1
|
Brandner S, Schroeter S, Çalışkan G, Salar S, Kobow K, Coras R, Blümcke I, Hamer H, Schwarz M, Buchfelder M, Maslarova A. Glucocorticoid modulation of synaptic plasticity in the human temporal cortex of epilepsy patients: Does chronic stress contribute to memory impairment? Epilepsia 2021; 63:209-221. [PMID: 34687218 DOI: 10.1111/epi.17107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Memory impairment is common in patients with temporal lobe epilepsy and seriously affects life quality. Chronic stress is a recognized cofactor in epilepsy and can also impair memory function. Furthermore, increased cortisol levels have been reported in epilepsy patients. Animal models have suggested that aggravating effects of stress on memory and synaptic plasticity were mediated via glucocorticoids. The aim of this study was, therefore, to investigate the effect of glucocorticoid receptor (GR) modulation on synaptic plasticity in the human cortex of epilepsy patients. METHODS We performed field potential recordings in acute slices from the temporal neocortex of patients who underwent surgery for drug-resistant temporal lobe epilepsy. Synaptic plasticity was investigated by a theta-burst stimulation (TBS) protocol for induction of long-term potentiation (LTP) in the presence of GR modulators. RESULTS LTP was impaired in temporal cortex from epilepsy patients. Pretreatment of the slices with the GR antagonist mifepristone (RU486) improved LTP induction, suggesting that LTP impairment was due to baseline GR activation in the human cortex. The highly potent GR agonist dexamethasone additionally weakened synaptic strength in an activity-dependent manner when applied after TBS. SIGNIFICANCE Our results show a direct negative glucocorticoid effect on synaptic potentiation in the human cortex and imply chronic activation of GRs. Chronic stress may therefore contribute to memory impairment in patients with temporal lobe epilepsy. Furthermore, the activity-dependent acute inhibitory effect of dexamethasone suggests a mechanism of synaptic downscaling by which postictally increased cortisol levels may prevent pathologic plasticity upon seizures.
Collapse
Affiliation(s)
- Sebastian Brandner
- Department of Neurosurgery, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Sarah Schroeter
- Department of Neurosurgery, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany.,Department of Orthopedic, Trauma, and Hand Surgery, Osnabrück Clinic, Osnabrück, Germany
| | - Gürsel Çalışkan
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Seda Salar
- Department of Psychiatry and Psychotherapy, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Katja Kobow
- Department of Neuropathology, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Roland Coras
- Department of Neuropathology, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Hajo Hamer
- Department of Neurology, Epilepsy Center, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Schwarz
- Department of Neurology, Epilepsy Center, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Buchfelder
- Department of Neurosurgery, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Anna Maslarova
- Department of Neurosurgery, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
2
|
Impact of Stress on Epilepsy: Focus on Neuroinflammation-A Mini Review. Int J Mol Sci 2021; 22:ijms22084061. [PMID: 33920037 PMCID: PMC8071059 DOI: 10.3390/ijms22084061] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 02/08/2023] Open
Abstract
Epilepsy, one of the most common neurological disorders worldwide, is characterized by recurrent seizures and subsequent brain damage. Despite strong evidence supporting a deleterious impact on seizure occurrence and outcome severity, stress is an overlooked component in people with epilepsy. With regard to stressor duration and timing, acute stress can be protective in epileptogenesis, while chronic stress often promotes seizure occurrence in epilepsy patients. Preclinical research suggests that chronic stress promotes neuroinflammation and leads to a depressive state. Depression is the most common psychiatric comorbidity in people with epilepsy, resulting in a poor quality of life. Here, we summarize studies investigating acute and chronic stress as a seizure trigger and an important factor that worsens epilepsy outcomes and psychiatric comorbidities. Mechanistic insight into the impact of stress on epilepsy may create a window of opportunity for future interventions targeting neuroinflammation-related disorders.
Collapse
|
3
|
Ben Shimon M, Shavit-Stein E, Altman K, Pick CG, Maggio N. Thrombin as Key Mediator of Seizure Development Following Traumatic Brain Injury. Front Pharmacol 2020; 10:1532. [PMID: 32009953 PMCID: PMC6971217 DOI: 10.3389/fphar.2019.01532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) commonly leads to development of seizures, accounting for approximately 20% of newly diagnosed epilepsy. Despite the high clinical significance, the mechanisms underlying the development of posttraumatic seizures (PTS) remain unclear, compromising appropriate management of these patients. Accumulating evidence suggest that thrombin, the main serine protease of the coagulation cascade, is involved in PTS genesis by mediating inflammation and hyperexcitability following blood brain barrier breakdown. In order to further understand the role of thrombin in PTS, we generated a combined mild TBI (mTBI) and status epilepticus mice model, by injecting pilocarpine to mice previously submitted to head injury. Interestingly, mTBI was able to reduce seizure onset in the pilocarpine animal model as well as increase the death rate in the treated animals. In turn, pilocarpine worsened spatial orientation of mTBI treated mice. Finally, thrombin activity as well as the expression of IL1-β and TNF-α was significantly increased in the mTBI-pilocarpine treated animals. In conclusion, these observations indicate a synergism between thrombin and mTBI in lowering seizure in the pilocarpine model and possibly aggravating inflammation. We believe that these results will improve the understanding of PTS pathophysiology and contribute to the development of more targeted therapies in the future.
Collapse
Affiliation(s)
- Marina Ben Shimon
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Keren Altman
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
4
|
Cortisol levels and seizures in adults with epilepsy: A systematic review. Neurosci Biobehav Rev 2019; 103:216-229. [PMID: 31129236 DOI: 10.1016/j.neubiorev.2019.05.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
Abstract
Stress has been suggested as a trigger factor for seizures in epilepsy patients, but little is known about cortisol levels, as indicators of stress, in adults with epilepsy. This systematic review summarizes the evidence on this topic. Following PRISMA guidelines, 38 articles were selected: 14 analyzing basal cortisol levels, eight examining antiepileptic drugs (AEDs) effects, 13 focused on seizure effects, and three examining stress. Higher basal cortisol levels were found in patients than in healthy people in studies with the most homogeneous samples (45% of 38 total studies). Despite heterogeneous results associated with AEDs, seizures were related to increases in cortisol levels in 77% of 38 total studies. The only study with acute stress administration found higher cortisol reactivity in epilepsy than in healthy controls. In studies using self-reported stress, high seizure frequency was related to increased cortisol levels and lower functional brain connectivity. Findings suggest that epilepsy could be considered a chronic stress model. The potential sensitizing role of accumulative seizures and issues for future research are discussed.
Collapse
|
5
|
Maggio N, Shavit Stein E, Segal M. Cannabidiol Regulates Long Term Potentiation Following Status Epilepticus: Mediation by Calcium Stores and Serotonin. Front Mol Neurosci 2018; 11:32. [PMID: 29467619 PMCID: PMC5808210 DOI: 10.3389/fnmol.2018.00032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/24/2018] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a devastating disease, with cognitive and emotional consequences that are not curable. In recent years, it became apparent that cannabinoids help patients to cope with epilepsy. We have studied the effects of cannabidiol (CBD) on the ability to produce long term potentiation (LTP) in stratum radiatum of CA1 region of the mouse hippocampus. Exposure to seizure-producing pilocarpine reduced the ability to generate LTP in the slice. Pre-exposure to CBD prevented this effect of pilocarpine. Furthermore, CBD caused a marked increase in ability to generate LTP, an effect that was blocked by calcium store antagonists as well as by a reduction in serotonin tone. Serotonin, possibly acting at a 5HT1A receptor, or fenfluramine (FFA), which causes release of serotonin from its native terminals, mimicked the effect of CBD. It is proposed that CBD enhances non-NMDA LTP in the slice by facilitating release of serotonin from terminals, consequently ameliorating the detrimental effects of pilocarpine.
Collapse
Affiliation(s)
- Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Shavit Stein
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Menahem Segal
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Shavit Stein E, Itsekson Hayosh Z, Vlachos A, Maggio N. Stress and Corticosteroids Modulate Muscarinic Long Term Potentiation (mLTP) in the Hippocampus. Front Cell Neurosci 2017; 11:299. [PMID: 29033789 PMCID: PMC5627013 DOI: 10.3389/fncel.2017.00299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/08/2017] [Indexed: 12/16/2022] Open
Abstract
Stress influences synaptic plasticity, learning and memory in a steroid hormone receptor dependent manner. Based on these findings it has been proposed that stress could be a major risk factor for the development of cognitive decline and dementia. Interestingly, evidence has been provided that stress also affects muscarinic, i.e., acetylcholine (ACh)-mediated neurotransmission. To learn more about the impact of stress and steroids on synaptic plasticity, in this study, we investigated the effects of stress on muscarinic long term potentiation (mLTP). We report that multiple, unpredictable exposure to stress depresses carbachol (0.5 μM)-induced mLTP, while this effect of stress is not observed in hippocampal slices prepared from mice exposed only to a single stressful procedure. Furthermore, we demonstrate that activation of distinct steroid hormone receptors is involved in stress-mediated alterations of mLTP. Activation of mineralocorticoid receptors (MR) promotes mLTP, while glucocorticoid receptor (GR) activity impairs mLTP. These effects of multiple unpredictable stress on mLTP are long-lasting since they are detected even two weeks after the last stressful experience. Thus, multiple unpredictable events rather than a single stressful experience affect mLTP in a steroid hormone receptor dependent manner, suggesting that chronic unpredictable stress can lead to lasting alterations in hippocampal cholinergic plasticity.
Collapse
Affiliation(s)
- Efrat Shavit Stein
- Department of Neurology, The Chaim Sheba Medical Center at Tel HashomerRamat Gan, Israel
| | - Ze'Ev Itsekson Hayosh
- Department of Neurology, The Chaim Sheba Medical Center at Tel HashomerRamat Gan, Israel
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgFreiburg, Germany
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center at Tel HashomerRamat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler School of Medicine, Tel Aviv UniversityTel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv UniversityTel Aviv, Israel.,Talpiot Medical Leadership Program, The Chaim Sheba Medical Center at Tel HashomerRamat Gan, Israel
| |
Collapse
|