1
|
O'Connell A, Quinlan L, Kwakowsky A. β-amyloid's neurotoxic mechanisms as defined by in vitro microelectrode arrays: a review. Pharmacol Res 2024; 209:107436. [PMID: 39369863 DOI: 10.1016/j.phrs.2024.107436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
Alzheimer's disease is characterized by the aggregation of β-amyloid, a pathological feature believed to drive the neuronal loss and cognitive decline commonly seen in the disease. Given the growing prevalence of this progressive neurodegenerative disease, understanding the exact mechanisms underlying this process has become a top priority. Microelectrode arrays are commonly used for chronic, non-invasive recording of both spontaneous and evoked neuronal activity from diverse in vitro disease models and to evaluate therapeutic or toxic compounds. To date, microelectrode arrays have been used to investigate β-amyloids' toxic effects, β-amyloids role in specific pathological features and to assess pharmacological approaches to treat Alzheimer's disease. The versatility of microelectrode arrays means these studies use a variety of methods and investigate different disease models and brain regions. This review provides an overview of these studies, highlighting their disparities and presenting the status of the current literature. Despite methodological differences, the current literature indicates that β-amyloid has an inhibitory effect on synaptic plasticity and induces network connectivity disruptions. β-amyloid's effect on spontaneous neuronal activity appears more complex. Overall, the literature corroborates the theory that β-amyloid induces neurotoxicity, having a progressive deleterious effect on neuronal signaling and plasticity. These studies also confirm that microelectrode arrays are valuable tools for investigating β-amyloid pathology from a functional perspective, helping to bridge the gap between cellular and network pathology and disease symptoms. The use of microelectrode arrays provides a functional insight into Alzheimer's disease pathology which will aid in the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Aoife O'Connell
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Ireland
| | - Leo Quinlan
- Physiology, School of Medicine, Regenerative Medicine Institute, University of Galway, Ireland
| | - Andrea Kwakowsky
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Ireland.
| |
Collapse
|
2
|
Zhang Z, Luo X, Jiang L, Wu H, Tan Z. How do HCN channels play a part in Alzheimer's and Parkinson's disease? Ageing Res Rev 2024; 100:102436. [PMID: 39047878 DOI: 10.1016/j.arr.2024.102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Neurodegenerative diseases like Alzheimer's and Parkinson's disease (AD and PD) are well-known, yet their underlying causes remain unclear. Recent studies have suggested that disruption of ion channels contribute to their pathogenesis. Among these channels, the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, encoded by HCN1-4 genes, are of particular interest due to their role in generating hyperpolarization-activated current (Ih), which is crucial in various neural activities impacting memory and motor functions. A growing body of evidence underscores the pivotal role of HCN in Aβ generation, glial cell function, and ischemia-induced dementia; while HCN is expressed in various regions of the basal ganglia, modulating their functions and influencing motor disorders in PD; neuroinflammation triggered by microglial activation represents a shared pathological mechanism in both AD and PD, in which HCN also plays a significant part. This review delves into the neuronal functions governed by HCN, its roles in the aforementioned pathogenesis, its expression patterns in AD and PD, and discusses potential therapeutic drugs targeting HCN for the treatment of these diseases, aiming to offer a novel perspective and inspire future research endeavors.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China; Changsha Taihe Hospital, Changsha 410000, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, PR China
| | - Xin Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China; Changsha Taihe Hospital, Changsha 410000, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, PR China
| | - Liping Jiang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China; Department of Physiology, Basic Medical School, Hengyang Medical College, The Neuroscience Institute, University of South China, Hengyang 421001, PR China; Changsha Taihe Hospital, Changsha 410000, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, PR China
| | - Huilan Wu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China; Changsha Taihe Hospital, Changsha 410000, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, PR China
| | - Zhirong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China; Changsha Taihe Hospital, Changsha 410000, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, PR China.
| |
Collapse
|
3
|
Alcantara-Gonzalez D, Kennedy M, Criscuolo C, Botterill J, Scharfman HE. Increased excitability of dentate gyrus mossy cells occurs early in life in the Tg2576 model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579729. [PMID: 38645244 PMCID: PMC11027210 DOI: 10.1101/2024.02.09.579729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
INTRODUCTION Hyperexcitability in Alzheimer's disease (AD) emerge early and contribute to disease progression. The dentate gyrus (DG) is implicated in hyperexcitability in AD. We hypothesized that mossy cells (MCs), regulators of DG excitability, contribute to early hyperexcitability in AD. Indeed, MCs generate hyperexcitability in epilepsy. METHODS Using the Tg2576 model and WT mice (∼1month-old), we compared MCs electrophysiologically, assessed c-Fos activity marker, Aβ expression and mice performance in a hippocampal-dependent memory task. RESULTS Tg2576 MCs exhibit increased spontaneous excitatory events and decreased inhibitory currents, increasing the charge transfer excitation/inhibition ratio. Tg2576 MC intrinsic excitability was enhanced, and showed higher c-Fos, intracellular Aβ expression, and axon sprouting. Granule cells only showed changes in synaptic properties, without intrinsic changes. The effects occurred before a memory task is affected. DISCUSSION Early electrophysiological and morphological alterations in Tg2576 MCs are consistent with enhanced excitability, suggesting an early role in DG hyperexcitability and AD pathophysiology. HIGHLIGHTS ∘ MCs from 1 month-old Tg2576 mice had increased spontaneous excitatory synaptic input. ∘ Tg2576 MCs had reduced spontaneous inhibitory synaptic input. ∘ Several intrinsic properties were abnormal in Tg2576 MCs. ∘ Tg2576 GCs had enhanced synaptic excitation but no changes in intrinsic properties. ∘ Tg2576 MCs exhibited high c-Fos expression, soluble Aβ and axonal sprouting.
Collapse
|
4
|
Robles-Gómez ÁA, Ordaz B, Lorea-Hernández JJ, Peña-Ortega F. Deleterious and protective effects of epothilone-D alone and in the context of amyloid β- and tau-induced alterations. Front Mol Neurosci 2023; 16:1198299. [PMID: 37900942 PMCID: PMC10603193 DOI: 10.3389/fnmol.2023.1198299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Amyloid-β (Aβ) and hyperphosphorylated tau (P-tau) are Alzheimer's disease (AD) biomarkers that interact in a complex manner to induce most of the cognitive and brain alterations observed in this disease. Since the neuronal cytoskeleton is a common downstream pathological target of tau and Aβ, which mostly lead to augmented microtubule instability, the administration of microtubule stabilizing agents (MSAs) can protect against their pathological actions. However, the effectiveness of MSAs is still uncertain due to their state-dependent negative effects; thus, evaluating their specific actions in different pathological or physiological conditions is required. We evaluated whether epothilone-D (Epo-D), a clinically used MSA, rescues from the functional and behavioral alterations produced by intracerebroventricular injection of Aβ, the presence of P-tau, or their combination in rTg4510 mice. We also explored the side effects of Epo-D. To do so, we evaluated hippocampal-dependent spatial memory with the Hebb-Williams maze, hippocampal CA1 integrity and the intrinsic and synaptic properties of CA1 pyramidal neurons with the patch-clamp technique. Aβ and P-tau mildly impaired memory retrieval, but produced contrasting effects on intrinsic excitability. When Aβ and P-tau were combined, the alterations in excitability and spatial reversal learning (i.e., cognitive flexibility) were exacerbated. Interestingly, Epo-D prevented most of the impairments induced Aβ and P-tau alone and combined. However, Epo-D also exhibited some side effects depending on the prevailing pathological or physiological condition, which should be considered in future preclinical and translational studies. Although we did not perform extensive histopathological evaluations or measured microtubule stability, our findings show that MSAs can rescue the consequences of AD-like conditions but otherwise be harmful if administered at a prodromal stage of the disease.
Collapse
Affiliation(s)
- Ángel Abdiel Robles-Gómez
- Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
- Posgrado en Ciencias Biológicas, UNAM, Ciudad Universitaria, México City, Mexico
| | - Benito Ordaz
- Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
| | | | | |
Collapse
|
5
|
Fractalkine/CX3CR1-Dependent Modulation of Synaptic and Network Plasticity in Health and Disease. Neural Plast 2023; 2023:4637073. [PMID: 36644710 PMCID: PMC9833910 DOI: 10.1155/2023/4637073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 01/06/2023] Open
Abstract
CX3CR1 is a G protein-coupled receptor that is expressed exclusively by microglia within the brain parenchyma. The only known physiological CX3CR1 ligand is the chemokine fractalkine (FKN), which is constitutively expressed in neuronal cell membranes and tonically released by them. Through its key role in microglia-neuron communication, the FKN/CX3CR1 axis regulates microglial state, neuronal survival, synaptic plasticity, and a variety of synaptic functions, as well as neuronal excitability via cytokine release modulation, chemotaxis, and phagocytosis. Thus, the absence of CX3CR1 or any failure in the FKN/CX3CR1 axis has been linked to alterations in different brain functions, including changes in synaptic and network plasticity in structures such as the hippocampus, cortex, brainstem, and spinal cord. Since synaptic plasticity is a basic phenomenon in neural circuit integration and adjustment, here, we will review its modulation by the FKN/CX3CR1 axis in diverse brain circuits and its impact on brain function and adaptation in health and disease.
Collapse
|
6
|
Méndez-Salcido FA, Torres-Flores MI, Ordaz B, Peña-Ortega F. Abnormal innate and learned behavior induced by neuron-microglia miscommunication is related to CA3 reconfiguration. Glia 2022; 70:1630-1651. [PMID: 35535571 DOI: 10.1002/glia.24185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/15/2022]
Abstract
Neuron-microglia communication through the Cx3cr1-Cx3cl1 axis is essential for the development and refinement of neural circuits, which determine their function into adulthood. In the present work we set out to extend the behavioral characterization of Cx3cr1-/- mice evaluating innate behaviors and spatial navigation, both dependent on hippocampal function. Our results show that Cx3cr1-deficient mice, which show some changes in microglial and synaptic terminals morphology and density, exhibit alterations in activities of daily living and in the rapid encoding of novel spatial information that, nonetheless, improves with training. A neural substrate for these cognitive deficiencies was found in the form of synaptic dysfunction in the CA3 region of the hippocampus, with a marked impact on the mossy fiber (MF) pathway. A network analysis of the CA3 microcircuit reveals the effect of these synaptic alterations on the functional connectivity among CA3 neurons with diminished strength and topological reorganization in Cx3cr1-deficient mice. Neonatal population activity of the CA3 region in Cx3cr1-deficient mice shows a marked reorganization around the giant depolarizing potentials, the first form of network-driven activity of the hippocampus, suggesting that alterations found in adult subjects arise early on in postnatal development, a critical period of microglia-dependent neural circuit refinement. Our results show that interruption of the Cx3cr1-Cx3cl1/neuron-microglia axis leads to changes in CA3 configuration that affect innate and learned behaviors.
Collapse
Affiliation(s)
- Felipe Antonio Méndez-Salcido
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Mayra Itzel Torres-Flores
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Benito Ordaz
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| |
Collapse
|
7
|
Guglietti B, Sivasankar S, Mustafa S, Corrigan F, Collins-Praino LE. Fyn Kinase Activity and Its Role in Neurodegenerative Disease Pathology: a Potential Universal Target? Mol Neurobiol 2021; 58:5986-6005. [PMID: 34432266 DOI: 10.1007/s12035-021-02518-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
Fyn is a non-receptor tyrosine kinase belonging to the Src family of kinases (SFKs) which has been implicated in several integral functions throughout the central nervous system (CNS), including myelination and synaptic transmission. More recently, Fyn dysfunction has been associated with pathological processes observed in neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD) and Parkinson's disease (PD). Neurodegenerative diseases are amongst the leading cause of death and disability worldwide and, due to the ageing population, prevalence is predicted to rise in the coming years. Symptoms across neurodegenerative diseases are both debilitating and degenerative in nature and, concerningly, there are currently no disease-modifying therapies to prevent their progression. As such, it is important to identify potential new therapeutic targets. This review will outline the role of Fyn in normal/homeostatic processes, as well as degenerative/pathological mechanisms associated with neurodegenerative diseases, such as demyelination, pathological protein aggregation, neuroinflammation and cognitive dysfunction.
Collapse
Affiliation(s)
- Bianca Guglietti
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia
| | - Srisankavi Sivasankar
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia
| | - Sanam Mustafa
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia
| | - Frances Corrigan
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia
| | - Lyndsey E Collins-Praino
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia. .,ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
8
|
Ceyzériat K, Gloria Y, Tsartsalis S, Fossey C, Cailly T, Fabis F, Millet P, Tournier BB. Alterations in dopamine system and in its connectivity with serotonin in a rat model of Alzheimer's disease. Brain Commun 2021; 3:fcab029. [PMID: 34286270 PMCID: PMC8287930 DOI: 10.1093/braincomms/fcab029] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/20/2022] Open
Abstract
Dopamine pathways alterations are reported in Alzheimer’s disease. However, it is
difficult in humans to establish when these deficits appear and their impact in the course
of Alzheimer’s disease. In the TgF344-Alzheimer’s disease rat model at the age of
6 months, we showed a reduction in in vivo release of striatal dopamine
due to serotonin 5HT2A-receptor blockade, in the absence of alterations in
5HT2A-receptor binding, suggesting a reduction in
5HT2A-receptor-dopamine system connectivity. In addition, a functional
hypersensitivity of postsynaptic dopamine D2-receptors and
D2-autoreceptors was also reported without any change in D2-receptor
density and in the absence of amyloid plaques or overexpression of the 18 kDa translocator
protein (an inflammatory marker) in areas of the dopamine system. Citalopram, a selective
serotonin reuptake inhibitor, induced functional
5HT2A-receptor−D2-receptor connectivity changes but had no effect on
D2-autoreceptor hypersensitivity. In older rats, dopamine cell bodies
overexpressed translocator protein and dopamine projection sites accumulated amyloid.
Interestingly, the 5HT2A-receptor density is decreased in the accumbens
subdivisions and the substantia nigra pars compacta. This reduction in the striatum is
related to the astrocytic expression of 5HT2A-receptor. Our results indicate
that both serotonin/dopamine connectivity and dopamine signalling pathways are
dysregulated and potentially represent novel early diagnostic and therapeutic avenues.
Collapse
Affiliation(s)
- Kelly Ceyzériat
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, 1206 Geneva, Switzerland.,Division of Nuclear medicine, Diagnostic Department, University Hospitals and Geneva University of Geneva, 1206 Geneva, Switzerland.,Division of Radiation Oncology, Department of Oncology, University Hospitals of Geneva, 1206 Geneva, Switzerland
| | - Yesica Gloria
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, 1206 Geneva, Switzerland
| | - Stergios Tsartsalis
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, 1206 Geneva, Switzerland
| | - Christine Fossey
- Normandie University, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000 Caen, France
| | - Thomas Cailly
- Normandie University, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000 Caen, France.,Department of Nuclear Medicine, CHU Cote de Nacre, 14000 Caen, France.,Normandie University, UNICAEN, IMOGERE, 14000 Caen, France
| | - Frédéric Fabis
- Normandie University, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000 Caen, France
| | - Philippe Millet
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, 1206 Geneva, Switzerland.,Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Benjamin B Tournier
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, 1206 Geneva, Switzerland.,Department of Psychiatry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Juárez-Vidales JDJ, Pérez-Ortega J, Lorea-Hernández JJ, Méndez-Salcido F, Peña-Ortega F. Configuration and dynamics of dominant inspiratory multineuronal activity patterns during eupnea and gasping generation in vitro. J Neurophysiol 2021; 125:1289-1306. [PMID: 33502956 DOI: 10.1152/jn.00563.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pre-Bötzinger complex (preBötC), located within the ventral respiratory column, produces inspiratory bursts in varying degrees of synchronization/amplitude. This wide range of population burst patterns reflects the flexibility of the preBötC neurons, which is expressed in variations in the onset/offset times of their activations and their activity during the population bursts, with respiratory neurons exhibiting a large cycle-to-cycle timing jitter both at the population activity onset and at the population activity peak, suggesting that respiratory neurons are stochastically activated before and during the inspiratory bursts. However, it is still unknown whether this stochasticity is maintained while evaluating the coactivity of respiratory neuronal ensembles. Moreover, the preBötC topology also remains unknown. In this study, by simultaneously recording tens of preBötC neurons and using coactivation analysis during the inspiratory periods, we found that the preBötC has a scale-free configuration (mixture of not many highly connected nodes, hubs, with abundant poorly connected elements) exhibiting the rich-club phenomenon (hubs more likely interconnected with each other). PreBötC neurons also produce multineuronal activity patterns (MAPs) that are highly stable and change during the hypoxia-induced reconfiguration. Moreover, preBötC contains a coactivating core network shared by all its MAPs. Finally, we found a distinctive pattern of sequential coactivation of core network neurons at the beginning of the inspiratory periods, indicating that, when evaluated at the multicellular level, the coactivation of respiratory neurons seems not to be stochastic.NEW & NOTEWORTHY By means of multielectrode recordings of preBötC neurons, we evaluated their configuration in normoxia and hypoxia, finding that the preBötC exhibits a scale-free configuration with a rich-club phenomenon. preBötC neurons produce multineuronal activity patterns that are highly stable but change during hypoxia. The preBötC contains a coactivating core network that exhibit a distinctive pattern of coactivation at the beginning of inspirations. These results reveal some network basis of inspiratory rhythm generation and its reconfiguration during hypoxia.
Collapse
Affiliation(s)
- Josué de Jesús Juárez-Vidales
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| | - Jesús Pérez-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| | - Jonathan Julio Lorea-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| | - Felipe Méndez-Salcido
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| |
Collapse
|
10
|
Alcantara-Gonzalez D, Chartampila E, Criscuolo C, Scharfman HE. Early changes in synaptic and intrinsic properties of dentate gyrus granule cells in a mouse model of Alzheimer's disease neuropathology and atypical effects of the cholinergic antagonist atropine. Neurobiol Dis 2021; 152:105274. [PMID: 33484828 DOI: 10.1016/j.nbd.2021.105274] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/09/2021] [Accepted: 01/16/2021] [Indexed: 12/19/2022] Open
Abstract
It has been reported that hyperexcitability occurs in a subset of patients with Alzheimer's disease (AD) and hyperexcitability could contribute to the disease. Several studies have suggested that the hippocampal dentate gyrus (DG) may be an important area where hyperexcitability occurs. Therefore, we tested the hypothesis that the principal DG cell type, granule cells (GCs), would exhibit changes at the single-cell level which would be consistent with hyperexcitability and might help explain it. We used the Tg2576 mouse, where it has been shown that hyperexcitability is robust at 2-3 months of age. GCs from 2 to 3-month-old Tg2576 mice were compared to age-matched wild type (WT) mice. Effects of muscarinic cholinergic antagonism were tested because previously we found that Tg2576 mice exhibited hyperexcitability in vivo that was reduced by the muscarinic cholinergic antagonist atropine, counter to the dogma that in AD one needs to boost cholinergic function. The results showed that GCs from Tg2576 mice exhibited increased frequency of spontaneous excitatory postsynaptic potentials/currents (sEPSP/Cs) and reduced frequency of spontaneous inhibitory synaptic events (sIPSCs) relative to WT, increasing the excitation:inhibition (E:I) ratio. There was an inward NMDA receptor-dependent current that we defined here as a novel synaptic current (nsC) in Tg2576 mice because it was very weak in WT mice. Intrinsic properties were distinct in Tg2576 GCs relative to WT. In summary, GCs of the Tg2576 mouse exhibit early electrophysiological alterations that are consistent with increased synaptic excitation, reduced inhibition, and muscarinic cholinergic dysregulation. The data support previous suggestions that the DG contributes to hyperexcitability and there is cholinergic dysfunction early in life in AD mouse models.
Collapse
Affiliation(s)
- David Alcantara-Gonzalez
- Center for Dementia Research, the Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | - Elissavet Chartampila
- Center for Dementia Research, the Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | - Chiara Criscuolo
- Center for Dementia Research, the Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | - Helen E Scharfman
- Center for Dementia Research, the Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, New York University Langone Health, New York, NY 10016, USA; Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
11
|
Acute Effects of Two Different Species of Amyloid- β on Oscillatory Activity and Synaptic Plasticity in the Commissural CA3-CA1 Circuit of the Hippocampus. Neural Plast 2021; 2020:8869526. [PMID: 33381164 PMCID: PMC7765721 DOI: 10.1155/2020/8869526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 11/29/2022] Open
Abstract
Recent evidence indicates that soluble amyloid-β (Aβ) species induce imbalances in excitatory and inhibitory transmission, resulting in neural network functional impairment and cognitive deficits during early stages of Alzheimer's disease (AD). To evaluate the in vivo effects of two soluble Aβ species (Aβ25-35 and Aβ1-40) on commissural CA3-to-CA1 (cCA3-to-CA1) synaptic transmission and plasticity, and CA1 oscillatory activity, we used acute intrahippocampal microinjections in adult anaesthetized male Wistar rats. Soluble Aβ microinjection increased cCA3-to-CA1 synaptic variability without significant changes in synaptic efficiency. High-frequency CA3 stimulation was rendered inefficient by soluble Aβ intrahippocampal injection to induce long-term potentiation and to enhance synaptic variability in CA1, contrasting with what was observed in vehicle-injected subjects. Although soluble Aβ microinjection significantly increased the relative power of γ-band and ripple oscillations and significantly shifted the average vector of θ-to-γ phase-amplitude coupling (PAC) in CA1, it prevented θ-to-γ PAC shift induced by high-frequency CA3 stimulation, opposite to what was observed in vehicle-injected animals. These results provide further evidence that soluble Aβ species induce synaptic dysfunction causing abnormal synaptic variability, impaired long-term plasticity, and deviant oscillatory activity, leading to network activity derailment in the hippocampus.
Collapse
|
12
|
Wiatrak B, Balon K. Protective Activity of Aβ on Cell Cultures (PC12 and THP-1 after Differentiation) Preincubated with Lipopolysaccharide (LPS). Mol Neurobiol 2020; 58:1453-1464. [PMID: 33188619 PMCID: PMC7932962 DOI: 10.1007/s12035-020-02204-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/04/2020] [Indexed: 02/08/2023]
Abstract
Amyloid-β (Aβ), the influence of which is considered the pathomechanism of Alzheimer’s disease, is also present in healthy people. The microbiome’s impact is also taken into account, where bacterial lipopolysaccharide (LPS) activates inflammatory processes and stimulates microglia via TLRs. Molecules of bacterial origin can co-create senile plaques with Aβ. This study evaluated the activity of physiological Aβ concentrations on neuronal and microglial cells after preincubation with LPS. Two cell lines were used in the study: PC12 cells differentiated with NGF and THP-1 cells differentiated with phorbol 12-myristate 13-acetate (PMA). Cells were incubated with LPS at concentrations of 1–100 μM for 24 h and then with Aβ25–35 at a concentration of 0.001 μM or 1.0 μM for another 24 h. The viability of the culture and free oxygen radicals and the number of DNA strand breaks in both cell lines were evaluated. Additionally, for PC12 cells, neural features were assessed. Stimulation of repair processes in the presence of Aβ was observed for both studied cell lines. There was a decrease in free radical level and DNA damage number compared to control cultures (cells treated with LPS and without Aβ). The neurotrophic activity of Aβ was observed—the effect on neurites’ growth even after the preincubation of PC12 cells with LPS. At the lowest concentration of LPS used, the increase in neurite length was about 50% greater than in the negative control. At low concentrations, Aβ has a protective effect on neuron-like PC12 cells pretreated with LPS.
Collapse
Affiliation(s)
- Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345, Wrocław, Poland. .,Department of Basic Medical Sciences, Wroclaw Medical University, Wrocław, Poland.
| | - Katarzyna Balon
- Department of Basic Medical Sciences, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
13
|
Rasgado LAV, Urbieta AT, Jiménez JMM. Affected albumin endocytosis as a new neurotoxicity mechanism of amyloid beta. AIMS Neurosci 2020; 7:344-359. [PMID: 32995492 PMCID: PMC7519963 DOI: 10.3934/neuroscience.2020021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/17/2020] [Indexed: 11/18/2022] Open
Abstract
Senile plaques, a hallmark of Alzheimer's disease, are composed by Amyloid-Beta (Aβ). Aβ 25-35 toxicity is caused mainly by increasing reactive oxygen species (ROS), which is reversed by albumin preventing Aβ internalization. In addition, key cellular processes and basic cell functions require of endocytosis, particularly relevant in neurons. To understand the protective effect of albumin and the toxicity mechanism of Aβ, the need of albumin uptake for neurons protection as well as the possible influence of Aβ on albumin endocytosis were investigated. With this aim the influence of lectin from soybeans (LEC), which prevents albumin endocytosis, on the effects of Aβ 25-35 on cellular morphology and viability, ROS generation and Aβ uptake with and without albumin in neurons in primary culture was investigated. Influence of Aβ on albumin endocytosis was studied using FITC-labelled albumin. LEC did not modify Aβ effects with or without albumin on neuronal morphology, but increased cell viability. LEC increased ROS generation with and without Aβ in the same magnitude. Diminished Aβ internalization observed with albumin was not affected by LEC. In presence of Aβ albumin is internalized, but endosomes did not deliver their cargo to the lysosomes for degradation. It is concluded that formation of Aβ-albumin complex does not require of albumin internalization, thus is extracellular. Aβ affects albumin endocytosis preventing late endosomes and lysosomes degradation, probably caused by changes in albumin structure or deregulation in vesicular transport. Considering the consequences such as its osmotic effects, the inability to exert its antioxidant properties, its effects on neuronal plasticity and excitability albumin affected endocytosis induced by Aβ is proposed as a new physiopathology mechanism in AD. It is hypothesized that there is critical intraneuronal level above which albumin becomes toxic.
Collapse
Affiliation(s)
- Lourdes A Vega Rasgado
- Laboratorio de Neuroquímica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Arantxa Tabernero Urbieta
- Instituto de Neurociencias de Castilla y León (INCYL), c/Pintor Fernando Gallego 1, 37007 Salamanca, Spain
| | - José María Medina Jiménez
- Instituto de Neurociencias de Castilla y León (INCYL), c/Pintor Fernando Gallego 1, 37007 Salamanca, Spain
| |
Collapse
|
14
|
Functional Alterations in the Olfactory Neuronal Circuit Occur before Hippocampal Plasticity Deficits in the P301S Mouse Model of Tauopathy: Implications for Early Diagnosis and Translational Research in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21155431. [PMID: 32751531 PMCID: PMC7432464 DOI: 10.3390/ijms21155431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/18/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by neuronal loss and impaired synaptic transmission, ultimately leading to cognitive deficits. Early in the disease, the olfactory track seems most sensitive to tauopathy, while most plasticity studies focused on the hippocampal circuits. Functional network connectivity (FC) and long-term potentiation (LTP), considered as the plasticity substrate of learning and memory, were longitudinally assessed in mice of the P301S model of tauopathy following the course (time and location) of progressively neurodegenerative pathology (i.e., at 3, 6, and 9 months of age) and in their wild type (WT) littermates. Using in vivo local field potential (LFP) recordings, early (at three months) dampening in the gamma oscillatory activity and impairments in the phase-amplitude theta-gamma coupling (PAC) were found in the olfactory bulb (OB) circuit of P301S mice, which were maintained through the whole course of pathology development. In contrast, LFP oscillatory activity and PAC indices were normal in the entorhinal cortex, hippocampal CA1 and CA3 nuclei. Field excitatory postsynaptic potential (fEPSP) recordings from the Shaffer collateral (SC)-CA1 hippocampal stratum pyramidal revealed a significant altered synaptic LTP response to high-frequency stimulation (HFS): at three months of age, no significant difference between genotypes was found in basal synaptic activity, while signs of a deficit in short term plasticity were revealed by alterations in the fEPSPs. At six months of age, a slight deviance was found in basal synaptic activity and significant differences were observed in the LTP response. The alterations in network oscillations at the OB level and impairments in the functioning of the SC-CA1 pyramidal synapses strongly suggest that the progression of tau pathology elicited a brain area, activity-dependent disturbance in functional synaptic transmission. These findings point to early major alterations of neuronal activity in the OB circuit prior to the disturbance of hippocampal synaptic plasticity, possibly involving tauopathy in the anomalous FC. Further research should determine whether those early deficits in the OB network oscillations and FC are possible mechanisms that potentially promote the emergence of hippocampal synaptic impairments during the progression of tauopathy.
Collapse
|
15
|
Mayordomo-Cava J, Iborra-Lázaro G, Djebari S, Temprano-Carazo S, Sánchez-Rodríguez I, Jeremic D, Gruart A, Delgado-García JM, Jiménez-Díaz L, Navarro-López JD. Impairments of Synaptic Plasticity Induction Threshold and Network Oscillatory Activity in the Hippocampus Underlie Memory Deficits in a Non-Transgenic Mouse Model of Amyloidosis. BIOLOGY 2020; 9:biology9070175. [PMID: 32698467 PMCID: PMC7407959 DOI: 10.3390/biology9070175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/07/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022]
Abstract
In early Alzheimer disease (AD) models synaptic failures and upstreaming aberrant patterns of network synchronous activity result in hippocampal-dependent memory deficits. In such initial stage, soluble forms of Amyloid-β (Aβ) peptides have been shown to play a causal role. Among different Aβ species, Aβ25-35 has been identified as the biologically active fragment, as induces major neuropathological signs related to early AD stages. Consequently, it has been extensively used to acutely explore the pathophysiological events related with neuronal dysfunction induced by soluble Aβ forms. However, the synaptic mechanisms underlying its toxic effects on hippocampal-dependent memory remain unresolved. Here, in an in vivo model of amyloidosis generated by intracerebroventricular injections of Aβ25-35 we studied the synaptic dysfunction mechanisms underlying hippocampal cognitive deficits. At the synaptic level, long-term potentiation (LTP) of synaptic excitation and inhibition was induced in CA1 region by high frequency simulation (HFS) applied to Schaffer collaterals. Aβ25-35 was found to alter metaplastic mechanisms of plasticity, facilitating long-term depression (LTD) of both types of LTP. In addition, aberrant synchronization of hippocampal network activity was found while at the behavioral level, deficits in hippocampal-dependent habituation and recognition memories emerged. Together, our results provide a substrate for synaptic disruption mechanism underlying hippocampal cognitive deficits present in Aβ25-35 amyloidosis model.
Collapse
Affiliation(s)
- Jennifer Mayordomo-Cava
- Neurophysiology and Behavioral Lab, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (J.M.-C.); (G.I.-L.); (S.D.); (S.T.-C.); (I.S.-R.); (D.J.)
| | - Guillermo Iborra-Lázaro
- Neurophysiology and Behavioral Lab, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (J.M.-C.); (G.I.-L.); (S.D.); (S.T.-C.); (I.S.-R.); (D.J.)
| | - Souhail Djebari
- Neurophysiology and Behavioral Lab, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (J.M.-C.); (G.I.-L.); (S.D.); (S.T.-C.); (I.S.-R.); (D.J.)
| | - Sara Temprano-Carazo
- Neurophysiology and Behavioral Lab, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (J.M.-C.); (G.I.-L.); (S.D.); (S.T.-C.); (I.S.-R.); (D.J.)
| | - Irene Sánchez-Rodríguez
- Neurophysiology and Behavioral Lab, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (J.M.-C.); (G.I.-L.); (S.D.); (S.T.-C.); (I.S.-R.); (D.J.)
| | - Danko Jeremic
- Neurophysiology and Behavioral Lab, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (J.M.-C.); (G.I.-L.); (S.D.); (S.T.-C.); (I.S.-R.); (D.J.)
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, 41013 Seville, Spain; (A.G.); (J.M.D.-G.)
| | | | - Lydia Jiménez-Díaz
- Neurophysiology and Behavioral Lab, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (J.M.-C.); (G.I.-L.); (S.D.); (S.T.-C.); (I.S.-R.); (D.J.)
- Correspondence: (L.J.-D.); (J.D.N.-L.)
| | - Juan D. Navarro-López
- Neurophysiology and Behavioral Lab, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (J.M.-C.); (G.I.-L.); (S.D.); (S.T.-C.); (I.S.-R.); (D.J.)
- Correspondence: (L.J.-D.); (J.D.N.-L.)
| |
Collapse
|
16
|
Mondragón-Rodríguez S, Ordaz B, Orta-Salazar E, Díaz-Cintra S, Peña-Ortega F, Perry G. Hippocampal Unicellular Recordings and Hippocampal-dependent Innate Behaviors in an Adolescent Mouse Model of Alzheimer's disease. Bio Protoc 2020; 10:e3529. [PMID: 33654753 PMCID: PMC7842348 DOI: 10.21769/bioprotoc.3529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 11/02/2022] Open
Abstract
Transgenic mice have been used to make valuable contributions to the field of neuroscience and model neurological diseases. The simultaneous functional analysis of hippocampal cell activity combined with hippocampal dependent innate task evaluations provides a reliable experimental approach to detect fine changes during early phases of neurodegeneration. To this aim, we used a merge of patch-clamp with two hippocampal innate behavior tasks. With this experimental approach, whole-cell recordings of CA1 pyramidal cells, combined with hippocampal-dependent innate behaviors, have been crucial for evaluating the early mechanism of neurodegeneration and its consequences. Here, we present our protocol for ex vivo whole-cell recordings of CA1 pyramidal cells and hippocampal dependent innate behaviors in an adolescent (p30) mice.
Collapse
Affiliation(s)
- Siddhartha Mondragón-Rodríguez
- National Council for Science and Technology (CONACYT), México, México
- Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México (UNAM), Querétaro, México
| | - Benito Ordaz
- Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México (UNAM), Querétaro, México
| | - Erika Orta-Salazar
- Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México (UNAM), Querétaro, México
| | - Sofia Díaz-Cintra
- Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México (UNAM), Querétaro, México
| | - Fernando Peña-Ortega
- Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México (UNAM), Querétaro, México
| | - George Perry
- Neuroscience Institute and Department of Biology, College of Sciences, University of Texas at San Antonio (UTSA), San Antonio, Texas
| |
Collapse
|
17
|
Morrissey JA, Bigus E, Necarsulmer JC, Srinivasan V, Peppercorn K, O'Leary DJ, Mockett BG, Tate WP, Hughes SM, Parfitt KD, Abraham WC. The Tripeptide RER Mimics Secreted Amyloid Precursor Protein-Alpha in Upregulating LTP. Front Cell Neurosci 2019; 13:459. [PMID: 31680870 PMCID: PMC6813913 DOI: 10.3389/fncel.2019.00459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022] Open
Abstract
Secreted amyloid precursor protein-alpha (sAPPα), generated by enzymatic processing of the APP, possesses a range of neurotrophic and neuroprotective properties and plays a critical role in the molecular mechanisms of memory and learning. One of the key active regions of sAPPα is the central APP domain (E2) that contains within it the tripeptide sequence, RER. This sequence is exposed on the surface of a coiled coil substructure of E2. RER has by itself displayed memory-enhancing properties, and can protect newly formed engrams from interference in a manner similar to that displayed by sAPPα itself. In order to determine whether RER mimics other properties of sAPPα, we investigated the electrophysiological effects of the N-terminal protected acetylated RER (Ac-RER) and an isoform containing a chiral switch in the first amino acid from an l- to a d-orientation (Ac-rER), on synaptic plasticity. We found that, like sAPPα, exogenous perfusion with nanomolar concentrations of Ac-RER or Ac-rER enhanced the induction and stability of long-term potentiation (LTP) in area CA1 of rat and mouse hippocampal slices, in a protein synthesis- and trafficking-dependent manner. This effect did not occur with a control Ac-AAA or Ac-IFR tripeptide, nor with a full-length sAPPα protein where RER was substituted with AAA. Ac-rER also protected LTP against amyloid-beta (Aβ25–35)-induced LTP impairment. Our findings provide further evidence that the RER-containing region of sAPPα is functionally significant and by itself can produce effects similar to those displayed by full length sAPPα, suggesting that this tripeptide, like sAPPα, may have therapeutic potential.
Collapse
Affiliation(s)
- Jodi A Morrissey
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand.,Department of Biochemistry, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Erin Bigus
- Department of Neuroscience, Pomona College, Claremont, CA, United States
| | | | - Vinay Srinivasan
- Department of Neuroscience, Pomona College, Claremont, CA, United States
| | - Katie Peppercorn
- Department of Biochemistry, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Daniel J O'Leary
- Department of Neuroscience, Pomona College, Claremont, CA, United States
| | - Bruce G Mockett
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Warren P Tate
- Department of Biochemistry, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Stephanie M Hughes
- Department of Biochemistry, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Karen D Parfitt
- Department of Neuroscience, Pomona College, Claremont, CA, United States
| | - Wickliffe C Abraham
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| |
Collapse
|
18
|
Alcantara-Gonzalez D, Villasana-Salazar B, Peña-Ortega F. Single amyloid-beta injection exacerbates 4-aminopyridine-induced seizures and changes synaptic coupling in the hippocampus. Hippocampus 2019; 29:1150-1164. [PMID: 31381216 DOI: 10.1002/hipo.23129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/12/2019] [Accepted: 06/05/2019] [Indexed: 11/09/2022]
Abstract
Accumulation of amyloid-beta (Aβ) in temporal lobe structures, including the hippocampus, is related to a variety of Alzheimer's disease symptoms and seems to be involved in the induction of neural network hyperexcitability and even seizures. Still, a direct evaluation of the pro-epileptogenic effects of Aβ in vivo, and of the underlying mechanisms, is missing. Thus, we tested whether the intracisternal injection of Aβ modulates 4-aminopyridine (4AP)-induced epileptiform activity, hippocampal network function, and its synaptic coupling. When tested 3 weeks after its administration, Aβ (but not its vehicle) reduces the latency for 4AP-induced seizures, increases the number of generalized seizures, exacerbates the time to fully recover from seizures, and favors seizure-induced death. These pro-epileptogenic effects of Aβ correlate with a reduction in the power of the spontaneous hippocampal network activity, involving all frequency bands in vivo and only the theta band (4-10 Hz) in vitro. The pro-epileptogenic effects of Aβ also correlate with a reduction of the Schaffer-collateral CA1 synaptic coupling in vitro, which is exacerbated by the sequential bath application of 4-AP and Aβ. In summary, Aβ produces long-lasting pro-epileptic effects that can be due to alterations in the hippocampal circuit, impacting its coordinated network activity and its synaptic efficiency. It is likely that normalizing synaptic coupling and/or coordinated neural network activity (i.e., theta activity) may contribute not only to improve cognitive function in Alzheimer's disease but also to avoid hyperexcitation in conditions of amyloidosis.
Collapse
Affiliation(s)
- David Alcantara-Gonzalez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro, Mexico
| | - Benjamín Villasana-Salazar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro, Mexico
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro, Mexico
| |
Collapse
|
19
|
Environmental enrichment and exercise are better than social enrichment to reduce memory deficits in amyloid beta neurotoxicity. Proc Natl Acad Sci U S A 2018; 115:E2403-E2409. [PMID: 29463708 DOI: 10.1073/pnas.1718435115] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recently, nongenetic animal models to study the onset and development of Alzheimer's disease (AD) have appeared, such as the intrahippocampal infusion of peptides present in Alzheimer amyloid plaques [i.e., amyloid-β (Aβ)]. Nonpharmacological approaches to AD treatment also have been advanced recently, which involve combinations of behavioral interventions whose specific effects are often difficult to determine. Here we isolate the neuroprotective effects of three of these interventions-environmental enrichment (EE), anaerobic physical exercise (AnPE), and social enrichment (SE)-on Aβ-induced oxidative stress and on impairments in learning and memory induced by Aβ. Wistar rats were submitted to 8 wk of EE, AnPE, or SE, followed by Aβ infusion in the dorsal hippocampus. Short-term memory (STM) and long-term memory (LTM) of object recognition (OR) and social recognition (SR) were evaluated. Biochemical assays determined hippocampal oxidative status: reactive oxygen species, lipid peroxidation by thiobarbituric acid reactive substance (TBARS) test, and total antioxidant capacity by ferric reducing/antioxidant power (FRAP), as well as acetylcholinesterase activity. Aβ infusion resulted in memory deficits and hippocampal oxidative damage. EE and AnPE prevented all memory deficits (STM and LTM of OR and SR) and lipid peroxidation (i.e., TBARS). SE prevented only the SR memory deficits and the decrease of total antioxidant capacity decrease (i.e., FRAP). Traditionally, findings obtained with EE protocols do not allow discrimination of the roles of the three individual factors involved. Here we demonstrate that EE and physical exercise have better neuroprotective effects than SE in memory deficits related to Aβ neurotoxicity in the AD model tested.
Collapse
|
20
|
Reduced cooperativity of voltage-gated sodium channels in the hippocampal interneurons of an aged mouse model of Alzheimer's disease. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:539-547. [PMID: 29427204 DOI: 10.1007/s00249-017-1274-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 12/18/2017] [Accepted: 12/26/2017] [Indexed: 10/18/2022]
Abstract
Beta amyloid (A[Formula: see text] ) associated with Alzheimer's disease (AD) leads to abnormal behavior in inhibitory neurons, resulting in hyperactive neuronal networks, epileptiform behavior, disrupted gamma rhythms, and aberrant synaptic plasticity. Previously, we used a dual modeling-experimental approach to explain several observations, including failure to reliably produce action potentials (APs), smaller AP amplitudes, higher resting membrane potential, and higher membrane depolarization in response to a range of stimuli in hippocampal inhibitory neurons from 12- to 16-month-old female AP Pswe/PSEN1DeltaE9 (APdE9) AD mice as compared to age-matched non-transgenic (NTG) mice. Our experimental results also showed that AP initiation in interneurons from APdE9 mice are significantly different from that of NTG mice. APs in interneurons from NTG mice are characterized by abrupt onset and an upstroke that is much steeper and occurs with larger variability as compared to cells from APdE9 mice. The phase plot (the rate of change of membrane potential versus the instantaneous membrane potential) of APs produced by interneurons from APdE9 mice shows a biphasic behavior, whereas that from NTG mice shows a monophasic behavior. Here we show that using the classic Hodgkin-Huxley (HH) formalism for the gating of voltage-gated sodium channels (VGSCs) in a single-compartment neuron, we cannot reproduce these features, and a model that takes into account a cooperative activation of VGSCs is needed. We also argue that considering a realistic multi-compartment neuron where the kinetics of VGSC is modeled by HH formalism, as done in the past, would not explain our observations when APs from both NTG and APdE9 mice are considered simultaneously. We further show that VGSCs in interneurons from APdE9 mice exhibit significantly lower cooperativity in their activation as compared to those from NTG mice.
Collapse
|
21
|
Amyloid β Peptide-Induced Changes in Prefrontal Cortex Activity and Its Response to Hippocampal Input. INTERNATIONAL JOURNAL OF PEPTIDES 2017; 2017:7386809. [PMID: 28127312 PMCID: PMC5239987 DOI: 10.1155/2017/7386809] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 11/02/2016] [Indexed: 12/24/2022]
Abstract
Alterations in prefrontal cortex (PFC) function and abnormalities in its interactions with other brain areas (i.e., the hippocampus) have been related to Alzheimer Disease (AD). Considering that these malfunctions correlate with the increase in the brain's amyloid beta (Aβ) peptide production, here we looked for a causal relationship between these pathognomonic signs of AD. Thus, we tested whether or not Aβ affects the activity of the PFC network and the activation of this cortex by hippocampal input stimulation in vitro. We found that Aβ application to brain slices inhibits PFC spontaneous network activity as well as PFC activation, both at the population and at the single-cell level, when the hippocampal input is stimulated. Our data suggest that Aβ can contribute to AD by disrupting PFC activity and its long-range interactions throughout the brain.
Collapse
|
22
|
Perez C, Ziburkus J, Ullah G. Analyzing and Modeling the Dysfunction of Inhibitory Neurons in Alzheimer's Disease. PLoS One 2016; 11:e0168800. [PMID: 28036398 PMCID: PMC5201300 DOI: 10.1371/journal.pone.0168800] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the abnormal proteolytic processing of amyloid precursor protein, resulting in increased production of a self-aggregating form of beta amyloid (Aβ). Several lines of work on AD patients and transgenic mice with high Aβ levels exhibit altered rhythmicity, aberrant neuronal network activity and hyperexcitability reflected in clusters of hyperactive neurons, and spontaneous epileptic activity. Recent studies highlight that abnormal accumulation of Aβ changes intrinsic properties of inhibitory neurons, which is one of the main reasons underlying the impaired network activity. However, specific cellular mechanisms leading to interneuronal dysfunction are not completely understood. Using extended Hodgkin-Huxley (HH) formalism in conjunction with patch-clamp experiments, we investigate the mechanisms leading to the impaired activity of interneurons. Our detailed analysis indicates that increased Na+ leak explains several observations in inhibitory neurons, including their failure to reliably produce action potentials, smaller action potential amplitude, increased resting membrane potential, and higher membrane depolarization in response to a range of stimuli in a model of APPSWE/PSEN1DeltaE9 (APdE9) AD mice as compared to age-matched control mice. While increasing the conductance of hyperpolarization activated cyclic nucleotide-gated (HCN) ion channel could account for most of the observations, the extent of increase required to reproduce these observations render such changes unrealistic. Furthermore, increasing the conductance of HCN does not account for the observed changes in depolarizability of interneurons from APdE9 mice as compared to those from NTG mice. None of the other pathways tested could lead to all observations about interneuronal dysfunction. Thus we conclude that upregulated sodium leak is the most likely source of impaired interneuronal function.
Collapse
Affiliation(s)
- Carlos Perez
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America
| | - Jokubas Ziburkus
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America
- * E-mail:
| |
Collapse
|
23
|
Papazoglou A, Soos J, Lundt A, Wormuth C, Ginde VR, Müller R, Henseler C, Broich K, Xie K, Ehninger D, Haenisch B, Weiergräber M. Gender-Specific Hippocampal Dysrhythmia and Aberrant Hippocampal and Cortical Excitability in the APPswePS1dE9 Model of Alzheimer's Disease. Neural Plast 2016; 2016:7167358. [PMID: 27840743 PMCID: PMC5093295 DOI: 10.1155/2016/7167358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/07/2016] [Accepted: 09/19/2016] [Indexed: 12/26/2022] Open
Abstract
Alzheimer's disease (AD) is a multifactorial disorder leading to progressive memory loss and eventually death. In this study an APPswePS1dE9 AD mouse model has been analyzed using implantable video-EEG radiotelemetry to perform long-term EEG recordings from the primary motor cortex M1 and the hippocampal CA1 region in both genders. Besides motor activity, EEG recordings were analyzed for electroencephalographic seizure activity and frequency characteristics using a Fast Fourier Transformation (FFT) based approach. Automatic seizure detection revealed severe electroencephalographic seizure activity in both M1 and CA1 deflection in APPswePS1dE9 mice with gender-specific characteristics. Frequency analysis of both surface and deep EEG recordings elicited complex age, gender, and activity dependent alterations in the theta and gamma range. Females displayed an antithetic decrease in theta (θ) and increase in gamma (γ) power at 18-19 weeks of age whereas related changes in males occurred earlier at 14 weeks of age. In females, theta (θ) and gamma (γ) power alterations predominated in the inactive state suggesting a reduction in atropine-sensitive type II theta in APPswePS1dE9 animals. Gender-specific central dysrhythmia and network alterations in APPswePS1dE9 point to a functional role in behavioral and cognitive deficits and might serve as early biomarkers for AD in the future.
Collapse
Affiliation(s)
- Anna Papazoglou
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM)), Bonn, Germany
| | - Julien Soos
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM)), Bonn, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)), Bonn, Germany
| | - Andreas Lundt
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM)), Bonn, Germany
| | - Carola Wormuth
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM)), Bonn, Germany
| | - Varun Raj Ginde
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM)), Bonn, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)), Bonn, Germany
| | - Ralf Müller
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Christina Henseler
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM)), Bonn, Germany
| | - Karl Broich
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM)), Bonn, Germany
| | - Kan Xie
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)), Bonn, Germany
| | - Dan Ehninger
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)), Bonn, Germany
| | - Britta Haenisch
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)), Bonn, Germany
| | - Marco Weiergräber
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM)), Bonn, Germany
| |
Collapse
|
24
|
Gągało I, Rusiecka I, Kocić I. Tyrosine Kinase Inhibitor as a new Therapy for Ischemic Stroke and other Neurologic Diseases: is there any Hope for a Better Outcome? Curr Neuropharmacol 2016; 13:836-44. [PMID: 26630962 PMCID: PMC4759323 DOI: 10.2174/1570159x13666150518235504] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/09/2015] [Accepted: 05/12/2015] [Indexed: 01/24/2023] Open
Abstract
The relevance of tyrosine kinase inhibitors (TKIs) in the treatment of malignancies has
been already defined. Aberrant activation of tyrosine kinase signaling pathways has been causally
linked not only to cancers but also to other non-oncological diseases. This review concentrates on the
novel plausible usage of this group of drugs in neurological disorders, such as ischemic brain stroke,
subarachnoid hemorrhage, Alzheimer’s disease, multiple sclerosis. The drugs considered here are
representatives of both receptor and non-receptor TKIs. Among them imatinib and masitinib have the
broadest spectrum of therapeutic usage. Both drugs are effective in ischemic brain stroke and multiple
sclerosis, but only imatinib produces a therapeutic effect in subarachnoid hemorrhage. Masitinib and
dasatinib reduce the symptoms of Alzheimer’s disease. In the case of multiple sclerosis several TKIs are useful, including
apart from imatinib and masitinib, also sunitinib, sorafenib, lestaurtinib. Furthermore, the possible molecular targets for
the drugs are described in connection with the underlying pathophysiological mechanisms in the diseases in question. The
most frequent target for the TKIs is PDGFR which plays a pivotal role particularly in ischemic brain stroke and
subarachnoid hemorrhage. The collected data indicates that TKIs are very promising candidates for new therapeutic
interventions in neurological diseases.
Collapse
Affiliation(s)
| | | | - Ivan Kocić
- Department of Pharmacology, Medical University of Gdansk, Debowa 23, 80-204, Gdansk, Poland.
| |
Collapse
|
25
|
Vargas-Barroso V, Ordaz-Sánchez B, Peña-Ortega F, Larriva-Sahd JA. Electrophysiological Evidence for a Direct Link between the Main and Accessory Olfactory Bulbs in the Adult Rat. Front Neurosci 2016; 9:518. [PMID: 26858596 PMCID: PMC4726767 DOI: 10.3389/fnins.2015.00518] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/22/2015] [Indexed: 12/18/2022] Open
Abstract
It is accepted that the main- and accessory- olfactory systems exhibit overlapping responses to pheromones and odorants. We performed whole-cell patch-clamp recordings in adult rat olfactory bulb slices to define a possible interaction between the first central relay of these systems: the accessory olfactory bulb (AOB) and the main olfactory bulb (MOB). This was tested by applying electrical field stimulation in the dorsal part of the MOB while recording large principal cells (LPCs) of the anterior AOB (aAOB). Additional recordings of LPCs were performed at either side of the plane of intersection between the aAOB and posterior-AOB (pAOB) halves, or linea alba, while applying field stimulation to the opposite half. A total of 92 recorded neurons were filled during whole-cell recordings with biocytin and studied at the light microscope. Neurons located in the aAOB (n = 6, 8%) send axon collaterals to the MOB since they were antidromically activated in the presence of glutamate receptor antagonists (APV and CNQX). Recorded LPCs evoked orthodromic excitatory post-synaptic responses (n = 6, aAOB; n = 1, pAOB) or antidromic action potentials (n = 8, aAOB; n = 7, pAOB) when applying field stimulation to the opposite half of the recording site (e.g., recording in aAOB; stimulating in pAOB, and vice-versa). Observation of the filled neurons revealed that indeed, LPCs send axon branches that cross the linea alba to resolve in the internal cellular layer. Additionally, LPCs of the aAOB send axon collaterals to dorsal-MOB territory. Notably, while performing AOB recordings we found a sub-population of neurons (24% of the total) that exhibited voltage-dependent bursts of action potentials. Our findings support the existence of: 1. a direct projection from aAOB LPCs to dorsal-MOB, 2. physiologically active synapses linking aAOB and pAOB, and 3. pacemaker-like neurons in both AOB halves. This work was presented in the form of an Abstract on SfN 2014 (719.14/EE17).
Collapse
Affiliation(s)
- Victor Vargas-Barroso
- Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla Querétaro, México
| | - Benito Ordaz-Sánchez
- Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla Querétaro, México
| | - Fernando Peña-Ortega
- Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla Querétaro, México
| | - Jorge A Larriva-Sahd
- Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla Querétaro, México
| |
Collapse
|
26
|
Mayordomo-Cava J, Yajeya J, Navarro-López JD, Jiménez-Díaz L. Amyloid-β(25-35) Modulates the Expression of GirK and KCNQ Channel Genes in the Hippocampus. PLoS One 2015. [PMID: 26218288 PMCID: PMC4517786 DOI: 10.1371/journal.pone.0134385] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During early stages of Alzheimer's disease (AD), synaptic dysfunction induced by toxic amyloid-β (Aβ) is present before the accumulation of histopathological hallmarks of the disease. This scenario produces impaired functioning of neuronal networks, altered patterns of synchronous activity and severe functional deficits mainly due to hyperexcitability of hippocampal networks. The molecular mechanisms underlying these alterations remain unclear but functional evidence, shown by our laboratory and others, points to the involvement of receptors/channels which modulate neuronal excitability, playing a pivotal role in early Aβ-induced AD pathogenesis. In particular, two potassium channels that control neuronal excitability, G protein-coupled activated inwardly-rectifying potassium channel (GirK), and voltage-gated K channel (KCNQ), have been recently linked to Aβ pathophysiology in the hippocampus. Specifically, by using Aβ25-35, we previously found that GirK conductance is greatly decreased in the hippocampus, and similar effects have also been reported on KCNQ conductance. Thus, in the present study, our goal was to determine the effect of Aβ on the transcriptional expression pattern of 17 genes encoding neurotransmitter receptors and associated channels which maintain excitatory-inhibitory neurotransmission balance in hippocampal circuits, with special focus in potassium channels. For this purpose, we designed a systematic and reliable procedure to analyze mRNA expression by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) in hippocampal rat slices incubated with Aβ25-35. We found that: 1) Aβ down-regulated mRNA expression of ionotropic GluN1 and metabotropic mGlu1 glutamate receptor subunits as previously reported in other AD models; 2) Aβ also reduced gene expression levels of GirK2, 3, and 4 subunits, and KCNQ2 and 3 subunits, but did not change expression levels of its associated GABAB and M1 receptors, respectively. Our results provide evidence that Aβ can modulate the expression of these channels which could affect the hippocampal activity balance underlying learning and memory processes impaired in AD.
Collapse
Affiliation(s)
- Jennifer Mayordomo-Cava
- University of Castilla-La Mancha, Neurophysiology & Behavior Lab, CRIB, School of Medicine of Ciudad Real, Ciudad Real, Spain
| | - Javier Yajeya
- University of Salamanca, Department of Physiology & Pharmacology, Salamanca, Spain
| | - Juan D. Navarro-López
- University of Castilla-La Mancha, Neurophysiology & Behavior Lab, CRIB, School of Medicine of Ciudad Real, Ciudad Real, Spain
- * E-mail: (LJD); (JDNL)
| | - Lydia Jiménez-Díaz
- University of Castilla-La Mancha, Neurophysiology & Behavior Lab, CRIB, School of Medicine of Ciudad Real, Ciudad Real, Spain
- * E-mail: (LJD); (JDNL)
| |
Collapse
|
27
|
Arora K, Cheng J, Nichols RA. Nicotinic Acetylcholine Receptors Sensitize a MAPK-linked Toxicity Pathway on Prolonged Exposure to β-Amyloid. J Biol Chem 2015; 290:21409-20. [PMID: 26139609 DOI: 10.1074/jbc.m114.634162] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Indexed: 11/06/2022] Open
Abstract
Among putative downstream synaptic targets of β-amyloid (Aβ) are signaling molecules involved in synaptic function, memory formation and cognition, such as the MAP kinases, MKPs, CaMKII, CREB, Fyn, and Tau. Here, we assessed the activation and interaction of signaling pathways upon prolonged exposure to Aβ in model nerve cells expressing nicotinic acetylcholine receptors (nAChRs). Our goal was to characterize the steps underlying sensitization of the nerve cells to neurotoxicity when Aβ-target receptors are present. Of particular focus was the connection of the activated signaling molecules to oxidative stress. Differentiated neuroblastoma cells expressing mouse α4β2-nAChRs were exposed to Aβ1-42 for intervals from 30 min to 3 days. The cells and cell-derived protein extracts were then probed for activation of signaling pathway molecules (ERK, JNK, CaMKII, CREB, MARCKS, Fyn, tau). Our results show substantial, progressive activation of ERK in response to nanomolar Aβ exposure, starting at the earliest time point. Increased ERK activation was followed by JNK activation as well as an increased expression of PHF-tau, paralleled by increased levels of reactive oxygen species (ROS). The impact of prolonged Aβ on the levels of pERK, pJNK, and ROS was attenuated by MEK-selective and JNK-selective inhibitors. In addition, the MEK inhibitor as well as a JNK inhibitor attenuated Aβ-induced nuclear fragmentation, which followed the changes in ROS levels. These results demonstrate that the presence of nAChRs sensitizes neurons to the neurotoxic action of Aβ through the timed activation of discrete intracellular signaling molecules, suggesting pathways involved in the early stages of Alzheimer disease.
Collapse
Affiliation(s)
- Komal Arora
- From the Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, Hawaii 96813
| | - Justin Cheng
- From the Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, Hawaii 96813
| | - Robert A Nichols
- From the Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, Hawaii 96813
| |
Collapse
|
28
|
Salgado-Puga K, Prado-Alcalá RA, Peña-Ortega F. Amyloid β Enhances Typical Rodent Behavior While It Impairs Contextual Memory Consolidation. Behav Neurol 2015; 2015:526912. [PMID: 26229236 PMCID: PMC4502279 DOI: 10.1155/2015/526912] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/04/2015] [Indexed: 01/22/2023] Open
Abstract
Alzheimer's disease (AD) is associated with an early hippocampal dysfunction, which is likely induced by an increase in soluble amyloid beta peptide (Aβ). This hippocampal failure contributes to the initial memory deficits observed both in patients and in AD animal models and possibly to the deterioration in activities of daily living (ADL). One typical rodent behavior that has been proposed as a hippocampus-dependent assessment model of ADL in mice and rats is burrowing. Despite the fact that AD transgenic mice show some evidence of reduced burrowing, it has not been yet determined whether or not Aβ can affect this typical rodent behavior and whether this alteration correlates with the well-known Aβ-induced memory impairment. Thus, the purpose of this study was to test whether or not Aβ affects burrowing while inducing hippocampus-dependent memory impairment. Surprisingly, our results show that intrahippocampal application of Aβ increases burrowing while inducing memory impairment. We consider that this Aβ-induced increase in burrowing might be associated with a mild anxiety state, which was revealed by increased freezing behavior in the open field, and conclude that Aβ-induced hippocampal dysfunction is reflected in the impairment of ADL and memory, through mechanisms yet to be determined.
Collapse
Affiliation(s)
- Karla Salgado-Puga
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76230 Juriquilla, Querétaro, QRO, Mexico
| | - Roberto A. Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76230 Juriquilla, Querétaro, QRO, Mexico
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76230 Juriquilla, Querétaro, QRO, Mexico
| |
Collapse
|
29
|
Nieto-Posadas A, Flores-Martínez E, Lorea-Hernández JJ, Rivera-Angulo AJ, Pérez-Ortega JE, Bargas J, Peña-Ortega F. Change in network connectivity during fictive-gasping generation in hypoxia: prevention by a metabolic intermediate. Front Physiol 2014; 5:265. [PMID: 25101002 PMCID: PMC4107943 DOI: 10.3389/fphys.2014.00265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 06/25/2014] [Indexed: 11/13/2022] Open
Abstract
The neuronal circuit in charge of generating the respiratory rhythms, localized in the pre-Bötzinger complex (preBötC), is configured to produce fictive-eupnea during normoxia and reconfigures to produce fictive-gasping during hypoxic conditions in vitro. The mechanisms involved in such reconfiguration have been extensively investigated by cell-focused studies, but the actual changes at the network level remain elusive. Since a failure to generate gasping has been linked to Sudden Infant Death Syndrome (SIDS), the study of gasping generation and pharmacological approaches to promote it may have clinical relevance. Here, we study the changes in network dynamics and circuit reconfiguration that occur during the transition to fictive-gasping generation in the brainstem slice preparation by recording the preBötC with multi-electrode arrays and assessing correlated firing among respiratory neurons or clusters of respiratory neurons (multiunits). We studied whether the respiratory network reconfiguration in hypoxia involves changes in either the number of active respiratory elements, the number of functional connections among elements, or the strength of these connections. Moreover, we tested the influence of isocitrate, a Krebs cycle intermediate that has recently been shown to promote breathing, on the configuration of the preBötC circuit during normoxia and on its reconfiguration during hypoxia. We found that, in contrast to previous suggestions based on cell-focused studies, the number and the overall activity of respiratory neurons change only slightly during hypoxia. However, hypoxia induces a reduction in the strength of functional connectivity within the circuit without reducing the number of connections. Isocitrate prevented this reduction during hypoxia while increasing the strength of network connectivity. In conclusion, we provide an overview of the configuration of the respiratory network under control conditions and how it is reconfigured during fictive-gasping. Additionally, our data support the use of isocitrate to favor respiratory rhythm generation under normoxia and to prevent some of the changes in the respiratory network under hypoxic conditions.
Collapse
Affiliation(s)
- Andrés Nieto-Posadas
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Ernesto Flores-Martínez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Jonathan-Julio Lorea-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Ana-Julia Rivera-Angulo
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Jesús-Esteban Pérez-Ortega
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México México D.F., México
| | - José Bargas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México México D.F., México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| |
Collapse
|
30
|
Grosso C, Valentão P, Ferreres F, Andrade PB. Bioactive marine drugs and marine biomaterials for brain diseases. Mar Drugs 2014; 12:2539-89. [PMID: 24798925 PMCID: PMC4052305 DOI: 10.3390/md12052539] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/10/2014] [Accepted: 04/16/2014] [Indexed: 12/19/2022] Open
Abstract
Marine invertebrates produce a plethora of bioactive compounds, which serve as inspiration for marine biotechnology, particularly in drug discovery programs and biomaterials development. This review aims to summarize the potential of drugs derived from marine invertebrates in the field of neuroscience. Therefore, some examples of neuroprotective drugs and neurotoxins will be discussed. Their role in neuroscience research and development of new therapies targeting the central nervous system will be addressed, with particular focus on neuroinflammation and neurodegeneration. In addition, the neuronal growth promoted by marine drugs, as well as the recent advances in neural tissue engineering, will be highlighted.
Collapse
Affiliation(s)
- Clara Grosso
- REQUIMTE/Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal.
| | - Patrícia Valentão
- REQUIMTE/Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal.
| | - Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, Campus University Espinardo, Murcia 30100, Spain.
| | - Paula B Andrade
- REQUIMTE/Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal.
| |
Collapse
|
31
|
Jeong JH, Jeong HR, Jo YN, Kim HJ, Shin JH, Heo HJ. Ameliorating effects of aged garlic extracts against Aβ-induced neurotoxicity and cognitive impairment. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:268. [PMID: 24134394 PMCID: PMC4015812 DOI: 10.1186/1472-6882-13-268] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/08/2013] [Indexed: 12/18/2022]
Abstract
Background In vitro antioxidant activities and neuron-like PC12 cell protective effects of solvent fractions from aged garlic extracts were investigated to evaluate their anti-amnesic functions. Ethyl acetate fractions of aged garlic had higher total phenolics than other fractions. Methods Antioxidant activities of ethyl acetate fractions from aged garlic were examined using 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) and malondialdehyde (MDA) inhibitory effect using mouse whole brain homogenates. Levels of cellular oxidative stress as reactive oxygen species (ROS) accumulation were measured using 2',7'-dichlorofluorescein diacetate (DCF-DA). PC12 cell viability was investigated by 3-[4,5-dimethythiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and lactate dehydtrogenase (LDH) assay. The learning and memory impairment in institute of cancer research (ICR) mice was induced by neurotoxic amyloid beta protein (Aβ) to investigate in vivo anti-amnesic effects of aged garlic extracts by using Y-maze and passive avoidance tests. Results We discovered that ethyl acetate fractions showed the highest ABTS radical scavenging activity and MDA inhibitory effect. Intracellular ROS accumulation resulting from Aβ treatment in PC12 cells was significantly reduced when ethyl acetate fractions were presented in the medium compare to PC12 cells which was only treated with Aβ only. Ethyl acetate fractions from aged garlic extracts showed protection against Aβ-induced neurotoxicity. Pre-administration with aged garlic extracts attenuated Aβ-induced learning and memory deficits in both in vivo tests. Conclusions Our findings suggest that aged garlic extracts with antioxidant activities may improve cognitive impairment against Aβ-induced neuronal deficit, and possess a wide range of beneficial activities for neurodegenerative disorders, notably Alzheimer's disease (AD).
Collapse
|
32
|
Alvarado-Martínez R, Salgado-Puga K, Peña-Ortega F. Amyloid beta inhibits olfactory bulb activity and the ability to smell. PLoS One 2013; 8:e75745. [PMID: 24086624 PMCID: PMC3784413 DOI: 10.1371/journal.pone.0075745] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/20/2013] [Indexed: 11/17/2022] Open
Abstract
Early olfactory dysfunction has been consistently reported in both Alzheimer's disease (AD) and in transgenic mice that reproduce some features of this disease. In AD transgenic mice, alteration in olfaction has been associated with increased levels of soluble amyloid beta protein (Aβ) as well as with alterations in the oscillatory network activity recorded in the olfactory bulb (OB) and in the piriform cortex. However, since AD is a multifactorial disease and transgenic mice suffer a variety of adaptive changes, it is still unknown if soluble Aβ, by itself, is responsible for OB dysfunction both at electrophysiological and behavioral levels. Thus, here we tested whether or not Aβ directly affects OB network activity in vitro in slices obtained from mice and rats and if it affects olfactory ability in these rodents. Our results show that Aβ decreases, in a concentration- and time-dependent manner, the network activity of OB slices at clinically relevant concentrations (low nM) and in a reversible manner. Moreover, we found that intrabulbar injection of Aβ decreases the olfactory ability of rodents two weeks after application, an effect that is not related to alterations in motor performance or motivation to seek food and that correlates with the presence of Aβ deposits. Our results indicate that Aβ disrupts, at clinically relevant concentrations, the network activity of the OB in vitro and can trigger a disruption in olfaction. These findings open the possibility of exploring the cellular mechanisms involved in early pathological AD as an approach to reduce or halt its progress.
Collapse
Affiliation(s)
- Reynaldo Alvarado-Martínez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM, Campus Juriquilla, Querétaro, México
| | - Karla Salgado-Puga
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM, Campus Juriquilla, Querétaro, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM, Campus Juriquilla, Querétaro, México
| |
Collapse
|
33
|
Nava-Mesa MO, Jiménez-Díaz L, Yajeya J, Navarro-Lopez JD. Amyloid-β induces synaptic dysfunction through G protein-gated inwardly rectifying potassium channels in the fimbria-CA3 hippocampal synapse. Front Cell Neurosci 2013; 7:117. [PMID: 23898239 PMCID: PMC3722514 DOI: 10.3389/fncel.2013.00117] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/05/2013] [Indexed: 01/08/2023] Open
Abstract
Last evidences suggest that, in Alzheimer's disease (AD) early stage, Amyloid-β (Aβ) peptide induces an imbalance between excitatory and inhibitory neurotransmission systems resulting in the functional impairment of neural networks. Such alterations are particularly important in the septohippocampal system where learning and memory processes take place depending on accurate oscillatory activity tuned at fimbria-CA3 synapse. Here, the acute effects of Aβ on CA3 pyramidal neurons and their synaptic activation from septal part of the fimbria were studied in rats. A triphasic postsynaptic response defined by an excitatory potential (EPSP) followed by both early and late inhibitory potentials (IPSP) was evoked. The EPSP was glutamatergic acting on ionotropic receptors. The early IPSP was blocked by GABAA antagonists whereas the late IPSP was removed by GABAB antagonists. Aβ perfusion induced recorded cells to depolarize, increase their input resistance and decrease the late IPSP. Aβ action mechanism was localized at postsynaptic level and most likely linked to GABAB-related ion channels conductance decrease. In addition, it was found that the specific pharmacological modulation of the GABAB receptor effector, G-protein-coupled inward rectifier potassium (GirK) channels, mimicked all Aβ effects previously described. Thus, our findings suggest that Aβ altering GirK channels conductance in CA3 pyramidal neurons might have a key role in the septohippocampal activity dysfunction observed in AD.
Collapse
Affiliation(s)
- Mauricio O Nava-Mesa
- Laboratorio Neurofisiología y Comportamiento, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha Ciudad Real, Spain ; Department of Fisiología y Farmacología, Universidad de Salamanca Salamanca, Spain
| | | | | | | |
Collapse
|
34
|
Amyloid Beta peptides differentially affect hippocampal theta rhythms in vitro. INTERNATIONAL JOURNAL OF PEPTIDES 2013; 2013:328140. [PMID: 23878547 PMCID: PMC3708430 DOI: 10.1155/2013/328140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 06/03/2013] [Indexed: 12/27/2022]
Abstract
Soluble amyloid beta peptide (A β ) is responsible for the early cognitive dysfunction observed in Alzheimer's disease. Both cholinergically and glutamatergically induced hippocampal theta rhythms are related to learning and memory, spatial navigation, and spatial memory. However, these two types of theta rhythms are not identical; they are associated with different behaviors and can be differentially modulated by diverse experimental conditions. Therefore, in this study, we aimed to investigate whether or not application of soluble A β alters the two types of theta frequency oscillatory network activity generated in rat hippocampal slices by application of the cholinergic and glutamatergic agonists carbachol or DHPG, respectively. Due to previous evidence that oscillatory activity can be differentially affected by different A β peptides, we also compared Aβ 25-35 and Aβ 1-42 for their effects on theta rhythms in vitro at similar concentrations (0.5 to 1.0 μ M). We found that Aβ 25-35 reduces, with less potency than Aβ 1-42, carbachol-induced population theta oscillatory activity. In contrast, DHPG-induced oscillatory activity was not affected by a high concentration of Aβ 25-35 but was reduced by Aβ 1-42. Our results support the idea that different amyloid peptides might alter specific cellular mechanisms related to the generation of specific neuronal network activities, instead of exerting a generalized inhibitory effect on neuronal network function.
Collapse
|
35
|
Amyloid Beta-Protein and Neural Network Dysfunction. JOURNAL OF NEURODEGENERATIVE DISEASES 2013; 2013:657470. [PMID: 26316994 PMCID: PMC4437331 DOI: 10.1155/2013/657470] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 12/06/2012] [Indexed: 01/15/2023]
Abstract
Understanding the neural mechanisms underlying brain dysfunction induced by amyloid beta-protein (Aβ) represents one of the major challenges for Alzheimer's disease (AD) research. The most evident symptom of AD is a severe decline in cognition. Cognitive processes, as any other brain function, arise from the activity of specific cell assemblies of interconnected neurons that generate neural network dynamics based on their intrinsic and synaptic properties. Thus, the origin of Aβ-induced cognitive dysfunction, and possibly AD-related cognitive decline, must be found in specific alterations in properties of these cells and their consequences in neural network dynamics. The well-known relationship between AD and alterations in the activity of several neural networks is reflected in the slowing of the electroencephalographic (EEG) activity. Some features of the EEG slowing observed in AD, such as the diminished generation of different network oscillations, can be induced in vivo and in vitro upon Aβ application or by Aβ overproduction in transgenic models. This experimental approach offers the possibility to study the mechanisms involved in cognitive dysfunction produced by Aβ. This type of research may yield not only basic knowledge of neural network dysfunction associated with AD, but also novel options to treat this modern epidemic.
Collapse
|
36
|
Peña-Ortega F, Bernal-Pedraza R. Amyloid Beta Peptide slows down sensory-induced hippocampal oscillations. INTERNATIONAL JOURNAL OF PEPTIDES 2012; 2012:236289. [PMID: 22611415 PMCID: PMC3350957 DOI: 10.1155/2012/236289] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/02/2012] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) progresses with a deterioration of hippocampal function that is likely induced by amyloid beta (Aβ) oligomers. Hippocampal function is strongly dependent on theta rhythm, and disruptions in this rhythm have been related to the reduction of cognitive performance in AD. Accordingly, both AD patients and AD-transgenic mice show an increase in theta rhythm at rest but a reduction in cognitive-induced theta rhythm. We have previously found that monomers of the short sequence of Aβ (peptide 25-35) reduce sensory-induced theta oscillations. However, considering on the one hand that different Aβ sequences differentially affect hippocampal oscillations and on the other hand that Aβ oligomers seem to be responsible for the cognitive decline observed in AD, here we aimed to explore the effect of Aβ oligomers on sensory-induced theta rhythm. Our results show that intracisternal injection of Aβ1-42 oligomers, which has no significant effect on spontaneous hippocampal activity, disrupts the induction of theta rhythm upon sensory stimulation. Instead of increasing the power in the theta band, the hippocampus of Aβ-treated animals responds to sensory stimulation (tail pinch) with an increase in lower frequencies. These findings demonstrate that Aβ alters induced theta rhythm, providing an in vivo model to test for therapeutic approaches to overcome Aβ-induced hippocampal and cognitive dysfunctions.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM-Campus Juriquilla, 76230 Juriquilla, QRO, Mexico
| | - Ramón Bernal-Pedraza
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM-Campus Juriquilla, 76230 Juriquilla, QRO, Mexico
- Departamento de Farmacobiología, Cinvestav-IPN, Mexico City, DF, Mexico
| |
Collapse
|
37
|
Minami SS, Clifford TG, Hoe HS, Matsuoka Y, Rebeck GW. Fyn knock-down increases Aβ, decreases phospho-tau, and worsens spatial learning in 3×Tg-AD mice. Neurobiol Aging 2011; 33:825.e15-24. [PMID: 21741124 DOI: 10.1016/j.neurobiolaging.2011.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 04/13/2011] [Accepted: 05/25/2011] [Indexed: 10/18/2022]
Abstract
Fyn kinase phosphorylates tau and exacerbates amyloid beta (Aβ)-mediated synaptic dysfunction. However, Fyn also increases the nonpathological cleavage of amyloid precursor protein (APP), suggesting opposing roles for Fyn in the pathogenesis of Alzheimer's disease (AD). To determine the effect of Fyn on both Aβ and tau pathologies, we crossed homozygous Alzheimer's disease triple transgenic (3×Tg) mice harboring mutations in amyloid precursor protein, presenilin-1, and tau with wild-type or Fyn knockout mice to generate Fyn(+/+)3×Tg(+/-) or Fyn(+/-)3×Tg(+/-) mice. We found that Fyn(+/-)3×Tg(+/-) mice had increased soluble and intracellular Aβ, and these changes were accompanied by impaired performance on the Morris water maze at 18 months. Fyn(+/-)3×Tg(+/-) mice had decreased phosphorylated tau at 15-18 months (as did Fyn knockout mice), but Fyn(+/-)3×Tg(+/-) mice had increased phosphorylated tau by 24 months. In addition, we observed that Fyn(+/-)3×Tg(+/-) males were delayed in developing Aβ pathology compared with females, and displayed better spatial learning performance at 18 months. Overall, these findings suggest that loss of Fyn at early stages of disease increases soluble Aβ accumulation and worsens spatial learning in the absence of changes in tau phosphorylation.
Collapse
Affiliation(s)
- S Sakura Minami
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057-1464, USA
| | | | | | | | | |
Collapse
|
38
|
Piette F, Belmin J, Vincent H, Schmidt N, Pariel S, Verny M, Marquis C, Mely J, Hugonot-Diener L, Kinet JP, Dubreuil P, Moussy A, Hermine O. Masitinib as an adjunct therapy for mild-to-moderate Alzheimer's disease: a randomised, placebo-controlled phase 2 trial. ALZHEIMERS RESEARCH & THERAPY 2011; 3:16. [PMID: 21504563 PMCID: PMC3226277 DOI: 10.1186/alzrt75] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 03/26/2011] [Accepted: 04/19/2011] [Indexed: 12/27/2022]
Abstract
Introduction Neuroinflammation is thought to be important in Alzheimer's disease pathogenesis. Mast cells are a key component of the inflammatory network and participate in the regulation of the blood-brain barrier's permeability. Masitinib, a selective oral tyrosine kinase inhibitor, effectively inhibits the survival, migration and activity of mast cells. As the brain is rich in mast cells, the therapeutic potential of masitinib as an adjunct therapy to standard care was investigated. Methods A randomised, placebo-controlled, phase 2 study was performed in patients with mild-to-moderate Alzheimer's disease, receiving masitinib as an adjunct to cholinesterase inhibitor and/or memantine. Patients were randomly assigned to receive masitinib (n = 26) (starting dose of 3 or 6 mg/kg/day) or placebo (n = 8), administered twice daily for 24 weeks. The primary endpoint was change from baseline in the Alzheimer's Disease Assessment Scale - cognitive subscale (ADAS-Cog) to assess cognitive function and the related patient response rate. Results The rate of clinically relevant cognitive decline according to the ADAS-Cog response (increase >4 points) after 12 and 24 weeks was significantly lower with masitinib adjunctive treatment compared with placebo (6% vs. 50% for both time points; P = 0.040 and P = 0.046, respectively). Moreover, whilst the placebo treatment arm showed worsening mean ADAS-Cog, Alzheimer's Disease Cooperative Study Activities of Daily Living Inventory, and Mini-Mental State Examination scores, the masitinib treatment arm reported improvements, with statistical significance between treatment arms at week 12 and/or week 24 (respectively, P = 0.016 and 0.030; P = 0.035 and 0.128; and P = 0.047 and 0.031). The mean treatment effect according to change in ADAS-Cog score relative to baseline at weeks 12 and 24 was 6.8 and 7.6, respectively. Adverse events occurred more frequently with masitinib treatment (65% vs. 38% of patients); however, the majority of events were of mild or moderate intensity and transitory. Severe adverse events occurred at a similar frequency in the masitinib and placebo arms (15% vs. 13% of patients, respectively). Masitinib-associated events included gastrointestinal disorders, oedema, and rash. Conclusions Masitinib administered as add-on therapy to standard care during 24 weeks was associated with slower cognitive decline in Alzheimer's disease, with an acceptable tolerance profile. Masitinib may therefore represent an innovative avenue of treatment in Alzheimer's disease. This trial provides evidence that may support a larger placebo-controlled investigation. Trial registration Clinicaltrials.gov NCT00976118
Collapse
Affiliation(s)
- François Piette
- Hôpital Charles Foix, Service de Médecine, Bâtiment Louis Ramond, 7 avenue de la République, 94205 Ivry-Sur-Seine, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|