1
|
Huang S, Howard CM, Hovhannisyan M, Ritchey M, Cabeza R, Davis SW. Hippocampal Functions Modulate Transfer-Appropriate Cortical Representations Supporting Subsequent Memory. J Neurosci 2024; 44:e1135232023. [PMID: 38050089 PMCID: PMC10851689 DOI: 10.1523/jneurosci.1135-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/12/2023] [Accepted: 10/14/2023] [Indexed: 12/06/2023] Open
Abstract
The hippocampus plays a central role as a coordinate system or index of information stored in neocortical loci. Nonetheless, it remains unclear how hippocampal processes integrate with cortical information to facilitate successful memory encoding. Thus, the goal of the current study was to identify specific hippocampal-cortical interactions that support object encoding. We collected fMRI data while 19 human participants (7 female and 12 male) encoded images of real-world objects and tested their memory for object concepts and image exemplars (i.e., conceptual and perceptual memory). Representational similarity analysis revealed robust representations of visual and semantic information in canonical visual (e.g., occipital cortex) and semantic (e.g., angular gyrus) regions in the cortex, but not in the hippocampus. Critically, hippocampal functions modulated the mnemonic impact of cortical representations that are most pertinent to future memory demands, or transfer-appropriate representations Subsequent perceptual memory was best predicted by the strength of visual representations in ventromedial occipital cortex in coordination with hippocampal activity and pattern information during encoding. In parallel, subsequent conceptual memory was best predicted by the strength of semantic representations in left inferior frontal gyrus and angular gyrus in coordination with either hippocampal activity or semantic representational strength during encoding. We found no evidence for transfer-incongruent hippocampal-cortical interactions supporting subsequent memory (i.e., no hippocampal interactions with cortical visual/semantic representations supported conceptual/perceptual memory). Collectively, these results suggest that diverse hippocampal functions flexibly modulate cortical representations of object properties to satisfy distinct future memory demands.Significance Statement The hippocampus is theorized to index pieces of information stored throughout the cortex to support episodic memory. Yet how hippocampal processes integrate with cortical representation of stimulus information remains unclear. Using fMRI, we examined various forms of hippocampal-cortical interactions during object encoding in relation to subsequent performance on conceptual and perceptual memory tests. Our results revealed novel hippocampal-cortical interactions that utilize semantic and visual representations in transfer-appropriate manners: conceptual memory supported by hippocampal modulation of frontoparietal semantic representations, and perceptual memory supported by hippocampal modulation of occipital visual representations. These findings provide important insights into the neural mechanisms underlying the formation of information-rich episodic memory and underscore the value of studying the flexible interplay between brain regions for complex cognition.
Collapse
Affiliation(s)
- Shenyang Huang
- Department of Psychology & Neuroscience, Duke University, Durham 27708, North Carolina
| | - Cortney M Howard
- Department of Psychology & Neuroscience, Duke University, Durham 27708, North Carolina
| | | | - Maureen Ritchey
- Department of Psychology, Boston College, 02467 Massachusetts
| | - Roberto Cabeza
- Department of Psychology & Neuroscience, Duke University, Durham 27708, North Carolina
| | - Simon W Davis
- Department of Psychology & Neuroscience, Duke University, Durham 27708, North Carolina
- Department of Neurology, Duke University School of Medicine, Durham 27708, North Carolina
| |
Collapse
|
2
|
Stress disrupts insight-driven mnemonic reconfiguration in the medial temporal lobe. Neuroimage 2023; 265:119804. [PMID: 36503160 PMCID: PMC9878442 DOI: 10.1016/j.neuroimage.2022.119804] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Memories are not stored in isolation. Insight into the relationship of initially unrelated events may trigger a flexible reconfiguration of the mnemonic representation of these events. Such representational changes allow the integration of events into coherent episodes and help to build up-to-date-models of the world around us. This process is, however, frequently impaired in stress-related mental disorders resulting in symptoms such as fragmented memories in PTSD. Here, we combined a real life-like narrative-insight task, in which participants learned how initially separate events are linked, with fMRI-based representational similarity analysis to test if and how acute stress interferes with the insight-driven reconfiguration of memories. Our results showed that stress reduced the activity of medial temporal and prefrontal areas when participants gained insight into the link between events. Moreover, stress abolished the insight-related increase in representational dissimilarity for linked events in the anterior part of the hippocampus as well as its association with measures of subsequent memory that we observed in non-stressed controls. However, memory performance, as assessed in a forced-choice recognition test, was even enhanced in the stress group. Our findings suggest that acute stress impedes the neural integration of events into coherent episodes but promotes long-term memory for these integrated narratives and may thus have implications for understanding memory distortions in stress-related mental disorders.
Collapse
|
3
|
Audrain S, McAndrews MP. Schemas provide a scaffold for neocortical integration of new memories over time. Nat Commun 2022; 13:5795. [PMID: 36184668 PMCID: PMC9527246 DOI: 10.1038/s41467-022-33517-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/20/2022] [Indexed: 01/11/2023] Open
Abstract
Memory transformation is increasingly acknowledged in theoretical accounts of systems consolidation, yet how memory quality and neural representation change over time and how schemas influence this process remains unclear. We examined the behavioral quality and neural representation of schema-congruent and incongruent object-scene pairs retrieved across 10-minutes and 72-hours using fMRI. When a congruent schema was available, memory became coarser over time, aided by post-encoding coupling between the anterior hippocampus and medial prefrontal cortex (mPFC). Only schema-congruent representations were integrated in the mPFC over time, and were organized according to schematic context. In the hippocampus, pattern similarity changed across 72-hours such that the posterior hippocampus represented specific details and the anterior hippocampus represented the general context of specific memories, irrespective of congruency. Our findings suggest schemas are used as a scaffold to facilitate neocortical integration of congruent information, and illustrate evolution in hippocampal organization of detailed contextual memory over time.
Collapse
Affiliation(s)
- Sam Audrain
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.
- Department of Psychology, University of Toronto, Toronto, ON, M5S 3G3, Canada.
| | - Mary Pat McAndrews
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, M5T 2S8, Canada
- Department of Psychology, University of Toronto, Toronto, ON, M5S 3G3, Canada
| |
Collapse
|
4
|
Lim HY, Ahn JR, Lee I. The Interaction of Cue Type and Its Associated Behavioral Response Dissociates the Neural Activity between the Perirhinal and Postrhinal Cortices. eNeuro 2022; 9:ENEURO.0065-22.2022. [PMID: 35422417 PMCID: PMC9045475 DOI: 10.1523/eneuro.0065-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 11/21/2022] Open
Abstract
The perirhinal cortex (PER) and postrhinal cortex (POR) in the medial temporal lobe are commonly described as two distinct systems that process nonspatial and spatial information, respectively. Recent findings suggest that the two regions exhibit functional overlap when processing stimulus information, especially when associative responses are required in goal-directed behavior. However, we lack the neural correlates of this. In the current study, we recorded spiking activities for single units of the PER and POR as rats were required to choose a response associated with the identity of a visual object or scene stimulus. We found that similar proportions of cells fired selectively for either scene or object between the two regions. In the PER and POR, response-selective neurons showed higher contrast for different responses than stimulus-selective cells did for stimuli. More cells fired selectively for specific choice response in the POR than in the PER. The differential firing patterns of the PER and POR were best explained when the stimulus and response components were considered together: Stimulus-selective cells were modulated more by the response in the POR than in the PER, whereas response-selective cells in the PER were modulated more by object information than by scenes. Our results suggest that in a goal-directed memory task, the information processing in the PER and POR may be dynamically modulated not only by input stimulus information but also by the associated choice behavior and stimulus-response interaction.
Collapse
Affiliation(s)
- Heung-Yeol Lim
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 08826, Korea
| | - Jae-Rong Ahn
- Department of Biology, Tufts University, Medford, Massachusetts 02155
| | - Inah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
5
|
Fritch HA, Thakral PP, Slotnick SD, Ross RS. Distinct patterns of hippocampal activity associated with color and spatial source memory. Hippocampus 2021; 31:1039-1047. [PMID: 34101292 DOI: 10.1002/hipo.23368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 11/08/2022]
Abstract
The hippocampus is known to be involved in source memory across a wide variety of stimuli and source types. Thus, source memory activity in the hippocampus is thought to be domain-general such that different types of source information are similarly processed in the hippocampus. However, there is some evidence of domain-specificity for spatial and temporal source information. The current fMRI study aimed to determine whether patterns of activity in the hippocampus differed for two types of visual source information: spatial location and background color. Participants completed three runs of a spatial memory task and three runs of a color memory task. During the study phase, 32 line drawings of common objects and animals were presented to either the left or right of fixation for the spatial memory task or on either a red or green background for the color memory task. During the test phase of both tasks, 48 object word labels were presented in the center of the screen and participants classified the corresponding item as old and previously on the "left"/on a "green" background, old and previously on the "right"/on a "red" background, or "new." Two analysis methods were employed to assess whether hippocampal activity differed between the two source types: a general linear model analysis and a classification-based searchlight multivoxel pattern analysis (MVPA). The searchlight MVPA revealed that activity associated with spatial memory and color memory could be classified with above-chance accuracy in a region of the right anterior hippocampus, and a follow-up analysis revealed that there was a significant effect of memory accuracy. These results indicate that different types of source memory are represented by distinct patterns of activity in the hippocampus.
Collapse
Affiliation(s)
- Haley A Fritch
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, Massachusetts, USA
| | - Preston P Thakral
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, Massachusetts, USA
| | - Scott D Slotnick
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, Massachusetts, USA
| | - Robert S Ross
- Department of Psychology, University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
6
|
Bainbridge WA, Hall EH, Baker CI. Distinct Representational Structure and Localization for Visual Encoding and Recall during Visual Imagery. Cereb Cortex 2020; 31:1898-1913. [PMID: 33285563 DOI: 10.1093/cercor/bhaa329] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 01/03/2023] Open
Abstract
During memory recall and visual imagery, reinstatement is thought to occur as an echoing of the neural patterns during encoding. However, the precise information in these recall traces is relatively unknown, with previous work primarily investigating either broad distinctions or specific images, rarely bridging these levels of information. Using ultra-high-field (7T) functional magnetic resonance imaging with an item-based visual recall task, we conducted an in-depth comparison of encoding and recall along a spectrum of granularity, from coarse (scenes, objects) to mid (e.g., natural, manmade scenes) to fine (e.g., living room, cupcake) levels. In the scanner, participants viewed a trial-unique item, and after a distractor task, visually imagined the initial item. During encoding, we observed decodable information at all levels of granularity in category-selective visual cortex. In contrast, information during recall was primarily at the coarse level with fine-level information in some areas; there was no evidence of mid-level information. A closer look revealed segregation between voxels showing the strongest effects during encoding and those during recall, and peaks of encoding-recall similarity extended anterior to category-selective cortex. Collectively, these results suggest visual recall is not merely a reactivation of encoding patterns, displaying a different representational structure and localization from encoding, despite some overlap.
Collapse
Affiliation(s)
- Wilma A Bainbridge
- Department of Psychology, University of Chicago, Chicago, IL 60637, USA.,Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD 20814, USA
| | - Elizabeth H Hall
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD 20814, USA.,Department of Psychology, University of California Davis, Davis, CA 95616, USA.,Center for Mind and Brain, University of California Davis, Davis, CA 95618, USA
| | - Chris I Baker
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD 20814, USA
| |
Collapse
|
7
|
Integration and differentiation of hippocampal memory traces. Neurosci Biobehav Rev 2020; 118:196-208. [DOI: 10.1016/j.neubiorev.2020.07.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/11/2020] [Accepted: 07/20/2020] [Indexed: 11/23/2022]
|
8
|
Tambini A, D'Esposito M. Causal Contribution of Awake Post-encoding Processes to Episodic Memory Consolidation. Curr Biol 2020; 30:3533-3543.e7. [PMID: 32735812 DOI: 10.1016/j.cub.2020.06.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/06/2020] [Accepted: 06/19/2020] [Indexed: 11/29/2022]
Abstract
Stable representations of past experience are thought to depend on processes that unfold after events are initially encoded into memory. Post-encoding reactivation and hippocampal-cortical interactions are leading candidate mechanisms thought to support memory retention and stabilization across hippocampal-cortical networks. Although putative consolidation mechanisms have been observed during sleep and periods of awake rest, the direct causal contribution of awake consolidation mechanisms to later behavior is unclear, especially in humans. Moreover, it has been argued that observations of putative consolidation processes are epiphenomenal and not causally important, yet there are few tools to test the functional contribution of these mechanisms in humans. Here, we combined transcranial magnetic stimulation (TMS) and fMRI to test the role of awake consolidation processes by targeting hippocampal interactions with lateral occipital cortex (LOC). We applied theta-burst TMS to LOC (and a control site) to interfere with an extended window (approximately 30-50 min) after memory encoding. Behaviorally, post-encoding TMS to LOC selectively impaired associative memory retention compared to multiple control conditions. In the control TMS condition, we replicated prior reports of post-encoding reactivation and memory-related hippocampal-LOC interactions during periods of awake rest using fMRI. However, post-encoding LOC TMS reduced these processes, such that post-encoding reactivation in LOC and memory-related hippocampal-LOC functional connectivity were no longer present. By targeting and manipulating post-encoding neural processes, these findings highlight the direct contribution of awake time periods to episodic memory consolidation. This combined TMS-fMRI approach provides an opportunity for causal manipulations of human memory consolidation.
Collapse
Affiliation(s)
- Arielle Tambini
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Neurobiology and Behavior, Center for Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92617, USA.
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Bennett IJ, Stark SM, Stark CEL. Recognition Memory Dysfunction Relates to Hippocampal Subfield Volume: A Study of Cognitively Normal and Mildly Impaired Older Adults. J Gerontol B Psychol Sci Soc Sci 2020; 74:1132-1141. [PMID: 29401233 DOI: 10.1093/geronb/gbx181] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/02/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The current study examined recognition memory dysfunction and its neuroanatomical substrates in cognitively normal older adults and those diagnosed with mild cognitive impairment (MCI). METHODS Participants completed the Mnemonic Similarity Task, which provides simultaneous measures of recognition memory and mnemonic discrimination. They also underwent structural neuroimaging to assess volume of medial temporal cortex and hippocampal subfields. RESULTS As expected, individuals diagnosed with MCI had significantly worse recognition memory performance and reduced volume across medial temporal cortex and hippocampal subfields relative to cognitively normal older adults. After controlling for diagnostic group differences, however, recognition memory was significantly related to whole hippocampus volume, and to volume of the dentate gyrus/CA3 subfield in particular. Recognition memory was also related to mnemonic discrimination, a fundamental component of episodic memory that has previously been linked to dentate gyrus/CA3 structure and function. DISCUSSION Results reveal that hippocampal subfield volume is sensitive to individual differences in recognition memory in older adults independent of clinical diagnosis. This supports the notion that episodic memory declines along a continuum within this age group, not just between diagnostic groups.
Collapse
Affiliation(s)
- Ilana J Bennett
- Department of Psychology, University of California, Riverside
| | - Shauna M Stark
- Department of Neurobiology and Behavior, University of California, Irvine
| | - Craig E L Stark
- Department of Neurobiology and Behavior, University of California, Irvine.,Center for the Neurobiology of Learning and Memory, University of California, Irvine
| |
Collapse
|
10
|
Radhakrishnan H, Stark SM, Stark CEL. Microstructural Alterations in Hippocampal Subfields Mediate Age-Related Memory Decline in Humans. Front Aging Neurosci 2020; 12:94. [PMID: 32327992 PMCID: PMC7161377 DOI: 10.3389/fnagi.2020.00094] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
Aging, even in the absence of clear pathology of dementia, is associated with cognitive decline. Neuroimaging, especially diffusion-weighted imaging, has been highly valuable in understanding some of these changes in live humans, non-invasively. Traditional tensor techniques have revealed that the integrity of the fornix and other white matter tracts significantly deteriorates with age, and that this deterioration is highly correlated with worsening cognitive performance. However, traditional tensor techniques are still not specific enough to indict explicit microstructural features that may be responsible for age-related cognitive decline and cannot be used to effectively study gray matter properties. Here, we sought to determine whether recent advances in diffusion-weighted imaging, including Neurite Orientation Dispersion and Density Imaging (NODDI) and Constrained Spherical Deconvolution, would provide more sensitive measures of age-related changes in the microstructure of the medial temporal lobe. We evaluated these measures in a group of young (ages 20-38 years old) and older (ages 59-84 years old) adults and assessed their relationships with performance on tests of cognition. We found that the fiber density (FD) of the fornix and the neurite density index (NDI) of the fornix, hippocampal subfields (DG/CA3, CA1, and subiculum), and parahippocampal cortex, varied as a function of age in a cross-sectional cohort. Moreover, in the fornix, DG/CA3, and CA1, these changes correlated with memory performance on the Rey Auditory Verbal Learning Test (RAVLT), even after regressing out the effect of age, suggesting that they were capturing neurobiological properties directly related to performance in this task. These measures provide more details regarding age-related neurobiological properties. For example, a change in fiber density could mean a reduction in axonal packing density or myelination, and the increase in NDI observed might be explained by changes in dendritic complexity or even sprouting. These results provide a far more comprehensive view than previously determined on the possible system-wide processes that may be occurring because of healthy aging and demonstrate that advanced diffusion-weighted imaging is evolving into a powerful tool to study more than just white matter properties.
Collapse
Affiliation(s)
- Hamsanandini Radhakrishnan
- Mathematical, Computational and Systems Biology, University of California, Irvine, Irvine, CA, United States
| | - Shauna M. Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Craig E. L. Stark
- Mathematical, Computational and Systems Biology, University of California, Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
11
|
Huffman DJ, Ekstrom AD. A Modality-Independent Network Underlies the Retrieval of Large-Scale Spatial Environments in the Human Brain. Neuron 2019; 104:611-622.e7. [PMID: 31540825 DOI: 10.1016/j.neuron.2019.08.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/15/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022]
Abstract
In humans, the extent to which body-based cues, such as vestibular, somatosensory, and motoric cues, are necessary for normal expression of spatial representations remains unclear. Recent breakthroughs in immersive virtual reality technology allowed us to test how body-based cues influence spatial representations of large-scale environments in humans. Specifically, we manipulated the availability of body-based cues during navigation using an omnidirectional treadmill and a head-mounted display, investigating brain differences in levels of activation (i.e., univariate analysis), patterns of activity (i.e., multivariate pattern analysis), and putative network interactions between spatial retrieval tasks using fMRI. Our behavioral and neuroimaging results support the idea that there is a core, modality-independent network supporting spatial memory retrieval in the human brain. Thus, for well-learned spatial environments, at least in humans, primarily visual input may be sufficient for expression of complex representations of spatial environments. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Derek J Huffman
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Arne D Ekstrom
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA; Psychology Department, University of Arizona, Tucson, AZ 85719, USA.
| |
Collapse
|
12
|
Robin J, Rai Y, Valli M, Olsen RK. Category specificity in the medial temporal lobe: A systematic review. Hippocampus 2018; 29:313-339. [PMID: 30155943 DOI: 10.1002/hipo.23024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 01/30/2023]
Abstract
Theoretical accounts of medial temporal lobe (MTL) function ascribe different functions to subregions of the MTL including perirhinal, entorhinal, parahippocampal cortices, and the hippocampus. Some have suggested that the functional roles of these subregions vary in terms of their category specificity, showing preferential coding for certain stimulus types, but the evidence for this functional organization is mixed. In this systematic review, we evaluate existing evidence for regional specialization in the MTL for three categories of visual stimuli: faces, objects, and scenes. We review and synthesize across univariate and multivariate neuroimaging studies, as well as neuropsychological studies of cases with lesions to the MTL. Neuroimaging evidence suggests that faces activate the perirhinal cortex, entorhinal cortex, and the anterior hippocampus, while scenes engage the parahippocampal cortex and both the anterior and posterior hippocampus, depending on the contrast condition. There is some evidence for object-related activity in anterior MTL regions when compared to scenes, and in posterior MTL regions when compared to faces, suggesting that aspects of object representations may share similarities with face and scene representations. While neuroimaging evidence suggests some hippocampal specialization for faces and scenes, neuropsychological evidence shows that hippocampal damage leads to impairments in scene memory and perception, but does not entail equivalent impairments for faces in cases where the perirhinal cortex remains intact. Regional specialization based on stimulus categories has implications for understanding the mechanisms of MTL subregions, and highlights the need for the development of theoretical models of MTL function that can accommodate the differential patterns of specificity observed in the MTL.
Collapse
Affiliation(s)
- Jessica Robin
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - Yeshith Rai
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - Mikaeel Valli
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Rosanna K Olsen
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Koolschijn RS, Emir UE, Pantelides AC, Nili H, Behrens TEJ, Barron HC. The Hippocampus and Neocortical Inhibitory Engrams Protect against Memory Interference. Neuron 2018; 101:528-541.e6. [PMID: 30581011 PMCID: PMC6560047 DOI: 10.1016/j.neuron.2018.11.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/12/2018] [Accepted: 11/20/2018] [Indexed: 11/20/2022]
Abstract
Our experiences often overlap with each other, yet we are able to selectively recall individual memories to guide decisions and future actions. The neural mechanisms that support such precise memory recall remain unclear. Here, using ultra-high field 7T MRI we reveal two distinct mechanisms that protect memories from interference. The first mechanism involves the hippocampus, where the blood-oxygen-level-dependent (BOLD) signal predicts behavioral measures of memory interference, and representations of context-dependent memories are pattern separated according to their relational overlap. The second mechanism involves neocortical inhibition. When we reduce the concentration of neocortical GABA using trans-cranial direct current stimulation (tDCS), neocortical memory interference increases in proportion to the reduction in GABA, which in turn predicts behavioral performance. These findings suggest that memory interference is mediated by both the hippocampus and neocortex, where the hippocampus separates overlapping but context-dependent memories using relational information, and neocortical inhibition prevents unwanted co-activation between overlapping memories. Memory interference is mediated by both the hippocampus and neocortical inhibition In the hippocampus, overlapping memories are separated using relational information In neocortex, inhibition protects overlapping memories from interference By reducing neocortical GABA with brain stimulation, memory interference increases
Collapse
Affiliation(s)
- Renée S Koolschijn
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | - Uzay E Emir
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, OX3 9DU, UK; School of Health Sciences, Purdue University, IN 47907, USA
| | - Alexandros C Pantelides
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Hamed Nili
- Department of Experimental Psychology, University of Oxford, 15 Parks Rd., Oxford OX1 3AQ, UK
| | - Timothy E J Behrens
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, OX3 9DU, UK; The Wellcome Centre for Neuroimaging, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Helen C Barron
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, OX3 9DU, UK; MRC Brain Network Dynamics Unit, University of Oxford, Mansfield Rd., Oxford OX1 3TH, UK.
| |
Collapse
|
14
|
Huffman DJ, Ekstrom AD. Which way is the bookstore? A closer look at the judgments of relative directions task. SPATIAL COGNITION AND COMPUTATION 2018; 19:93-129. [PMID: 31105466 PMCID: PMC6519130 DOI: 10.1080/13875868.2018.1531869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We present a detailed analysis of a widely used assay in human spatial cognition, the judgments of relative direction (JRD) task. We conducted three experiments involving virtual navigation interspersed with the JRD task, and included confidence judgments and map drawing as additional metrics. We also present a technique for assessing the similarity of the cognitive representations underlying performance on the JRD and map drawing tasks. Our results support the construct validity of the JRD task and its connection to allocentric representation. Additionally, we found that chance performance on the JRD task depends on the distribution of the angles of participants' responses, rather than being constant and 90 degrees. Accordingly, we present a method for better determining chance performance.
Collapse
Affiliation(s)
| | - Arne D Ekstrom
- Center for Neuroscience, Department of Psychology, Neuroscience Graduate Group, University of California, Davis; Psychology Department, University of Arizona
| |
Collapse
|
15
|
Libby LA, Reagh ZM, Bouffard NR, Ragland JD, Ranganath C. The Hippocampus Generalizes across Memories that Share Item and Context Information. J Cogn Neurosci 2018; 31:24-35. [PMID: 30240315 DOI: 10.1162/jocn_a_01345] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Episodic memory is known to rely on the hippocampus, but how the hippocampus organizes different episodes to permit their subsequent retrieval remains controversial. One major area of debate hinges on a discrepancy between two hypothesized roles of the hippocampus: differentiating between similar events to reduce interference and assigning similar representations to events that share overlapping items and contextual information. Here, we used multivariate analyses of activity patterns measured with fMRI to characterize how the hippocampus distinguishes between memories based on similarity at the level of items and/or context. Hippocampal activity patterns discriminated between events that shared either item or context information but generalized across events that shared similar item-context associations. The current findings provide evidence that, whereas the hippocampus can reduce mnemonic interference by separating events that generalize along a single attribute dimension, overlapping hippocampal codes may support memory for events with overlapping item-context relations. This lends new insights into the way the hippocampus may balance multiple mnemonic operations in adaptively guiding behavior.
Collapse
|
16
|
Reagh ZM, Ranganath C. What does the functional organization of cortico-hippocampal networks tell us about the functional organization of memory? Neurosci Lett 2018; 680:69-76. [PMID: 29704572 PMCID: PMC6467646 DOI: 10.1016/j.neulet.2018.04.050] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/12/2022]
Abstract
Historically, research on the cognitive processes that support human memory proceeded, to a large extent, independently of research on the neural basis of memory. Accumulating evidence from neuroimaging, however, has enabled the field to develop a broader and more integrative perspective. Here, we briefly outline how advances in cognitive neuroscience can potentially shed light on concepts and controversies in human memory research. We argue that research on the functional properties of cortico-hippocampal networks informs us about how memories might be organized in the brain, which, in turn, helps to reconcile seemingly disparate perspectives in cognitive psychology. Finally, we discuss several open questions and directions for future research.
Collapse
Affiliation(s)
- Zachariah M Reagh
- Center for Neuroscience, United States; Department of Neurology, University of California, Davis, United States.
| | - Charan Ranganath
- Center for Neuroscience, United States; Memory and Plasticity (MAP) Program, United States; Department of Psychology, University of California, Davis, United States.
| |
Collapse
|
17
|
Time-resolved neural reinstatement and pattern separation during memory decisions in human hippocampus. Proc Natl Acad Sci U S A 2018; 115:E7418-E7427. [PMID: 30006465 DOI: 10.1073/pnas.1717088115] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mnemonic decision-making has long been hypothesized to rely on hippocampal dynamics that bias memory processing toward the formation of new memories or the retrieval of old ones. Successful memory encoding may be best optimized by pattern separation, whereby two highly similar experiences can be represented by underlying neural populations in an orthogonal manner. By contrast, successful memory retrieval is thought to be supported by a recovery of the same neural pattern laid down during encoding. Here we examined how hippocampal pattern completion and separation emerge over time during memory decisions. We measured electrocorticography activity in the human hippocampus and posterior occipitotemporal cortex (OTC) while participants performed continuous recognition of items that were new, repeated (old), or highly similar to a prior item (similar). During retrieval decisions of old items, both regions exhibited significant reinstatement of multivariate high-frequency activity (HFA) associated with encoding. Further, the extent of reinstatement of encoding patterns during retrieval was correlated with the strength (HFA power) of hippocampal encoding. Evidence for encoding pattern reinstatement was also seen in OTC on trials requiring fine-grained discrimination of similar items. By contrast, hippocampal activity showed evidence for pattern separation during these trials. Together, these results underscore the critical role of the hippocampus in supporting both reinstatement of overlapping information and separation of similar events.
Collapse
|
18
|
Blumenthal A, Stojanoski B, Martin CB, Cusack R, Köhler S. Animacy and real-world size shape object representations in the human medial temporal lobes. Hum Brain Mapp 2018; 39:3779-3792. [PMID: 29947037 DOI: 10.1002/hbm.24212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 04/11/2018] [Accepted: 04/30/2018] [Indexed: 12/15/2022] Open
Abstract
Identifying what an object is, and whether an object has been encountered before, is a crucial aspect of human behavior. Despite this importance, we do not yet have a complete understanding of the neural basis of these abilities. Investigations into the neural organization of human object representations have revealed category specific organization in the ventral visual stream in perceptual tasks. Interestingly, these categories fall within broader domains of organization, with reported distinctions between animate, inanimate large, and inanimate small objects. While there is some evidence for category specific effects in the medial temporal lobe (MTL), in particular in perirhinal and parahippocampal cortex, it is currently unclear whether domain level organization is also present across these structures. To this end, we used fMRI with a continuous recognition memory task. Stimuli were images of objects from several different categories, which were either animate or inanimate, or large or small within the inanimate domain. We employed representational similarity analysis (RSA) to test the hypothesis that object-evoked responses in MTL structures during recognition-memory judgments also show evidence for domain-level organization along both dimensions. Our data support this hypothesis. Specifically, object representations were shaped by either animacy, real-world size, or both, in perirhinal and parahippocampal cortex, and the hippocampus. While sensitivity to these dimensions differed across structures when probed individually, hinting at interesting links to functional differentiation, similarities in organization across MTL structures were more prominent overall. These results argue for continuity in the organization of object representations in the ventral visual stream and the MTL.
Collapse
Affiliation(s)
- Anna Blumenthal
- Department of Psychology, University of Western Ontario, London, Ontario, Canada.,The Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| | - Bobby Stojanoski
- Department of Psychology, University of Western Ontario, London, Ontario, Canada.,The Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| | - Chris B Martin
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Rhodri Cusack
- Department of Psychology, Trinity College, Dublin, Ireland
| | - Stefan Köhler
- Department of Psychology, University of Western Ontario, London, Ontario, Canada.,The Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada.,Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Xue G. The Neural Representations Underlying Human Episodic Memory. Trends Cogn Sci 2018; 22:544-561. [DOI: 10.1016/j.tics.2018.03.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/23/2018] [Accepted: 03/08/2018] [Indexed: 11/16/2022]
|
20
|
Anzellotti S, Coutanche MN. Beyond Functional Connectivity: Investigating Networks of Multivariate Representations. Trends Cogn Sci 2018; 22:258-269. [DOI: 10.1016/j.tics.2017.12.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 11/27/2022]
|
21
|
How landmark suitability shapes recognition memory signals for objects in the medial temporal lobes. Neuroimage 2017; 166:425-436. [PMID: 29108942 DOI: 10.1016/j.neuroimage.2017.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 11/20/2022] Open
Abstract
A role of perirhinal cortex (PrC) in recognition memory for objects has been well established. Contributions of parahippocampal cortex (PhC) to this function, while documented, remain less well understood. Here, we used fMRI to examine whether the organization of item-based recognition memory signals across these two structures is shaped by object category, independent of any difference in representing episodic context. Guided by research suggesting that PhC plays a critical role in processing landmarks, we focused on three categories of objects that differ from each other in their landmark suitability as confirmed with behavioral ratings (buildings > trees > aircraft). Participants made item-based recognition-memory decisions for novel and previously studied objects from these categories, which were matched in accuracy. Multi-voxel pattern classification revealed category-specific item-recognition memory signals along the long axis of PrC and PhC, with no sharp functional boundaries between these structures. Memory signals for buildings were observed in the mid to posterior extent of PhC, signals for trees in anterior to posterior segments of PhC, and signals for aircraft in mid to posterior aspects of PrC and the anterior extent of PhC. Notably, item-based memory signals for the category with highest landmark suitability ratings were observed only in those posterior segments of PhC that also allowed for classification of landmark suitability of objects when memory status was held constant. These findings provide new evidence in support of the notion that item-based memory signals for objects are not limited to PrC, and that the organization of these signals along the longitudinal axis that crosses PrC and PhC can be captured with reference to landmark suitability.
Collapse
|
22
|
Huffman DJ, Stark CEL. The influence of low-level stimulus features on the representation of contexts, items, and their mnemonic associations. Neuroimage 2017; 155:513-529. [PMID: 28400264 PMCID: PMC5511560 DOI: 10.1016/j.neuroimage.2017.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/31/2017] [Accepted: 04/07/2017] [Indexed: 11/17/2022] Open
Abstract
Since the earliest attempts to characterize the "receptive fields" of neurons, a central aim of many neuroscience experiments is to elucidate the information that is represented in various regions of the brain. Recent studies suggest that, in the service of memory, information is represented in the medial temporal lobe in a conjunctive or associative form with the contextual aspects of the experience being the primary factor or highest level of the conjunctive hierarchy. A critical question is whether the information that has been observed in these studies reflects notions such as a cognitive representation of context or whether the information reflects the low-level sensory differences between stimuli. We performed two functional magnetic resonance imaging experiments to address this question and we found that associative representations observed between context and item (and order) in the human brain can be highly influenced by low-level sensory differences between stimuli. Our results place clear constraints on the experimental design of studies that aim to investigate the representation of contexts and items during performance of associative memory tasks. Moreover, our results raise interesting theoretical questions regarding the disambiguation of memory-related representations from processing-related representations.
Collapse
Affiliation(s)
- Derek J Huffman
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, United States
| | - Craig E L Stark
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, United States.
| |
Collapse
|
23
|
Stark SM, Stark CEL. Age-related deficits in the mnemonic similarity task for objects and scenes. Behav Brain Res 2017; 333:109-117. [PMID: 28673769 DOI: 10.1016/j.bbr.2017.06.049] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 10/19/2022]
Abstract
Using the Mnemonic Similarity Task (MST), we have demonstrated an age-related impairment in lure discrimination, or the ability to recognize an item as distinct from one that was similar, but not identical to one viewed earlier. A growing body of evidence links these behavioral changes to age-related alterations in the hippocampus. In this study, we sought to evaluate a novel version of this task, utilizing scenes that might emphasize the role of the hippocampus in contextual and spatial processing. In addition, we investigated whether, by utilizing two stimulus classes (scenes and objects), we could also interrogate the roles of the PRC and PHC in aging. Thus, we evaluated differential contributions to these tasks by relating performance on objects versus scenes to volumes of the hippocampus and surrounding medial temporal lobe structures. We found that while there was an age-related impairment on lure discrimination performance for both objects and scenes, relationships to brain volumes and other measure of memory performance were stronger when using objects. In particular, lure discrimination performance for objects showed a positive relationship with the volume of the hippocampus, specifically the combined dentate gyrus (DG) and CA3 subfields, and the subiculum. We conclude that though using scenes was effective in detecting age-related lure discrimination impairments, it does not provide as strong a brain-behavior relationship as using objects.
Collapse
Affiliation(s)
- Shauna M Stark
- Department of Neurobiology and Behavior, University of California, Irvine, United States
| | - Craig E L Stark
- Department of Neurobiology and Behavior, University of California, Irvine, United States; Center for the Neurobiology of Learning and Memory, University of California, Irvine, United States.
| |
Collapse
|
24
|
van den Honert RN, McCarthy G, Johnson MK. Holistic versus feature-based binding in the medial temporal lobe. Cortex 2017; 91:56-66. [PMID: 28215821 DOI: 10.1016/j.cortex.2017.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/27/2016] [Accepted: 01/16/2017] [Indexed: 11/24/2022]
Abstract
A central question for cognitive neuroscience is how feature-combinations that give rise to episodic/source memories are encoded in the brain. Although there is much evidence that the hippocampus (HIP) is involved in feature binding, and some evidence that other brain regions are as well, there is relatively little evidence about the nature of the resulting representations in different brain regions. We used multivoxel pattern analysis (MVPA) to investigate how feature combinations might be represented, contrasting two possibilities, feature-based versus holistic. Participants viewed stimuli that were composed of three source features - a person (face or body), a scene (indoor or outdoor), and an object (bike or luggage) - which were combined to make eight unique stimulus identities. We reasoned that regions that can classify the eight identities (a multiclass classification) but not the individual features (a binary classification) likely have a holistic representation of each identity. In contrast, regions that can classify the eight identities and can classify each feature are likely to contain feature-based representations of these identities. To further probe the extent of feature-based or holistic classification in each region, we developed and validated a novel approach that directly compares binary and multiclass classification. We found clear evidence for holistic representation in the parahippocampal cortex (PHC), consistent with theories that posit that pattern-separation-like binding mechanisms are not unique to the HIP. Further clarifying the mechanisms of feature binding should benefit from systematic comparisons of multi-feature representations and whether they vary with task, type of stimulus, and/or experience.
Collapse
Affiliation(s)
| | - Gregory McCarthy
- Department of Psychology, Yale University, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Marcia K Johnson
- Department of Psychology, Yale University, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| |
Collapse
|
25
|
Liang JC, Preston AR. Medial temporal lobe reinstatement of content-specific details predicts source memory. Cortex 2016; 91:67-78. [PMID: 28029355 DOI: 10.1016/j.cortex.2016.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/09/2016] [Accepted: 09/16/2016] [Indexed: 11/17/2022]
Abstract
Leading theories propose that when remembering past events, medial temporal lobe (MTL) structures reinstate the neural patterns that were active when those events were initially encoded. Accurate reinstatement is hypothesized to support detailed recollection of memories, including their source. While several studies have linked cortical reinstatement to successful retrieval, indexing reinstatement within the MTL network and its relationship to memory performance has proved challenging. Here, we addressed this gap in knowledge by having participants perform an incidental encoding task, during which they visualized people, places, and objects in response to adjective cues. During a surprise memory test, participants saw studied and novel adjectives and indicated the imagery task they performed for each adjective. A multivariate pattern classifier was trained to discriminate the imagery tasks based on functional magnetic resonance imaging (fMRI) responses from hippocampus and MTL cortex at encoding. The classifier was then tested on MTL patterns during the source memory task. We found that MTL encoding patterns were reinstated during successful source retrieval. Moreover, when participants made source misattributions, errors were predicted by reinstatement of incorrect source content in MTL cortex. We further observed a gradient of content-specific reinstatement along the anterior-posterior axis of hippocampus and MTL cortex. Within anterior hippocampus, we found that reinstatement of person content was related to source memory accuracy, whereas reinstatement of place information across the entire hippocampal axis predicted correct source judgments. Content-specific reinstatement was also graded across MTL cortex, with PRc patterns evincing reactivation of people and more posterior regions, including PHc, showing evidence for reinstatement of places and objects. Collectively, these findings provide key evidence that source recollection relies on reinstatement of past experience within the MTL network.
Collapse
Affiliation(s)
- Jackson C Liang
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Alison R Preston
- Department of Psychology, Austin, TX, USA; Department of Neuroscience, Austin, TX, USA; Center for Learning & Memory, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
26
|
South M, Stephenson KG, Nielson CA, Maisel M, Top DN, Kirwan CB. Overactive Pattern Separation Memory Associated with Negative Emotionality in Adults Diagnosed with Autism Spectrum Disorder. J Autism Dev Disord 2016; 45:3458-67. [PMID: 26231206 DOI: 10.1007/s10803-015-2547-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Bowler et al. (Journal of Autism and Developmental Disorders 44(9):2355-2362. doi:10.1007/s10803-014-2105-y, 2014) have suggested that a specific memory impairment in autism spectrum disorders (ASD) arises from hippocampal failure to consolidate multiple related pieces of information. Twenty-four adults diagnosed with ASD and matched healthy controls completed a pattern separation memory task that is known to critically depend on hippocampal involvement. They additionally completed questionnaires regarding anxiety, depression, and behavioral motivation. Specific deficits in pattern separation were significantly correlated with negative emotionality; the best predictor of memory deficit was from a measure of achievement motivation that has also been associated with hyperactivity and impulsivity. In the context of impaired emotion regulation in ASD, there is a need for integrated cognitive, affective, and neural systems approaches to build targeted interventions.
Collapse
Affiliation(s)
- M South
- Department of Psychology, Brigham Young University, 245 TLRB, Provo, UT, 84602, USA. .,Neuroscience Center, Brigham Young University, Provo, UT, USA.
| | - K G Stephenson
- Department of Psychology, Brigham Young University, 245 TLRB, Provo, UT, 84602, USA
| | - C A Nielson
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - M Maisel
- Department of Psychology, Brigham Young University, 245 TLRB, Provo, UT, 84602, USA
| | - D N Top
- Department of Psychology, Brigham Young University, 245 TLRB, Provo, UT, 84602, USA
| | - C B Kirwan
- Department of Psychology, Brigham Young University, 245 TLRB, Provo, UT, 84602, USA.,Neuroscience Center, Brigham Young University, Provo, UT, USA
| |
Collapse
|
27
|
Abstract
UNLABELLED Categorization allows organisms to efficiently extract relevant information from a diverse environment. Because of the multidimensional nature of odor space, this ability is particularly important for the olfactory system. However, categorization relies on experience, and the processes by which the human brain forms categorical representations about new odor percepts are currently unclear. Here we used olfactory psychophysics and multivariate fMRI techniques, in the context of a paired-associates learning task, to examine the emergence of novel odor category representations in the human brain. We found that learning between novel odors and visual category information induces a perceptual reorganization of those odors, in parallel with the emergence of odor category-specific ensemble patterns in perirhinal, orbitofrontal, piriform, and insular cortices. Critically, the learning-induced pattern effects in orbitofrontal and perirhinal cortex predicted the magnitude of categorical learning and perceptual plasticity. The formation of de novo category-specific representations in olfactory and limbic brain regions suggests that such ensemble patterns subserve the development of perceptual classes of information, and imply that these patterns are instrumental to the brain's capacity for odor categorization. SIGNIFICANCE STATEMENT How the human brain assigns novel odors to perceptual classes and categories is poorly understood. We combined an olfactory-visual paired-associates task with multivariate pattern-based fMRI approaches to investigate the de novo formation of odor category representations within the human brain. The identification of emergent odor category codes within the perirhinal, piriform, orbitofrontal, and insular cortices suggests that these regions can integrate multimodal sensory input to shape category-specific olfactory representations for novel odors, and may ultimately play an important role in assembling each individual's semantic knowledge base of the olfactory world.
Collapse
|
28
|
Liu KY, Gould RL, Coulson MC, Ward EV, Howard RJ. Tests of pattern separation and pattern completion in humans-A systematic review. Hippocampus 2016; 26:705-17. [DOI: 10.1002/hipo.22561] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Kathy Y. Liu
- Department of Old Age Psychiatry; Institute of Psychiatry, Psychology and Neuroscience, King's College London; London United Kingdom
| | - Rebecca L. Gould
- Department of Old Age Psychiatry; Institute of Psychiatry, Psychology and Neuroscience, King's College London; London United Kingdom
| | - Mark C. Coulson
- Department of Psychology; School of Science and Technology, Middlesex University London; London United Kingdom
| | - Emma V. Ward
- Department of Psychology; School of Science and Technology, Middlesex University London; London United Kingdom
| | - Robert J. Howard
- Department of Old Age Psychiatry; Institute of Psychiatry, Psychology and Neuroscience, King's College London; London United Kingdom
- Division of Psychiatry; University College London; London United Kingdom
| |
Collapse
|
29
|
Loh E, Kumaran D, Koster R, Berron D, Dolan R, Duzel E. Context-specific activation of hippocampus and SN/VTA by reward is related to enhanced long-term memory for embedded objects. Neurobiol Learn Mem 2015; 134 Pt A:65-77. [PMID: 26708279 PMCID: PMC5045461 DOI: 10.1016/j.nlm.2015.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 11/12/2015] [Accepted: 11/27/2015] [Indexed: 12/03/2022]
Abstract
We tested if a rewarding context improved memory for embedded objects. Pattern-separation demands associated with context discrimination were manipulated. Contextual reward improved object memory in the similar condition alone. Improved memory was linked to context-related activation of the DG/CA3 and SN/VTA. SN/VTA engagement may determine whether memories are improved by contextual reward.
Animal studies indicate that hippocampal representations of environmental context modulate reward-related processing in the substantia nigra and ventral tegmental area (SN/VTA), a major origin of dopamine in the brain. Using functional magnetic resonance imaging (fMRI) in humans, we investigated the neural specificity of context-reward associations under conditions where the presence of perceptually similar neutral contexts imposed high demands on a putative hippocampal function, pattern separation. The design also allowed us to investigate how contextual reward enhances long-term memory for embedded neutral objects. SN/VTA activity underpinned specific context-reward associations in the face of perceptual similarity. A reward-related enhancement of long-term memory was restricted to the condition where the rewarding and the neutral contexts were perceptually similar, and in turn was linked to co-activation of the hippocampus (subfield DG/CA3) and SN/VTA. Thus, an ability of contextual reward to enhance memory for focal objects is closely linked to context-related engagement of hippocampal–SN/VTA circuitry.
Collapse
Affiliation(s)
- Eleanor Loh
- Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, United Kingdom.
| | - Dharshan Kumaran
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, United Kingdom
| | - Raphael Koster
- Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, United Kingdom; Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, United Kingdom
| | - David Berron
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Ray Dolan
- Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, United Kingdom; Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, United Kingdom; Berlin School of Mind and Brain, Humboldt University, 10099 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London WC1B 5EH, United Kingdom
| | - Emrah Duzel
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, United Kingdom; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
30
|
Decisions about the past are guided by reinstatement of specific memories in the hippocampus and perirhinal cortex. Neuroimage 2015; 127:144-157. [PMID: 26702775 DOI: 10.1016/j.neuroimage.2015.12.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 11/22/2022] Open
Abstract
When faced with a new challenge, we often reflect on related past experiences to guide our behavior. The ability to retrieve memories that overlap with current experience, a process known as pattern completion, is theorized as a critical function of the hippocampus. Although this view has influenced research for decades, there is little empirical support for hippocampal pattern completion to individual memory elements and its influence on behavior. We used pattern analysis of brain activity measured with functional magnetic resonance imaging to demonstrate that specific elements of past experiences are reinstated in the hippocampus, as well as perirhinal cortex (PRC), when making decisions about those experiences. Linking neural measures of specific memory reinstatement in the hippocampus and PRC to behavior with computational modeling revealed that reinstatement predicts the speed of memory-based decisions. Moreover, hippocampal activation during retrieval was selectively coupled to regions of occipito-temporal cortex that showed content-specific item reinstatement. These results provide evidence for hippocampal pattern completion and its role in the mechanisms of decision making.
Collapse
|
31
|
Martin CB, Cowell RA, Gribble PL, Wright J, Köhler S. Distributed category-specific recognition-memory signals in human perirhinal cortex. Hippocampus 2015; 26:423-36. [PMID: 26385759 DOI: 10.1002/hipo.22531] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2015] [Indexed: 01/24/2023]
Abstract
Evidence from a large body of research suggests that perirhinal cortex (PrC), which interfaces the medial temporal lobe with the ventral visual pathway for object identification, plays a critical role in item-based recognition memory. The precise manner in which PrC codes for the prior occurrence of objects, however, remains poorly understood. In the present functional magnetic resonance imaging (fMRI) study, we used multivoxel pattern analyses to examine whether the prior occurrence of faces is coded by distributed patterns of PrC activity that consist of voxels with decreases as well as increases in signal. We also investigated whether pertinent voxels are preferentially tuned to the specific object category to which judged stimuli belong. We found that, when no a priori constraints were imposed on the direction of signal change, activity patterns that allowed for successful classification of recognition-memory decisions included some voxels with decreases and others with increases in signal in association with perceived prior occurrence. Moreover, successful classification was obtained in the absence of a mean difference in activity across the set of voxels in these patterns. Critically, we observed a positive relationship between classifier accuracy and behavioral performance across participants. Additional analyses revealed that voxels carrying diagnostic information for classification of memory decisions showed category specificity in their tuning for faces when probed with an independent functional localizer in a nonmnemonic task context. These voxels were spatially distributed in PrC, and extended beyond the contiguous voxel clusters previously described as the anterior temporal face patch. Our findings provide support for proposals, recently raised in the neurophysiological literature, that the prior occurrence of objects is coded by distributed PrC representations. They also suggest that the stimulus category to which an item belongs shapes the organization of these distributed representations.
Collapse
Affiliation(s)
- Chris B Martin
- Department of Psychology, The Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Rosemary A Cowell
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Paul L Gribble
- Department of Psychology, The Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Jessey Wright
- Rotman Institute of Philosophy, Western University, London, Ontario, Canada.,Department of Philosophy, Western University, London, Ontario, Canada
| | - Stefan Köhler
- Department of Psychology, The Brain and Mind Institute, Western University, London, Ontario, Canada.,Baycrest Centre, Rotman Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Abstract
Neural circuitry in the medial temporal lobe (MTL) is critically involved in mental time travel, which involves the vivid retrieval of the details of past experience. Neuroscientific theories propose that the MTL supports memory of the past by retrieving previously encoded episodic information, as well as by reactivating a temporal code specifying the position of a particular event within an episode. However, the neural computations supporting these abilities are underspecified. To test hypotheses regarding the computational mechanisms supported by different MTL subregions during mental time travel, we developed a computational model that linked a blood oxygenation level-dependent signal to cognitive operations, allowing us to predict human performance in a memory search task. Activity in the posterior MTL, including parahippocampal cortex, reflected how strongly one reactivates the temporal context of a retrieved memory, allowing the model to predict whether the next memory will correspond to a nearby moment in the study episode. A signal in the anterior MTL, including perirhinal cortex, indicated the successful retrieval of list items, without providing information regarding temporal organization. A hippocampal signal reflected both processes, consistent with theories that this region binds item and context information together to form episodic memories. These findings provide evidence for modern theories that describe complementary roles of the hippocampus and surrounding parahippocampal and perirhinal cortices during the retrieval of episodic memories, shaping how humans revisit the past.
Collapse
|
33
|
Simó M, Ripollés P, Fuentemilla L, Vaquero L, Bruna J, Rodríguez-Fornells A. Studying memory encoding to promote reliable engagement of the medial temporal lobe at the single-subject level. PLoS One 2015; 10:e0119159. [PMID: 25803273 PMCID: PMC4372361 DOI: 10.1371/journal.pone.0119159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 01/11/2015] [Indexed: 11/19/2022] Open
Abstract
The medial temporal lobe (MTL)—comprising hippocampus and the surrounding neocortical regions—is a targeted brain area sensitive to several neurological diseases. Although functional magnetic resonance imaging (fMRI) has been widely used to assess brain functional abnormalities, detecting MTL activation has been technically challenging. The aim of our study was to provide an fMRI paradigm that reliably activates MTL regions at the individual level, thus providing a useful tool for future research in clinical memory-related studies. Twenty young healthy adults underwent an event-related fMRI study consisting of three encoding conditions: word-pairs, face-name associations and complex visual scenes. A region-of-interest analysis at the individual level comparing novel and repeated stimuli independently for each task was performed. The results of this analysis yielded activations in the hippocampal and parahippocampal regions in most of the participants. Specifically, 95% and 100% of participants showed significant activations in the left hippocampus during the face-name encoding and in the right parahippocampus, respectively, during scene encoding. Additionally, a whole brain analysis, also comparing novel versus repeated stimuli at the group level, showed mainly left frontal activation during the word task. In this group analysis, the face-name association engaged the HP and fusiform gyri bilaterally, along with the left inferior frontal gyrus, and the complex visual scenes activated mainly the parahippocampus and hippocampus bilaterally. In sum, our task design represents a rapid and reliable manner to study and explore MTL activity at the individual level, thus providing a useful tool for future research in clinical memory-related fMRI studies.
Collapse
Affiliation(s)
- Marta Simó
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
- Neuro-Oncology Unit, Hospital Universitari de Bellvitge (HUB) and Hospital Duran i Reynals (Institut Català d’Oncologia), L’Hospitalet de Llobregat, Barcelona, Spain
- * E-mail:
| | - Pablo Ripollés
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Basic Psychology, Bellvitge Campus, University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Lluís Fuentemilla
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Basic Psychology, Bellvitge Campus, University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Lucía Vaquero
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Basic Psychology, Bellvitge Campus, University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Bruna
- Neuro-Oncology Unit, Hospital Universitari de Bellvitge (HUB) and Hospital Duran i Reynals (Institut Català d’Oncologia), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Antoni Rodríguez-Fornells
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Basic Psychology, Bellvitge Campus, University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, ICREA, Barcelona, Spain
| |
Collapse
|
34
|
Ritchey M, Libby LA, Ranganath C. Cortico-hippocampal systems involved in memory and cognition. PROGRESS IN BRAIN RESEARCH 2015; 219:45-64. [DOI: 10.1016/bs.pbr.2015.04.001] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
35
|
How cognitive theory guides neuroscience. Cognition 2014; 135:14-20. [PMID: 25496988 DOI: 10.1016/j.cognition.2014.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 12/29/2022]
Abstract
The field of cognitive science studies latent, unobservable cognitive processes that generate observable behaviors. Similarly, cognitive neuroscience attempts to link latent cognitive processes with the neural mechanisms that generate them. Although neural processes are partially observable (with imaging and electrophysiology), it would be a mistake to 'skip' the cognitive level and pursue a purely neuroscientific enterprise to studying behavior. In fact, virtually all of the major advances in understanding the neural basis of behavior over the last century have relied fundamentally on principles of cognition for guiding the appropriate measurements, manipulations, tasks, and interpretations. We provide several examples from the domains of episodic memory, working memory and cognitive control, and decision making in which cognitive theorizing and prior experimentation has been essential in guiding neuroscientific investigations and discoveries.
Collapse
|