepticus. CNS Neurosci Ther 2016; 22:178-83. [PMID: 26841716 DOI: 10.1111/cns.12389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 01/30/2015] [Accepted: 02/01/2015] [Indexed: 11/30/2022] Open
Abstract
AIMS Status epilepticus and seizure clusters are common neurological emergencies. The purpose of this monocentric, retrospective cohort study was to comparatively assess different antiepileptic approaches in the treatment of status epilepticus and seizure clusters, which were nonresponsive to benzodiazepines. METHODS We reviewed medical records of 66 patients, who were treated for status epilepticus or seizure clusters in the Department of Neurology at the University of the Saarland between January 2007 and July 2012, and failed to respond to benzodiazepines with the equivalent dosage of at least 20 mg of diazepam. As endpoints, we analyzed both the effectiveness of lacosamide, levetiracetam, valproic acid, and phenytoin used as second- and third-line therapy, and the Glasgow Outcome Scale at day 7. RESULTS Sixty-one (92.4%) of the patients had status epilepticus, and 5 (7.6%) had seizure clusters. The compared drugs were equally effective in terminating seizures. There was also no significant difference in the Glasgow Outcome Scale (P = 0.60) after 7 days. CONCLUSION Our data support the use of the modern antiepileptic treatment strategies, such as levetiracetam, valproic acid, and lacosamide in the treatment of status epilepticus and seizure clusters.
Collapse
Affiliation(s)
- Armin Bachhuber
- Department of Neurology, University of the Saarland, Homburg, Germany
| | - Maike Lasrich
- Department of Neurology, University of the Saarland, Homburg, Germany
| | - Ramona Halmer
- Department of Neurology, University of the Saarland, Homburg, Germany
| | - Klaus Fassbender
- Department of Neurology, University of the Saarland, Homburg, Germany
| | - Silke Walter
- Department of Neurology, University of the Saarland, Homburg, Germany
| |
Collapse
|
25
|
Plic-1, a new target in repressing epileptic seizure by regulation of GABAAR function in patients and a rat model of epilepsy. Clin Sci (Lond) 2015; 129:1207-23. [PMID: 26415648 DOI: 10.1042/cs20150202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/25/2015] [Indexed: 12/27/2022]
Abstract
Plic-1 regulates GABAAR expression at synaptic sites during epileptic seizure. Plic-1 prolongs the seizure latency and reduces the seizure severity in epileptic rats. Plic-1 affects the inhibitory function by changing the mIPSCs and evoked IPSCs of the phasic GABA-ergic synaptic current.
Collapse
|
26
|
Activation of extrasynaptic GABA(A) receptors inhibits cyclothiazide-induced epileptiform activity in hippocampal CA1 neurons. Neurosci Bull 2014; 30:866-76. [PMID: 25260800 DOI: 10.1007/s12264-014-1466-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/17/2014] [Indexed: 12/20/2022] Open
Abstract
Extrasynaptic GABA(A) receptors (GABA(A)Rs)-mediated tonic inhibition is reported to involve in the pathogenesis of epilepsy. In this study, we used cyclothiazide (CTZ)-induced in vitro brain slice seizure model to explore the effect of selective activation of extrasynaptic GABA(A)Rs by 4,5,6,7-tetrahydroisoxazolo[5,4-c] pyridine-3-ol (THIP) on the CTZ-induced epileptiform activity in hippocampal neurons. Perfusion with CTZ dose-dependently induced multiple epileptiform peaks of evoked population spikes (PSs) in CA1 pyramidal neurons, and treatment with THIP (5 μmol/L) significantly reduced the multiple PS peaks induced by CTZ stimulation. Western blot showed that the δ-subunit of the GABA(A)R, an extrasynaptic specific GABA(A)R subunit, was also significantly down-regulated in the cell membrane 2 h after CTZ treatment. Our results suggest that the CTZ-induced epileptiform activity in hippocampal CA1 neurons is suppressed by the activation of extrasynaptic GABA(A)Rs, and further support the hypothesis that tonic inhibition mediated by extrasynaptic GABA(A)Rs plays a prominent role in seizure generation.
Collapse
|
27
|
Downregulated GABA and BDNF-TrkB pathway in chronic cyclothiazide seizure model. Neural Plast 2014; 2014:310146. [PMID: 24757570 PMCID: PMC3976828 DOI: 10.1155/2014/310146] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/28/2014] [Indexed: 12/12/2022] Open
Abstract
Cyclothiazide (CTZ) has been reported to simultaneously enhance glutamate receptor excitation and inhibit GABAA receptor inhibition, and in turn it evokes epileptiform activities in hippocampal neurons. It has also been shown to acutely induce epileptic seizure behavior in freely moving rats. However, whether CTZ induced seizure rats could develop to have recurrent seizure still remains unknown. In the current study, we demonstrated that 46% of the CTZ induced seizure rats developed to have recurrent seizure behavior as well as epileptic EEG with a starting latency between 2 weeks and several months. In those chronic seizure rats 6 months after the seizure induction by the CTZ, our immunohistochemistry results showed that both GAD and GAT-1 were significantly decreased across CA1, CA3, and dentate gyrus area of the hippocampus studied. In addition, both BDNF and its receptor TrkB were also decreased in hippocampus of the chronic CTZ seizure rats. Our results indicate that CTZ induced seizure is capable of developing to have recurrent seizure, and the decreased GABA synthesis and transport as well as the impaired BDNF-TrkB signaling pathway may contribute to the development of the recurrent seizure. Thus, CTZ seizure rats may provide a novel animal model for epilepsy study and anticonvulsant drug testing in the future.
Collapse
|
28
|
Ding J, Wang JJ, Huang C, Wang L, Deng S, Xu TL, Ge WH, Li WG, Li F. Curcumol from Rhizoma Curcumae suppresses epileptic seizure by facilitation of GABA(A) receptors. Neuropharmacology 2014; 81:244-55. [PMID: 24565642 DOI: 10.1016/j.neuropharm.2014.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
Abstract
Rhizoma Curcumae is a common Chinese dietary spice used in South Asia and China for thousands of years. As the main extract, Rhizoma Curcumae oil has attracted a great interest due to its newly raised therapeutic activities including its pharmacological effects upon central nervous system such as neuroprotection, cognitive enhancement, and anti-seizure efficacy; however the molecular mechanisms and the target identification remain to be established. Here we characterize an inhibitory effect of curcumol, a major bioactive component of Rhizoma Curcumae oil, on the excitability of hippocampal neurons in culture, the basal locomotor activity of freely moving animals, and the chemically induced seizure activity in vivo. Electrophysiological recording showed that acute application of curcumol significantly facilitated the γ-aminobutyric acid (GABA)-activated current in cultured mouse hippocampal neurons and in human embryonic kidney cells expressing α1- or α5-containing A type GABA (GABAA) receptors in a concentration-dependent manner. Measurement of tonic and miniature inhibitory postsynaptic GABAergic currents in hippocampal slices indicated that curcumol enhanced both forms of inhibition. In both pentylenetetrazole and kainate seizure models, curcumol suppressed epileptic activity in mice by prolonging the latency to clonic and tonic seizures and reducing the mortality as well as the susceptibility to seizure, presumably by facilitating the activation of GABAA receptors. Taken together, our results identified curcumol as a novel anti-seizure agent which inhibited neuronal excitability through enhancing GABAergic inhibition.
Collapse
Affiliation(s)
- Jing Ding
- Department of Chinese Materia Medica, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Developmental and Behavioral Pediatrics, Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China; Departments of Anatomy and Embryology, Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing-Jing Wang
- Departments of Anatomy and Embryology, Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chen Huang
- Departments of Anatomy and Embryology, Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Wang
- Departments of Anatomy and Embryology, Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shining Deng
- Department of Developmental and Behavioral Pediatrics, Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China
| | - Tian-Le Xu
- Departments of Anatomy and Embryology, Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei-Hong Ge
- Department of Chinese Materia Medica, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wei-Guang Li
- Department of Developmental and Behavioral Pediatrics, Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China; Departments of Anatomy and Embryology, Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Fei Li
- Department of Developmental and Behavioral Pediatrics, Shanghai Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, China.
| |
Collapse
|
29
|
Galanopoulou AS, Moshé SL. Does epilepsy cause a reversion to immature function? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:195-209. [PMID: 25012378 DOI: 10.1007/978-94-017-8914-1_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Seizures have variable effects on brain. Numerous studies have examined the consequences of seizures, in light of the way that these may alter the susceptibility of the brain to seizures, promote epileptogenesis, or functionally alter brain leading to seizure-related comorbidities. In many -but not all- situations, seizures shift brain function towards a more immature state, promoting the birth of newborn neurons, altering the dendritic structure and neuronal connectivity, or changing neurotransmitter signaling towards more immature patterns. These effects depend upon many factors, including the seizure type, age of seizure occurrence, sex, and brain region studied. Here we discuss some of these findings proposing that these seizure-induced immature features do not simply represent rejuvenation of the brain but rather a de-synchronization of the homeostatic mechanisms that were in place to maintain normal physiology, which may contribute to epileptogenesis or the cognitive comorbidities.
Collapse
Affiliation(s)
- Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience, The Laboratory of Developmental Epilepsy, Comprehensive Einstein/Montefiore Epilepsy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Kennedy Center Rm 306, Bronx, NY, 10461, USA,
| | | |
Collapse
|
30
|
Interneuronal GABAA receptors inside and outside of synapses. Curr Opin Neurobiol 2013; 26:57-63. [PMID: 24650505 DOI: 10.1016/j.conb.2013.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/17/2013] [Accepted: 12/03/2013] [Indexed: 01/04/2023]
Abstract
About 20% of the total number of neurons in the brain are interneurons (INs) that utilize GABA as their neurotransmitter. The receptors for GABA have been well studied in principal cells, but INs also express GABA receptors, in particular the GABAA type (GABAARs), which may also be activated in an autocrine manner by the transmitter released by the INs themselves. As more and more neurological and psychiatric disorders are being discovered to be linked to malfunction or deficits of INs, this review will cover how INs communicate with each other through the activation of synaptic and extrasynaptic GABAARs. The properties of GABAARs specific to INs may differ significantly from those found on principal cells to open the prospect of developing IN-specific drugs.
Collapse
|
31
|
Carver CM, Reddy DS. Neurosteroid interactions with synaptic and extrasynaptic GABA(A) receptors: regulation of subunit plasticity, phasic and tonic inhibition, and neuronal network excitability. Psychopharmacology (Berl) 2013; 230:151-88. [PMID: 24071826 PMCID: PMC3832254 DOI: 10.1007/s00213-013-3276-5] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 08/29/2013] [Indexed: 12/25/2022]
Abstract
RATIONALE Neurosteroids are steroids synthesized within the brain with rapid effects on neuronal excitability. Allopregnanolone, allotetrahydrodeoxycorticosterone, and androstanediol are three widely explored prototype endogenous neurosteroids. They have very different targets and functions compared to conventional steroid hormones. Neuronal γ-aminobutyric acid (GABA) type A (GABA(A)) receptors are one of the prime molecular targets of neurosteroids. OBJECTIVE This review provides a critical appraisal of recent advances in the pharmacology of endogenous neurosteroids that interact with GABA(A) receptors in the brain. Neurosteroids possess distinct, characteristic effects on the membrane potential and current conductance of the neuron, mainly via potentiation of GABA(A) receptors at low concentrations and direct activation of receptor chloride channel at higher concentrations. The GABA(A) receptor mediates two types of inhibition, now characterized as synaptic (phasic) and extrasynaptic (tonic) inhibition. Synaptic release of GABA results in the activation of low-affinity γ2-containing synaptic receptors, while high-affinity δ-containing extrasynaptic receptors are persistently activated by the ambient GABA present in the extracellular fluid. Neurosteroids are potent positive allosteric modulators of synaptic and extrasynaptic GABA(A) receptors and therefore enhance both phasic and tonic inhibition. Tonic inhibition is specifically more sensitive to neurosteroids. The resulting tonic conductance generates a form of shunting inhibition that controls neuronal network excitability, seizure susceptibility, and behavior. CONCLUSION The growing understanding of the mechanisms of neurosteroid regulation of the structure and function of the synaptic and extrasynaptic GABA(A) receptors provides many opportunities to create improved therapies for sleep, anxiety, stress, epilepsy, and other neuropsychiatric conditions.
Collapse
Affiliation(s)
- Chase Matthew Carver
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, 2008 Medical Research and Education Building, 8447 State Highway 47, Bryan, TX, 77807-3260, USA
| | | |
Collapse
|
32
|
Li ZX, Yu HM, Jiang KW. Tonic GABA inhibition in hippocampal dentate granule cells: its regulation and function in temporal lobe epilepsies. Acta Physiol (Oxf) 2013; 209:199-211. [PMID: 23865761 DOI: 10.1111/apha.12148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/06/2013] [Accepted: 07/12/2013] [Indexed: 01/06/2023]
Abstract
Both human and experimental evidence strongly supports the view of brain region- and cell-specific changes in tonic GABA inhibition in temporal lobe epilepsies (TLE). This 'tonic' form of signalling is not time-locked to presynaptic action potentials, which depends upon detection of ambient GABA by extrasynaptic GABAA receptors (GABAA Rs). Extrasynaptic GABAA Rs have distinct physiological and pharmacological features, including high GABA-binding affinity and low desensitization and a variety of the specific subunit combinations (α4δ-,α6δ-,α5γ-,ε-containing receptors). These features closely contribute to the function of tonic GABA current, which is preserved properly or increased in dentate gyrus in models of TLE, even in the face of a loss of synaptic inhibition and inhibitory interneurones. Markedly reduced tonic GABA inhibition may facilitate an episode of epilepsy, while persistent elevated tonic inhibition may contribute to the onset of spontaneous recurrent seizures. In dentate granule cells, tonic GABA inhibition is positively modulated by endogenous neurosteroids and other factors, which undergo changes related to hormonal status after TLE. Tonic inhibition regulates neuronal excitability through its effects on membrane potential by both offsetting the threshold and reducing the frequency of action potentials and input resistance. Therefore, extrasynaptic GABAA Rs are expected to be the most important pharmacological targets in TLE. It is likely that both elevate the ambient GABA concentration and potentiate the tonic currents, contributing to the antiepileptic effects.
Collapse
Affiliation(s)
- Z.-X. Li
- Department of Neurology; The Children's Hospital Zhejiang University School of Medicine; Hangzhou; China
| | - H.-M. Yu
- Department of Neonatology; The Children's Hospital Zhejiang University School of Medicine; Hangzhou; China
| | | |
Collapse
|
33
|
Drexel M, Kirchmair E, Sperk G. Changes in the expression of GABAA receptor subunit mRNAs in parahippocampal areas after kainic acid induced seizures. Front Neural Circuits 2013; 7:142. [PMID: 24065890 PMCID: PMC3776158 DOI: 10.3389/fncir.2013.00142] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 08/24/2013] [Indexed: 11/30/2022] Open
Abstract
The parahippocampal areas including the subiculum, pre- and parasubiculum, and notably the entorhinal cortex (EC) are intimately involved in the generation of limbic seizures in temporal lobe epilepsy. We investigated changes in the expression of 10 major GABAA receptor subunit mRNAs in subfields of the ventral hippocampus, ventral subiculum, EC, and perirhinal cortex (PRC) at different intervals (1, 8, 30, and 90 days) after kainic acid (KA)-induced status epilepticus priming epileptogenesis in the rat. The most pronounced and ubiquitous changes were a transient (24 h after KA only) down-regulation of γ2 mRNA and lasting decreases in subunit α5, β3, and δ mRNAs that were prominent in all hippocampal and parahippocampal areas. In the subiculum similarly as in sectors CA1 and CA3, levels of subunit α1, α2, α4, and γ2 mRNAs decreased transiently (1 day after KA-induced status epilepticus). They were followed by increased expression of subunit α1 and α3 mRNAs in the dentate gyrus (DG) and sectors CA1 and CA3, and subunit α1 also in the EC layer II (30 and 90 days after KA). We also observed sustained overexpression of subunits α4 and γ2 in the subiculum and in the Ammon’s horn. Subunit γ2 mRNA was also increased in sector CA1 at the late intervals after KA. Taken together, our results suggest distinct regulation of mRNA expression for individual GABAA receptor subunits. Especially striking was the wide-spread down-regulation of the often peri- or extrasynaptically located subunits α5 and δ. These subunits are often associated with tonic inhibition. Their decrease could be related to decreased tonic inhibition or may merely reflect compensatory changes. In contrast, expression of subunit α4 that may also mediate tonic inhibition when associated with the δ-subunit was significantly upregulated in the DG and in the proximal subiculum at late intervals. Thus, concomitant up-regulation of subunit γ2, α1 and α4 mRNAs (and loss in δ-subunits) ultimately indicates significant rearrangement of GABAA receptor composition after KA-induced seizures.
Collapse
Affiliation(s)
- Meinrad Drexel
- Department of Pharmacology, Innsbruck Medical University Innsbruck, Austria
| | | | | |
Collapse
|
34
|
González MI. The possible role of GABAA receptors and gephyrin in epileptogenesis. Front Cell Neurosci 2013; 7:113. [PMID: 23885234 PMCID: PMC3717475 DOI: 10.3389/fncel.2013.00113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/26/2013] [Indexed: 12/29/2022] Open
Abstract
The term epileptogenesis refers to a dynamic alteration in neuronal excitability that promotes the appearance of spontaneous seizures. Temporal lobe epilepsy, the most common type of acquired epilepsy, often develops after an insult to the brain such as trauma, febrile seizures, encephalitis, or status epilepticus. During the pre-epileptic state (also referred as latent or silent period) there is a plethora of molecular, biochemical, and structural changes that lead to the generation of recurrent spontaneous seizures (or epilepsy). The specific contribution of these alterations to epilepsy development is unclear, but a loss of inhibition has been associated with the increased excitability detected in the latent period. A rapid increase in neuronal hyperexcitability could be due, at least in part, to a decline in the number of physiologically active GABAA receptors (GABAAR). Altered expression of scaffolding proteins involved in the trafficking and anchoring of GABAAR could directly impact the stability of GABAergic synapses and promote a deficiency in inhibitory neurotransmission. Uncovering the molecular mechanisms operating during epileptogenesis and its possible impact on the regulation of GABAAR and scaffolding proteins may offer new targets to prevent the development of epilepsy.
Collapse
Affiliation(s)
- Marco I González
- Division of Neurology and Translational Epilepsy Research Program, Department of Pediatrics, University of Colorado School of Medicine Aurora, CO, USA
| |
Collapse
|
35
|
Sun Y, Wu Z, Kong S, Jiang D, Pitre A, Wang Y, Chen G. Regulation of epileptiform activity by two distinct subtypes of extrasynaptic GABAA receptors. Mol Brain 2013; 6:21. [PMID: 23634821 PMCID: PMC3652748 DOI: 10.1186/1756-6606-6-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 04/20/2013] [Indexed: 11/13/2022] Open
Abstract
Background GABAergic deficit is one of the major mechanisms underlying epileptic seizures. Previous studies have mainly focused on alterations of synaptic GABAergic inhibition during epileptogenesis. Recent work suggested that tonic inhibition may also play a role in regulating epileptogenesis, but the underlying mechanism is not well understood. Results We employed molecular and pharmacological tools to investigate the role of tonic inhibition during epileptogenesis both in vitro and in vivo. We overexpressed two distinct subtypes of extrasynaptic GABAA receptors, α5β3γ2 and α6β3δ receptors, in cultured hippocampal neurons. We demonstrated that overexpression of both α5β3γ2 and α6β3δ receptors enhanced tonic inhibition and reduced epileptiform activity in vitro. We then showed that injection of THIP (5 μM), a selective agonist for extrasynaptic GABAA receptors at low concentration, into rat brain also suppressed epileptiform burst activity and behavioral seizures in vivo. Mechanistically, we discovered that low concentration of THIP had no effect on GABAergic synaptic transmission and did not affect the basal level of action potentials, but significantly inhibited high frequency neuronal activity induced by epileptogenic agents. Conclusions Our studies suggest that extrasynaptic GABAA receptors play an important role in controlling hyperexcitatory activity, such as that during epileptogenesis, but a less prominent role in modulating a low level of basal activity. We propose that tonic inhibition may play a greater role under pathological conditions than in physiological conditions in terms of modulating neural network activity.
Collapse
Affiliation(s)
- Yajie Sun
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Huang C, Li WG, Zhang XB, Wang L, Xu TL, Wu D, Li Y. Alpha-asarone from Acorus gramineus alleviates epilepsy by modulating A-Type GABA receptors. Neuropharmacology 2013; 65:1-11. [DOI: 10.1016/j.neuropharm.2012.09.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 08/08/2012] [Accepted: 09/02/2012] [Indexed: 11/25/2022]
|
37
|
González MI, Cruz Del Angel Y, Brooks-Kayal A. Down-regulation of gephyrin and GABAA receptor subunits during epileptogenesis in the CA1 region of hippocampus. Epilepsia 2013; 54:616-24. [PMID: 23294024 DOI: 10.1111/epi.12063] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2012] [Indexed: 12/22/2022]
Abstract
PURPOSE Epileptogenesis is the process by which a brain becomes hyperexcitable and capable of generating recurrent spontaneous seizures. In humans, it has been hypothesized that following a brain insult there are a number of molecular and cellular changes that underlie the development of spontaneous seizures. Studies in animal models have shown that an injured brain may develop epileptiform activity before appearance of epileptic seizures and that the pathophysiology accompanying spontaneous seizures is associated with a dysfunction of γ-aminobutyric acid (GABA)ergic neurotransmission. Here, we analyzed the effects of status epilepticus on the expression of GABAA receptors (GABAA Rs) and scaffolding proteins involved in the regulation of GABAA R trafficking and anchoring. METHODS Western blot analysis was used to determine the levels of proteins involved in GABAA R trafficking and anchoring in adult rats subjected to pilocarpine-induced status epilepticus (SE) and controls. Cell surface biotinylation using a cell membrane-impermeable reagent was used to assay for changes in the expression of receptors at the plasma membrane. Finally, immunoprecipitation experiments were used to evaluate the composition of GABAA Rs. We examined for a correlation between total GABAA R subunit expression, plasma membrane expression, and receptor composition. KEY FINDINGS Analysis of tissue samples from the CA1 region of hippocampus show that SE promotes a loss of GABAA R subunits and of the scaffolding proteins associated with them. We also found a decrease in the levels of receptors located at the plasma membrane and alterations in GABAA R composition. SIGNIFICANCE The changes in protein expression of GABAA Rs and scaffolding proteins detected in these studies provide a potential mechanism to explain the deficits in GABAergic neurotransmission observed during the epileptogenic period. Our current observations represent an additional step toward the elucidation of the molecular mechanisms underlying GABAA R dysfunction during epileptogenesis.
Collapse
Affiliation(s)
- Marco I González
- Division of Neurology and Translational Epilepsy Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA.
| | | | | |
Collapse
|
38
|
Ketzef M, Gitler D. Epileptic synapsin triple knockout mice exhibit progressive long-term aberrant plasticity in the entorhinal cortex. ACTA ACUST UNITED AC 2012; 24:996-1008. [PMID: 23236212 DOI: 10.1093/cercor/bhs384] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Studying epileptogenesis in a genetic model can facilitate the identification of factors that promote the conversion of a normal brain into one chronically prone to seizures. Synapsin triple-knockout (TKO) mice exhibit adult-onset epilepsy, thus allowing the characterization of events as preceding or following seizure onset. Although it has been proposed that a congenital reduction in inhibitory transmission is the underlying cause for epilepsy in these mice, young TKO mice are asymptomatic. We report that the genetic lesion exerts long-term progressive effects that extend well into adulthood. Although inhibitory transmission is initially reduced, it is subsequently strengthened relative to its magnitude in control mice, so that the excitation to inhibition balance in adult TKOs is inverted in favor of inhibition. In parallel, we observed long-term alterations in synaptic depression kinetics of excitatory transmission and in the extent of tonic inhibition, illustrating adaptations in synaptic properties. Moreover, age-dependent acceleration of the action potential did not occur in TKO cortical pyramidal neurons, suggesting wide-ranging secondary changes in brain excitability. In conclusion, although congenital impairments in inhibitory transmission may initiate epileptogenesis in the synapsin TKO mice, we suggest that secondary adaptations are crucial for the establishment of this epileptic network.
Collapse
Affiliation(s)
- Maya Ketzef
- Department of Physiology and Cell Biology, Faculty of Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | |
Collapse
|
39
|
Ferando I, Mody I. GABAAreceptor modulation by neurosteroids in models of temporal lobe epilepsies. Epilepsia 2012; 53 Suppl 9:89-101. [DOI: 10.1111/epi.12038] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
40
|
|
41
|
Pavlov I, Walker MC. Tonic GABA(A) receptor-mediated signalling in temporal lobe epilepsy. Neuropharmacology 2012; 69:55-61. [PMID: 22538087 DOI: 10.1016/j.neuropharm.2012.04.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/27/2012] [Accepted: 04/02/2012] [Indexed: 11/25/2022]
Abstract
The tonic activation of extrasynaptic GABAA receptors by extracellular GABA provides a powerful means of regulating neuronal excitability. A consistent finding from studies that have used various models of temporal lobe epilepsy is that tonic GABAA receptor-mediated conductances are largely preserved in epileptic brain (in contrast to synaptic inhibition which is often reduced). Tonic inhibition is therefore an attractive target for antiepileptic drugs. However, the network consequences of a commonly used approach to augment tonic GABAA receptor-mediated conductances by global manipulation of extracellular GABA are difficult to predict without understanding how epileptogenesis alters the pharmacology and GABA sensitivity of tonic inhibition, and how manipulation of tonic conductances modulates the output of individual neurons. Here we review the current literature on epilepsy-associated changes in tonic GABAA receptor-mediated signalling, and speculate about possible effects they have at the network level. This article is part of the Special Issue entitled 'New Targets and Approaches to the Treatment of Epilepsy'.
Collapse
Affiliation(s)
- Ivan Pavlov
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London WC1N3BG, UK.
| | | |
Collapse
|
42
|
Ma Y, Prince DA. Functional alterations in GABAergic fast-spiking interneurons in chronically injured epileptogenic neocortex. Neurobiol Dis 2012; 47:102-13. [PMID: 22484482 DOI: 10.1016/j.nbd.2012.03.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/15/2012] [Accepted: 03/21/2012] [Indexed: 11/29/2022] Open
Abstract
Progress toward developing effective prophylaxis and treatment of posttraumatic epilepsy depends on a detailed understanding of the basic underlying mechanisms. One important factor contributing to epileptogenesis is decreased efficacy of GABAergic inhibition. Here we tested the hypothesis that the output of neocortical fast-spiking (FS) interneurons onto postsynaptic targets would be decreased in the undercut (UC) model of chronic posttraumatic epileptogenesis. Using dual whole-cell recordings in layer IV barrel cortex, we found a marked increase in the failure rate and a very large reduction in the amplitude of unitary inhibitory postsynaptic currents (uIPSCs) from FS cells to excitatory regular spiking (RS) neurons and neighboring FS cells. Assessment of the paired pulse ratio and presumed quantal release showed that there was a significant, but relatively modest, decrease in synaptic release probability and a non-significant reduction in quantal size. A reduced density of boutons on axons of biocytin-filled UC FS cells, together with a higher coefficient of variation of uIPSC amplitude in RS cells, suggested that the number of functional synapses presynaptically formed by FS cells may be reduced. Given the marked reduction in synaptic strength, other defects in the presynaptic vesicle release machinery likely occur, as well.
Collapse
Affiliation(s)
- Yunyong Ma
- Dept. of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5122, USA
| | | |
Collapse
|
43
|
Da Silva FHL, Gorter JA, Wadman WJ. Epilepsy as a dynamic disease of neuronal networks. HANDBOOK OF CLINICAL NEUROLOGY 2012; 107:35-62. [DOI: 10.1016/b978-0-444-52898-8.00003-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
44
|
Zhu G, Yoshida S, Migita K, Yamada J, Mori F, Tomiyama M, Wakabayashi K, Kanematsu T, Hirata M, Kaneko S, Ueno S, Okada M. Dysfunction of Extrasynaptic GABAergic Transmission in Phospholipase C-Related, but Catalytically Inactive Protein 1 Knockout Mice Is Associated with an Epilepsy Phenotype. J Pharmacol Exp Ther 2011; 340:520-8. [DOI: 10.1124/jpet.111.182386] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
45
|
Sebe JY, Baraban SC. The promise of an interneuron-based cell therapy for epilepsy. Dev Neurobiol 2011; 71:107-17. [PMID: 21154914 DOI: 10.1002/dneu.20813] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Of the nearly 3 million Americans diagnosed with epilepsy, approximately 30% are unresponsive to current medications. Recent data has shown that early postnatal transplantation of interneuronal precursor cells increases GABAergic inhibition in the host brain and dramatically suppresses seizure activity in epileptic mice. In this review, we will highlight findings from seizure-prone mice and humans that demonstrate the link between dysfunctional GABAergic inhibition and hyperexcitability. In particular, we will focus on rodent models of temporal lobe epilepsy, the most common and difficult to treat form of the disease, and interneuronopathies, an emerging classification. A wealth of literature showing a causal link between reduced GABA-mediated inhibition and seizures has directed our efforts to recover the loss of inhibition via transplantation of interneuronal precursors. Numerous related studies have explored the anticonvulsant potential of cell grafts derived from a variety of brain regions, yet the mechanism underlying the effect of such heterogeneous cell transplants is unknown. In discussing our recent findings and placing them in context with what is known about epilepsy, and how related transplant approaches have progressed, we hope to initiate a frank discussion of the best path toward the translation of this approach to patients with intractable forms of epilepsy.
Collapse
Affiliation(s)
- Joy Y Sebe
- Epilepsy Research Laboratory, Department of Neurological Surgery, University of California, San Francisco, California, USA.
| | | |
Collapse
|
46
|
A prolonged experimental febrile seizure results in motor map reorganization in adulthood. Neurobiol Dis 2011; 45:692-700. [PMID: 22044736 DOI: 10.1016/j.nbd.2011.10.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/22/2011] [Accepted: 10/16/2011] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Clinical studies have suggested that children experiencing a febrile seizure (FS) before the age of 1year have persistent deficits, but it is unknown whether these seizures lead to permanent cortical reorganization and alterations in function. A FS on the background of increased genetic seizure susceptibility may also lead to negative long-term consequences. Alterations in neocortical motor map expression provide a measure of neocortical reorganization and have been reported in both adults with frontal lobe epilepsy and following seizure induction in experimental models. The objectives of the present study were to determine whether (1) an infantile FS leads to changes to motor map expression in adulthood; (2) long-term cortical reorganization is a function of the age at FS or genetic seizure susceptibility; and (3) different levels of GABA(A) or glutamate receptor subunits or cation-chloride-co-transporters (CCCs) at the time of FS correlate with alterations to motor map expression. MATERIALS AND METHODS FSs were induced in postnatal day 10 (P10) or P14 Long-Evans (LE) rats or in P14 seizure-prone FAST rats by the administration of the bacterial endotoxin lipopolysaccharide (LPS) and a subconvulsant dose of kainic acid. Ten weeks later intracortical microstimulation was performed to generate motor maps of forelimb movement representations. Sensorimotor neocortex samples were also dissected from naïve P10 FAST and P10 and P14 LE pups for western blotting with antibodies against various GABA(A), NMDA, and AMPA receptor subunits and for CCCs. RESULTS Adult FAST rats had larger motor maps with lower stimulation thresholds after a FS at P14, while adult LE rats had significantly lower map stimulation thresholds but similar sized maps after a FS at P10 compared to controls. There were no differences in neocortical motor map size or stimulation thresholds in adult LE rats after a FS at P14. Both P10 LE and P14 FAST rats had significantly lower levels of the GABA(A) receptor α1 subunit, higher levels of the α2 subunit, and a higher NKCC1/KCC2 ratio in the sensorimotor cortex compared with the P14 LE rat. In addition, the P14 FAST rats had lower levels of the GluR2 and NR2A receptor subunits in the sensorimotor cortex compared with the P14 LE rats. CONCLUSIONS A single infantile FS can have long-term effects on neocortical reorganization in younger individuals and those with underlying seizure susceptibility. These changes may be related to an increased level of excitability in the neocortex of younger or genetically seizure-prone rats, as suggested by immaturity of their GABAergic and CCC systems. Given the high incidence of FSs in children, it will be important to gain a better understanding of how age and genetic seizure predisposition may contribute to the long-term sequelae of these events.
Collapse
|
47
|
Ge YX, Liu Y, Tang HY, Liu XG, Wang X. ClC-2 contributes to tonic inhibition mediated by α5 subunit-containing GABAA receptor in experimental temporal lobe epilepsy. Neuroscience 2011; 186:120-7. [DOI: 10.1016/j.neuroscience.2011.04.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/08/2011] [Accepted: 04/08/2011] [Indexed: 11/24/2022]
|
48
|
Holter NI, Zylla MM, Zuber N, Bruehl C, Draguhn A. Tonic GABAergic control of mouse dentate granule cells during postnatal development. Eur J Neurosci 2010; 32:1300-9. [PMID: 20846322 DOI: 10.1111/j.1460-9568.2010.07331.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dentate gyrus is the main hippocampal input structure receiving strong excitatory cortical afferents via the perforant path. Therefore, inhibition at this 'hippocampal gate' is important, particularly during postnatal development, when the hippocampal network is prone to seizures. The present study describes the development of tonic GABAergic inhibition in mouse dentate gyrus. A prominent tonic GABAergic component was already present at early postnatal stages (postnatal day 3), in contrast to the slowly developing phasic postsynaptic GABAergic currents. Tonic currents were mediated by GABA(A) receptors containing α(5)- and δ-subunits, which are sensitive to low ambient GABA concentrations. The extracellular GABA level was determined by synaptic GABA release and GABA uptake via the GABA transporter 1. The contribution of these main regulatory components was surprisingly stable during postnatal granule cell maturation. Throughout postnatal development, tonic GABAergic signals were inhibitory. They increased the action potential threshold of granule cells and reduced network excitability, starting as early as postnatal day 3. Thus, tonic inhibition is already functional at early developmental stages and plays a key role in regulating the excitation/inhibition balance of both the adult and the maturing dentate gyrus.
Collapse
Affiliation(s)
- Nadine I Holter
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
49
|
Postdepolarization potentiation of GABAA receptors: a novel mechanism regulating tonic conductance in hippocampal neurons. J Neurosci 2010; 30:7672-84. [PMID: 20519542 DOI: 10.1523/jneurosci.0290-10.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ambient GABA in the brain activates GABA(A) receptors to produce tonic inhibition. Membrane potential influences both GABA transport and GABA(A) receptors and could thereby regulate tonic inhibition. We investigated the voltage dependence of tonic currents in cultured rat hippocampal neurons using patch-clamp techniques. Tonic GABA(A) conductance increased with depolarization from 15 +/- 3 pS/pF at -80 mV to 29 +/- 5 pS/pF at -40 mV. Inhibition of vesicular or nonvesicular GABA release did not prevent voltage-dependent increases of tonic conductance. Currents evoked with exogenous GABA (1 mum) were outwardly rectifying, similar to tonic currents caused by endogenous GABA. These results indicate that the voltage-dependent increase of tonic conductance was attributable to intrinsic GABA(A) receptor properties rather than an elevation of ambient GABA. After transient depolarization to +40 mV, endogenous tonic currents measured at -60 mV were increased by 75 +/- 17%. This novel form of tonic current modulation, termed postdepolarization potentiation (PDP), recovered with a time constant of 63 s, was increased by exogenous GABA and inhibited by GABA(A) receptor antagonists. Measurements of E(GABA) showed PDP was caused by increased conductance and not a change in the anion gradient. To assess the functional significance of PDP, we used voltage-clamp waveforms that replicated epileptiform activity. PDP was produced by this pathophysiological depolarization. These data show that depolarization produces prolonged potentiation of tonic conductance attributable to voltage-dependent properties of GABA(A) receptors. These properties are well suited to limit excitability during pathophysiological depolarization accompanied by rises in ambient GABA, such as occur during seizures and ischemia.
Collapse
|
50
|
Laurén HB, Lopez-Picon FR, Brandt AM, Rios-Rojas CJ, Holopainen IE. Transcriptome analysis of the hippocampal CA1 pyramidal cell region after kainic acid-induced status epilepticus in juvenile rats. PLoS One 2010; 5:e10733. [PMID: 20505763 PMCID: PMC2873964 DOI: 10.1371/journal.pone.0010733] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 04/28/2010] [Indexed: 11/19/2022] Open
Abstract
Molecular mechanisms involved in epileptogenesis in the developing brain remain poorly understood. The gene array approach could reveal some of the factors involved by allowing the identification of a broad scale of genes altered by seizures. In this study we used microarray analysis to reveal the gene expression profile of the laser microdissected hippocampal CA1 subregion one week after kainic acid (KA)-induced status epilepticus (SE) in 21-day-old rats, which are developmentally roughly comparable to juvenile children. The gene expression analysis with the Chipster software generated a total of 1592 differently expressed genes in the CA1 subregion of KA-treated rats compared to control rats. The KEGG database revealed that the identified genes were involved in pathways such as oxidative phosporylation (26 genes changed), and long-term potentiation (LTP; 18 genes changed). Also genes involved in Ca2+ homeostasis, gliosis, inflammation, and GABAergic transmission were altered. To validate the microarray results we further examined the protein expression for a subset of selected genes, glial fibrillary protein (GFAP), apolipoprotein E (apo E), cannabinoid type 1 receptor (CB1), Purkinje cell protein 4 (PEP-19), and interleukin 8 receptor (CXCR1), with immunohistochemistry, which confirmed the transcriptome results. Our results showed that SE resulted in no obvious CA1 neuronal loss, and alterations in the expression pattern of several genes during the early epileptogenic phase were comparable to previous gene expression studies of the adult hippocampus of both experimental epileptic animals and patients with temporal lobe epilepsy (TLE). However, some changes seem to occur after SE specifically in the juvenile rat hippocampus. Insight of the SE-induced alterations in gene expression and their related pathways could give us hints for the development of new target-specific antiepileptic drugs that interfere with the progression of the disease in the juvenile age group.
Collapse
Affiliation(s)
- Hanna B. Laurén
- Department of Pharmacology, Drug Development, and Therapeutics, Institute of Biomedicine, University of Turku, Turku, Finland
- MediCity Research Laboratory, Turku, Finland
| | - Francisco R. Lopez-Picon
- Department of Pharmacology, Drug Development, and Therapeutics, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Annika M. Brandt
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Clarissa J. Rios-Rojas
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Irma E. Holopainen
- Department of Pharmacology, Drug Development, and Therapeutics, Institute of Biomedicine, University of Turku, Turku, Finland
- MediCity Research Laboratory, Turku, Finland
- * E-mail:
| |
Collapse
|