1
|
Giona L, Musillo C, De Cristofaro G, Ristow M, Zarse K, Siems K, Tait S, Cirulli F, Berry A. Western diet-induced cognitive and metabolic dysfunctions in aged mice are prevented by rosmarinic acid in a sex-dependent fashion. Clin Nutr 2024; 43:2236-2248. [PMID: 39182436 DOI: 10.1016/j.clnu.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/23/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND & AIMS Unhealthy lifestyles, such as chronic consumption of a Western Diet (WD), have been associated with increased systemic inflammation and oxidative stress (OS), a condition that may favour cognitive dysfunctions during aging. Polyphenols, such as rosmarinic acid (RA) may buffer low-grade inflammation and OS, characterizing the aging brain that is sustained by WD, promoting healthspan. The aim of this study was to evaluate the ability of RA to prevent cognitive decline in a mouse model of WD-driven unhealthy aging and to gain knowledge on the specific molecular pathways modulated within the brain. METHODS Aged male and female C57Bl/6N mice were supplemented either with RA or vehicle for 6 weeks. Following 2 weeks on RA they started being administered either with WD or control diet (CD). Successively all mice were tested for cognitive abilities in the Morris water maze (MWM) and emotionality in the elevated plus maze (EPM). Glucose and lipid homeostasis were assessed in trunk blood while the hippocampus was dissected out for RNAseq transcriptomic analysis. RESULTS RA prevented insulin resistance in males while protecting both males and females from WD-dependent memory impairment. In the hippocampus, RA modulated OS pathways in males and immune- and sex hormones-related signalling cascades (Lhb and Lhcgr genes) in females. Moreover, RA overall resulted in an upregulation of Glp1r, recently identified as a promising target to prevent metabolic derangements. In addition, we also found an RA-dependent enrichment in nuclear transcription factors, such as NF-κB, GR and STAT3, that have been recently suggested to promote healthspan and longevity by modulating inflammatory and cell survival pathways. CONCLUSIONS Oral RA supplementation may promote brain and metabolic plasticity during aging through antioxidant and immune-modulating properties possibly affecting the post-reproductive hormonal milieu in a sex-dependent fashion. Thus, its supplementation should be considered in the context of precision medicine as a possible strategy to preserve cognitive functions and to counteract metabolic derangements.
Collapse
Affiliation(s)
- Letizia Giona
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; Program in Science of Nutrition, Metabolism, Ageing and Gender-Related Diseases, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Chiara Musillo
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Gaia De Cristofaro
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Michael Ristow
- Institute of Experimental Endocrinology and Diabetology, Charité Universitätsmedizin Berlin, Berlin D-10117, Germany.
| | - Kim Zarse
- Institute of Experimental Endocrinology and Diabetology, Charité Universitätsmedizin Berlin, Berlin D-10117, Germany.
| | | | - Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Francesca Cirulli
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Alessandra Berry
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
2
|
Stringhetta-Villar BP, Douradinho LG, Esperança TD, de Freitas RN, Cavalcante DP, Chaves-Neto AH, Dornelles RCM. The impact of resistance training on memory, gait and oxidative stress during periestropause in rats. Behav Brain Res 2024; 471:115124. [PMID: 38925510 DOI: 10.1016/j.bbr.2024.115124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/10/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Aging, especially in female, is complex, involving various factors such as reproductive sensitivity, cognitive and functional decline, and an imbalance in the redox system. This study aims to assess the effectiveness of long-term resistance training as a non-pharmacological strategy to mitigate the impairment of recognition memory, hippocampal redox state, and ambulation in aging female Wistar rats during the periestropause period. Thirty Wistar rats aged 17 months, in periestropause, were distributed into non-trained (NT) and resistance training (RT; stair climbing 3 times per week for 4 months) groups. Before (17 months) and after (21 months) of the RT period, the rats underwent tests for ambulation, elevated plus maze (EPM), open field, and object recognition. Biochemical and histological analyses were conducted on the hippocampus of these animals. Analysis of the results revealed that at 21 months, females in the NT group (21Mo/NT) exhibited a decreased in length (p=0.0458) and an increased in past width (p<0.0479) compared to their measurements at 17 months. However, after 4 months of RT, the female rats aged 21 months (21Mo/RT group) experienced changes in gait components, showing an increase in length (p<0.0008) and a decrease in stride width. Regarding memory, the object recognition test indicated potential cognitive improvement in 21Mo/RT animals, with significant interaction between intervention and age across all three stages of the test (total exploration time, p=0.0001; Test 1, p=0.0003; Test 2, p=0.0014). This response was notable compared to animals in the 21Mo/NT group, which showed a decline in memory capacity (p<0.01). The data showed a significant difference in relation to the age of the animals (p<0.01). The hippocampal redox state markers showed reduced lipid oxidative (p=0.028), catalase (p=0.022), and superoxide dismutase (p=0.0067) in the RT group compared to the NT group. Hippocampal cells from the 21Mo/RT group showed increased citrate synthase enzyme activity (p<0.05) and Nissl body staining (p<0.05). The results of this study demonstrate that RT performed during the periestropause phase leads to significant improvements in functional abilities, cognitive performance, and neuroplasticity in aging female rats.
Collapse
Affiliation(s)
| | - Luana Galante Douradinho
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Thaina Daguane Esperança
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Rayara Nogueira de Freitas
- Programa de Pós-Graduação em Ciência Odontológica, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Debora Prazias Cavalcante
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Antonio Hernandes Chaves-Neto
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil; Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação em Ciência Odontológica, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Rita Cássia Menegati Dornelles
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil; Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.
| |
Collapse
|
3
|
Lipp HP, Krackow S, Turkes E, Benner S, Endo T, Russig H. IntelliCage: the development and perspectives of a mouse- and user-friendly automated behavioral test system. Front Behav Neurosci 2024; 17:1270538. [PMID: 38235003 PMCID: PMC10793385 DOI: 10.3389/fnbeh.2023.1270538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 01/19/2024] Open
Abstract
IntelliCage for mice is a rodent home-cage equipped with four corner structures harboring symmetrical double panels for operant conditioning at each of the two sides, either by reward (access to water) or by aversion (non-painful stimuli: air-puffs, LED lights). Corner visits, nose-pokes and actual licks at bottle-nipples are recorded individually using subcutaneously implanted transponders for RFID identification of up to 16 adult mice housed in the same home-cage. This allows for recording individual in-cage activity of mice and applying reward/punishment operant conditioning schemes in corners using workflows designed on a versatile graphic user interface. IntelliCage development had four roots: (i) dissatisfaction with standard approaches for analyzing mouse behavior, including standardization and reproducibility issues, (ii) response to handling and housing animal welfare issues, (iii) the increasing number of mouse models had produced a high work burden on classic manual behavioral phenotyping of single mice. and (iv), studies of transponder-chipped mice in outdoor settings revealed clear genetic behavioral differences in mouse models corresponding to those observed by classic testing in the laboratory. The latter observations were important for the development of home-cage testing in social groups, because they contradicted the traditional belief that animals must be tested under social isolation to prevent disturbance by other group members. The use of IntelliCages reduced indeed the amount of classic testing remarkably, while its flexibility was proved in a wide range of applications worldwide including transcontinental parallel testing. Essentially, two lines of testing emerged: sophisticated analysis of spontaneous behavior in the IntelliCage for screening of new genetic models, and hypothesis testing in many fields of behavioral neuroscience. Upcoming developments of the IntelliCage aim at improved stimulus presentation in the learning corners and videotracking of social interactions within the IntelliCage. Its main advantages are (i) that mice live in social context and are not stressfully handled for experiments, (ii) that studies are not restricted in time and can run in absence of humans, (iii) that it increases reproducibility of behavioral phenotyping worldwide, and (iv) that the industrial standardization of the cage permits retrospective data analysis with new statistical tools even after many years.
Collapse
Affiliation(s)
- Hans-Peter Lipp
- Faculty of Medicine, Institute of Evolutionary Medicine, University of Zürich, Zürich, Switzerland
| | - Sven Krackow
- Institute of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Emir Turkes
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Seico Benner
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Ibaraki, Japan
| | | | | |
Collapse
|
4
|
Yu P, Yang K, Jiang M. RXR α Blocks Nerve Regeneration after Spinal Cord Injury by Targeting p66shc. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8253742. [PMID: 33628383 PMCID: PMC7889345 DOI: 10.1155/2021/8253742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/28/2020] [Accepted: 01/17/2021] [Indexed: 11/18/2022]
Abstract
Nerve regeneration after spinal cord injury is regulated by many factors. Studies have found that the expression of retinoid X receptor α (RXRα) does not change significantly after spinal cord injury but that the distribution of RXRα in cells changes significantly. In undamaged tissues, RXRα is distributed in motor neurons and the cytoplasm of glial cells. RXRα migrates to the nucleus of surviving neurons after injury, indicating that RXRα is involved in the regulation of gene expression after spinal cord injury. p66shc is an important protein that regulates cell senescence and oxidative stress. It can induce the apoptosis and necrosis of many cell types, promoting body aging. The absence of p66shc enhances the resistance of cells to reactive oxygen species (ROS) and thus prolongs life. It has been found that p66shc deletion can promote hippocampal neurogenesis and play a neuroprotective role in mice with multiple sclerosis. To verify the function of RXRα after spinal cord injury, we established a rat T9 spinal cord transection model. After RXRα agonist or antagonist administration, we found that RXRα agonists inhibited nerve regeneration after spinal cord injury, while RXRα antagonists promoted the regeneration of injured neurites and the recovery of motor function in rats. The results showed that RXRα played an impeding role in repair after spinal cord injury. Immunofluorescence staining showed that p66shc expression was upregulated in neurons after spinal cord injury (in vivo and in vitro) and colocalized with RXRα. RXRα overexpression in cultured neurons promoted the expression of p66shc, while RXRα interference inhibited the expression of p66shc. Using a luciferase assay, we found that RXRα could bind to the promoter region of p66shc and regulate the expression of p66shc, thereby regulating nerve regeneration after spinal cord injury. The above results showed that RXRα inhibited nerve regeneration after spinal cord injury by promoting p66shc expression, and interference with RXRα or p66shc promoted functional recovery after spinal cord injury.
Collapse
Affiliation(s)
- Pei Yu
- Department of Orthopedics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 97 Ruijin 2nd Road, Shanghai 200025, China
| | - Kai Yang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Min Jiang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| |
Collapse
|
5
|
El-Kott AF, Alshehri AS, Khalifa HS, Abd-Lateif AEKM, Alshehri MA, El-Maksoud MMA, Eid RA, Bin-Meferij MM. Cadmium Chloride Induces Memory Deficits and Hippocampal Damage by Activating the JNK/p 66Shc/NADPH Oxidase Axis. Int J Toxicol 2020; 39:477-490. [PMID: 32856499 DOI: 10.1177/1091581820930651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study investigated whether the mechanism underlying the neurotoxic effects of cadmium chloride (CdCl2) in rats involves p66Shc. This study comprised an initial in vivo experiment followed by an in vitro experiment. For the in vivo experiment, male rats were orally administered saline (vehicle) or CdCl2 (0.05 mg/kg) for 30 days. Thereafter, spatial and retention memory of rats were tested and their hippocampi were used for biochemical and molecular analyses. For the in vitro experiment, control or p66Shc-deficient hippocampal cells were treated with CdCl2 (25 µM) in the presence or absence of SP600125, a c-Jun N-terminal kinase (JNK) inhibitor. Cadmium chloride impaired the spatial learning and retention memory of rats; depleted levels of glutathione and manganese superoxide dismutase; increased reactive oxygen species (ROS), tumor necrosis factor α, and interleukin 6; and induced nuclear factor kappa B activation. Cadmium chloride also decreased the number of pyramidal cells in the CA1 region and induced severe damage to the mitochondria and endoplasmic reticulum of cells in the hippocampi of rats. Moreover, CdCl2 increased the total unphosphorylated p66Shc, phosphorylated (Ser36) p66Shc, phosphorylated JNK, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, cytochrome c, and cleaved caspase-3. A dose-response increase in cell death, ROS, DNA damage, p66Shc, and NADPH oxidase was also observed in cultured hippocampal cells treated with CdCl2. Of note, all of these biochemical changes were attenuated by silencing p66Shc or inhibiting JNK with SP600125. In conclusion, CdCl2 induces hippocampal ROS generation and apoptosis by promoting the JNK-mediated activation of p66Shc.
Collapse
Affiliation(s)
- Attalla Farag El-Kott
- Biology Department, College of Science, 204574King Khalid University, Abha, Saudi Arabia.,Zoology Department, College of Science, 110144Damanhour University, Damanhour, Egypt
| | - Ali S Alshehri
- Biology Department, College of Science, 204574King Khalid University, Abha, Saudi Arabia
| | - Heba S Khalifa
- Zoology Department, College of Science, 110144Damanhour University, Damanhour, Egypt
| | | | - Mohammad Ali Alshehri
- Biology Department, College of Science, 204574King Khalid University, Abha, Saudi Arabia
| | - Mona M Abd El-Maksoud
- Community of Nursing Care, Nursing College, 204574King Khalid University, Abha, Saudi Arabia.,Community Health Nursing, Faculty of Nursing, Helwan University, Helwan, Egypt
| | - Refaat A Eid
- Department of Pathology, College of Medicine, 204574King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
6
|
Kiryk A, Janusz A, Zglinicki B, Turkes E, Knapska E, Konopka W, Lipp HP, Kaczmarek L. IntelliCage as a tool for measuring mouse behavior - 20 years perspective. Behav Brain Res 2020; 388:112620. [PMID: 32302617 DOI: 10.1016/j.bbr.2020.112620] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/23/2020] [Indexed: 12/21/2022]
Abstract
Since the 1980s, we have witnessed the rapid development of genetically modified mouse models of human diseases. A large number of transgenic and knockout mice have been utilized in basic and applied research, including models of neurodegenerative and neuropsychiatric disorders. To assess the biological function of mutated genes, modern techniques are critical to detect changes in behavioral phenotypes. We review the IntelliCage, a high-throughput system that is used for behavioral screening and detailed analyses of complex behaviors in mice. The IntelliCage was introduced almost two decades ago and has been used in over 150 studies to assess both spontaneous and cognitive behaviors. We present a critical analysis of experimental data that have been generated using this device.
Collapse
Affiliation(s)
- Anna Kiryk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Artur Janusz
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Bartosz Zglinicki
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Emir Turkes
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, Irving Medical Center, New York, NY, USA
| | - Ewelina Knapska
- BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Witold Konopka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Hans-Peter Lipp
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Leszek Kaczmarek
- BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
7
|
Sexual hormones regulate the redox status and mitochondrial function in the brain. Pathological implications. Redox Biol 2020; 31:101505. [PMID: 32201220 PMCID: PMC7212485 DOI: 10.1016/j.redox.2020.101505] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/11/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Compared to other organs, the brain is especially exposed to oxidative stress. In general, brains from young females tend to present lower oxidative damage in comparison to their male counterparts. This has been attributed to higher antioxidant defenses and a better mitochondrial function in females, which has been linked to neuroprotection in this group. However, these differences usually disappear with aging, and the incidence of brain pathologies increases in aged females. Sexual hormones, which suffer a decrease with normal aging, have been proposed as the key factors involved in these gender differences. Here, we provide an overview of redox status and mitochondrial function regulation by sexual hormones and their influence in normal brain aging. Furthermore, we discuss how sexual hormones, as well as phytoestrogens, may play an important role in the development and progression of several brain pathologies, including neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, stroke or brain cancer. Sex hormones are reduced with aging, especially in females, affecting redox balance. Normal aging is associated to a worse redox homeostasis in the brain. Young females show better mitochondrial function and higher antioxidant defenses. Development of brain pathologies is influenced by sex hormones and phytoestrogens.
Collapse
|
8
|
Cirulli F, Musillo C, Berry A. Maternal Obesity as a Risk Factor for Brain Development and Mental Health in the Offspring. Neuroscience 2020; 447:122-135. [PMID: 32032668 DOI: 10.1016/j.neuroscience.2020.01.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/30/2022]
Abstract
Maternal obesity plays a key role in the health trajectory of the offspring. Although research on this topic has largely focused on the potential of this condition to increase the risk for child obesity, it is becoming more and more evident that it can also significantly impact cognitive function and mental health. The mechanisms underlying these effects are starting to be elucidated and point to the placenta as a critical organ that may mediate changes in the response to stress, immune function and oxidative stress. Long-term effects of maternal obesity may rely upon epigenetic changes in selected genes that are involved in metabolic and trophic regulations of the brain. More recent evidence also indicates the gut microbiota as a potential mediator of these effects. Overall, understanding cause-effect relationships can allow the development of preventive measures that could rely upon dietary changes in the mother and the offspring. Addressing diets appears more feasible than developing new pharmacological targets and has the potential to affect the multiple interconnected physiological pathways engaged by these complex regulations, allowing prevention of both metabolic and mental disorders.
Collapse
Affiliation(s)
- Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Chiara Musillo
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
9
|
Berry A, Marconi M, Musillo C, Chiarotti F, Bellisario V, Matarrese P, Gambardella L, Vona R, Lombardi M, Foglieni C, Cirulli F. Trehalose administration in C57BL/6N old mice affects healthspan improving motor learning and brain anti-oxidant defences in a sex-dependent fashion: a pilot study. Exp Gerontol 2020; 129:110755. [DOI: 10.1016/j.exger.2019.110755] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/04/2019] [Accepted: 10/14/2019] [Indexed: 01/31/2023]
|
10
|
p66Shc activation promotes increased oxidative phosphorylation and renders CNS cells more vulnerable to amyloid beta toxicity. Sci Rep 2018; 8:17081. [PMID: 30459314 PMCID: PMC6244282 DOI: 10.1038/s41598-018-35114-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/28/2018] [Indexed: 12/26/2022] Open
Abstract
A key pathological feature of Alzheimer's disease (AD) is the accumulation of the neurotoxic amyloid beta (Aβ) peptide within the brains of affected individuals. Previous studies have shown that neuronal cells selected for resistance to Aβ toxicity display a metabolic shift from mitochondrial-dependent oxidative phosphorylation (OXPHOS) to aerobic glycolysis to meet their energy needs. The Src homology/collagen (Shc) adaptor protein p66Shc is a key regulator of mitochondrial function, ROS production and aging. Moreover, increased expression and activation of p66Shc promotes a shift in the cellular metabolic state from aerobic glycolysis to OXPHOS in cancer cells. Here we evaluated the hypothesis that activation of p66Shc in CNS cells promotes both increased OXPHOS and enhanced sensitivity to Aβ toxicity. The effect of altered p66Shc expression on metabolic activity was assessed in rodent HT22 and B12 cell lines of neuronal and glial origin respectively. Overexpression of p66Shc repressed glycolytic enzyme expression and increased both mitochondrial electron transport chain activity and ROS levels in HT22 cells. The opposite effect was observed when endogenous p66Shc expression was knocked down in B12 cells. Moreover, p66Shc activation in both cell lines increased their sensitivity to Aβ toxicity. Our findings indicate that expression and activation of p66Shc renders CNS cells more sensitive to Aβ toxicity by promoting mitochondrial OXPHOS and ROS production while repressing aerobic glycolysis. Thus, p66Shc may represent a potential therapeutically relevant target for the treatment of AD.
Collapse
|
11
|
Bellisario V, Berry A, Capoccia S, Raggi C, Panetta P, Branchi I, Piccaro G, Giorgio M, Pelicci PG, Cirulli F. Gender-dependent resiliency to stressful and metabolic challenges following prenatal exposure to high-fat diet in the p66(Shc-/-) mouse. Front Behav Neurosci 2014; 8:285. [PMID: 25202246 PMCID: PMC4141279 DOI: 10.3389/fnbeh.2014.00285] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/05/2014] [Indexed: 02/03/2023] Open
Abstract
Metabolic stressful challenges during susceptible time windows, such as fetal life, can have important implications for health throughout life. Deletion of the p66Shc gene in mice leads to reduced oxidative stress (OS), resulting in a healthy and lean phenotype characterized by increased metabolic rate, resistance to high-fat diet (HFD)-induced obesity and reduced emotionality at adulthood. Here we hypothesize that p66Shc−/− (KO) adult offspring might be protected from the detrimental effects induced by maternal HFD administered before and during pregnancy. To test such hypothesis, we fed p66Shc+/+ (WT) and KO females with HFD for 13 weeks starting on 5 weeks of age until delivery and tested adult male and female offspring for their metabolic, neuroendocrine, and emotional profile. Prenatal diet affected stress responses and metabolic features in a gender-dependent fashion. In particular, prenatal HFD increased plasma leptin levels and decreased anxiety-like behavior in females, while increasing body weight, particularly in KO subjects. KO mice were overall characterized by metabolic resiliency, showing a blunted change in glycemia levels in response to glucose or insulin challenges. However, in p66Shc−/− mice, prenatal HFD affected glucose tolerance response in an opposite manner in the two genders, overriding the resilience in males and exacerbating it in females. Finally, KO females were protected from the disrupting effect of prenatal HFD on neuroendocrine response. These findings indicate that prenatal HFD alters the emotional profile and metabolic functionality of the adult individual in a gender-dependent fashion and suggest that exposure to high-caloric food during fetal life is a stressful condition interfering with the developmental programming of the adult phenotype. Deletion of the p66Shc gene attenuates such effects, acting as a protective factor.
Collapse
Affiliation(s)
- Veronica Bellisario
- Section of Behavioral Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità Rome, Italy
| | - Alessandra Berry
- Section of Behavioral Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità Rome, Italy
| | - Sara Capoccia
- Section of Behavioral Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità Rome, Italy
| | - Carla Raggi
- Section of Behavioral Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità Rome, Italy
| | - Pamela Panetta
- Section of Behavioral Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità Rome, Italy
| | - Igor Branchi
- Section of Behavioral Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità Rome, Italy
| | - Giovanni Piccaro
- Section of Bacterial, Respiratory and Systemic Diseases, Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità Rome, Italy
| | - Marco Giorgio
- Department of Experimental Oncology, European Institute of Oncology Milan, Italy
| | - Pier G Pelicci
- Department of Experimental Oncology, European Institute of Oncology Milan, Italy
| | - Francesca Cirulli
- Section of Behavioral Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità Rome, Italy
| |
Collapse
|
12
|
Bates RC, Stith BJ, Stevens KE, Adams CE. Reduced CHRNA7 expression in C3H mice is associated with increases in hippocampal parvalbumin and glutamate decarboxylase-67 (GAD67) as well as altered levels of GABA(A) receptor subunits. Neuroscience 2014; 273:52-64. [PMID: 24836856 DOI: 10.1016/j.neuroscience.2014.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/23/2014] [Accepted: 05/02/2014] [Indexed: 12/14/2022]
Abstract
Decreased expression of CHRNA7, the gene encoding the α7(∗) subtype of nicotinic receptor, may contribute to the cognitive dysfunction observed in schizophrenia by disrupting the inhibitory/excitatory balance in the hippocampus. C3H mice with reduced Chrna7 expression have significant reductions in hippocampal α7(∗) receptor density, deficits in hippocampal auditory gating, increased hippocampal activity as well as significant decreases in hippocampal glutamate decarboxylase-65 (GAD65) and γ-aminobutyric acid-A (GABAA) receptor levels. The current study investigated whether altered Chrna7 expression is associated with changes in the levels of parvalbumin, GAD67 and/or GABAA receptor subunits in the hippocampus from male and female C3H Chrna7 wildtype, C3H Chrna7 heterozygous and C3H Chrna7 knockout (KO) mice using quantitative Western immunoblotting. Reduced Chrna7 expression was associated with significant increases in hippocampal parvalbumin and GAD67 and with complex alterations in GABAA receptor subunits. A decrease in α3 subunit protein was seen in both female C3H Chrna7 Het and KO mice while a decrease in α4 subunit protein was also detected in C3H Chrna7 KO mice with no sex difference. In contrast, an increase in δ subunit protein was observed in C3H Chrna7 Het mice while a decrease in this subunit was observed in C3H Chrna7 KO mice, with δ subunit protein levels being greater in males than in females. Finally, an increase in γ2 subunit protein was found in C3H Chrna7 KO mice with the levels of this subunit again being greater in males than in females. The increases in hippocampal parvalbumin and GAD67 observed in C3H Chrna7 mice are contrary to reports of reductions in these proteins in the postmortem hippocampus from schizophrenic individuals. We hypothesize that the disparate results may occur because of the influence of factors other than CHRNA7 that have been found to be abnormal in schizophrenia.
Collapse
Affiliation(s)
- R C Bates
- Medical Research, Veterans Affairs Medical Center, Denver, CO 80220, United States; Department of Psychiatry, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, United States; Department of Integrative Biology, University of Colorado Denver Downtown Denver Campus, Denver, CO 80217, United States
| | - B J Stith
- Department of Integrative Biology, University of Colorado Denver Downtown Denver Campus, Denver, CO 80217, United States
| | - K E Stevens
- Medical Research, Veterans Affairs Medical Center, Denver, CO 80220, United States; Department of Psychiatry, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, United States
| | - C E Adams
- Medical Research, Veterans Affairs Medical Center, Denver, CO 80220, United States; Department of Psychiatry, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, United States.
| |
Collapse
|
13
|
Perez-Alcazar M, Daborg J, Stokowska A, Wasling P, Björefeldt A, Kalm M, Zetterberg H, Carlström KE, Blomgren K, Ekdahl CT, Hanse E, Pekna M. Altered cognitive performance and synaptic function in the hippocampus of mice lacking C3. Exp Neurol 2014; 253:154-64. [DOI: 10.1016/j.expneurol.2013.12.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/04/2013] [Accepted: 12/18/2013] [Indexed: 11/15/2022]
|
14
|
Iozzo P, Holmes M, Schmidt MV, Cirulli F, Guzzardi MA, Berry A, Balsevich G, Andreassi MG, Wesselink JJ, Liistro T, Gómez-Puertas P, Eriksson JG, Seckl J. Developmental ORIgins of Healthy and Unhealthy AgeiNg: the role of maternal obesity--introduction to DORIAN. Obes Facts 2014; 7:130-51. [PMID: 24801105 PMCID: PMC5644840 DOI: 10.1159/000362656] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/12/2014] [Indexed: 12/31/2022] Open
Abstract
Europe has the highest proportion of elderly people in the world. Cardiovascular disease, type 2 diabetes, sarcopenia and cognitive decline frequently coexist in the same aged individual, sharing common early risk factors and being mutually reinforcing. Among conditions which may contribute to establish early risk factors, this review focuses on maternal obesity, since the epidemic of obesity involves an ever growing number of women of reproductive age and children, calling for appropriate studies to understand the consequences of maternal obesity on the offspring's health and for developing effective measures and policies to improve people's health before their conception and birth. Though the current knowledge suggests that the long-term impact of maternal obesity on the offspring's health may be substantial, the outcomes of maternal obesity over the lifespan have not been quantified, and the molecular changes induced by maternal obesity remain poorly characterized. We hypothesize that maternal insulin resistance and reduced placental glucocorticoid catabolism, leading to oxidative stress, may damage the DNA, either in its structure (telomere shortening) or in its function (via epigenetic changes), resulting in altered gene expression/repair, disease during life, and pathological ageing. This review illustrates the background to the EU-FP7-HEALTH-DORIAN project.
Collapse
Affiliation(s)
- Patricia Iozzo
- Institute of Clinical Physiology, National Research Council (CNR), Pis
- *Patricia Iozzo, MD, PhD, Institute of Clinical Physiology, National Research Council (CNR), Via Moruzzi 1, 56124 Pisa (Italy),
| | - Megan Holmes
- Endocrinology Unit, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | - Tiziana Liistro
- Institute of Clinical Physiology, National Research Council (CNR), Pis
| | | | - Johan G. Eriksson
- Samfundet Folkhälsan i Svenska Finland rf (Folkhälsan), Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
| | - Jonathan Seckl
- Endocrinology Unit, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
15
|
Chen BH, Yan BC, Park JH, Ahn JH, Lee DH, Kim IH, Cho JH, Lee JC, Kim SK, Lee B, Cho JH, Won MH, Lee YL. Aripiprazole, an atypical antipsychotic drug, improves maturation and complexity of neuroblast dendrites in the mouse dentate gyrus via increasing superoxide dismutases. Neurochem Res 2013; 38:1980-8. [PMID: 23836293 DOI: 10.1007/s11064-013-1104-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 01/02/2023]
Abstract
Apripiprazole (APZ) is well known as an atypical antipsychotic and antidepressant. In the present study, we investigated effects of APZ on cell proliferation and neuronal differentiation in the dentate gyrus (DG) of the adolescent mouse using BruU, Ki-67 and doublecortin (DCX) immunohistochemistry. BruU, Ki-67 and DCX-positive (+) cells were easily detected in the subgranular zone of the DG in the vehicle- and APZ-treated group. We found that in the 8 mg/kg APZ-treated group numbers of Ki-67(+), DCX(+) and BrdU(+)/DCX(+) cells were significantly increased compared with those in the vehicle-treated group. We also found that maturation and complexity of DCX(+) dendrites in the 8 mg/kg APZ-treated group was well improved compared with those in the vehicle-treated group. In addition, markedly decreased lipid peroxidation and increased superoxide dismutase 2 (SOD2) level were observed in the DG of the 8 mg/kg APZ-treated group. Our present findings indicate that APZ can enhance cell proliferation and neuroblast differentiation, particularly maturation and complexity of neuroblast dendrites, in the DG via decreasing lipid peroxidation and increasing SOD2 level.
Collapse
Affiliation(s)
- Bai Hui Chen
- Department of Physiology, Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon, 200-702, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
The p66Shc gene paves the way for healthspan: Evolutionary and mechanistic perspectives. Neurosci Biobehav Rev 2013; 37:790-802. [DOI: 10.1016/j.neubiorev.2013.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 03/04/2013] [Accepted: 03/11/2013] [Indexed: 12/23/2022]
|