1
|
Ferrara NC, Trask S, Pullins SE, Helmstetter FJ. Regulation of learned fear expression through the MgN-amygdala pathway. Neurobiol Learn Mem 2021; 185:107526. [PMID: 34562619 DOI: 10.1016/j.nlm.2021.107526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/17/2021] [Accepted: 09/18/2021] [Indexed: 01/14/2023]
Abstract
Heightened fear responding is characteristic of fear- and anxiety-related disorders, including post-traumatic stress disorder. Neural plasticity in the amygdala is essential for both initial fear learning and fear expression, and strengthening of synaptic connections between the medial geniculate nucleus (MgN) and amygdala is critical for auditory fear learning. However, very little is known about what happens in the MgN-amygdala pathway during fear recall and extinction, in which conditional fear decreases with repeated presentations of the auditory stimulus alone. In the present study, we found that optogenetic inhibition of activity in the MgN-amygdala pathway during fear retrieval and extinction reduced expression of conditional fear. While this effect persisted for at least two weeks following pathway inhibition, it was specific to the context in which optogenetic inhibition occurred, linking MgN-BLA inhibition to facilitation of extinction-like processes. Reduced fear expression through inhibition of the MgN-amygdala pathway was further characterized by similar synaptic expression of GluA1 and GluA2 AMPA receptor subunits compared to what was seen in controls. Inhibition also decreased CREB phosphorylation in the amygdala, similar to what has been reported following auditory fear extinction. We then demonstrated that this effect was reduced by inhibition of GluN2B-containing NMDA receptors. These results demonstrate a new and important role for the MgN-amygdala pathway in extinction-like processes, and show that suppressing activity in this pathway results in a persistent decrease in fear behavior.
Collapse
Affiliation(s)
- Nicole C Ferrara
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Sydney Trask
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Shane E Pullins
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Fred J Helmstetter
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
2
|
Ashourpour F, Jafari A, Babaei P. Co-treatment of AMPA endocytosis inhibitor and GluN2B antagonist facilitate consolidation and retrieval of memory impaired by β amyloid peptide. Int J Neurosci 2020; 132:714-723. [PMID: 33115292 DOI: 10.1080/00207454.2020.1837800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Glutamate neurotransmission stands as an important issue to minimize memory impairment. We investigated the effects of an inhibitor of α-amino-3-hydroxy-5-methyl-4-isozazole propionic acid receptors (AMPA) endocytosis and GluN2B subunit of N-methyl-d-aspartate receptors (NMDA), either isolated or combined, on memory impairments induced by Amyloid beta1-42 (Aβ). METHODS Eighty male Wistar rats were used for two experiments of consolidation and retrieval of memory. Memory impairment was induced by intracerebroventricular (ICV) injection of Aβ1-42 (2 μg/μl), and evaluated using Morris Water Maze (MWM). Each experiment consisted of 5 groups: Saline + Saline, Aβ + Saline, Aβ + Ifenprodil (Ifen, 3 nmol/ICV), Aβ +Tat-GluR23Y (3 µmol/kg/IP), and Aβ1 +Ifen + Tat-GluR23Y. Then, hippocampal cAMP-response element-binding protein (CREB) was measured by western blotting. Data were analyzed by Analysis of variance (ANOVA) repeated measure, and one-way Anova followed by Tukey's post hoc test. RESULTS During retrieval, Aβ+ Tat-GluR23Y showed significant improvement in total time spent (TTS) in the target quadrant (p = 0.009), escape latency to a platform (p = 0.008) and hippocampal level of CREB (p = 0.006) compared with Aβ + saline. Also, coadministration of Tat-GluR23Yand Ifen similar to Tat-GluR23Y alone caused significant improvement in TTS (p = 0.014) and latency to platform (p = 0.013). During consolidation, shorter escape latency (p = 0.001), longer TTS (p = 0.002) and higher level of hippocampal CREB were observed in the Aβ + Tat-GluR23Y (p = 0.001) and Aβ+ Tat-GluR23Y + Ifen (p = 0.017), respectively. CONCLUSION The present study provides pieces of evidence that inhibition of AMPARs endocytosis using Tat-GluR23Y facilitates memory consolidation and retrieval in Aβ induced memory impairment via the CREB signaling pathway.[Formula: see text].
Collapse
Affiliation(s)
- Fatemeh Ashourpour
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Adele Jafari
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parvin Babaei
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
3
|
Goodman J, Packard MG. There Is More Than One Kind of Extinction Learning. Front Syst Neurosci 2019; 13:16. [PMID: 31133825 PMCID: PMC6514057 DOI: 10.3389/fnsys.2019.00016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/12/2019] [Indexed: 01/15/2023] Open
Abstract
The view that different kinds of memory are mediated by dissociable neural systems has received extensive experimental support. Dissociations between memory systems are usually observed during initial acquisition, consolidation, and retrieval of memory, however increasing evidence also indicates a role for multiple memory systems in extinction behavior. The present article reviews a recent series of maze learning experiments that provide evidence for a multiple memory systems approach to extinction learning and memory. Evidence is described indicating that: (1) the hippocampus and dorsolateral striatum (DLS) mediate different kinds of extinction learning; (2) the effectiveness of different extinction protocols depends on the kind of memory being extinguished; and (3) whether a neural system is involved in extinction is also determined by the extinction protocol and kind of memory undergoing extinction. Based on these findings, a novel hypothetical model regarding the role of multiple memory systems in extinction is presented. In addition, the relevance of this multiple memory systems approach to other learning paradigms involving extinction (i.e., extinction of conditioned fear) and for treating human psychopathologies characterized by maladaptive memories (e.g., drug addiction and relapse) is briefly considered.
Collapse
Affiliation(s)
- Jarid Goodman
- Department of Psychology, Delaware State University, Dover, DE, United States
| | - Mark G. Packard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
4
|
Chen BH, Ahn JH, Park JH, Song M, Kim H, Lee TK, Lee JC, Kim YM, Hwang IK, Kim DW, Lee CH, Yan BC, Kang IJ, Won MH. Rufinamide, an antiepileptic drug, improves cognition and increases neurogenesis in the aged gerbil hippocampal dentate gyrus via increasing expressions of IGF-1, IGF-1R and p -CREB. Chem Biol Interact 2018; 286:71-77. [DOI: 10.1016/j.cbi.2018.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/23/2018] [Accepted: 03/13/2018] [Indexed: 12/16/2022]
|
5
|
Khatami L, Khodagholi F, Motamedi F. Reversible inactivation of interpeduncular nucleus impairs memory consolidation and retrieval but not learning in rats: A behavioral and molecular study. Behav Brain Res 2018; 342:79-88. [PMID: 29355671 DOI: 10.1016/j.bbr.2018.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 12/15/2022]
Abstract
The Interpedundular nucleus (IPN) is a small midbrain structure located deeply between the two cerebral peduncles. The strategic placement of this nucleus makes it a possible relay between structures involved in the modulation of hippocampal theta rhythm activity. In this study we aimed to investigate how reversible inactivation of IPN could affect the acquisition, consolidation and retrieval phases of memory in passive avoidance (PA) and Morris water maze (MWM) tasks. To support our data, molecular studies were performed in order to detect possible changes in the expression of proteins related to learning and memory in the hippocampus. To address this issue rats' IPN was reversibly inactivated by microinjection of lidocaine hydrochloride (4%). After the behavioral studies, the phosphorylation of CREB and P70, and c-fos expression levels in the hippocampus were determined using western blotting and immunohistochemistry respectively. Our results in the PA and MWM tasks showed that IPN reversible inactivation could impair immediate post training consolidation and retrieval while it had no effect on the acquisition phase. In addition, there was a deficit in the retention of the MWM working memory. Our data showed the ratio of pCREB/CREB, pP70/P70 and c-fos expression in the hippocampus significantly decreased after IPN reversible inactivation. Collectively, the results show that behaviorally defined changes could be due to what happens molecularly in the hippocampus after IPN reversible inactivation. It is concluded that IPN not only makes part of a network involved in the modulation of hippocampal theta rhythm activity, but also is actively engaged in hippocampal memory formation.
Collapse
Affiliation(s)
- Leila Khatami
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), P.O. Box 1954851167, Tehran, Iran.
| | - Fariba Khodagholi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box 19615-1178, Tehran, Iran.
| | - Fereshteh Motamedi
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), P.O. Box 1954851167, Tehran, Iran; Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box 19615-1178, Tehran, Iran.
| |
Collapse
|
6
|
Musumeci G, Castrogiovanni P, Szychlinska MA, Imbesi R, Loreto C, Castorina S, Giunta S. Protective effects of high Tryptophan diet on aging-induced passive avoidance impairment and hippocampal apoptosis. Brain Res Bull 2016; 128:76-82. [PMID: 27889579 DOI: 10.1016/j.brainresbull.2016.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/19/2016] [Indexed: 11/19/2022]
Abstract
In our previous work we have shown that L-Tryptophan (TrP) enriched diet prevents the age-induced decline of hippocampal Serotonin (5-HT) production. Considering that loss or reduction in 5-HT neurotransmission may contribute to age-related cognitive decline, here we have investigated the effect of such diet on passive avoidance (PA) behavior, cell death, pro- and anti- apoptotic molecules (BAX, Bcl-2 and Caspase-3) and an important transcription factor involved in synaptic plasticity and memory (CREB). The increase in 5-HT neurotransmission in the Hippocampus (Hp) of aged rats was induced by 1 month of high TrP administration. In the first phase of our study we found that high TrP diet improves PA behaviour of aged rats and this correlated with a decrease of TUNEL positive cells in all hippocampal regions tested (CA1, CA2, CA3, DG). Interestingly, the Hp of aged animals fed with high TrP diet showed a significant downregulation of proapoptotic proteins, caspase-3 and BAX, and an increase of antiapoptotic molecules Bcl-2 as indicated by Western Blot and immunohistochemical analyses. Also, high TrP diet partially rescued the age-induced inhibition of hippocampal CREB phosphorylation. Altogether, our data suggest that enhanced TrP intake, and in consequence a potential increase in 5-HT neurotransmission, might be beneficial in preventing age-related detrimental features by inhibition of hippocampal apoptosis.
Collapse
Affiliation(s)
- Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Catania, Italy.
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Catania, Italy.
| | - Marta Anna Szychlinska
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Catania, Italy.
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Catania, Italy.
| | - Carla Loreto
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Catania, Italy.
| | - Sergio Castorina
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Catania, Italy.
| | - Salvatore Giunta
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, University of Catania, Catania, Italy.
| |
Collapse
|
7
|
Goodman J, Gabriele A, Packard MG. Hippocampus NMDA receptors selectively mediate latent extinction of place learning. Hippocampus 2016; 26:1115-23. [PMID: 27067827 DOI: 10.1002/hipo.22594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2016] [Indexed: 01/26/2023]
Abstract
Extinction of maze learning may be achieved with or without the animal performing the previously acquired response. In typical "response extinction," animals are given the opportunity to make the previously acquired approach response toward the goal location of the maze without reinforcement. In "latent extinction," animals are not given the opportunity to make the previously acquired response and instead are confined to the previous goal location without reinforcement. Previous evidence indicates that the effectiveness of these protocols may depend on the type of memory being extinguished. Thus, one aim of the present study was to further examine the effectiveness of response and latent extinction protocols across dorsolateral striatum (DLS)-dependent response learning and hippocampus-dependent place learning tasks. In addition, previous neural inactivation experiments indicate a selective role for the hippocampus in latent extinction, but have not investigated the precise neurotransmitter mechanisms involved. Thus, the present study also examined whether latent extinction of place learning might depend on NMDA receptor activity in the hippocampus. In experiment 1, adult male Long-Evans rats were trained in a response learning task in a water plus-maze, in which animals were reinforced to make a consistent body-turn response to reach an invisible escape platform. Results indicated that response extinction, but not latent extinction, was effective at extinguishing memory in the response learning task. In experiment 2, rats were trained in a place learning task, in which animals were reinforced to approach a consistent spatial location containing the hidden escape platform. In experiment 2, animals also received intra-hippocampal infusions of the NMDA receptor antagonist 2-amino-5-phosphopentanoic acid (AP5; 5.0 or 7.5 ug/0.5 µg) or saline vehicle immediately before response or latent extinction training. Results indicated that both extinction protocols were effective at extinguishing memory in the place learning task. In addition, intra-hippocampal AP5 (7.5 µg) impaired latent extinction, but not response extinction, suggesting that hippocampal NMDA receptors are selectively involved in latent extinction. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jarid Goodman
- Department of Psychology, Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas
| | - Amanda Gabriele
- Department of Psychology, Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas
| | - Mark G Packard
- Department of Psychology, Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas
| |
Collapse
|
8
|
The learning of fear extinction. Neurosci Biobehav Rev 2015; 47:670-83. [PMID: 25452113 DOI: 10.1016/j.neubiorev.2014.10.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 10/19/2014] [Accepted: 10/20/2014] [Indexed: 11/23/2022]
Abstract
Recent work on the extinction of fear-motivated learning places emphasis on its putative circuitry and on its modulation. Extinction is the learned inhibition of retrieval of previously acquired responses. Fear extinction is used as a major component of exposure therapy in the treatment of fear memories such as those of the posttraumatic stress disorder (PTSD). It is initiated and maintained by interactions between the hippocampus, basolateral amygdala and ventromedial prefrontal cortex, which involve feedback regulation of the latter by the other two areas. Fear extinction depends on NMDA receptor activation. It is positively modulated by d-serine acting on the glycine site of NMDA receptors and blocked by AP5 (2-amino-5-phosphono propionate) in the three structures. In addition, histamine acting on H2 receptors and endocannabinoids acting on CB1 receptors in the three brain areas mentioned, and muscarinic cholinergic fibers from the medial septum to hippocampal CA1 positively modulate fear extinction. Importantly, fear extinction can be made state-dependent on circulating epinephrine, which may play a role in situations of stress. Exposure to a novel experience can strongly enhance the consolidation of fear extinction through a synaptic tagging and capture mechanism; this may be useful in the therapy of states caused by fear memory like PTSD.
Collapse
|
9
|
Uchida S, Shumyatsky GP. Deceivingly dynamic: Learning-dependent changes in stathmin and microtubules. Neurobiol Learn Mem 2015. [PMID: 26211874 DOI: 10.1016/j.nlm.2015.07.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Microtubules, one of the major cytoskeletal structures, were previously considered stable and only indirectly involved in synaptic structure and function in mature neurons. However, recent evidence demonstrates that microtubules are dynamic and have an important role in synaptic structure, synaptic plasticity, and memory. In particular, learning induces changes in microtubule turnover and stability, and pharmacological manipulation of microtubule dynamics alters synaptic plasticity and long-term memory. These learning-induced changes in microtubules are controlled by the phosphoprotein stathmin, whose only known cellular activity is to negatively regulate microtubule formation. During the first eight hours following learning, changes in the phosphorylation of stathmin go through two phases causing biphasic shifts in microtubules stability/instability. These shifts, in turn, regulate memory formation by controlling in the second phase synaptic transport of the GluA2 subunit of AMPA receptors. Improper regulation of stathmin and microtubule dynamics has been observed in aged animals and in patients with Alzheimer's disease and depression. Thus, recent work on stathmin and microtubules has identified new molecular players in the early stages of memory encoding.
Collapse
Affiliation(s)
- Shusaku Uchida
- Department of Genetics, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA; Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan.
| | - Gleb P Shumyatsky
- Department of Genetics, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA.
| |
Collapse
|
10
|
Méndez-Couz M, Conejo NM, Vallejo G, Arias JL. Brain functional network changes following Prelimbic area inactivation in a spatial memory extinction task. Behav Brain Res 2015; 287:247-55. [DOI: 10.1016/j.bbr.2015.03.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/11/2015] [Accepted: 03/16/2015] [Indexed: 02/07/2023]
|
11
|
Nategh M, Nikseresht S, Khodagholi F, Motamedi F. Nucleus incertus inactivation impairs spatial learning and memory in rats. Physiol Behav 2014; 139:112-20. [PMID: 25446222 DOI: 10.1016/j.physbeh.2014.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 11/15/2022]
Abstract
Nucleus incertus (NI) is a pontine nucleus which releases mainly GABA and relaxin-3 in rats. Its suggested functions include response to stress, arousal, and modulation of hippocampal theta rhythm. Since the role of NI in learning and memory has not been well characterized, therefore the involvement of this nucleus in spatial learning and memory and the aftermath hippocampal levels of c-fos and pCREB were evaluated. NI was targeted by implanting cannula in male rats. For reference memory, NI was inactivated by lidocaine (0.4 μl, 4%) at three stages of acquisition, consolidation and retrieval in Morris water maze paradigm. For working memory, NI was inactivated in acquisition and retrieval phases. Injection of lidocaine prior to the first training session of reference memory significantly increased the distance moved, suggesting that inactivation of NI delays acquisition in this spatial task. Inactivation also interfered with the retrieval phase of spatial reference memory, as the time in target quadrant for lidocaine group was less, and the escape latency was higher compared to the control group. However, no difference was observed in the consolidation phase. In the working memory task, with inter-trial intervals of 75 min, the escape latency was higher when NI was inactivated in the retrieval phase. In addition, c-fos and pCREB/CREB levels decreased in NI-inhibited rats. This study suggests that nucleus incertus might participate in acquisition of spatial reference, and retrieval of both spatial reference and working memory. Further studies should investigate possible roles of NI in the hippocampal plasticity.
Collapse
Affiliation(s)
- Mohsen Nategh
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Nikseresht
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Xu BL, Wang R, Meng XH, Zhao ZW, Wang HJ, Ma LN, Dong W, Sheng SL, Ji ZJ. Effects of analog P165 of amyloid precursor protein 5-mer peptide on learning, memory and brain insulin receptors in the rat model of cognitive decline. Neurol Sci 2014; 35:1821-6. [PMID: 24946940 DOI: 10.1007/s10072-014-1849-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/27/2014] [Indexed: 11/29/2022]
Abstract
We aim to study the therapeutic efficacy of analog P165 of amyloid precursor protein 5-mer peptide in streptozotocin (STZ)-induced cognitive decline model. Rats were divided into four groups: control, STZ, STZ+P165, and STZ+rosiglitazone (RSG). STZ model was established by intracerebroventricular injection of STZ. Three weeks following surgery, rats received daily gavage administration of distilled water (control and STZ groups), P165 (STZ+P165), or RSG (STZ+RSG) for four consecutive weeks. Learning and memory abilities were assessed with the Morris water maze test. Insulin-like growth factor-1 (IGF-1) was detected by ELISA. Expressions of insulin receptor-β (IR-β), insulin receptor substrate-1 (IRS-1), serine/threonine kinase (Akt), and phosphorylation of CREB (p-CREB) were observed by immunohistochemistry. Both P165 and RSG significantly reduced the escape latency relative to the STZ group (P165, P < 0.05; RSG, P < 0.01). STZ model rats had reduced levels of IGF-1 relative to control, and this deficit was attenuated in the STZ+P165 group (P < 0.01). IR and IRS-1 were elevated in STZ rats, and these levels were restored to near control in the STZ+P165 and STZ+RSG groups (P < 0.01). Our findings demonstrate that P165 and RSG improved hippocampus-dependent spatial learning and memory in STZ rats by regulating the insulin signaling pathway.
Collapse
Affiliation(s)
- Bao-Lei Xu
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing Geriatric Medical Research Center, #45 Changchun Street, Xicheng District, Beijing, 100053, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hippocampal NR2B-containing NMDA receptors enhance long-term potentiation in rats with chronic visceral pain. Brain Res 2014; 1570:43-53. [DOI: 10.1016/j.brainres.2014.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/13/2014] [Accepted: 05/02/2014] [Indexed: 02/06/2023]
|
14
|
Modulation of the extinction of fear learning. Brain Res Bull 2014; 105:61-9. [DOI: 10.1016/j.brainresbull.2014.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 11/19/2022]
|
15
|
Li L, Csaszar E, Szodorai E, Patil S, Pollak A, Lubec G. The differential hippocampal phosphoproteome of Apodemus sylvaticus paralleling spatial memory retrieval in the Barnes maze. Behav Brain Res 2014; 264:126-34. [PMID: 24509310 DOI: 10.1016/j.bbr.2014.01.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/28/2014] [Accepted: 01/31/2014] [Indexed: 12/23/2022]
Abstract
Protein phosphorylation is a well-known and well-documented mechanism in memory processes. Although a large series of protein kinases involved in memory processes have been reported, information on phosphoproteins is limited. It was therefore the aim of the study to determine a partial and differential phosphoproteome along with the corresponding network in hippocampus of a wild caught mouse strain with excellent performance in several paradigms of spatial memory. Apodemus sylvaticus mice were trained in the Barnes maze, a non-invasive test system for spatial memory and untrained mice served as controls. Animals were sacrificed 6h following memory retrieval, hippocampi were taken, proteins extracted and in-solution digestion was carried out with subsequent iTRAQ double labelling. Phosphopeptides were enriched by a TiO2-based method and semi-quantified using two fragmentation principles on the LTQ-orbitrap Velos. In hippocampi of trained animals phosphopeptide levels representing signalling, neuronal, synaptosomal, cytoskeletal and metabolism proteins were at least twofold reduced or increased. Furthermore, a network revealing a link to pathways of ubiquitination, the androgen receptor, small GTPase Rab5 and MAPK signaling as well as synucleins was constructed. This work is relevant for interpretation of previous work and the design of future studies on protein phosphorylation in spatial memory.
Collapse
Affiliation(s)
- Lin Li
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Edina Csaszar
- Max F. Perutz Laboratories GmbH, Mass Spectrometry Facility, Dr. Bohr-Gasse 3, A-1030 Vienna, Austria
| | - Edit Szodorai
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Sudarshan Patil
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Arnold Pollak
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
16
|
Neuroprotective Effects of 3,6′-Disinapoyl Sucrose Through Increased BDNF Levels and CREB Phosphorylation via the CaMKII and ERK1/2 Pathway. J Mol Neurosci 2014; 53:600-7. [DOI: 10.1007/s12031-013-0226-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/29/2013] [Indexed: 12/23/2022]
|
17
|
Spatial memory extinction: a c-Fos protein mapping study. Behav Brain Res 2013; 260:101-10. [PMID: 24315832 DOI: 10.1016/j.bbr.2013.11.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/18/2013] [Accepted: 11/22/2013] [Indexed: 02/07/2023]
Abstract
While the neuronal basis of spatial memory consolidation has been thoroughly studied, the substrates mediating the process of extinction remain largely unknown. This study aimed to evaluate the functional contribution of selected brain regions during the extinction of a previously acquired spatial memory task in the Morris water maze. For that purpose, we used adult male Wistar rats trained in a spatial reference memory task. Learning-related changes in c-Fos inmunoreactive cells after training were evaluated in cortical and subcortical regions. Results show that removal of the hidden platform in the water maze induced extinction of the previously reinforced escape behavior after 16 trials, without spontaneous recovery 24h later. Extinction was related with significantly higher numbers of c-Fos positive nuclei in amygdala nuclei and prefrontal cortex. On the other hand, the lateral mammillary bodies showed higher number of c-Fos positive cells than the control group. Therefore, in contrast with the results obtained in studies of classical conditioning, we show the involvement of diencephalic structures mediating this kind of learning. In summary, our findings suggest that medial prefrontal cortex, the amygdala complex and diencephalic structures like the lateral mammillary nuclei are relevant for the extinction of spatial memory.
Collapse
|
18
|
Shi Z, Chen L, Li S, Chen S, Sun X, Sun L, Li Y, Zeng J, He Y, Liu X. Chronic scopolamine-injection-induced cognitive deficit on reward-directed instrumental learning in rat is associated with CREB signaling activity in the cerebral cortex and dorsal hippocampus. Psychopharmacology (Berl) 2013; 230:245-60. [PMID: 23722831 DOI: 10.1007/s00213-013-3149-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 05/12/2013] [Indexed: 12/19/2022]
Abstract
RATIONALE Scopolamine, a nonselective muscarinic receptor antagonist, has been used in experimental animal models of dementia. It has been demonstrated to disrupt performances in a battery of behavioral tests. However, no attempt has been made to determine how scopolamine-treated animals would respond to a series of reward-directed instrumental learning (RDIL) tasks. OBJECTIVES The present study was designed to investigate the effects of chronic intraperitoneal injection of scopolamine in Wistar rats on RDIL, as well as on the expression of memory-related molecules in the dorsal hippocampus (DH) and cerebral cortex (CCx). METHODS The effects of the pretraining injection of scopolamine on the acquisition of instrumental response (experiment 1) were first investigated. Then, the effects of post-training manipulation on the maintenance of instrumental response and the responses to changes in contingency degradation and signal discrimination were assessed (experiment 2). Finally, the expression of cyclic AMP response element-binding protein (CREB), phosphorylated CREB, and brain-derived neurotrophic factor in the DH and CCx were examined using Western blotting and enzyme-linked immunosorbent assay. RESULTS The acquisition of instrumental conditioning is more vulnerable than its maintenance. The 3.0-mg/kg dose of scopolamine rendered rats unable to make adaptive changes in facing contingency degradation and correct responses in signal discrimination tasks. Furthermore, CREB signaling was inactivated by pretraining scopolamine treatment in both the DH and CCx. Nevertheless, this pathway was selectively suppressed by post-training treatment only in the CCx during memory reconsolidation. CONCLUSIONS The results suggest that scopolamine-induced cognitive deficits on RDIL are related to the distinguishing alteration of CREB signaling in the DH and CCx.
Collapse
Affiliation(s)
- Zhe Shi
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Malianwa North Road No. 151, Beijing, 100193, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
de Oliveira Coelho CA, Ferreira TL, Soares JCK, Oliveira MGM. Hippocampal NMDA receptor blockade impairs CREB phosphorylation in amygdala after contextual fear conditioning. Hippocampus 2013; 23:545-51. [DOI: 10.1002/hipo.22118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2013] [Indexed: 01/23/2023]
Affiliation(s)
- Cesar Augusto de Oliveira Coelho
- Departamento de Psicobiologia; Universidade Federal de Sao Paulo; 862 Botucatu street, 1st floor; Sao Paulo; Brazil; zip code 04023-062
| | | | - Juliana Carlota Kramer Soares
- Departamento de Psicobiologia; Universidade Federal de Sao Paulo; 862 Botucatu street, 1st floor; Sao Paulo; Brazil; zip code 04023-062
| | - Maria Gabriela Menezes Oliveira
- Departamento de Psicobiologia; Universidade Federal de Sao Paulo; 862 Botucatu street, 1st floor; Sao Paulo; Brazil; zip code 04023-062
| |
Collapse
|
20
|
HDAC inhibition facilitates the switch between memory systems in young but not aged mice. J Neurosci 2013; 33:1954-63. [PMID: 23365234 DOI: 10.1523/jneurosci.3453-12.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chromatin modifications, especially histone acetylation, are critically involved in gene regulation required for long-term memory processes. Increasing histone acetylation via administration of histone deacetylase inhibitors before or after a learning experience enhances memory consolidation for hippocampus-dependent tasks and rescues age-related memory impairments. Whether acutely and locally enhancing histone acetylation during early consolidation processes can operate as a switch between multiple memory systems is less clear. This study examined the short- and long-term behavioral consequences of acute intra-CA1 administration of the histone deacetylase inhibitor Trichostatin A (TSA) on cue versus place learning strategy selection after a cue-guided water maze task and competition testing performed 1 or 24 h later in mice. Here, we show that intra-CA1 TSA infusion administrated immediately post-training biased young mice away from striatum-dependent cue strategy toward hippocampus-dependent place strategy under training condition that normally promotes cue strategy in vehicle controls. However, concomitant infusions of TSA with either PKA inhibitor, Rp-cAMPS, into CA1 or cAMP analog, 8Br-cAMP, into dorsal striatum failed to bias young mice to place strategy use. Behavioral and immunohistochemical analyses further indicated that post-training TSA infusion in aged mice rescued aging-associated deregulation of H4 acetylation in the CA1 but failed to reverse phosphorylated CREB deficits and to produce strategy bias on the 24 h probe test. These findings suggest that post-training intra-CA1 TSA infusion promotes dynamic shift from striatum toward the hippocampal system in young but not aged animals, and support the possibility of a role for CREB in the TSA-mediated switch between these two memory systems.
Collapse
|
21
|
Dagnas M, Mons N. Region- and age-specific patterns of histone acetylation related to spatial and cued learning in the water maze. Hippocampus 2013; 23:581-91. [PMID: 23436469 DOI: 10.1002/hipo.22116] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2013] [Indexed: 02/06/2023]
Abstract
Epigenetic processes, such as histone acetylation, are critical regulators of learning and memory processes. In the present study, we investigated whether training in either a spatial or a cued water maze task undergoes selective changes of histone H3 and H4 acetylation within the hippocampus and the dorsal striatum of C57BL/6 mice. We also attempted to provide new insights into the relationships between deregulation in histone acetylation and age-associated memory deficits. In young mice, spatial training increased acetylation of histones H3 and H4 selectively in the dorsal hippocampal CA1 region and the dentate gyrus (DG) whereas cued training significantly enhanced acetylation of both histones selectively in the dorsal striatum. Our data also revealed age-related differences in histone acetylation within the hippocampus and striatum according to task demands. Specifically, age-related spatial memory deficits were associated with opposite changes of H3 (increase) and H4 (decrease) acetylation in CA1 and DG. After cued learning, both histone acetylation levels were reduced in the striatum of aged mice compared with corresponding young-adults but remained well above those of cage-controls. Collectively, our findings suggest an important role for histone acetylation in regulating the relative contributions of the hippocampus and striatum to learning spatial and cued memory tasks.
Collapse
Affiliation(s)
- Malorie Dagnas
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Université de Bordeaux, Avenue des Facultés, 33405 Talence, France
| | | |
Collapse
|