1
|
Sheikhshoaee S, Taheri F, Esmaeilpour K, Firouzeh N, Fard SRN. Aggravation of cognitive impairments in the valproic acid-induced animal model of autism in BALB/c mice infected with Toxoplasma gondii. Int J Dev Neurosci 2024; 84:64-74. [PMID: 37960995 DOI: 10.1002/jdn.10308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
PURPOSE Toxoplasmosis is a disease caused by infection with a type of coccidial protozoan parasite called Toxoplasma gondii. The relationship between toxoplasmosis and cognitive disorders in neurodegenerative diseases has been proven. There is also evidence that children born to Toxoplasma-infected mothers are more likely to develop autism. METHODS In the present study, Toxoplasma-infected pregnant BALB/c mice were given valproic acid to induce autism in their male offspring, and their social behaviors, learning, and memory were examined. Chronic toxoplasmosis was established in BALB/c mice by intraperitoneal injection of cyst form of T. gondii. To induce autism, 600 mg/kg of valproic acid was injected intraperitoneally into mice on the 12.5th day of pregnancy. The behavioral experiments, such as social interaction, novel object recognition, and passive avoidance tasks, were performed on male offspring at 50 days. RESULTS Toxoplasma and valproic acid during the embryonic period caused social communication deficits and disrupted recognition memory and avoidance memory in offspring. Our findings showed that administering valproic acid to Toxoplasma-infected mothers exacerbates cognitive disorders in their offspring.
Collapse
Affiliation(s)
- Saeed Sheikhshoaee
- Department of Pathobiology, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Farahnaz Taheri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Physics and Astronomy department, University of Waterloo, Waterloo, Ontario, Canada
| | - Nima Firouzeh
- Vector-Borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Saeid Reza Nourollahi Fard
- Department of Pathobiology, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
2
|
Taheri F, Esmaeilpour K, Sepehri G, Sheibani V, Shekari MA. Amelioration of cognition impairments in the valproic acid-induced animal model of autism by ciproxifan, a histamine H3-receptor antagonist. Behav Pharmacol 2023; 34:179-196. [PMID: 37171458 DOI: 10.1097/fbp.0000000000000720] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Autism spectrum disorder is a neurodevelopmental disorder characterized by deficits in social communication and repetitive behavior. Many studies show that the number of cognitive impairmentscan be reduced by antagonists of the histamine H3 receptor (H3R). In this study, the effects of ciproxifan (CPX) (1 and 3 mg/kg, intraperitoneally) on cognitive impairments in rat pups exposed to valproic acid (VPA) (600 mg/kg, intraperitoneally) wereexamined on postnatal day 48-50 (PND 48-50) using marble-burying task (MBT), open field, novel object recognition (NOR), and Passive avoidance tasks. Famotidine (FAM) (10, 20, and 40 mg/kg, intraperitoneally) was also used to determine whether histaminergic neurotransmission exerts its procognitive effects via H2 receptors (H2Rs). Furthermore, a histological investigation was conducted to assess the degree of degeneration of hippocampal neurons. The results revealed that repetitive behaviors increased in VPA-exposed rat offspring in the MBT. In addition, VPA-exposed rat offspring exhibited more anxiety-like behaviors in the open field than saline-treated rats. It was found that VPA-exposed rat offspring showed memory deficits in NOR and Passive avoidance tasks. Our results indicated that 3 mg/kg CPX improved cognitive impairments induced by VPA, while 20 mg/kg FAM attenuated them. We concluded that 3 mg/kg CPX improved VPA-induced cognitive impairments through H3Rs. The histological assessment showed that the number of CA1 neurons decreased in the VPA-exposed rat offspring compared to the saline-exposed rat offspring, but this decrease was not significant. The histological assessment also revealed no significant differences in CA1 neurons in VPA-exposed rat offspring compared to saline-exposed rat offspring. However, CPX3 increased the number of CA1 neurons in the VPA + CPX3 group compared to the VPA + Saline group, but this increase was not significant. This study showed that rats prenatally exposed to VPA exhibit cognitive impairments in the MBT, open field, NOR, and Passive avoidance tests, which are ameliorated by CPX treatment on PND 48-50. In addition, morphological investigations showed that VPA treatment did not lead to neuronal degeneration in the CA1 subfield of the hippocampus in rat pups.
Collapse
Affiliation(s)
- Farahnaz Taheri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Physics and Astronomy Department, University of Waterloo, Waterloo, Ontario, Canada
| | - Gholamreza Sepehri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Asadi Shekari
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Chemogenetic rectification of the inhibitory tone onto hippocampal neurons reverts autistic-like traits and normalizes local expression of estrogen receptors in the Ambra1+/- mouse model of female autism. Transl Psychiatry 2023; 13:63. [PMID: 36804922 PMCID: PMC9941573 DOI: 10.1038/s41398-023-02357-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/22/2023] Open
Abstract
Female, but not male, mice with haploinsufficiency for the proautophagic Ambra1 gene show an autistic-like phenotype associated with hippocampal circuits dysfunctions which include loss of parvalbuminergic interneurons (PV-IN), decrease in the inhibition/excitation ratio, and abundance of immature dendritic spines on CA1 pyramidal neurons. Given the paucity of data relating to female autism, we exploit the Ambra1+/- female model to investigate whether rectifying the inhibitory input onto hippocampal principal neurons (PN) rescues their ASD-like phenotype at both the systems and circuits level. Moreover, being the autistic phenotype exclusively observed in the female mice, we control the effect of the mutation and treatment on hippocampal expression of estrogen receptors (ER). Here we show that excitatory DREADDs injected in PV_Cre Ambra1+/- females augment the inhibitory input onto CA1 principal neurons (PN), rescue their social and attentional impairments, and normalize dendritic spine abnormalities and ER expression in the hippocampus. By providing the first evidence that hippocampal excitability jointly controls autistic-like traits and ER in a model of female autism, our findings identify an autophagy deficiency-related mechanism of hippocampal neural and hormonal dysregulation which opens novel perspectives for treatments specifically designed for autistic females.
Collapse
|
4
|
Sungur AÖ, Zeitouny C, Gabele L, Metz I, Wöhr M, Michaelsen-Preusse K, Rust MB. Transient reduction in dendritic spine density in brain-specific profilin1 mutant mice is associated with behavioral deficits. Front Mol Neurosci 2022; 15:952782. [PMID: 35992199 PMCID: PMC9381693 DOI: 10.3389/fnmol.2022.952782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/13/2022] [Indexed: 01/16/2023] Open
Abstract
Actin filaments form the backbone of dendritic spines, the postsynaptic compartment of most excitatory synapses in the brain. Spine density changes affect brain function, and postsynaptic actin defects have been implicated in various neuropathies. It is mandatory to identify the actin regulators that control spine density. Based on previous studies, we hypothesized a role for the actin regulator profilin1 in spine formation. We report reduced hippocampal spine density in juvenile profilin1 mutant mice together with impairments in memory formation and reduced ultrasonic communication during active social behavior. Our results, therefore, underline a previously suggested function of profilin1 in controlling spine formation and behavior in juvenile mice.
Collapse
Affiliation(s)
- A. Özge Sungur
- Molecular Neurobiology Group, Institute of Physiological Chemistry, University of Marburg, Marburg, Germany
- Behavioral Neuroscience, Experimental and Biological Psychology, University of Marburg, Marburg, Germany
| | - Caroline Zeitouny
- Department of Cellular Neurobiology, Technical University (TU) Braunschweig, Braunschweig, Germany
| | - Lea Gabele
- Department of Cellular Neurobiology, Technical University (TU) Braunschweig, Braunschweig, Germany
| | - Isabell Metz
- Molecular Neurobiology Group, Institute of Physiological Chemistry, University of Marburg, Marburg, Germany
- Deutsche Forschungsgemeinschaft (German Research Foundation) (DFG) Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, Graduiertenkolleg (Gradeschool) (GRK) 2213, University of Marburg, Marburg, Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, University of Marburg, Marburg, Germany
- Social and Affective Neuroscience Research Group, Laboratory of Biological Psychology, Research Unit Brain and Cognition, Faculty of Psychology and Educational Sciences, Katholeike Universiteit (KU) Leuven, Leuven, Belgium
- Leuven Brain Institute, Katholeike Universiteit (KU) Leuven, Leuven, Belgium
| | - Kristin Michaelsen-Preusse
- Department of Cellular Neurobiology, Technical University (TU) Braunschweig, Braunschweig, Germany
- Kristin Michaelsen-Preusse,
| | - Marco B. Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, University of Marburg, Marburg, Germany
- Deutsche Forschungsgemeinschaft (German Research Foundation) (DFG) Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, Graduiertenkolleg (Gradeschool) (GRK) 2213, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, Marburg, Germany
- *Correspondence: Marco B. Rust,
| |
Collapse
|
5
|
Leopold AV, Thankachan S, Yang C, Gerashchenko D, Verkhusha VV. A general approach for engineering RTKs optically controlled with far-red light. Nat Methods 2022; 19:871-880. [PMID: 35681062 DOI: 10.1038/s41592-022-01517-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 05/06/2022] [Indexed: 11/09/2022]
Abstract
Regulation of receptor tyrosine kinase (RTK) activity is necessary for studying cell signaling pathways in health and disease. We developed a generalized approach for engineering RTKs optically controlled with far-red light. We targeted the bacterial phytochrome DrBphP to the cell surface and allowed its light-induced conformational changes to be transmitted across the plasma membrane via transmembrane helices to intracellular RTK domains. Systematic optimization of these constructs has resulted in optically regulated epidermal growth factor receptor, HER2, TrkA, TrkB, FGFR1, IR1, cKIT and cMet, named eDrRTKs. eDrRTKs induced downstream signaling in mammalian cells in tens of seconds. The ability to activate eDrRTKs with far-red light enabled spectral multiplexing with fluorescent probes operating in a shorter spectral range, allowing for all-optical assays. We validated eDrTrkB performance in mice and found that minimally invasive stimulation in the neocortex with penetrating via skull far-red light-induced neural activity, early immediate gene expression and affected sleep patterns.
Collapse
Affiliation(s)
- Anna V Leopold
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Chun Yang
- Department of Psychiatry, Harvard Medical School, West Roxbury, MA, USA
| | | | - Vladislav V Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
6
|
Wöhr M, Fong WM, Janas JA, Mall M, Thome C, Vangipuram M, Meng L, Südhof TC, Wernig M. Myt1l haploinsufficiency leads to obesity and multifaceted behavioral alterations in mice. Mol Autism 2022; 13:19. [PMID: 35538503 PMCID: PMC9087967 DOI: 10.1186/s13229-022-00497-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/15/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The zinc finger domain containing transcription factor Myt1l is tightly associated with neuronal identity and is the only transcription factor known that is both neuron-specific and expressed in all neuronal subtypes. We identified Myt1l as a powerful reprogramming factor that, in combination with the proneural bHLH factor Ascl1, could induce neuronal fate in fibroblasts. Molecularly, we found it to repress many non-neuronal gene programs, explaining its supportive role to induce and safeguard neuronal identity in combination with proneural bHLH transcriptional activators. Moreover, human genetics studies found MYT1L mutations to cause intellectual disability and autism spectrum disorder often coupled with obesity. METHODS Here, we generated and characterized Myt1l-deficient mice. A comprehensive, longitudinal behavioral phenotyping approach was applied. RESULTS Myt1l was necessary for survival beyond 24 h but not for overall histological brain organization. Myt1l heterozygous mice became increasingly overweight and exhibited multifaceted behavioral alterations. In mouse pups, Myt1l haploinsufficiency caused mild alterations in early socio-affective communication through ultrasonic vocalizations. In adulthood, Myt1l heterozygous mice displayed hyperactivity due to impaired habituation learning. Motor performance was reduced in Myt1l heterozygous mice despite intact motor learning, possibly due to muscular hypotonia. While anxiety-related behavior was reduced, acoustic startle reactivity was enhanced, in line with higher sensitivity to loud sound. Finally, Myt1l haploinsufficiency had a negative impact on contextual fear memory retrieval, while cued fear memory retrieval appeared to be intact. LIMITATIONS In future studies, additional phenotypes might be identified and a detailed characterization of direct reciprocal social interaction behavior might help to reveal effects of Myt1l haploinsufficiency on social behavior in juvenile and adult mice. CONCLUSIONS Behavioral alterations in Myt1l haploinsufficient mice recapitulate several clinical phenotypes observed in humans carrying heterozygous MYT1L mutations and thus serve as an informative model of the human MYT1L syndrome.
Collapse
Affiliation(s)
- Markus Wöhr
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA, 94305, USA.
- Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, Faculty of Psychology and Educational Sciences, KU Leuven, 3000, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium.
- Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University of Marburg, 35032, Marburg, Germany.
- Center for Mind, Brain and Behavior, Philipps-University of Marburg, 35032, Marburg, Germany.
| | - Wendy M Fong
- Departments of Pathology and Chemical and Systems Biology, School of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Justyna A Janas
- Departments of Pathology and Chemical and Systems Biology, School of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Moritz Mall
- Departments of Pathology and Chemical and Systems Biology, School of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Christian Thome
- Departments of Pathology and Chemical and Systems Biology, School of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Madhuri Vangipuram
- Departments of Pathology and Chemical and Systems Biology, School of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Lingjun Meng
- Departments of Pathology and Chemical and Systems Biology, School of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA, 94305, USA
- School of Medicine, Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA
| | - Marius Wernig
- Departments of Pathology and Chemical and Systems Biology, School of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
7
|
Chen J, Ma XL, Zhao H, Wang XY, Xu MX, Wang H, Yang TQ, Peng C, Liu SS, Huang M, Zhou YD, Shen Y. Increasing astrogenesis in the developing hippocampus induces autistic-like behavior in mice via enhancing inhibitory synaptic transmission. Glia 2021; 70:106-122. [PMID: 34498776 PMCID: PMC9291003 DOI: 10.1002/glia.24091] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized primarily by impaired social communication and rigid, repetitive, and stereotyped behaviors. Many studies implicate abnormal synapse development and the resultant abnormalities in synaptic excitatory–inhibitory (E/I) balance may underlie many features of the disease, suggesting aberrant neuronal connections and networks are prone to occur in the developing autistic brain. Astrocytes are crucial for synaptic formation and function, and defects in astrocytic activation and function during a critical developmental period may also contribute to the pathogenesis of ASD. Here, we report that increasing hippocampal astrogenesis during development induces autistic‐like behavior in mice and a concurrent decreased E/I ratio in the hippocampus that results from enhanced GABAergic transmission in CA1 pyramidal neurons. Suppressing the aberrantly elevated GABAergic synaptic transmission in hippocampal CA1 area rescues autistic‐like behavior and restores the E/I balance. Thus, we provide direct evidence for a developmental role of astrocytes in driving the behavioral phenotypes of ASD, and our results support that targeting the altered GABAergic neurotransmission may represent a promising therapeutic strategy for ASD.
Collapse
Affiliation(s)
- Juan Chen
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Lin Ma
- Department of Neurobiology and Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Hui Zhao
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Yu Wang
- Department of Neurobiology and Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Min-Xin Xu
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Hua Wang
- Department of Neurobiology and Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Tian-Qi Yang
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Cheng Peng
- Department of Neurobiology and Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Shuang-Shuang Liu
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Man Huang
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Dong Zhou
- Department of Neurobiology and Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.,Department of Pharmacology, Zhejiang University City College School of Medicine, Hangzhou, China
| | - Yi Shen
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.,National Human Brain Bank for Health and Disease, Hangzhou, China
| |
Collapse
|
8
|
Fecal Transplant and Bifidobacterium Treatments Modulate Gut Clostridium Bacteria and Rescue Social Impairment and Hippocampal BDNF Expression in a Rodent Model of Autism. Brain Sci 2021; 11:brainsci11081038. [PMID: 34439657 PMCID: PMC8391663 DOI: 10.3390/brainsci11081038] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/18/2022] Open
Abstract
Autism is associated with gastrointestinal dysfunction and gut microbiota dysbiosis, including an overall increase in Clostridium. Modulation of the gut microbiota is suggested to improve autistic symptoms. In this study, we explored the implementation of two different interventions that target the microbiota in a rodent model of autism and their effects on social behavior: the levels of different fecal Clostridium spp., and hippocampal transcript levels. Autism was induced in young Sprague Dawley male rats using oral gavage of propionic acid (PPA) for three days, while controls received saline. PPA-treated animals were divided to receive either saline, fecal transplant from healthy donor rats, or Bifidobacterium for 22 days, while controls continued to receive saline. We found that PPA attenuated social interaction in animals, which was rescued by the two interventions. PPA-treated animals had a significantly increased abundance of fecal C. perfringens with a concomitant decrease in Clostridium cluster IV, and exhibited high hippocampal Bdnf expression compared to controls. Fecal microbiota transplantation or Bifidobacterium treatment restored the balance of fecal Clostridium spp. and normalized the level of Bdnf expression. These findings highlight the involvement of the gut-brain axis in the etiology of autism and propose possible interventions in a preclinical model of autism.
Collapse
|
9
|
May HJ, Jeong J, Revah-Politi A, Cohen JS, Chassevent A, Baptista J, Baugh EH, Bier L, Bottani A, Carminho A Rodrigues MT, Conlon C, Fluss J, Guipponi M, Kim CA, Matsumoto N, Person R, Primiano M, Rankin J, Shinawi M, Smith-Hicks C, Telegrafi A, Toy S, Uchiyama Y, Aggarwal V, Goldstein DB, Roche KW, Anyane-Yeboa K. Truncating variants in the SHANK1 gene are associated with a spectrum of neurodevelopmental disorders. Genet Med 2021; 23:1912-1921. [PMID: 34113010 DOI: 10.1038/s41436-021-01222-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE In this study, we aimed to characterize the clinical phenotype of a SHANK1-related disorder and define the functional consequences of SHANK1 truncating variants. METHODS Exome sequencing (ES) was performed for six individuals who presented with neurodevelopmental disorders. Individuals were ascertained with the use of GeneMatcher and Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources (DECIPHER). We evaluated potential nonsense-mediated decay (NMD) of two variants by making knock-in cell lines of endogenous truncated SHANK1, and expressed the truncated SHANK1 complementary DNA (cDNA) in HEK293 cells and cultured hippocampal neurons to examine the proteins. RESULTS ES detected de novo truncating variants in SHANK1 in six individuals. Evaluation of NMD resulted in stable transcripts, and the truncated SHANK1 completely lost binding with Homer1, a linker protein that binds to the C-terminus of SHANK1. These variants may disrupt protein-protein networks in dendritic spines. Dispersed localization of the truncated SHANK1 variants within the spine and dendritic shaft was also observed when expressed in neurons, indicating impaired synaptic localization of truncated SHANK1. CONCLUSION This report expands the clinical spectrum of individuals with truncating SHANK1 variants and describes the impact these variants may have on the pathophysiology of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Halie J May
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - Jaehoon Jeong
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Anya Revah-Politi
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Julie S Cohen
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna Chassevent
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Julia Baptista
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK.,Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Evan H Baugh
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Louise Bier
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Armand Bottani
- Division of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | | | - Charles Conlon
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Joel Fluss
- Pediatric Neurology Unit, Pediatrics Subspecialties Service, Geneva Children's Hospital, Geneva, Switzerland
| | - Michel Guipponi
- Division of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Chong Ae Kim
- Genetics Unit, Instituto da Crianca, Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Richard Person
- Clinical Genomics Program, GeneDx, Gaithersburg, MD, USA
| | - Michelle Primiano
- Division of Clinical Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Julia Rankin
- Department of Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Marwan Shinawi
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Constance Smith-Hicks
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aida Telegrafi
- Clinical Genomics Program, GeneDx, Gaithersburg, MD, USA
| | - Samantha Toy
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Rare Disease Genomics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Vimla Aggarwal
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Katherine W Roche
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Kwame Anyane-Yeboa
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA. .,Division of Clinical Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
10
|
Premoli M, Memo M, Bonini SA. Ultrasonic vocalizations in mice: relevance for ethologic and neurodevelopmental disorders studies. Neural Regen Res 2021; 16:1158-1167. [PMID: 33269765 PMCID: PMC8224126 DOI: 10.4103/1673-5374.300340] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/09/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022] Open
Abstract
Mice use ultrasonic vocalizations (USVs) to communicate each other and to convey their emotional state. USVs have been greatly characterized in specific life phases and contexts, such as mother isolation-induced USVs for pups or female-induced USVs for male mice during courtship. USVs can be acquired by means of specific tools and later analyzed on the base of both quantitative and qualitative parameters. Indeed, different ultrasonic call categories exist and have already been defined. The understanding of different calls meaning is still missing, and it will represent an essential step forward in the field of USVs. They have long been studied in the ethological context, but recently they emerged as a precious instrument to study pathologies characterized by deficits in communication, in particular neurodevelopmental disorders (NDDs), such as autism spectrum disorders. This review covers the topics of USVs characteristics in mice, contexts for USVs emission and factors that modulate their expression. A particular focus will be devoted to mouse USVs in the context of NDDs. Indeed, several NDDs murine models exist and an intense study of USVs is currently in progress, with the aim of both performing an early diagnosis and to find a pharmacological/behavioral intervention to improve patients' quality of life.
Collapse
Affiliation(s)
- Marika Premoli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Sara Anna Bonini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| |
Collapse
|
11
|
Wan L, Liu D, Xiao WB, Zhang BX, Yan XX, Luo ZH, Xiao B. Association of SHANK Family with Neuropsychiatric Disorders: An Update on Genetic and Animal Model Discoveries. Cell Mol Neurobiol 2021; 42:1623-1643. [PMID: 33595806 DOI: 10.1007/s10571-021-01054-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
Abstract
The Shank family proteins are enriched at the postsynaptic density (PSD) of excitatory glutamatergic synapses. They serve as synaptic scaffolding proteins and appear to play a critical role in the formation, maintenance and functioning of synapse. Increasing evidence from genetic association and animal model studies indicates a connection of SHANK genes defects with the development of neuropsychiatric disorders. In this review, we first update the current understanding of the SHANK family genes and their encoded protein products. We then denote the literature relating their alterations to the risk of neuropsychiatric diseases. We further review evidence from animal models that provided molecular insights into the biological as well as pathogenic roles of Shank proteins in synapses, and the potential relationship to the development of abnormal neurobehavioral phenotypes.
Collapse
Affiliation(s)
- Lily Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Du Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Taikang Tongji Hospital, Wuhan, 430050, Hubei, China
| | - Wen-Biao Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bo-Xin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University, Changsha, 410013, Hunan, China
| | - Zhao-Hui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
12
|
Developmental impaired Akt signaling in the Shank1 and Shank3 double knock-out mice. Mol Psychiatry 2021; 26:1928-1944. [PMID: 33402706 PMCID: PMC8440179 DOI: 10.1038/s41380-020-00979-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 01/30/2023]
Abstract
Human mutations and haploinsufficiency of the SHANK family genes are associated with autism spectrum disorders (ASD) and intellectual disability (ID). Complex phenotypes have been also described in all mouse models of Shank mutations and deletions, consistent with the heterogeneity of the human phenotypes. However, the specific role of Shank proteins in synapse and neuronal functions remain to be elucidated. Here, we generated a new mouse model to investigate how simultaneously deletion of Shank1 and Shank3 affects brain development and behavior in mice. Shank1-Shank3 DKO mice showed a low survival rate, a developmental strong reduction in the activation of intracellular signaling pathways involving Akt, S6, ERK1/2, and eEF2 during development and a severe behavioral impairments. Our study suggests that Shank1 and Shank3 proteins are essential to developmentally regulate the activation of Akt and correlated intracellular pathways crucial for mammalian postnatal brain development and synaptic plasticity. Therefore, Akt function might represent a new therapeutic target for enhancing cognitive abilities of syndromic ASD patients.
Collapse
|
13
|
Hao X, Pan J, Gao X, Zhang S, Li Y. Gut microbiota on gender bias in autism spectrum disorder. Rev Neurosci 2020; 32:/j/revneuro.ahead-of-print/revneuro-2020-0042/revneuro-2020-0042.xml. [PMID: 32887209 DOI: 10.1515/revneuro-2020-0042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 05/29/2020] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder. Its three core symptoms are social communication disorder, communication disorder, narrow interest and stereotyped repetitive behavior. The proportion of male and female autistic patients is 4:1. Many researchers have studied this phenomenon, but the mechanism is still unclear. This review mainly discusses the related mechanism from the perspective of gut microbiota and introduces the influence of gut microbiota on the difference of ASD between men and women, as well as how gut microbiota may affect the gender dimorphism of ASD through metabolite of microbiota, immunity, and genetics, which provide some useful information for those who are interested in this research and find more gender-specific treatment for autistic men and women.
Collapse
Affiliation(s)
- Xia Hao
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin301617,China
- College of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin301617,China
| | - Jiao Pan
- Department of Microbiology, Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin300071,China
| | - Xiumei Gao
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin301617,China
| | - Shiyu Zhang
- College of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin301617,China
| | - Yue Li
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin301617,China
| |
Collapse
|
14
|
Bhandari R, Paliwal JK, Kuhad A. Neuropsychopathology of Autism Spectrum Disorder: Complex Interplay of Genetic, Epigenetic, and Environmental Factors. ADVANCES IN NEUROBIOLOGY 2020; 24:97-141. [PMID: 32006358 DOI: 10.1007/978-3-030-30402-7_4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Autism spectrum disorder (ASD) is a complex heterogeneous consortium of pervasive development disorders (PDD) which ranges from atypical autism, autism, and Asperger syndrome affecting brain in the developmental stage. This debilitating neurodevelopmental disorder results in both core as well as associated symptoms. Core symptoms observed in autistic patients are lack of social interaction, pervasive, stereotyped, and restricted behavior while the associated symptoms include irritability, anxiety, aggression, and several comorbid disorders.ASD is a polygenic disorder and is multifactorial in origin. Copy number variations (CNVs) of several genes that regulate the synaptogenesis and signaling pathways are one of the major factors responsible for the pathogenesis of autism. The complex integration of various CNVs cause mutations in the genes which code for molecules involved in cell adhesion, voltage-gated ion-channels, scaffolding proteins as well as signaling pathways (PTEN and mTOR pathways). These mutated genes are responsible for affecting synaptic transmission by causing plasticity dysfunction responsible, in turn, for the expression of ASD.Epigenetic modifications affecting DNA transcription and various pre-natal and post-natal exposure to a variety of environmental factors are also precipitating factors for the occurrence of ASD. All of these together cause dysregulation of glutamatergic signaling as well as imbalance in excitatory: inhibitory pathways resulting in glial cell activation and release of inflammatory mediators responsible for the aberrant social behavior which is observed in autistic patients.In this chapter we review and provide insight into the intricate integration of various genetic, epigenetic, and environmental factors which play a major role in the pathogenesis of this disorder and the mechanistic approach behind this integration.
Collapse
Affiliation(s)
- Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Jyoti K Paliwal
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India.
| |
Collapse
|
15
|
Michels S, Dolga AM, Braun MD, Kisko TM, Sungur AÖ, Witt SH, Rietschel M, Dempfle A, Wöhr M, Schwarting RKW, Culmsee C. Interaction of the Psychiatric Risk Gene Cacna1c With Post-weaning Social Isolation or Environmental Enrichment Does Not Affect Brain Mitochondrial Bioenergetics in Rats. Front Cell Neurosci 2019; 13:483. [PMID: 31708752 PMCID: PMC6823196 DOI: 10.3389/fncel.2019.00483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022] Open
Abstract
The pathophysiology of neuropsychiatric disorders involves complex interactions between genetic and environmental risk factors. Confirmed by several genome-wide association studies, Cacna1c represents one of the most robustly replicated psychiatric risk genes. Besides genetic predispositions, environmental stress such as childhood maltreatment also contributes to enhanced disease vulnerability. Both, Cacna1c gene variants and stressful life events are associated with morphological alterations in the prefrontal cortex and the hippocampus. Emerging evidence suggests impaired mitochondrial bioenergetics as a possible underlying mechanism of these regional brain abnormalities. In the present study, we simulated the interaction of psychiatric disease-relevant genetic and environmental factors in rodents to investigate their potential effect on brain mitochondrial function using a constitutive heterozygous Cacna1c rat model in combination with a four-week exposure to either post-weaning social isolation, standard housing, or social and physical environmental enrichment. Mitochondria were isolated from the prefrontal cortex and the hippocampus to evaluate their bioenergetics, membrane potential, reactive oxygen species production, and respiratory chain complex protein levels. None of these parameters were considerably affected in this particular gene-environment setting. These negative results were very robust in all tested conditions demonstrating that Cacna1c depletion did not significantly translate into altered bioenergetic characteristics. Thus, further investigations are required to determine the disease-related effects on brain mitochondria.
Collapse
Affiliation(s)
- Susanne Michels
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, Netherlands
| | - Moria D Braun
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany.,Department of Experimental and Biological Psychology, University of Marburg, Marburg, Germany
| | - Theresa M Kisko
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany.,Department of Experimental and Biological Psychology, University of Marburg, Marburg, Germany
| | - A Özge Sungur
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany.,Department of Experimental and Biological Psychology, University of Marburg, Marburg, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Markus Wöhr
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany.,Department of Experimental and Biological Psychology, University of Marburg, Marburg, Germany
| | - Rainer K W Schwarting
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany.,Department of Experimental and Biological Psychology, University of Marburg, Marburg, Germany
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| |
Collapse
|
16
|
Pisu MG, Boero G, Garau A, Casula C, Cisci S, Biggio F, Concas A, Follesa P, Maciocco E, Porcu P, Serra M. Are preconceptional stressful experiences crucial elements for the aetiology of autism spectrum disorder? Insights from an animal model. Neuropharmacology 2019; 157:107686. [PMID: 31247268 DOI: 10.1016/j.neuropharm.2019.107686] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 12/26/2022]
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterized by changes in social interactions, impaired language and communication, fear responses and presence of repetitive behaviours. Although the genetic bases of ASD are well documented, the recent increase in clinical cases of idiopathic ASD indicates that several environmental risk factors could play a role in ASD aetiology. Among these, maternal exposure to psychosocial stressors during pregnancy has been hypothesized to affect the risk for ASD in offspring. Here, we tested the hypothesis that preconceptional stressful experiences might also represent crucial elements in the aetiology of ASD. We previously showed that social isolation stress during adolescence results in a marked decrease in the brain and plasma concentrations of progesterone and in the quality of maternal care that these female rats later provide to their young. Here we report that male offspring of socially isolated parents showed decreased agonistic behaviour and social transmission of flavour preference, impairment in reversal learning, increased seizure susceptibility, reduced plasma oxytocin levels, and increased plasma and brain levels of BDNF, all features resembling an ASD-like phenotype. These alterations came with no change in spatial learning, aggression, anxiety and testosterone plasma levels, and were sex-dependent. Altogether, the results suggest that preconceptional stressful experiences should be considered as crucial elements for the aetiology of ASD, and indicate that male offspring of socially isolated parents may be a useful animal model to further study the neurobiological bases of ASD, avoiding the adaptations that may occur in other genetic or pharmacologic experimental models of these disorders.
Collapse
Affiliation(s)
| | - Giorgia Boero
- Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Anna Garau
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Claudia Casula
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Sonia Cisci
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Francesca Biggio
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy; Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Alessandra Concas
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy; Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Paolo Follesa
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy; Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Elisabetta Maciocco
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Mariangela Serra
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy; Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| |
Collapse
|
17
|
De Vincenti AP, Ríos AS, Paratcha G, Ledda F. Mechanisms That Modulate and Diversify BDNF Functions: Implications for Hippocampal Synaptic Plasticity. Front Cell Neurosci 2019; 13:135. [PMID: 31024262 PMCID: PMC6465932 DOI: 10.3389/fncel.2019.00135] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that has pleiotropic effects on neuronal morphology and synaptic plasticity that underlie hippocampal circuit development and cognition. Recent advances established that BDNF function is controlled and diversified by molecular and cellular mechanisms including trafficking and subcellular compartmentalization of different Bdnf mRNA species, pre- vs. postsynaptic release of BDNF, control of BDNF signaling by tropomyosin receptor kinase B (TrkB) receptor interactors and conversion of pro-BDNF to mature BDNF and BDNF-propeptide. Defects in these regulatory mechanisms affect dendritic spine formation and morphology of pyramidal neurons as well as synaptic integration of newborn granule cells (GCs) into preexisting circuits of mature hippocampus, compromising the cognitive function. Here, we review recent findings describing novel dynamic mechanisms that diversify and locally control the function of BDNF in hippocampal neurons.
Collapse
Affiliation(s)
- Ana Paula De Vincenti
- División de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Antonella S Ríos
- División de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.,Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Gustavo Paratcha
- División de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Fernanda Ledda
- División de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.,Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires, Argentina
| |
Collapse
|
18
|
Guang S, Pang N, Deng X, Yang L, He F, Wu L, Chen C, Yin F, Peng J. Synaptopathology Involved in Autism Spectrum Disorder. Front Cell Neurosci 2018; 12:470. [PMID: 30627085 PMCID: PMC6309163 DOI: 10.3389/fncel.2018.00470] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) encompasses a group of multifactorial neurodevelopmental disorders characterized by impaired social communication, social interaction and repetitive behaviors. ASD affects 1 in 59 children, and is about 4 times more common among boys than among girls. Strong genetic components, together with environmental factors in the early stage of development, contribute to the pathogenesis of ASD. Multiple studies have revealed that mutations in genes like NRXN, NLGN, SHANK, TSC1/2, FMR1, and MECP2 converge on common cellular pathways that intersect at synapses. These genes encode cell adhesion molecules, scaffolding proteins and proteins involved in synaptic transcription, protein synthesis and degradation, affecting various aspects of synapses including synapse formation and elimination, synaptic transmission and plasticity. This suggests that the pathogenesis of ASD may, at least in part, be attributed to synaptic dysfunction. In this article, we will review major genes and signaling pathways implicated in synaptic abnormalities underlying ASD, and discuss molecular, cellular and functional studies of ASD experimental models.
Collapse
Affiliation(s)
- Shiqi Guang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Nan Pang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Xiaolu Deng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Liwen Wu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Chen Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| |
Collapse
|
19
|
Lackinger M, Sungur AÖ, Daswani R, Soutschek M, Bicker S, Stemmler L, Wüst T, Fiore R, Dieterich C, Schwarting RK, Wöhr M, Schratt G. A placental mammal-specific microRNA cluster acts as a natural brake for sociability in mice. EMBO Rep 2018; 20:embr.201846429. [PMID: 30552145 DOI: 10.15252/embr.201846429] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/16/2018] [Accepted: 11/23/2018] [Indexed: 01/12/2023] Open
Abstract
Aberrant synaptic function is thought to underlie social deficits in neurodevelopmental disorders such as autism and schizophrenia. Although microRNAs have been shown to regulate synapse development and plasticity, their potential involvement in the control of social behaviour in mammals remains unexplored. Here, we show that deletion of the placental mammal-specific miR379-410 cluster in mice leads to hypersocial behaviour, which is accompanied by increased excitatory synaptic transmission, and exaggerated expression of ionotropic glutamate receptor complexes in the hippocampus. Bioinformatic analyses further allowed us to identify five "hub" microRNAs whose deletion accounts largely for the upregulation of excitatory synaptic genes observed, including Cnih2, Dlgap3, Prr7 and Src. Thus, the miR379-410 cluster acts a natural brake for sociability, and interfering with specific members of this cluster could represent a therapeutic strategy for the treatment of social deficits in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Martin Lackinger
- Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| | - A Özge Sungur
- Behavioural Neuroscience, Experimental and Biological Psychology, Philipps-University Marburg, Marburg, Germany
| | - Reetu Daswani
- Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Michael Soutschek
- Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Silvia Bicker
- Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Lea Stemmler
- Behavioural Neuroscience, Experimental and Biological Psychology, Philipps-University Marburg, Marburg, Germany
| | - Tatjana Wüst
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Roberto Fiore
- Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Rainer Kw Schwarting
- Behavioural Neuroscience, Experimental and Biological Psychology, Philipps-University Marburg, Marburg, Germany
| | - Markus Wöhr
- Behavioural Neuroscience, Experimental and Biological Psychology, Philipps-University Marburg, Marburg, Germany
| | - Gerhard Schratt
- Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
20
|
Sungur AÖ, Redecker TM, Andres E, Dürichen W, Schwarting RKW, Del Rey A, Wöhr M. Reduced Efficacy of d-Amphetamine and 3,4-Methylenedioxymethamphetamine in Inducing Hyperactivity in Mice Lacking the Postsynaptic Scaffolding Protein SHANK1. Front Mol Neurosci 2018; 11:419. [PMID: 30505269 PMCID: PMC6250831 DOI: 10.3389/fnmol.2018.00419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/26/2018] [Indexed: 02/02/2023] Open
Abstract
Genetic defects in the three SH3 and multiple ankyrin repeat domains (SHANK) genes (SHANK1, SHANK2, and SHANK3) are associated with multiple major neuropsychiatric disorders, including autism spectrum disorder (ASD), schizophrenia (SCZ), and bipolar disorder (BPD). Psychostimulant-induced hyperactivity is a commonly applied paradigm to assess behavioral phenotypes related to BPD and considered to be the gold standard for modeling mania-like elevated drive in mouse models. Therefore, the goal of our present study was to test whether Shank1 plays a role in the behavioral effects of psychostimulants and whether this is associated with genotype-dependent neurochemical alterations. To this aim, male and female null mutant Shank1-/- mice were treated with d-amphetamine (AMPH; 2.5 mg/kg) and 3,4-methylenedioxymethamphetamine (MDMA, commonly known as ecstasy; 20 mg/kg), and psychostimulant-induced hyperactivity was compared to heterozygous Shank1+/- and wildtype Shank1+/+ littermate controls. Results show that Shank1-/- mice display reduced psychostimulant-induced hyperactivity, although psychostimulants robustly stimulated locomotor activity in littermate controls. Shank1 deletion effects emerged throughout development, were particularly prominent in adulthood, and seen in response to both psychostimulants, i.e., AMPH and MDMA. Specifically, while AMPH-induced hyperactivity was reduced but still detectable in Shank1-/- mice, MDMA-induced hyperactivity was robustly blocked and completely absent in Shank1-/- mice. Reduced efficacy of psychostimulants to stimulate hyperactivity in Shank1-/- mice might be associated with alterations in the neurochemical architecture in prefrontal cortex, nucleus accumbens, and hypothalamus. Our observation that psychostimulant-induced hyperactivity is reduced rather than enhanced in Shank1-/- mice clearly speaks against a behavioral phenotype with relevance to BPD. Lack of BPD-like phenotype is consistent with currently available human data linking mutations in SHANK2 and SHANK3 but not SHANK1 to BPD.
Collapse
Affiliation(s)
- A Özge Sungur
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps University of Marburg, Marburg, Germany
| | - Tobias M Redecker
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps University of Marburg, Marburg, Germany
| | - Elena Andres
- Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University of Marburg, Marburg, Germany
| | - Wiebke Dürichen
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps University of Marburg, Marburg, Germany
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps University of Marburg, Marburg, Germany
| | - Adriana Del Rey
- Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University of Marburg, Marburg, Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
21
|
Li Y, Shen M, Stockton ME, Zhao X. Hippocampal deficits in neurodevelopmental disorders. Neurobiol Learn Mem 2018; 165:106945. [PMID: 30321651 DOI: 10.1016/j.nlm.2018.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022]
Abstract
Neurodevelopmental disorders result from impaired development or maturation of the central nervous system. Both genetic and environmental factors can contribute to the pathogenesis of these disorders; however, the exact causes are frequently complex and unclear. Individuals with neurodevelopmental disorders may have deficits with diverse manifestations, including challenges with sensory function, motor function, learning, memory, executive function, emotion, anxiety, and social ability. Although these functions are mediated by multiple brain regions, many of them are dependent on the hippocampus. Extensive research supports important roles of the mammalian hippocampus in learning and cognition. In addition, with its high levels of activity-dependent synaptic plasticity and lifelong neurogenesis, the hippocampus is sensitive to experience and exposure and susceptible to disease and injury. In this review, we first summarize hippocampal deficits seen in several human neurodevelopmental disorders, and then discuss hippocampal impairment including hippocampus-dependent behavioral deficits found in animal models of these neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yue Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Minjie Shen
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Michael E Stockton
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
22
|
Mossa A, Giona F, Pagano J, Sala C, Verpelli C. SHANK genes in autism: Defining therapeutic targets. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:416-423. [PMID: 29175319 DOI: 10.1016/j.pnpbp.2017.11.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/14/2017] [Accepted: 11/18/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Adele Mossa
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Federica Giona
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Jessica Pagano
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Carlo Sala
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Chiara Verpelli
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy.
| |
Collapse
|
23
|
Sungur AÖ, Stemmler L, Wöhr M, Rust MB. Impaired Object Recognition but Normal Social Behavior and Ultrasonic Communication in Cofilin1 Mutant Mice. Front Behav Neurosci 2018. [PMID: 29515378 PMCID: PMC5825895 DOI: 10.3389/fnbeh.2018.00025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Autism spectrum disorder (ASD), schizophrenia (SCZ) and intellectual disability (ID) show a remarkable overlap in symptoms, including impairments in cognition, social behavior and communication. Human genetic studies revealed an enrichment of mutations in actin-related genes for these disorders, and some of the strongest candidate genes control actin dynamics. These findings led to the hypotheses: (i) that ASD, SCZ and ID share common disease mechanisms; and (ii) that, at least in a subgroup of affected individuals, defects in the actin cytoskeleton cause or contribute to their pathologies. Cofilin1 emerged as a key regulator of actin dynamics and we previously demonstrated its critical role for synaptic plasticity and associative learning. Notably, recent studies revealed an over-activation of cofilin1 in mutant mice displaying ASD- or SCZ-like behavioral phenotypes, suggesting that dysregulated cofilin1-dependent actin dynamics contribute to their behavioral abnormalities, such as deficits in social behavior. These findings let us hypothesize: (i) that, apart from cognitive impairments, cofilin1 mutants display additional behavioral deficits with relevance to ASD or SCZ; and (ii) that our cofilin1 mutants represent a valuable tool to study the underlying disease mechanisms. To test our hypotheses, we compared social behavior and ultrasonic communication of juvenile mutants to control littermates, and we did not obtain evidence for impaired direct reciprocal social interaction, social approach or social memory. Moreover, concomitant emission of ultrasonic vocalizations was not affected and time-locked to social activity, supporting the notion that ultrasonic vocalizations serve a pro-social communicative function as social contact calls maintaining social proximity. Finally, cofilin1 mutants did not display abnormal repetitive behaviors. Instead, they performed weaker in novel object recognition, thereby demonstrating that cofilin1 is relevant not only for associative learning, but also for “non-matching-to-sample” learning. Here we report the absence of an ASD- or a SCZ-like phenotype in cofilin1 mutants, and we conclude that cofilin1 is relevant specifically for non-social cognition.
Collapse
Affiliation(s)
- A Özge Sungur
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, Marburg, Germany.,Department of Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| | - Lea Stemmler
- Department of Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| | - Markus Wöhr
- Department of Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior (MCMBB), Philipps-University of Marburg, Marburg, Germany
| | - Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior (MCMBB), Philipps-University of Marburg, Marburg, Germany.,DFG Research Training Group-Membrane Plasticity in Tissue Development and Remodeling, Philipps-University of Marburg, Marburg, Germany
| |
Collapse
|
24
|
Sungur AÖ, Schwarting RKW, Wöhr M. Behavioral phenotypes and neurobiological mechanisms in the Shank1 mouse model for autism spectrum disorder: A translational perspective. Behav Brain Res 2017; 352:46-61. [PMID: 28963042 DOI: 10.1016/j.bbr.2017.09.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 09/11/2017] [Accepted: 09/25/2017] [Indexed: 11/27/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorders, characterized by early-onset deficits in social behavior and communication across multiple contexts, together with restricted, repetitive patterns of behavior, interests, or activities. ASD is among the most heritable neuropsychiatric conditions with heritability estimates higher than 80%, and while available evidence points to a complex set of genetic factors, the SHANK (also known as ProSAP) gene family has emerged as one of the most promising candidates. Several genetic Shank mouse models for ASD were generated, including Shank1 knockout mice. Behavioral studies focusing on the Shank1 knockout mouse model for ASD included assays for detecting ASD-relevant behavioral phenotypes in the following domains: (I) social behavior, (II) communication, and (III) repetitive and stereotyped patterns of behavior. In addition, assays for detecting behavioral phenotypes with relevance to comorbidities in ASD were performed, including but not limited to (IV) cognitive functioning. Here, we summarize and discuss behavioral and neuronal findings obtained in the Shank1 knockout mouse model for ASD. We identify open research questions by comparing such findings with the symptoms present in humans diagnosed with ASD and carrying SHANK1 deletions. We conclude by discussing the implications of the behavioral and neuronal phenotypes displayed by the Shank1 knockout mouse model for the development of future pharmacological interventions in ASD.
Collapse
Affiliation(s)
- A Özge Sungur
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany.
| |
Collapse
|